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Econometrica, Vol. 61, No. 5 (September, 1993), 1231-1240 

SUBJECTIVE EQUILIBRIUM IN REPEATED GAMES' 

BY EHUD KALAI AND EHUD LEHRER 

1. INTRODUCTION 

A NASH EQUILIBRIUM, of an n-person infinitely repeated game with discounting, is a 
vector of behavior strategies, f = (f1, f2, . .. , f), with each player's strategy, fi, being a 
best response to his opponents' strategies, f-i. One may think of it as an objective notion 
since any two players attribute to a third player, say, k, the same, and the correct 
strategy, fk- 

A subjectively rational player, on the other hand, chooses his strategy fi to be a best 
response to his individual beliefs about his opponents' strategies, f'=(li f2, ... ,fi). 
Except for knowing his own strategy, fi'=fi, his assessments of opponents are not 
necessarily correct, nor do they coincide with other players' assessments. For example, all 
three strategies, f3, f3, and f3, may be different when players one and two disagree 
about the strategy of player three and both are wrong. 

Nevertheless, a vector of subjectively rational strategies f can be in equilibrium if the 
play it induces coincides with the plays induced by the beliefs of each player i, as 
described by his belief vector, f '. For instance, if both f and f' consist of pure strategies 
and generate the same single play path, then player i's belief, even if wrong off the play 
path, can only be reinforced as the game progresses. Similarly, randomizing strategies f 
and ft can be realization equivalent, in a probabilistic sense, if the distributions they 
induce on future play paths coincide. Again, since the distributions induced by f and fi 
may differ only after histories that have zero probability, any statistical inference 
conducted by player i can only reinforce his belief that the vector fi is being played. 

With the above interpretation in mind, we think of a subjective equilibrium as being 
stable with respect to learning and optimization. Players placed at such an equilibrium 
will not alter their beliefs and will have no incentive to alter their strategies. 

Notions of subjective equilibrium are not new in economics and game theory (see 
Battigalli et al. (1992) for a survey). Von Hayek (1937) already discussed the differences 
between subjective and objective knowledge. His test for equilibrium was "whether the 
individual subjective sets of data correspond to the objective data, and whether in 
consequence the expectations in which plans were based are born out by the facts." 
Hahn (1973) assumed that agents maximize their utility relative to their subjective 
theories about the future evolution of the economy. He defined a conjectural equilibrium 
as a situation where the signals generated by the economy do not alter the agents' 
individual theories, nor do they induce them to change their policies. Battigalli (1987) 
and Battigalli and Guaitoli (1988) formalized and studied the game theoretic version of 
Hahn's conjectural equilibrium. Rubinstein and Wolinsky (1990) defined rationalizable 
versions of conjectural equilibrium. 

Fudenberg and Levine (1993b) introduced a notion of self-confirming equilibrium 
defined for finite extensive form games. A player in such a game chooses a strategy to 
maximize his expected payoff given his subjective beliefs about opponents' strategies. 
These beliefs allow the possibility that the opponents' strategies are correlated, and 
being defined for general extensive games this notion allows for imperfect information 

1This paper was previously titled "Private-Beliefs Equilibrium." The authors wish to thank the 
referees of this journal for suggesting substantial improvements, particularly in the proof of the 
main result. This research was partly supported by Grants Nos. SES-9011790 and SES-9022305 from 
the National Science Foundation, Economics Program. 
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the players obtain and use to confirm their subjective beliefs. Fudenberg and Levine 
(1993a) motivated this notion in a model of overlapping generations where players of 
different ages are randomly matched to play a fixed extensive form game. Considering 
steady state learning equilibrium of such a system, they showed that as the life length of 
the players approaches infinity, the group's mixed strategies must approach a self-con- 
firming equilibrium of the underlying extensive game. 

The notion of subjective equilibrium studied in this paper emerges in a learning model 
of n players engaged in a fixed infinitely repeated perfect-monitoring game. A player in 
this model chooses a strategy to maximize expected payoff, given his subjective beliefs 
about the strategies of each of his opponents. Kalai and Lehrer (1993a) showed, under 
an assumption of compatibility of the beliefs with the truth, that after sufficiently long 
time the players must play a subjective e-equilibrium for arbitrarily small E. At such an 
equilibrium the beliefs each player holds about the future play of the game essentially 
coincide with the actual play. 

The result just stated suggests that there exist dynamic processes of learning that lead 
individual utility maximizers to subjective equilibrium. Also, while subjective equilibrium 
is reached in the limit of such processes, only E-subjective equilibrium is attained in finite 
times. For these reasons, it is important to study the group behavior induced by these 
types of equilibria, and to compare it to the better-known objective counterparts, Nash 
and E-Nash equilibrium. The main contribution of the paper is in identifying conditions 
under which near coincidence is obtained. 

It is well known that even in one-player games, i.e., decision problems, there is a 
serious discrepancy between subjective optimization and true (objective, Nash) optimiza- 
tion. A multi-arm bandit player (see Whittle (1982)) can be engaged repeatedly in one 
activity whose payoff is lower than the expected payoff of a competing alternative. The 
player's subjective beliefs assign the activity used a correct payoff distribution but assign 
the competing unused activity a false low payoff distribution. In such a situation, his 
assessments are reinforced and he never finds out that he is wrong off the play path and 
that his play is suboptimal. In other words, he does not follow a Nash equilibrium of the 
complete information one person game. The current paper, however, will rule out such 
situations by assuming that players know their correct payoff distributions and uncer- 
tainty is restricted to be strategic, i.e., concerning opponents' strategies. 

But even under strategic uncertainty alone there are serious discrepancies between 
behavior induced by Nash and behavior induced by subjective equilibrium. Revealing 
examples of extensive games exhibiting this subtle phenomenon were described by 
Fudenberg and Kreps (1988), and Fudenberg and Levine (1993b). In order to rule out 
such examples, the current paper assumes that the infinitely repeated game is played 
with perfect monitoring (of players' actions). This assumption, together with the earlier 
ones, suffices to close the gap between the behavior of Nash and of subjective equilib- 
rium. 

When we restrict ourselves to Nash equilibrium and subjective equilibrium, ignoring 
their approximated E versions, it is easy to see, under the conditions stated above, that 
the two notions induce identical behavior patterns. Starting with a subjective equilibrium, 
one modifies the strategies of all players as follows: (1) on the support of the original play 
paths no modification is done; (2) in,subgames following a unilateral deviation (from the 
support of his strategy) by player i, all players will play according to player i's subjective 
beliefs; (3) in subgames following multi-player deviation, any vector of strategies can be 
assigned. Following such a modification, we do not change the distribution on future play 
paths, since we create the incentives for each player to continue playing according to his 
original strategy. Thus, we end up with a Nash equilibrium which keeps the same exact 
distribution on future play paths as the original subjective equilibrium. In an earlier 
version of our learning paper (Kalai and Lehrer (1990)) we used these arguments to 
prove the convergence of behavior to E-Nash equilibrium behavior in repeated two 
person games. 
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When dealing, however, with an n-person game and with subjective 8-equilibrium, 
where the subjective beliefs are only accurate up to 8, this simple technique does not 
work. One reason is that there is no more unanimity in the players' subjective minds as 
to whether player i deviated or not. Indeed, we can no longer prove that identical 
distribution is induced by some Nash equilibrium or even 8-Nash equilibrium. We have 
to restrict ourselves to a statement that a close distribution is induced by an 8-Nash 
equilibrium. Important differences in notions of closeness of measures and of 8-optimi- 
zation, and their implications for issues of learning and stability, are discussed in 
portions of this paper. 

The notion of subjective equilibrium used in this paper is closely related to the notion 
of self-confirming equilibrium of Fudenberg and Levine (1993b) discussed earlier. Self- 
confirming equilibrium is defined on a general class of finite extensive form games. It 
requires, as does subjective equilibrium, that the distribution on the finite play paths of 
the game coincide with the players' beliefs. However, it is more general, since it allows a 
player to believe that his opponents' actions off the positive probability play paths are 
correlated. Fudenberg and Levine showed, under assumptions closely related to ours, 
that coincidence of self confirming equilibrium behavior with Nash behavior is obtained. 

Our objective in this paper is to describe general sufficient conditions under which 
subjective equilibrium behavior coincides with Nash behavior, and subjective 8-equi- 
librium behavior is 8-close to 8-Nash equilibrium behavior in the space of infinite play 
paths. Since correlations off the play paths will have to be assumed away in the 
statements of our main results, we prefer the simplicity gained by assuming them away in 
the definition of subjective equilibrium. For this reason we restrict the beliefs in a 
subjective equilibrium to consist entirely of (independent) behavior strategies. 

It is important to note that if one player's beliefs regarding an opponent's strategy 
were described by a mixed strategy, i.e., believing that his opponent chose randomly one 
strategy from a set of behavior strategies, then by using the standard Kuhn (1953) 
method we could replace his beliefs with an equivalent single behavior strategy to fit the 
model of this paper. Disallowing correlations, as discussed above, will restrict us to the 
use of individually mixed strategies and thus rule out the mixing of strategies in a 
correlated way across players. 

2. THE REPEATED GAME 

First, we briefly review the standard model of an n-player discounted repeated game 
with perfect monitoring. An n-person stage game is described by a set of action 
combination I = Xn _Y_. with Xi denoting a finite action set of player i. Functions u,: 

- 1F describe the stage game payoffs of the players. 
The set of histories of length t, Ht, is defined to be the set of all t > 1 tuples of 

elements of X, i.e., I', and Ho is a singleton set containing the "empty history." 

2A. THE FINITELY REPEATED GAME 

For any integer 1 we define the finitely repeated game which consists of 1 iterations of 
the stage game just described. Let H' be the set of all histories with length less than 1. 
That is, H' = Ul =OH,. A (behavior) strategy of player i is a function fl: H' -(i) 
with A(i) denoting the set of probability distributions over Ai. Notice that, in the 
definition of a strategy, we implicitly assume that the game is played with perfect 
monitoring. 

A strategy vector f' = (fi, f9,... ,fn) is a vector consisting of individual strategies. 
Such a strategy vector induces a probability distribution Afi over H', which is also the 
set of all the play paths of the finite game, as defined below. 
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With every history h in H' we associate a cylinder set c(h) consisting of all the play 
paths going through h, i.e., having h as a prefix. We will use h to denote the history and 
also to denote the event c(h) when we think of the space of play paths. 

We define AfL of the empty history to be one and proceed inductively. For a history h 
and an action combination a, we define ,ufl(ha) = Itfl(h)Hfl(h)(ai). Thus, the probabil- 
ity of the history consisting of h followed by the action combination a is the probability 
of h times the product of the conditional probabilities of each player taking his action a, 
given the history h. 

We assume that each player has a discount parameter Ai, 0 <Ai < 1, by which he 
evaluates the payoff received along play paths. Thus, if z1 = (z1, Z2, .... Z) is a play path, 
we define 

u,(zl) = E At-lu(z). 
t=1 

Now we complete the definition of the repeated game by defining individual payoffs 
for each strategy vector f1, 

Ui(f') =Eu,(z') = fui(z') dAf,i(z'). 

Equivalently, one can define the expected stage payoffs and take the discounted sum of 
these. 

2B. THE INFINITELY REPEATED GAME 

The set of all finite length histories is denoted by H. I.e., H= U=OH,. A (behavior) 
strategy of player i in the infinitely repeated game is a function fi from H to A(Xi). 
Note that any fi induces a strategy, f, in the corresponding i-fold repeated game. The 
fil is simply the restriction of f to the smaller domain, H', and it is called the 
1-truncation of f. 

For every strategy vector f = (fl, . . . , f) we define a probability distribution, Af, over 
the set of all infinite play paths X'. The or-algebra for this set is defined to be the 
smallest one that contains all the cylinder sets, c(h). Following a standard probability 
formulation it suffices to assign probabilities to all the cylinder sets in order to obtain a 
probability distribution over the set of all play paths. 

For every finite history hE H, we define btf(h) = ,fi(h). As in the finite case we 
define 

00 

Ui(z) = E At-ui(zt) 
t== 1 

for every infinite play path z = (zl, Z21 ... ) and 

Ui(f) =Eui(z) =fui(z) dIf(z). 

Unless specified, statements in the sequel refer to both the finitely and infinitely 
repeated game. 

We say that a sequence of player i's strategies, fi,, converges to fi if fi,(h) 
convefges to fi(h) for every finite history h. 
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3. DESCRIPTION OF THE MAIN RESULT 

In Kalai and Lehrer (1993a) it was shown that subjectively rational players, with truth 
compatible beliefs, must converge in time to play subjective equilibria and converge in 
finite time to play subjective 8-equilibria, as defined below. 

The rationality of such a player i is expressed by the fact that he chooses his strategy 
gi to be a best (maximizing expected utility) response to his beliefs that strategies 

= (g'1 ..., gI ) will be played. Truth compatibility of beliefs is expressed by the fact that 
the true distribution on the induced play of the game, ,ug, is absolutely continuous with 
respect to the belief distribution, byg. In other words, no positive probability event in the 
game is assigned, probability zero by the beliefs. 

Given that a player maximizes expected utility relative to a prior probability distribu- 
tion, it follows that he must be maximizing expected utility relative to his Bayes updated 
posterior beliefs after positive probability histories. As was shown earlier by Blackwell 
and Dubins (1962), and by the recent Kalai and Lehrer paper, absolute continuity 
guarantees that Bayes posteriors converge to the true distribution. So in the limit the 
players will predict the future correctly and will play a subjective equilibrium; and in 
finite time they will predict the future correctly only up to E and will play subjective 
8-equilibrium. We begin by considering the case of correct predictions in the future, and 
hence of subjective equilibrium. 

As usual, we say that a strategy fi is a best response to g-i if Ui(g1, ..., ki,..., gn)- 

Ui(g1,...., fi, ... gn) < 0 for every strategy ki. If the right side 0 is replaced by E we say 
that fi is an 8-best response to g-j. 

DEFINITION 1: A subjective equilibrium is a strategy vector g with a beliefs matrix 
(g <'1 <i, j6n satisfying for each player i: 

(0) gi g; 

(1) gi is best response to g- i; and 

(2) !g = Lg'. 

In this case, we say that the matrix (gi) sustains g. 

The idea is that the ith row, gi, represents the subjective assessment of player i about 
the strategy vector that is played. Condition (0) requires that every player knows his own 
strategy. Condition (1) expresses the usual utility maximization assumption where gi is 
the (n - 1) vector consisting of all the entries of g' excluding the ith. Condition (2) states 
that g plays like g'. It expresses the idea that any statistical study will serve only to 
strengthen player i's belief that g' is being played. 

Obviously, in the above definition, if we let gi = g for all i we have a Nash equilibrium 
as a special case. In subjective equilibrium, however, we allow for inaccuracy of beliefs 
regarding opponents' actions after histories that are never observed. 

As mentioned in the Introduction, describing player i's beliefs about j's strategy by a 
single behavior strategy, gj, is not a serious restriction. By a well-known theorem of 
Kuhn (1953) (see also Aumann (1964) and Selten (1975)), a mixed strategy of player j, 
i.e., a probability distribution over his behavior strategies, can be replaced by a single 
equivalent behavior one. (The equivalence is strong since the Kuhn's constructed strategy 
plays exactly as the mixed strategy with every choice of strategies by j's opponents.) 
Thus, a belief of player i given by a probability distribution over j's strategies can be 
replaced by an equivalent belief consisting of a single behavior strategy. 

As was already outlined in the Introduction, one can show that the behavior induced 
by a subjective equilibrium coincides with the behavior induced by some Nash equilib- 
rium. 
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PROPOSITION 1: Let g = (gl .... gn) be a subjective equilibrium. There is Nash equilib- 
rium f = (fl . . .fn) with tLf = /g. 

We omit the proof of this proposition and refer the readers to Fudenberg and Levine 
(1993b), and Battigalli et al. (1992) for earlier references. 

Returning to the subjectively rational model, where players start with private beliefs, 
in any finite time the Bayesian updating process will typically become only approximately 
correct. This means that after finite time, even if arbitrarily long, we can only assume 
that the players play approximate subjective equilibria which we proceed to define. 

DEFINITION 2: Let ? > 0 and let ,u and ,i be two probability measures defined on the 
same space. We say that ,u is c-close to /I if there is a measurable set Q satisfying: 

(i) ,u(Q) and ,u(Q) are greater than 1 - E; and 
(ii) for every measurable set A c Q I u(A) - ,i(A) I < EA(A). 

REMARK 1: In Blackwell and Dubins' (1962) paper on merging of measures, closeness 
of measures was expressed by l,(A) - 2(A)I < e for every event A (not just in Q). 
Their easy-to-state condition seems weaker, since it implies little for small probability 
events. For example, ,u(A) could equal 2,u(A) and still satisfy the Blackwell-Dubins 
closeness provided that u.t(A) is sufficiently small. It turns out, however (see Kalai and 
Lehrer (1993b)), that the two notions are asymptotically equivalent, and the results that 
follow can be stated using either condition. The notion stated in Definition 2, despite its 
length, has the advantage of being explicit on small probability events. It states that they 
are approximated well, provided that we stay away from the small excluded set n2 - Q. 
Thus, when A and A are close in this sense we can think of , as being "probably 
approximately correct" as an estimator of A. We can think of the notion used by 
Blackwell and Dubins as being approximately correct for all large events. For repeated 
games, being correct on small probability events is important since even significant events 
may have small probability if they occur late in the game. It implies having approximately 
correct conditional probability, even when conditioning on histories that occur arbitrarily 
late in the game. Thus, predictions on the play of arbitrarily late subgames will probably 
be correct. 

DEFINITION 3: Let f and g be two joint strategies, and let E > 0. We say that g plays 
c-like f if ,ug is e-close to Af. 

The above notion of playing E-like is strong, since it uses a strong notion of closeness 
of measures. Except for a set of infinite play paths with measure of at most c, it 
guarantees that even for very long histories, ones that have small probability of being 
reached, f and g will assign close probabilities, with ratio close to one. In other words, 
such f, g are very likely to play almost the same throughout an infinite game and in its 
positive probability subgames. 

DEFINITION 4: An n-vector of strategies, g, is a subjective c-equilibrium if there is a 
matrix of strategies (gj)l < i, such that for every player i: 

(a) gi'=g,; 
(b) gi is a best response to g' i; and 
(c) g plays c-like g'. 
An n-vector of strategies, f, is an c-Nash equilibrium, if each fi is an c-best response 

to f-i. 
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Our main result deals with the relation between subjective 8-equilibrium and 8-Nash 
equilibrium. 

THEOREM 1: In infinitely repeated games, for every E > 0 there is -} > 0 such that for all 
-q <i7, if g is a subjective 7q-equilibrium, then there exists f, such that 

(i) g plays 8-like f, and 
(ii) f is an 8-Nash equilibrium. 

Theorem 1 states that a behavior induced by a subjective 8-equilibrium must be close 
to a behavior induced by an 8-Nash equilibrium. An 8-Nash equilibrium requires each 
player to choose a strategy that is 8-best response against the precise strategies used by 
his opponents, i.e., his payoff should be within E of the optimally possible against theirs. 
On the other hand, the subjective 8-equilibrium requires precise optimization but against 
beliefs that are almost accurate. 

The easy proof of Proposition 1 outlined in the Introduction made use of the precise 
coincidence of the play and conjectured play of all the players. However, in Theorem 1, 
with only 8-precision, this is no longer the case. Instead, our construction takes advan- 
tage of the fact that, in a repeated game with discounting, the payoff function of a player 
is continuous. That is, small changes in the strategies played, in particular after long 
histories, will not much affect the overall payoff. As an intermediate step we prove a 
stronger version of Theorem 1 for finitely repeated games. The result is interesting in its 
own right. Later we use the result of the finite case for proving the infinite case (see 
Fudenberg and Levine (1986) for finite truncations of infinite games and their equilib- 
rium). 

PROPOSITION 2: In finitely repeated games, for every E > 0 there is -j > 0 such that for 
all 71 < -1, if g is a subjective 7q-equilibrium, then there exists f such that 

(i) g plays 8-like f, and 
(ii) f is a Nash equilibrium. 

Note that, in Proposition 2, a subjective 77-equilibrium 8-plays like Nash (not 8-Nash) 
equilibrium. 

4. PROOFS OF THE MAIN RESULT 

PROOF OF PROPOSITION 2: Suppose to the contrary that there is E > 0 and a sequence 
of strategy vectors g(m) such that 

(i) g(m) is subjective -qm-equilibrium, where -im -? 0 as m -* oo, and 
(ii) g(m) does not play 8-like any Nash equilibrium. 
Since g(m) is a subjective -qm-equilibrium, there is a matrix (g(m)j) which sustains it. 

In finitely repeated games each player has a finite number of pure strategies. Therefore, 
the set of behavior strategies is sequentially compact. Thus, without loss of generality, 
the sequences {g(m)}m and {(g(m))}m are converging to, say, g and to (g). As the 
payoff functions are continuous, g is subjective equilibrium sustained by (gj). Moreover, 
if -im is close enough to zero g(m) 8-plays like g. 

Using Proposition 1 we can find a Nash equilibrium f which plays 0-like g. Thus, if 
-im is sufficiently small, g(m) 8-plays like f, which is a Nash equilibrium. This is a 
contradiction. Q.E.D. 

REMARK 2: In Definition 4(b) we required that gi be a best response to g 1. One can 
define s-subjective 8-equilibrium by replacing "best response" with "S best response." A 
similar proof to the one of Proposition 2 shows that, in a finitely repeated game, for 
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every e > 0 there is ii such that if i1 < Ti then for every 8-subjective 77-equilibrium, g, 
there is f such that 

(i) g plays e-like f, and 
(ii) f is a 8-Nash equilibrium. 
Notice that the relation between e and Y7 is independent of 8. 

We are now ready to prove Theorem 1. Starting with a subjective 71-equilibrium g we 
consider its truncation to the finitely repeated game of length 1. If l is large then the 
truncated g is an approximate subjective 71-equilibrium of the finite game, and by the 
above remark, it must approximately play like some Nash equilibrium f of the finite 
game. We extend f to the infinite game by making it coincide with g after all histories 
longer than 1. This extension makes g play close to f in the infinite game, and exploiting 
again the fact that l is large, we conclude that f must be an approximate Nash 
equilibrium of the infinite game. 

PROOF OF THEOREM: Let e > 0. Observe first that there is an integer l = i(e) such 
that: (i) if a strategy k' is 6-best response to k'_ in the i-fold repeated game, then any 
strategy ki of the infinitely repeated game whose i-truncation (see 2a above) coincides 
with k[ is an (8 + ?/2)-best response to any k-i, whose i-truncation coincides with k_i; 
and (ii) if ki is a best response to k_i in the infinitely repeated game, then kl is an 
?/2-best response to k'__ 

In view of Remark 2 there exists an -j which corresponds to 8 = E/2 and to the i-fold 
repeated game. Let g be a subjective n1-equilibrium for some -q < i. g' is therefore an 
?/2-subjective 71-equilibrium in the i-fold repeated game. Therefore, by Remark 2 
applied to E/2, it plays ?/2-like some ?/2-Nash equilibrium, say, f '. 

In order to conclude the proof we should define a strategy f of the infinitely repeated 
game whose 1-truncation coincides with f' and, moreover, have g E-plays like it. Thus, 
we have only to define f on histories longer than 1. Let h be such a history (h E H1,, for 
I' > l); define f,(h) = g,(h). 

Denote the partition of X' induced by HI by 61. The fact that g' ?/2-plays 
(therefore e-plays) like f' means that there exists a set Q which is a union of atoms of 
9 satisfying 

(i) Af I(Q) > 1 - e and Atg,i(Q) > 1 - e, and 
(ii) (1 - E)Atf(C) < L g(C) < (1 + E)Atf(C) for every atom C c Q. 
To show that g plays e-like f consider an event A of infinite paths in Q. Notice that 

by the definition of f lf(A I C) = ,g(A I C) for any atom C e 91. Therefore, 

(1 -E)Af (A) =(1 - E) E I-f (A n C) 
Ce.w,, CszQ 

E 1-) E f(AJC)Af(C) 
Ce9P,, C5Q 

= (1- ?) E Ag(A IC)Af(C) 
Ce.1l, C5zQ 

< E /Lg(A IC)ILg(C) =Yg(A). 
Ce,1, C5zQ 

For a similar argument, ytg(A) < (1 + ?)Of(A) which concludes the proof that g plays 
s-like f. 

Recall that f' is ?/2-Nash equilibrium in the i-fold repeated game. Therefore, f is 
(?/2 + ?/2)-Nash equilibrium in the infinite repeated game, which completes the proof 
of the theorem. Q.E.D. 
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REMARK 3: It is easy to find examples where the behavior of an E-Nash equilibrium is 
not ?-close to any Nash equilibrium under the strong notion of closeness we use. 

EXAMPLE: Suppose that in a two person game each player has two actions, say, a and 
b. Suppose furthermore that the pair (a, a) is the unique Nash equilibrium of the stage 
game (as in the prisoners' dilemma). Consider the following time dependent and not 
history dependent strategy: play always a and only at time t play b. Denote this strategy 
by g'. Note that since future payoffs are discounted, for very 8 > 0 there is t large 
enough so that g = (gt, gt) is an ?-Nash equilibrium. 

As g' is a pure strategy, ,ug is concentrated in one play path. If the discount factor is 
close to 0, there is no Nash equilibrium with which it plays 8-like, even for very large t's. 

Notice that in the above example g' is an ?-best response because of the discounting 
and the fact that the suboptimal action is taken late in the game. The pair (gt, g') will 
fail, however, to be a time-consistent ?-Nash equilibrium. At such an equilibrium, after 
every positive probability history, the induced vector of strategies must be an 8-equi- 
librium of the induced game, computed from the local time on. 

To obtain in Theorem 1 a behavior approximating time-consistent 8-Nash equilibrium, 
we can use a notion of strong subjective equilibrium. Such a vector of strategy vectors 
(g, gl,..., gf) will satisfy as before g, = g' (knowing your own strategy) and gi is a 
best-response to gl i (subjective optimization). But it will be required to satisfy a 
stronger consistency of the beliefs with the actual observed play, i.e., 

iAg(h)/1Jg,(h) - 11 < 8 

for all jug-positive probability histories h (not just for histories h in a large set Q). 

5. A WEAKER NOTION OF CLOSENESS 

As mentioned above, our notion of closeness of measures was inspired by the results 
regarding convergence of beliefs to the truth in a repeated game. Under this notion, a 
subjective 8-equilibrium plays 8-like some 8-Nash equilibrium. Does it play 8-like Nash, 
rather than 8-Nash equilibrium? With a weaker notion of closeness it does. 

DEFINITION 5: Let g and f be two strategy vectors, 8 > 0, and 1 be an integer. We say 
that g plays (E,1) like f if I u.f(A) -,4g(A)I <8 for every event A which consists of 
histories of length 1. 

THEOREM 2: For any (e,1) there is r1 such that if -q <7, then every subjective 
7q-equilibrium g plays (?, 1) like some Nash equilibrium. 

PROOF: In view of Proposition 1, it suffices to show that g plays (8, 1) like subjective 
equilibrium. We proceed by assuming that the theorem is incorrect. Thus, there is (?, 1) 
and a sequence gn of subjective sn-equilibrium such that n -4 0 and gn does not (?, 1) 
play like any subjective equilibrium. 

The limit of gn, say, g, is clearly a subjective equilibrium. Moreover, on finite histories 
gn and g are very close when n is sufficiently large. Therefore, gn plays (8,1) like g 
when n is large enough. This is a contradiction. Q.E.D. 

REMARK 4: Two different notions of "approximate playing like" were used in the 
previous theorem. The weaker new one was used for the approximation as is explicitly 
stated, but the old one was still implicitly used in the definition of subjective 71-equi- 
librium. One can strengthen Theorem 2 by using also the weaker notion of closeness in 
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the definition of a subjective 77-equilibrium. The added advantage of consistency, using 
the same definition of closeness throughout, is attractive. However, it would require the 
introduction of yet another version of subjective equilibrium, which we chose to avoid. 

Dept. of Managerial Economics and Decision Sciences, J. L. Kellogg Graduate School of 
Management, Northwestern University, Evanston, R. 60208, U.S.A. 
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