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Applying the concepts of Nash, Bayesian, and correlated equilibria to the analy- 
sis of strategic interaction requires that players possess objective knowledge of 
the game and opponents' strategies. Such knowledge is often not available. The 
proposed notions of subjective games and of subjective Nash and correlated 
equilibria replace essential but unavailable objective knowledge by subjective 
assessments. Whea playing a subjective game repeatedly, subjective optimizers 
converge to a subjective equilibrium. We apply this approach to some well known 
examples including single- and multi-person, multi-arm bandit games and repeated 
Cournot oligopoly games. Journal of Economic Literature Classification 
Numbers: C73 and C83. © 1995 Academic Press, Inc. 

1. INTRODUCTION AND SUMMARY 

The concept of Nash (1950) equilibrium and its extensions to Bayesian 
equilibrium by Harsanyi (1967) and to correlated equilibrium by Aumann 
(1974) have become the main tools for modeling strategic interaction under 
uncertainty. In addition to their logical elegance these concepts give re- 
searchers the ability to make predictions in uncertain environments. How- 
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ever, in applying these concepts researchers often make the following 
assumptions about the players in a game: 

a. A Complete  Model.  Each player has complete detailed information 
about the identity of his opponents, their feasible sets, information struc- 
tures, utilities, and so forth. 

b. Correct Common  Priors. When such information is missing, the 
player assigns correct prior probabilities to all possible values of the 
unknown parameters. 

c. A Closed Model .  Each player assumes that his opponents model 
the game exactly as he does and, moreover, that they too assign the same 
correct prior probabilities to all unknown parameters. 

In many applications the above assumptions are unrealistic and there- 
fore the prediction power of these models is suspect. For example, the 
complete model assumption seems to be too demanding even for highly 
rational players engaged in moderate size problems. The common prior 
assumption also seems highly incredible. Such problems are severe given 
the non-robustness of the equilibrium concepts, i.e., the fact that small 
changes in game specification can change drastically the predicted out- 
come, and this is especially so when combined with the closed model 
assumption. 

The subjective approach proposed in this paper attempts to present a 
more realistic open model, ~ where each player takes only a subjective 
partial view of his individual decision problem. Since the approach makes 
weaker assumptions, its prediction power is, in general, weaker. For 
many applications, however, weaker and more reliable predictions seem 
preferable to sharp but less reliable ones. Moreover, despite the weaker 
assumptions, the theory still leads to a natural equilibrium concept and 
to meaningful results. In particular, it identifies parameters researchers 
must study in order to eventually obtain better, sharper, and more robust 
predictions. 

Before discussing the general model, the results, and the relationship 
to earlier literature, we illustrate the approach and concepts through an 
n-person, infinitely repeated Cournot game with differentiated products. 
This game may be thought of as a multi-product extension of the Porter 
(1983) model, used later by Green and Porter (1984) and by Abreu et al. 
(1986). 

At the beginning of every period, each of the n-producers chooses a 
non-negative quantity of his own good to produce for the coming period. 
Following these choices, a fixed probability distribution, which depends 

i See Sorin (1992) for an earlier game-theoretic discussion of these notions. 
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on the chosen production levels, determines a random vector of n individ- 
ual prices for the n-producers. Each producer is informed of his realized 
price, with which he computes his period's profit. The game continues in 
this manner where, prior to every period, each producer's strategy may 
depend on his own history of past production levels and realized prices. 
(There is a high level of imperfect monitoring here since a player sees 
only his own realized prices, but the general model presented in the sequel 
allows for a large variety of information systems, ranging from perfect, 
full information to only learning one's own payoffs.) 

Let us consider the problem from a producer's viewpoint. In order to 
compute his optimal (dynamic) strategy using a Nash equilibrium ap- 
proach, he must model the game. This requires detailed knowledge of his 
competitors, their production capabilities, information structures, utility, 
and so on. (Note that indirect competitors are also important since their 
actions affect the actions of immediate competitors). For example, a soft 
drink producer must have such information about other soft drink produc- 
ers and about producers of related products--e.g.,  fruit juice, milk, and 
their related products. Assuming that he modeled the entire game cor- 
rectly, as did all other players, the player will select the strategy which 
is his part of the one Nash equilibrium selected by everyone. 

The assumption, that all the ingredients of the game are known, seems 
unrealistic here. To deal with the lack of knowledge, researchers often 
resort to Harsanyi's extension to Bayesian equilibrium. However, Bayes- 
ian equilibrium suffers even more from this difficulty. While it does not 
require the players to know the correct realization of a large vector of 
parameters, it requires them to know the prior probability distribution by 
which these parameters were drawn. No player is likely to know, or believe 
that his opponents know, the correct prior distribution. Just describing this 
distribution seems to be too large a task, no matter how rational players 
are. 

The subjective approach, which we proceed to describe now, is signifi- 
cantly less demanding for the individual players, and in this sense it is 
more realistic (it is still highly unrealistic in requiring the player to solve 
an infinite horizon optimization problem). 

Rather than modeling the parameters of all potential producers of related 
products, the subjective player restricts himself to assessing only his 
own environment response function. This function specifies, for every 
individual history of past production levels and realized prices, and for 
every contemplated next-period production level, the probability distribu- 
tion over his next-period prices. In other words, it is his individual (dy- 
namic) market demand function. Two facts are important to notice. First, 
the market and opponents' chosen strategies fully determine such a func- 
tion. Second, whatever the real game and opponents' strategies are, finding 
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an optimal strategy reduces to finding an optimal strategy relative to the 
environment response function. In other words, this function compresses 
all the payoff relevant uncertainties of the game into a one-person decision 
problem, and in this sense it is the only part of the game of any relevance 
to him. 

It follows that, from the point of view of an individual player, assessing 
the environment response function instead of the entire game and selected 
equilibrium strategies involves no loss of generality. In addition, the envi- 
ronment response function may be easier to assess since it is defined over 
a drastically smaller space. Moreover, many different games give rise to 
the same environment response function and they may be considered as 
one. 

We therefore describe a subjective version of our Cournot game by the 
real repeated Cournot game, known possibly only to the modeler, together 
with an n-vector of subjective environment response functions assessed 
by the individual players. A vector of strategies in the above game is 
subjectively rational if each player strategy, i.e., dynamic production plan, 
is optimal against his subjective environment response function. 

The question of how players assess environment response functions is 
important, difficult, and largely not addressed in the current paper (except 
for Example 4.4.1 which shows how to obtain them from a Bayesian 
equilibrium). Also not addressed are questions of completing and closing 
the model. These include questions like how players assess the assess- 
ments of others, and if their assessments can be completed in a consistent 
manner. Taking environment response functions as primitives of the 
model, the paper concentrates on studying the type of equilibrium that 
subjective optimizers may settle on. 

A vector of subjectively optimal strategies may not be in equilibrium 
because of discrepancies between the subjective environment response 
functions and the actual ones. Under such discrepancies, as the game 
progresses (along a play path), a player's observations may contradict his 
beliefs. Such contradictions may be drastic, for example, if he experiences 
a price to which he had assigned probability zero, but they may also be 
just probabilistic, as occurs when we believe in one probability distribution 
but observe a sequence of events generated by a different distribution. 
These contradictions may cause the player to modify his beliefs and, as 
a result, his chosen strategy. 

To rule out such contradictions, at a subjective Nash equilibrium we 
add for each player a condition of uncontradicted beliefs. This condition 
requires the coincidence of the correct individual forecast, i.e., the proba- 
bility distribution on the actual individual price paths, with the individual's 
subjective forecast, i.e., the one computed using his subjective environ- 
ment response function and his chosen strategy. Under such full coinci- 
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dence no contradictions are possible since the subjective probabilities of 
all events observable to a player are correct. Despite this full coincidence, 
however, the player may still be wrong in his assessments of conditional 
probabilities regarding events that are not on the play paths. And, for this 
reason, there are subjective Nash equilibria which are not Nash equilibria. 

While the uncontradicted-beliefs condition just stated seems too de- 
manding for interactions that have just started, it is natural for long ongoing 
interactions. Indeed, the paper presents general sufficient conditions under 
which subjective optimizers must converge with time to play a subjective 
equilibrium. Due, however, to the possibility of imperfect monitoring, the 
limit may be a subjective correlated equilibrium (see Aumann (1974, 1987) 
for the concepts of correlation and subjectivity in games; see Fudenberg 
and Tirole (1992) and Myerson (1991) for additional discussion) rather 
than a subjective Nash equilibrium. The past play that has lead them to 
equilibrium turns out to serve as a natural, unavoidable correlation device 
(see Lehrer (1991) for a study of this phenomenon). In our Cournot exam- 
ple, dependencies in the stochastic realizations of past market prices serve 
as a device correlating players' future beliefs and strategies. 

The subjective approach proposed in this paper is a straightforward 
generalization of the above example. For a player in a general extensive 
form game an environment response function describes probabilities in 
the decision tree defined on his personal information sets. For any informa- 
tion set and a feasible action at the information set, the function specifies 
the probability distribution over his "next information sets." Restricting 
ourselves to perfect-recall games, "next information sets" is a well defined 
concept. Moreover, if we add to a player's set of information sets the 
terminal nodes with his individual payoffs, then knowing the correct envi- 
ronment response function is sufficient for the purpose of determining an 
optimal individual strategy. Thus, rather than assessing the whole game 
tree and opponents' strategies, it is sufficient for a player to assess his 
environment response function. Section 6 presents such an example. 

The main body of this paper is devoted, however, to a special case of 
n-player infinitely repeated subjective games. In addition to being a useful 
modeling tool for applications, such games are convenient for the presenta- 
tion of learning theories and convergence. The notion of a repeated game 
that we use may be thought of as a generalization of a one-player multi- 
arm bandit problem to n players. But it is significantly more general since 
it allows for all levels of monitoring, from perfect to a minimal level where 
each player only learns his own payoffs as the game progresses. We 
present a strong sufficient condition of compatibility of beliefs with the 
truth, as in Kalai and Lehrer (1993b), that guarantees convergence of 
subjectively optimal strategies to a subjective correlated equilibrium. The 
reader interested in weaker sufficient conditions, yielding weaker notions 
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of convergence, is referred to Lehrer and Smordinsky (1993). For exten- 
sions to long but finite games we refer to reader to Sandroni (1994). 

While the notion of subjective equilibrium that the players learn to play 
is weaker than the objective counterpart, it still has interesting implica- 
tions. In addition to some general properties, the paper illustrates implica- 
tions to a one-player multi-arm bandit game and coincidence, under addi- 
tional assumptions, with a Walrasian and Cournot equilibrium. 

The need to distinguish subjective from objective knowledge in social 
interaction is not new or unique to this paper. The proposed notion of a 
subjective equilibrium has its roots already in Von Hayek (1937) 2. He 
proposed that, at equilibrium, "the individual subjective sets of data corre- 
spond to the objective data, and . . .  in consequence the expectations in 
which plans were based are born out by the facts." Since Von Hayek, 
other economists have advocated and used such subjective notions, see 
for an example Hahn (1973). Aumann (1974) introduced and studied a 
model of a one-shot game with players assigning subjective probabilities 
to the outcomes of an exterior correlation device. 

The newer literature on game theory contains an increasing number of 
concepts reducing the objective-knowledge assumed by the Nash ap- 
proach, and moving in the direction of a subjective equilibrium. Rationali- 
zable equilibria--see Bernheim (1984), Pearce (1984), and the more recent 
Rubinstein and Wolinsky (1994) rationalizable conjectural equilibria--are 
such examples. The notions most closely related to the ones proposed 
here are by Battigalli (1987) (see also Battigalli and Guaitoli (1988) and 
Battigalli et al. (1992)), the self-confirming equilibrium of Fudenberg and 
Levine (1993) (see also Fudenberg and Kreps (1988)for earlier motivation), 
and the earlier version of a subjective equilibrium proposed in Kalai and 
Lehrer (1993a). Our convergence result is closely related to earlier Bayes- 
ian learning papers, for example Jordan (1991) and Kalai and Lehrer 
(1993b). 

To understand the connection of this paper to some of the earlier litera- 
ture we need to consider special cases where the players know the game 
and uncertainty is restricted to opponents' choice of strategies. Such cases 
can be accommodated in the current model by having each player start 
with a subjective assessment of (distribution over) opponents' strategies 
which he uses, together with the known game, to compute a subjective 
environment response function. For games played with perfect monitor- 
ing, the notion of a subjective Nash equilibrium proposed in the current 
paper coincides with the subjective equilibrium introduced in Kalai and 
Lehrer (1993b). The proposed notion of a subjective correlated equilibrium 

2 See also Von Hayek (1974) and Matsuyama (1994) for a discussion of distortions intro- 
duced into economic policy analysis by the use of game theory. 
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generalizes the notion of a self-confirming equilibrium in Fudenberg and 
Levine (1993) (they allow for correlation in beliefs but not in strategies). 
Thus, we may think of the new notions of subjective equilibria as general- 
izations of the earlier notions to cases where the game itself, in addition 
to opponents' strategies, is not known and to cases where monitoring is 
not perfect. 

Convergence to subjective correlated equilibria, as described in this 
paper, is also closely related to the convergence to subjective equilibria 
in Kalai and Lehrer (1993b). There, the repeated game is played with 
perfect monitoring and after every history a new repeated game, or a 
formal subgame, starts. The result is that the overall strategies induce an 
approximate subjective Nash equilibrium play in the subgames that start 
after long histories. (They also show that, for perfect monitoring games, 
approximate subjective Nash equilibrium approximately plays like an 
e - Nash equilibrium.) In the current paper, due to imperfect monitoring, 
different players observe different histories and there may not exist formal 
subgames. Thus, we cannot discuss the new game that starts after a long 
history. Instead, ~ve consider the correlated game starting after a long 
time T but across all histories of length T - I, where the play and informa- 
tion revealed up to time T - I serve as a correlation device. The weaker 
result is that if T is large, the play starting from time T together with the 
past information up to Tapproximates a subjective correlated equilibrium. 
However, the probablistic methods used to obtain the needed merging of 
measures are exactly the ones used in Kalai and Lehrer (1993b). 

The general literature on learning in strategic interaction has exploded 
over the last few years. It includes a very large number of models assuming 
bounded or myopic players, as well as a large number of rational learning 
papers. A sample of recent related rational-learning models includes Craw- 
ford and Hailer (1990), Monderer and Samet (1990), Nyarko (1991 b), Vives 
(1992), Koutsougeras and Yannelis (1993), Goyal and Janssen (1993), and 
Fujiwara-Greve (1993). Blume and Easley (1992), Jordan (1993), and 
Nachbar (1994) present excellent critical evaluations of this approach. 
Also, a growing literature on strategic rational learning concentrating on 
reputation and forgiveness aspects is emerging--see, for example, Cripps 
and Thomas (1991), Schmidt (1991), and Watson (1992). These directions 
are especially important since forgiving strategies invite experimentation, 
a phenomenon that sometimes creates a coincidence of subjective with 
objective equilibria. 

The present paper is also a direct contribution to the literature on players 
who do not know their own utility functions, as in the case-based approach 
of Gilboa and Schmeidler (1992). We discuss this after we study the multi- 
arm bandit example. 

Two interesting connections to explore are with subjective variants of 
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the Mertens and Zamir (1985) hierarchies of rationality model, as in Ny- 
arko (1991 a) and E1-Gamal (I 992), and with a new literature on endogenous 
uncertainty in economics, as in Chichilinsky (1992) and Kurz (1994). It 
seems that there should be close relationships between the proposed notion 
of subjective equilibria to the ideas presented in these papers. 

2. EXAMPLES AND INTUITION 

It is obvious that a subjective equilibrium may give rise to drastically 
different outcomes from those of an objective equilibrium. Even the well 
known repeated prisoners' dilemma game with myopic players may be 
"solved."  For example, if each player believes that whenever he acts 
non-cooperatively he will be severely punished by an outside force, his 
best response is to cooperate repeatedly. Thus, the two players play the 
fully cooperative path as a response to their beliefs. Moreover, their beliefs 
are not contradicted, since neither ever acts non-cooperatively to find out 
that his fear of severe punishment is not founded. 

Before we turn, however, to additional multi-person examples with less 
"dramatic" beliefs, we start with the well known one-person multi-arm 
bandit problem (see Whittle (1982) for the general problem, and see Roth- 
schild (1974) and Banks and Sundaram (1993) for more recent references 
and economic applications). It turns out to be a special, stationary case 
of our general formulation. The need to distinguish between subjective 
and objective equilibria becomes very clear here. 

EXAMPLE 2.1 (A Two-Arm Bandit Game). The player in each period 
t = 1, 2 . . . . .  has to engage in one of two possible activities, L and R. 
(A special case where these activities represent handles of two different 
slot machines motivates the name of this problem.) Each activity, L and 
R, has a stationary distribution, II L and I-I n , describing independent proba- 
bilities of realized payoffs when the corresponding activity is used. The 
player's goal is to maximize the expected present value of his total payoff, 
discounted by some fixed parameter. Clearly, the optimal objective solu- 
tion is to repeatedly use the activity with the higher per-play expected 
value. 

What makes the problem interesting is that the player may not know IlL, 
II R, or both. Instead, as he plays he observes random payoffs generated by 
these distributions according to the actions that he uses. So every time 
he uses L he observes his realized payoff generated by I-I L, and the same 
for R. But in every period, before making his choice, he knows the full 
history of his past choices and resulting payoffs. In order to maximize 
his expected payoff, depending on his discount parameter and subjective 



SUBJECTIVE GAMES AND EQUILIBRIA 131 

beliefs, it may pay him to experiment with both activities in order to learn 
something about their payoff distribution. Clearly, higher discount factors, 
representing more patient players in our conventions, lead to more experi- 
mentation, even if some immediate payoffs may seem to be sacrificed. 
But the problem is difficult and the question of how much and how to 
experiment depends in a fairly complex way on the subjective beliefs. 
These are described by prior probability distributions on sets of possible 
payoff distributions associated with each activity. 

Suppose, for our example, that activity L generates payoffs of $0 or $2 
with equal probability, i.e., IIL(0) = IIL(2) = 0.5. Let us also assume that 
the player knows that. On the other hand, he does not know I-I R and 
assigns positive probabilities ~c and ~,P (~c + ;~B = 1) to it being one of 
two possible distributions H c and ri B. The "good" distribution I-i c has 
1-It(2) = 0.6 and He(0) = 0.4, but the "bad"  distribution has HB(2) = 0.4 
and liB(0) = 0.6. The following scenarios give rise to equilibria, or the 
lack of such, of different types. 

Scenario 1. I'i~ = li B, ~B is high, and the player chooses to play 
repeatedly activity L. This is an objectively optimal strategy, since he 
chooses the optimal strategy against the true payoff distributions of the 
two machines. It is also a subjective equilibrium since, for sufficiently 
high ;~B, the best response is not to experiment and to just use activity L. 
Moreover, his beliefs are not contradicted since the only uncertainty is 
regarding H R but he never uses R. 

Scenario 2. As above, ~B is high and the player uses repeatedly activity 
L, but now the real payoff distribution FI R = H c. Now his strategy is still 
a subjective equilibrium, i.e., he is best responding to beliefs that are not 
contradicted, but it is not an objective equilibrium. If the player knew 
that FIR = FIC he would not want to stay with the constant left strategy. 

Scenario 3. ~c is one, the player uses repeatedly activity R, but 
liR = Hs" This is obviously not an objectively optimal solution. But also 
the subjective equilibrium fails. While the player maximizes against his 
beliefs, with increasingly high probability he will find out that his beliefs 
are wrong, i.e., he will observe persistence inconsistencies between his 
empirical payoffs and his beliefs. In other words, the condition of uncon- 
tradicted beliefs is violated here. 

The previous example with the three scenarios illustrates the relation- 
ships of the different equilibria. Every objective equilibrium is a subjective 
one, when the subjective assessments happen to coincide with the true 
distributions. However, when the subjective assessments are not accurate, 
as in Scenario 2, we may have a discrepancy. Thus, the set of subjective 
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equilibria is really larger. But, as Scenario 3 illustrates, not all strategies 
and beliefs constitute subjective equilbria. 

In Scenario 2 above, the discrepancy between subjective and objective 
equilibria is due to the fact that the player does not "know the game" he 
is playing. In this example, he does not know the payoff rules. When we 
move to multi-player situations, different types of information imperfec- 
tions may cause such discrepancies. In the next example, even though 
both players fully know the game, imperfect monitoring (of each other's 
actions) alone gives rise to a subjective equilibrium which is not objective 
(Nash equilibrium). Moreover, from a modeler's viewpoint, this subjective 
equilibrium seems as appealing as the Nash equilibria. 

EXAMPLE 2.2 (Acting in the Dark). This symmetric two-person game 
has two actions for each player: " r "  for rest and " a "  for act. 

r a 

r 0 ,0  0 ,1  

a 1,0 - I , - 1  

A player choosing r is paid 0 regardless of his opponent's choice. A player 
choosing a, on the other hand, is paid 1 if his opponent chooses r, but 
- l  if his opponent chooses a too. 

We assume that the two players choose their actions repeatedly and 
simultaneously in the beginning of periods t = l, 2 . . . . .  However, in 
each period, after the choices are made, each player is only told his 
realized payoff and is not told his opponent's choice. We assume also, 
as is done in standard game theory models, that all the above is commonly 
known to both players. This implies that when a player chooses to rest 
he learns nothing about his opponent's choice. But when he chooses to 
act he learns his opponent's choice indirectly, through his payoff and 
knowledge of the game. 

Let A be the constant strategy of acting in each period and R be the 
constant rest strategy. It is easy to see that (A, R) and (R, A) are objective 
Nash equilibria of the repeated game with imperfect monitoring. These 
are equilibria because the best reply to A is R and vice versa. 

What about (R, R)? The first player may be playing R because he thinks 
that player two is playing A (as in the Nash equilibrium (R, A)). With the 
imperfect monitoring he never finds out that he is wrong and playing R 
against the conjecture that the other is playing A is as justified as playing 
R when the other player really plays A. Applying this reasoning to both 
players, it seems that (R, R) is as reasonable an equilibrium as the above 
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two Nash equilibria (we are ignoring at this time issues of robustness and 
trembles). It is easy to see, following the suggested reasoning, that (R, R) 
is a subjective Nash equilibrium, even though it is not a (objective) Nash 
equilibrium. 

Our next example is also of a two-player game. It illustrates several 
important items. First, moving to correlation, it shows a subjective corre- 
lated equilibrium which is not an objective correlated equilibrium of the 
same game. Second, it illustrates the process of learning and converging, 
in one step here, to the subjective correlated equilibrium. Finally, it illus- 
trates the generality of a class of games included in our model. In particu- 
lar, our stage game can be viewed as a multi-person, multi-arm bandit 
problem. 

EXAMPLE 2.3 (Winners and Losers Acting in the Dark). As in the 
previous example we consider a two player game with each one having 
to repeatedly choose between resting (r) or acting (a), and each being 
informed only about his resulting payoffs. Again, a player that rests re- 
ceives a zero payoff  and a player that acts, at a period where his opponent 
rests, receives a payoff  of 1. The above information is known to both 
players. However,  now when both players act a random pair of payoffs 
will be generated according to a fixed probability distribution H~.~. 

r a 

r 0 ,0  0, I 

a I, 0 1-I~,. 

We consider two scenarios that may arise as we vary the beliefs and actual 
payoffs when both players choose to act. 

We first restrict ourselves to the case where l-la. . can be only one of 
two possible distributions: l-la,,, = H w.L or I-I,,,,= H L. w. Under H w,L player 
1 is a "likely big winner" and player 2 is a "likely loser." Specifically, 
we define the probabilities for pairs of payoffs to be I-I w L (10, -1)  = 0.99 
and I-I w'L ( -1 ,  10) = 0.01. Under H w'L the roles are reversed, and thus 
I-[ l-'w (10, - I )  = 0.01 and H L'w ( -1 ,  I0) = 0.99. 

Scenario  1: A standard common knowledge game. Nature moves first 
and chooses randomly with equal probability II,,., to equal l-I w'L or II L'w. 
The realized choice, which is to be fixed now for the duration of the 
infinite game, is not revealed to the players. However,  following standard 
game theoretic models, we assume that all the information above is com- 
mon knowledge. 
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If the players are sufficiently patient, then each would want to learn if 
he is a "likely big winner" or a "likely loser" in order to continue playing 
the game optimally. A reasonable Nash equilibrium of this Bayesian game 
has each player experimenting by acting at the first stage. If he loses he 
stops acting forever, but if he wins 1 or lO's he acts again. (After a while 
the computation of equilibrium becomes more complicated, since every 
time that he receives a 10 or a -1  he can update his prior as to the 
underlying Fia.a being I-I w'L or FI L'w. Like the one-arm bandit problem, 
this is a relatively simple analysis. Once a player decides to rest at some 
stage he receives no new information. Assuming therefore a "once-rest, 
rest-forever" strategy facilitates the computation of a relatively simple 
equilibrium. We choose not to complete this computation here, since it 
is tangential to the points we wish to make.) 

Scenario 2: Both players are wrong and learn in one step to play a 
subjective correlated equilibrium which is not objective. Suppose the 
players believe everything as in Scenario 1 and, therefore, choose Nash 
equilibrium strategies of the type described there, i.e., they both act in 
the first period in order to discover who is the winner. But assume that 
they are both wrong in that the payoff distribution of both acting FI~,,~, is 
really the random distribution II R, defined as follows. HR(10, --1) = 
FIR(-1, I0) = I-IR(-1, -1)  = 1/3. In other words, in each period when 
they both act it is equally likely, independent of the past, that one will 
win, the other will win, or that they will both lose. 

Since both players choose to act in the first period, they will be paid 
according to a random draw of FI R. Therefore, there are three possible 
developments from period two on. With 1/3 probability, the first draw is 
a (10, -1) .  Following this, and holding the beliefs described in Scenario 
I, they will each assign high subjective probability to H,,,, = FI w'm and 
will continue by playing the constant strategies (A, R). Similarly, with 
1/3 probability they will be paid ( -1 ,  10), assign high probability to I-1L'w, 
and play (R, A). But also with 1/3 probability they will draw ( -1 ,  - I )  in 
the first period. This will lead each player to assign high probability to 
the distribution in which he is a loser and as a result the pair of constant 
strategies (R, R) will be played. 

So if we consider the game, starting from period two on, we have a 
correlated strategy assigning probabilities of 1/3 each to (R, A), (A, R), 
and (R, R). Correspondingly, we have correlated beliefs where, with a 
probability of 1/3 each, the players respectively assign high likelihoods 
to the pairs of payoff distributions (FI L'w, HL'w), (l-I w'L, l-I w'L) and (FIL, W, 
HW'L). This is a subjective correlated equilibrium, since from period 2 on 
the correlated strategies are best response to the correlated beliefs and 
the induced subjective distributions on the future play of the game coincide 
with the objective one. 
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Consider, for example, the initial message to be the draw (-1 ,  -1). 
Now each player believes that he has encountered an acting opponent in 
the first period. Moreover, given that he lost (he does not, of course, even 
consider the possibility that his opponent lost too), his updated posterior 
beliefs are that he is a likely loser and he decides to stay our forever. 
Since both stay our forever, their incorrect beliefs are never contradicted. 

Since the actual expected payoffs of the action vector (a, a) are (2.66, 
2.66), one can check that the correlated strategies assigning probabilities 
1/3 each to (A, R), (R, A), and (R, R) are not a (objective) correlated 
equilibrium of the repeated game. 

3. SUBJECTIVE EQUILIBRIUM OF A SINGLE DECISION MAKER 

We consider a player with a nonempty countable (which can be finite) 
set of actions A, a countable set of consequences C, and a bounded yon 
Neumann-Morgenstern utility function u: A x C ~ ~. 

Dynamically, the player will choose actions a t, a 2 . . . .  from A. In every 
period t, after he chooses the action a t, an outcome c t E C will be stochas- 
tically determined, reported to him, and he will collect the payoff u(d, 
ct). The player's objective is to maximize the present value of his expected 
utility discounted by a fixed parameter h, 0 < )~ < I. 

The above formulation implicitly assumes that the player knows A, C, 
u, and h. What he does not know is the stochastic rule by which conse- 
quences are generated. 

Examples of such problems are numerous. We will analyze the multi- 
arm bandit problem, where A represents a set of possible "arms"  or 
activities to use, c ~ C represents a stochastically generated payoff, and 
u(a, c) = c. The stochastic choice of the consequence c in this example 
will be stationary and its distribution will depend entirely on the chosen 
a. 

A more complex economic example concerns a producer in an oligopoly 
whose action a t in each period t describes a chosen production level. 
Here, a consequence c' describes his resulting market price. The stochastic 
determination of d is a function of his production level a t, the production 
choices of his competitors, and a stochastic demand function which de- 
pends on the joint production vector plus a random noise. Here we will 
not assume stationary determination of consequences (prices) since the 
competitors are likely to change their production levels as they too observe 
the behavior of the market. 

In the general formulation, the determination of consequences is de- 
scribed by a stochastic environment response function denoted by e. For 
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every history of actions and consequences, h t = (a ~, c j . . . . .  a t, ct), and 
for any t + 1 period action a ~÷~, e defines a probability distribution over 
C. Formally, e lh,,,+,(c) denotes the probability that the consequence c will 
be drawn after the play consisting of the history h' followed by the action 
a t+l. (Thus the above values must be nonnegative and sum to 1 over the 
possible values of c for any fixed h' and at+l.) The unique empty history 
h ° is allowed and thus elhoat describes the distribution of initial outcomes 
as a function of every chosen initial action a ~. (When it does not create 
confusion, to simplify notation we will omit some time superscripts, e.g., 
write elj,,(c)). 

If the player knows the environment response function e, his problem 
is to choose a (behavior) s trategy f to maximize the present value of his 
expected payoff  computed with the distribution generated by his strategy 
and e. Formally such a strategy f assigns a probability distribution over 
the action set A for every history of past actions and outcomes. Thus, 
j~h,(a) represents the probability that action a will be chosen in period 
t + 1 if the player observed the history h t. (Fixing ht,j~h,(a) must sum to 
one as we vary a ~ A.) 

We choose not to restrict our analysis to pure  strategies,  where each 
3qh' assigns probability one to a single a E A. Such a restriction, even if 
not significant for the one player case, would limit the scope of the analysis 
in the sections that follow. 

To define the expected present value of utility resulting from a strategy 
f ,  we first describe the underlying probability space. It consists of a set 
Z of infinite play paths of the form z = (a l, c j, a z, C 2 . . . .  ) .  For a history 
hi, as described above, we will abuse notation and let it also denote the 
cylinder set in Z, consisting of all infinite play paths z whose initial t - 
period segment coincides with h'. As usual, the o--albegra used for Z is 
the one generated by all cylinder sets h t, and to specify a probability on 
Z it suffices to assign consistent probabilities to all ht's. 

We do this inductively in the usual way. Given a strategy f and an 
environment reaction function e, we define ~Zr, e(h °) = 1. For h t+l de- 
scribed by h t followed by at+lc t+l, w e  define t.~f.e(h t+l) = 
tZf, e(ht) f lht(at+ l)elh, a,+,(ct+ l). 

Now we can define utility functions for strategies. First, the utility 
assigned to a play path z = (a t, c l, a z, c z . . . .  ) is computed by u(z) = 
h'-~u(a t, ct). The utility of a strategy f and an environment response 
function e is computed to be u( f ,  e) = f u(z) dtzf.e(Z). 

As stated earlier, the player 's objective is to choose f that maximizes 
u( f ,  e). However,  since we assume that the player does not know e, he 
cannot solve the above problem. 

Taking a subjective approach, we assume that the player holds an exoge- 
nously given subjective belief about the environment response function, 
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denoted by 4, and that he chooses f to maximize u(f, 4). But we do not 
assume that ~ coincides with e. When this is the case we say that f is 
subjectively optimal relative to 4. I f f  is optimal relative to the "real" e 
we say that it is objectively optimal or just optimal. 

Remark 3.1. (A) Beliefs over a Set of  Possible Environments. While 
in the above formulation the player's subjective belief is restricted to be 
a single environment response function it is really more general. For 
example, if the player assigned prior probabilities q~, q2 . . . .  , % to n 
possible environment response functions 0~ . . . . .  ~,, he could replace this 
belief system by an equivalent single belief function 4. This is done using 
the usual Bayes updating construction as, for example, in Kuhn's (1953) 
theorem. After every history h t one computes posterior probabilities 0~, 
. . . .  0,, for the environments 0j . . . . .  0,, and assigns probabilities to the 
next outcome according to the ~i's weighted by the updated posterior 
probabilities. We do such an explicit construction in our example of a 
multi-arm bandit problem discussed later. 

(B) Imperfect "Updating of  Environmental Response. Updating poste- 
rior beliefs, as described above, assumes a type of consistency and perfect 
rationality on the beliefs of the player. However, the abstract formulation 
described by a single 4, which is a function that can be freely defined 
after every history, allows for more general and imperfect updating. For 
example, a player with Bayesian posterior probabilities, gh . . . . .  g/., may 
choose to eliminate (reduce to zero) O;'s whose values fall below some 
critical level and increase the other Oi's proportionately. 

The discrepancy between the real environment response function, e, 
and the subjective one, 4, may make the player alert to the fact that his 
assessment is wrong. Given his choice of strategy f, his assessment of 
the stochastic evolution of his future outcomes is given by P.r.o, while the 
real evolution follows the distribution/xs, e. If, however,/zf, e = [d,f, e then 
it is impossible for him to detect, even with sophisticated statistical tests, 
that he is wrong. This is despite the fact that off the play paths serious 
discrepancies may exist between e and 4. With such discrepancies, even 
i f f is  subjectively optimal it may be objectively suboptimal, but the player 
could not determine that and will have no cause to change his assessment 
or his strategy. This gives rise to the following definition. 

DEFINITION 3.1. The strategy fw i th  the environment response func- 
tion e is a subjective equilibrium relative to the belief 0 if the following 
two conditions hold. 

1. Subjective optimization;f maximizes u(f, 4); and 

2. Uncontradicted beliefs; txf.~ = txf.e. 
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R e m a r k  3.2 (Optimizing Implies Experimenting). Reflecting on the 
definition above, a subjective equilibrium can be suboptimal because, and 
only because, its assessment of outcome probabilities off the equilibrium 
play paths is wrong. An obvious remedy to such a deficiency is for the 
player to experiment, in order to learn to the greatest extent possible the 
off-path outcome probabilities. Computing the optimal level of experimen- 
tation, however, may require some knowledge of the real distributions, 
which the player does not possess. But, under the subjective approach, 
it is naturally incorporated into his subjective optimization problem. 

Consider, for example, the two-arm bandit player with two competing 
activities, L and R, of Example 2. l, with stationary payoff distributions 
I-I L and I-In. Assume for simplicity, as we did there, that the subjective 
beliefs are accurate on the left, l-I L = FIL, generating an expected utility 
of 1 for every use of L. On the other hand, for R, the player believes that 
there are two distributions FI B and FIa, which were drawn initially with 
probabilities 0.90 and 0. I0, respectively. So, most likely, the right activity 
is bad. Recall that the corresponding expected values are 0.8 and 1.2. By 
the law of large numbers, sufficiently long use of R will reveal to the 
player whether H c or FI B was drawn. Depending on his discount parameter, 
his subjective optimization will determine the optimal experimentation 
strategy. If the future is important enough, the 10% chance of the eventual 
generation of a payoff stream with an expected value of 1.2 in each period 
will dictate an initial experimentation period. But if future payoffs are 
sufficiently unimportant, it would be subjectively suboptimal to exper- 
iment. 

The optimal strategy in the definition of subjective equilibrium above 
already includes a subjectively optimal level of experimentation. The ac- 
tual computation of such optimal strategies is done using the well-known 
Gittins index, see Whittle (1982). 

We will see in the sequel that under a certain condition, relating the 
belief to the truth, a subjective optimizer must converge eventually to a 
subjective equilibrium. In any finite time, however, he must converge 
only to an e-subjective equilibrium where the subjective distribution, ~:.~, 
is only close to the objective one, I~:.e. TO make this precise we must 
digress and discuss notions of closeness of distributions. 

DEFINITION 3.2. For a given e > 0 and two probability distributions, 
p, and /2, we say that /2 is e-close to /~ if for any event A, ]/~(A) - 
/2(a) I -< e. 

R e m a r k  3.3: Interpretations of Closeness of Distributions. We say 
that/2 is e-near to/~ if there is an event Q, with/z(Q) and/2(Q) > 1 - e, 
satisfying I1 - I~(A)//2(A)] <- e for every event A C_ Q (we assume in the 
above that 0/0 = 1). 
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As was shown in Kalai and Lehrer (1994), the two notions e-closeness 
and e-nearness are asymptotically equivalent, i.e., by making the distribu- 
tions sufficiently close in one sense we can force them to be as close as 
we wish in the other sense. Thus, limit results, where we obtain eventual 
arbitrary closeness of two measures, are the same in both senses. 

While the notion of e-closeness is easier to state, the notion of e-nearness 
is more revealing. First note that e-closeness says little on small probability 
events. For example, we can have/2(A) = 2/z(A) and still have/2 be e- 
close to/~ provided that/z(A) < e/2. On the other hand, e-nearness shows 
that this can be the case but not on events A C_ Q. Within the large set 
Q the ratios of the probabilities must be close to 1. This has important 
implications for conditional probabilities, which take on special impor- 
tance in models with infinite horizons. 

Recall that our discussion of closeness of the measures /2 and /x is 
motivated to capture the idea that a player believing /2 but observing 
events generated by/z is not likely to suspect that 12 is wrong. The notion 
of e-closeness captures this idea for large events. Our player, however, 
after a long play is likely to observe small probability events consisting 
of the intersection of many past events. His forecast of future events then 
will be obtained by assigning probabilities to future events conditional on 
having observed low probability events. Thus, if our notion of closeness 
of 12 and/z is such that the conditional probabilities they generate remain 
close, then the player using/2 is not likely to modify his beliefs even after 
playing for a long time. 

e-nearness, and thus its asymptotically equivalent notion of e-closeness, 
fulfills this property to a large extent. Since 

~(AIB) _/z(A and B)/2(B) 
/2(AIB) /2(A and B) /z (B) ' 

we can deduce that ifA and B are events in Q, no matter how small, then 
closeness to 1 of the two factors in the right side implies closeness of the 
conditional probabilities in the left side. 

DEFINITION 3.3. Given e > 0, a strategy f, and environments e and 
0, we say tha t f i s  an e-subjective equilibrium in the environment e relative 
to 0 if the following two conditions hold: 

1. Subjective optimization, f maximizes u(f, ~), and 

2. e-uncontradicted beliefs, ~f,e is e-close to ~f,e. 

Convergence of a subjectively optimal strategy to a subjective equilib- 
rium is not guaranteed in general but is true under sufficient conditions 
of compatibility of the beliefs with the truth. The relationships between 
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notions of compatibility, notions of convergence, and alternative notions 
of e-subjective equilibrium involve detailed mathematical analysis. To 
proceed with the presentation of the subjective approach, we present one 
such notion of compatibility that works well with our notion of e-closeness 
(or e-nearness) as defined above. For more general conditions we refer 
the reader to Lehrer and Smorodinsky (1993). 

DEFINITION 3.4. We say that the subjective evolution described by 
(f, E) is compatible with the one generated by (f, e) if the distribution P-f.e 
is absolutely continuous with respect to/zf, e,/zf.e ->/xz. e. This means that 
for every event A, 

tZf, e(A) > 0 ~ Izf, o(A) > O. 

In other words, events considered impossible according to the subjective 
belief of the agent, i.e., having subjective probability zero, are really 
impossible, i.e., they have objective zero probability. 

Our goal is to show that after a sufficiently long time T, a subjective 
optimizer will play essentially an e-subjective equilibrium for arbitrarily 
small e. To make this formal we need to describe the environment response 
functions and strategies induced on the "new"  problem starting from time 
T on. 

DEFINITION 3.5. Let e be an environment response funct ion,fa  strat- 
egy, and h a history of length t. Define the environment response function 
e h and the strategy fh induced by h by 

ehlr,.(c) = elhzo(c) 

and 

fh[~(a) = J~ h~(a). 

The notation hh denotes the concatenation of the histories h and h, i.e., 
the history whose length is the sum of the lengths of h and h obtained by 
starting with the elements of h and continuing with the elements of h. 

THEOREM 3. I. Let  f be a subjectively optimal strategy relative to E in 
the environment e, and assume that (f, E) is compatible with (f, e). For 
every e > 0 there is a time T such that with probability greater than l - 
e, fh is an e-subjective equilibrium in the environment e h relative to the 
beliefs eh for every history h o f  length greater than T. 



SUBJECTIVE GAMES AND EQUILIBRIA 141 

The probability 1 - e in the statement of the theorem is the objective 
one, computed by/zf, e" 

Theorem 3.1, which we do not prove here, is a direct consequence of 
Blackwell and Dubins (1962). The following is an easy version of pres- 
enting merging of measures, sufficient for the proof of the theorem (see 
Kalai and Lehrer  (1994) for elaborations). 

Let  X = (X I, X 2 . . . .  ) be a vector of discrete random variables having 
a joint probability of distribution/z. For every time t, let X t- = (X ~, X 2, 
. . . .  X t ) ,  i.e., the past, and let X t+ = ( X  t+l ,  X t+2 . . . .  ) ,  i.e., the future. 
Let/2 be another (possibly incorrect) distribution for X which is compatible 
in the absolute continuity sense, i .e. , /Z ~ / 2 .  Then with/z-probability 1 
there is random time T s.t. for all t >- T, [ z ( S t + l S  t - )  is e-close (or e-near) 
to /z (X '+ IX'-). 

EXAMPLE 3.1: The  M u l t i - a r m  B a n d i t  P r o b l e m .  Generalizing the two- 
arm example of the previous section, we think of A as any finite set of 
activities that can be used repeatedly in periods t = l, 2 . . . . .  A countable 
set of consequences C consists of real numbers representing possible 
payoffs. For  each activity a E A there is a fixed probability distribution 
II a over C with Ha(c) describing the (past independent) probability of the 
outcome c being realized when the action a is taken. The player's goal is 
to choose a sequence of actions a j, a 2 . . . . .  with each a t E A ,  that will 
maximize the present value of his expected payoff. However,  he does not 
know the distributions, Ha's, and whenever he uses the action a t at time 
t he is told his realized payoff, which was drawn according to H a. Natu- 
rally, he can use this and all previous information before making his next 
choice, a t+~. 

In our general formulation, this example is modeled with A and C being 
described as above, u(a,  c) = c, and a stationary environment function 
elha(C ) = Ha(C). Our player, not knowing the functions II but knowing the 
stationary structure of the model, assumes that for every a, the distribution 
II a was initially chosen from among m possible distributions H l, . . .  , 
II~' with positive prior probabilities hl  . . . . .  h ' .  We assume that Ha indeed 
equals IIJa for some j .  

The subjective environment response function, ~, is computed by the 
standard method of Bayesian updating. First we compute inductively 
posterior probabilities h~lh, J = 1 . . . . .  m, for every a and h. Initially, 
h~lh0 = ~ .  And for a history of the form h obtained by concatenating a 
history h with an action-outcome pair (~, c), h~l~ = h~lh if ~ # a, and 
X~lr, = h~lh II~(c)/[Y~i h~l,, II~(c)] if ~ = a. Then ~ is defined by 
01,,,a(C) = 5:,  

Since we assumed above that II a is assigned positive prior probability, 
for every strategy f ,  ( f ,  ~) is compatible with (f,  e). Thus by Theorem 3.1 
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for every e > 0 we can find a large enough time T such that with probability 
of at least I - e the strategy and beliefs of the player from time T on 
constitute an e-subjective equilibrium. 

COROLLARY 3.1. Suppose that the activities are strictly ranked by 
expected value, i.e., distinct objective expected values are generated by 
distinct activities, then for  every ~ > 0 there is a (random) time t such 
that with probability greater than I - e the subjectively optimizing player 
described above will use only one activity f rom time t on. 

Proof. We may assume without loss of generality that the subjectively 
optimal strategy,f ,  is pure. ( I f f i s  a subjectively optimal behavior strategy, 
we study any pure strategy in the support off.)  We show that with probabil- 
ity I there is a (random) time t from which time on the s trategyfprescribes 
playing one arm only. This obviously implies the corollary. 

Assume to the contrary that there exists an event R, with positive 
probability such that on every infinite history h E R there are infinitely 
many truncations of h, h t, after which f u s e s  at least two arms. We denote 
by ft,,, the continuation o f f  after the finite history h'. 

From Theorem 3.1, we deduce that on almost every h E R, f~,, is a St- 
subjective equilibrium, where 6, ~ 0. We take one h E R and consider 
the sequence of times t such thatft,, prescribes the arm al as its first action 
and fh,+~ prescribes the arm a2 (a~ # a2) as its first action. We proceed by 
the following lemmas to the contradiction. 

LEMMA 1. Let ft be a St-subjective equilibrium, where Ot ~ 0; then 
any limit o f  any subsequence o f  ft (t ~ ~) is a subjective equilibrium. 

Proof. Denote by o-, the belief over the distribution of outcomes that 
justifies ft. In other words, ft is a best response to o- t and, moreover, the 
distribution induced by o- t over infinite strings of outcomes is ~t-close to 
the real distribution. 

Suppose that j ' is  a limit of some subsequence of {ft}. There is a subse- 
quence of {o-t} which converges to, say, o-~. Thus, o-= is a distribution 
over outcomes and it coincides with the real distribution on those arms 
that are played, according to f ,  at least once with a positive probability. 
From compactness we deduce tha t f i s  optimal against o-= and, furthermore, 
o-= confirms the real distribution of the outcomes of all those arms played 
with a positive probability according to f .  Therefore, J" is a subjective 
equilibrium. • 

LEMMA 2. I f  ff is a subjective equilibrium in the set-up o f  Corollary 
3. I, it uses only one arm, with probability I. 

Proof. Let A' be the set of those arms used with a positive probability 
under f .  Since )" is subjectively optimal in the grand game (with the full 
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set of  arms, A), it is also subjectively optimal in the reduced game (with 
the restricted set of  arms A '  only). As f is a subjective equilibrium with 
A it is an objective equilibrium with A'  (simply because there is full 
knowledge about the expected payoffs of all the arms available, A') .  

However ,  as an objective equilibrium, with the restricted set of  actions 
A',  f should prescribe using only one arm, the best one. • 

Returning to the proof  of  the corollary, recall that f is pure, that fh, 
prescribes pushing the arm aj first, and that fht+t prescribes the arm a2 on 
its first move. Denote by w '÷~ the outcome that forms with the history h t, 
the longer history, h t+l (i.e.,  h t+l is the concatenation of h t and wt+l). 
Since there exist only finitely many w '+~ and infinitely many t, we may 
assume that all the w '÷j are the same. As the probability to get w '+~ by 
using the arm at is stationary, say, p > 0, we deduce that under fh, the 
probability of  arm a2 being played at the second stage is at least p. There- 
fore, any limit of f t , f ,  assigns to two arms (a~ and az) positive probabilities 
(probability 1 to a~ and probability of at least p to a2). By Lemma I, f 
is a subjective eqfiilibrium. However ,  it assigns to two arms positive 
probability, which contradicts Lemma 2. • 

R e m a r k  3.4. Players Who Do not Know Their  Own Utilities. Learning 
one 's  own utility function is an important problem in decision t heo ry - - see ,  
for example,  Gilboa and Schmeidler (1992) for a new approach and recent 
references.  It deals with a player that can choose repeatedly activities a 
from a set A but does not know his own utility function w(a). Our formula- 
tion, through consequences,  includes this problem as a special case despite 
the fact that we assume that the player knows u(a, c) for every action a 
and consequence c. Simply consider the (degenerate) stochastic rule with 
c = w(a) and u(a, c) = c. Now every time the player uses activity a he 
learns his consequence c = w(a), i.e., his utility of a. Obviously this is a 
special case of the multi-arm bandit game which allows for a richer class 
of " n o i s y "  observations about one 's  own utility. 

4. MULTI-PERSON SUBJECTIVE EQUILIBRIA 

4.1. The R e p e a t e d  S tochas t i c -Ou tcome  G a m e  

We now assume that there are n-players, n -> I, each having a countable 
set of  actions Ai, a countable set of consequences Ci, a bounded utility 
function u;: A; x Ci ~ ~, and a discount parameter  hi. Also, as before,  
each player knows his individual data above and would like to choose a 
sequence of actions, a ~, a 2 . . . . .  to maximize the present value of his 
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expected utility. But, again, he does not know the rule of how his actions 
affect his consequences, i.e., his environment response function. 

Taking the approach of the previous section, we will assume that each 
individual starts with a subjective belief about his environment, described 
by ~i, and chooses an optimal strategy f/relative to ~, and conclude that 
eventually each player will play a subjective equilibrium. However, now 
we are also interested in the in teract ive  aspects of the resulting equilibria, 
and for that purpose we must first be explicit about how the actions of 
one player enter the environment function of another. 

We describe these cross effects by a collection of probability distribu- 
tions, II,, defined for every action vec tor  a ~ A =- ×~A~. More precisely, 
H,(c) denotes the probability that the c o n s e q u e n c e  vec tor  c E C =- ×iC~ 
be realized if the vector of actions a is taken. (Thus, for a fixed a, the 
above quantities must sum to 1 as we vary c.) Note that the distributions 
I-I,, together with the action sets A; and the utility functions u~, fully 
determine an n-person stage game, G. In this game, for every action vector 
a, player i's (expected) utility is computed to be u~(a) = ~'c u~(ai, c~)l-la(c). 
We refer to such a game as a game with stochastic consequences. 

The above game will be played repeatedly as follows. In every period 
t = 1, 2 . . . .  each player, being informed of his past actions and realized 
individual consequences, will choose an action a~ E A;. Then, based on 
the vector of choices, at, nature will choose a vector of consequences 
c t G C according to the distribution Ha. Player i will be informed of his 
own outcome, c~, will collect the payoff ui(a~, c~), and will proceed to 
choose a~ +~, and so on. Overall individual payoffs will be the present 
value of the total expected utility discounted by the individual discount 
parameters, h;. We denote this infinitely repeated game with stochastic 
consequences by G =. 

EXAMPLE 4.1.1: A Cournot Game with Differentiated Products. We 
assume that each of the n players is a producer of a certain good, with 
Ai denoting the set of his possible period production levels. Now C; de- 
scribes a set of period market prices producer i may realize. Thus, for 
every vector of production levels a E A, II,(p) describes the probability 
of the vector of individual prices p = (p~ . . . . .  p,) being realized. The 
utility of player i is defined as usual by his resulting revenue minus cost, 
a~p~ - g~(a~), with g~ denoting his producting cost function. Thus, in each 
period the player knows his previous production levels and prices, and 
based on this knowledge he chooses his next production level. 

When all producers produce a h o m o g e n e o u s  product ,  and face the same 
market price, we model the situation by restricting the support of each 
II~ to p's with Pt = Pl . . . . .  P,. 

R e m a r k  4.1.1: Imperfect versus Perfect Monitoring. While the general 
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formulation, with each player being informed only of his own realized 
actions and consequences, describes imperfect monitoring and other types 
of information imperfection, it includes as special cases games with more 
monitoring and common information. For example, in the Cournot game 
above, ci = (a;, p;) is the minimum amount of information the player needs 
to compute his period payoffs. But partial monitoring can be modeled by 
letting each player's reported consequence be ci = (a~ . . . . .  a , ,  pg). So 
the outcome reported to player i includes all the production levels but 
only his realized price. Perfect monitoring and full common knowledge 
of histories can be modeled by letting individually reported consequences 
include all production levels and all realized prices, i.e., ci = (al . . . . .  
a , ,  p~ . . . .  p , )  (but his utility is still determined only by his components, 

a l P  i - -  g i ( a i ) ) .  
Regardless of how the ci's are rI are defined, however, under the conven- 

tion that a player knows all his previous realized actions and consequences 
before choosing his next action, our games always have perfect recall in 
Kuhn's (1953) sense. 

The general subjective approach assumes that a real "objective game," 
G =, as defined above, is to be played. We will depart, however, from the 
assumption that the players know the game. Instead, we will assume that 
they hold beliefs about their individual decision problems and that these 
beliefs are represented by subjective environment response functions as 
defined in the previous section. It will ease the exposition, however, if 
we first review and establish notations for the objective notions of Nash 
and correlated equilibria as well as introduce the concept of an objective 
environment response function. 

Formally, we define a history of length t, h', to consist of a vector (a ~, 
c I . . . . .  a', c') where each a j E A and c; E C. An individual player  his tory 
h~ = (a), c~ . . . . .  a~, c~) with each a~: E A; and c I ~ C,.. A play path z = 
(a ~, c ~, a 2, c 2 . . . .  ) induces finite histories h t and finite individual histories 
h~ by taking projections to the first t elements and then taking projections 
to player i's components. 

A strategy of player i is a function f~ describing the probability that he 
takes a specified action after a specific history. Formally, f,.Ih,(a;) denotes 
the probability that he would choose action ai after observing his individual 
history hi. 

Below we define the utility function ui(j) for every s t ra tegy  v e c t o r f  = 
(fl . . . . .  f,,). As usual, a N a s h  equil ibrium is a vector f*  with each 
maximizing ui(f~-i, f i) .  (Here and elsewhere, f - i  denotes a vector of strate- 
gies of all players but i where (f~-i, f,) denotes the vector where all players 
but i play their star strategy but i plays f,.). To define the (expected) utility 
functions one needs to first establish the probability space describing the 
possible plays of the game. 
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We let Z denote the set of  (infinite) play paths, and as before we let h' 
denote a history of  a finite length t but also the cylinder set defined by it. 
Given a strategy v e c t o r f w e  define the probability distribution it induces 
on finite histories, /x I, inductively. For  the empty history/zi(h °) = 1, and 
assuming tha t /z  I was defined for all histories of length t, we define it for 
histories h of length t + 1 by 

tzj-(h, a, c) = Izf(h) × i f;Ih,(a~)H,,(c). 

Since the above construction defines consistent probabilities for all cylin- 
der sets it defines the distr ibution/z s on the set of play paths. 

Now for every play path z = (a I, c l, a 2, c 2 . . . .  ) we define ui(z) = xZ~ 
,X.I-lui(aI, cI) and for a vector  of strategies f we define ui( f )  = f ui(z) 
dtzf(z). 

Often the strategies of the players in the repeated game are correlated 
since their choice depends on correlated past individual messages. For- 
mally, such a correlation device is described by two components .  First 
is a nonempty countable set of message  vectors,  M = ×iMi, with each 
Mi denoting the set of  player  i's messages .  The second component  is a 
probability distribution p defined on M. 

A vector o f  correlated strategies,  f = (f l  . . . . .  f,,) for the game G :~, is 
defined by appending a correlation device to the beginning of  the game. 
This is done by replacing the unique empty history by all possible elements 
m E M and allowing a player 's  strategy to depend on his reported initial 
message m~. Formally a history of "length ze ro"  is now any element of 
M, a history of length t is a vector  of the form (m, a I, c ~ . . . . .  a t ,  c t) and 
a play path z = (m, a ~, c ~, a 2, c 2 . . . .  ). Individual histories are described 
as before by projecting to the player 's  component .  So an individual history 
of player i is a vector  of the form (mi, a),  c] . . . . .  a~, c~). Now a vector 
o f  correlated s trategies  f = (fl . . . . .  f,,) has each f,. describe a distribution 
over  player i's actions for every  individual history with an initial individual 
message. In other words, it is a vector  of standard behavior strategies for 
the game with the initial correlation device, the correlated game,  (M,  p, 
G:'). 

The utility of  player i is computed as before to be his expected present 
value where the probability distribution on the expanded Z includes the 
initial distribution p. Thus we only need to modify the distribution over  
length zero histories by defining tzf(m) = p(m) .  The probabilities of longer 
histories are defined inductively as before. 

A vector  of correlated strategies, f ,  is a correlated equilibrium of  G = if 
it is a Nash equilibrium of the correlated game (M, p, G =) as defined 
above,  for some correlation device (M, p). 
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As in the previous section, we will be interested in the play of the 
repeated game starting after a long time T. In the "new"  game correlation 
cannot be ruled out since each player strategy from time T on may depend 
on his consequences up to time T. And, in general, these consequences 
are correlated. 

Formally, given a vector of strategies for G =, f ,  and a positive integer 
T, we define the induced vector of  correlated strategies f r  = (f~l . . . . .  
f~) (for the game starting at period T + 1) as follows. M is the set of length 
T histories and p is the distribution/xy restricted to M. Following a history 
consisting of an initial message mi followed by h;, J'T/randomizes over Ai 
with the same distribution that fg does in the original game after the history 
obtained by concatenating mg with hi. 

Remark 4.1.2: Nash Equilibrium Induces Correlated Equilibrium in 
Later Games. It is easy to see that if we start with a Nash equilibrium 
f, t hen f  r as defined above is only a correlated equilibrium of the repeated 
game starting at time T + I, see Lehrer (1991). Thus, in general games 
with imperfect molaitoring, Nash equilibrium "deteriorates" to become a 
correlated equilibrium after time. This observation has important implica- 
tions for learning theories. It suggests that, in general, we can at most 
hope to converge to correlated equilibrium. 

It is easy to check that in the construction above we could have started 
with a vector of correlated equilibrium for G =, to conclude that it induces 
a correlated equilibrium after any time T. 

4.2. The Individual Environment Response Functions of  the 
Repeated Game 

As already discussed, to compute a best response strategy, a player 
need not know the entire game or his co-players' strategies. It suffices to 
know his own personal decision problem, determined by the game and 
their strategies. This decision problem can be fully described by an envi- 
ronment response function as discussed in Section 3. However, since we 
have n players now, we let ei denote the environment response function 
of player i. Thus, ei[hiai(c,-) denotes the probability of player r s next conse- 
quence being c; given that he observed the history hi and took the ac- 
tion ag. 

Given the opponents' strategy vector, f_j, the computation of the envi- 
ronment function of player i, eg, is straightforward. For every history of 
length t hi, action ag, and outcome cg, we choose a strategy f. for player 
i under which the individual history hi followed by ag has positive probabil- 
ity (or simply let player i play the actions of hi up to time t, then a;, and 
anything afterward) and let Izf be the induced distribution on play 
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paths. Then define eli hia~(ci) to be the/zf conditional probability of c i being 
player i's outcome at time t + 1, given the individually observable play 
hiag. If under the opponents' strategies, h~a~ is impossible, no matter what 
strategy player i chooses, then e~lh,e, can be defined arbitrarily (since this 
situation will not arise). 

Following the earlier discussion, it is straightforward to conclude the 
following equivalence. 

PROPOSITION 4.2.1. A vector o f  strategies f is a Nash  equilibrium i f f  
each player's strategy, fi, is optimal relative to his env&onment response 
function,  e i (induced by f- i) .  

The above discussion and definitions are also applicable to correlated 
versions of the repeated game, with an initial correlated device (M, p). 
In this case, as before, each zero-length history consists of a message 
vector m and all other histories, individual or not, start with an initial 
message. Again, a correlated strategy vec to r f i s  a correlated equilibrium 
if and only if each fi is a best response to the individual environment 
response functions induced by f - i  (this is now in the game with initial 
correlation). 

Equivalently, one can discuss these notions on the strategies and beliefs 
induced by initial messages. For m;, a positive probability message for 
player i, let3 f,,~ and eml be his induced strategy and environment response 
function after receiving the message m i (fmi[hi = fil,nihi and e.,,Ih,o, = 
e;lm,h,o,). The following proposition is obvious. 

PROPOSITION 4.2.2. A vector o f  correlated strategies in the game (M, 
p, G =) is a correlated equilibrium i f  and ony i f  for  every player i and every 
positive probability message m~, f,,,~ is optimal relative to e,, i. 

4.3. The Subjective Game and Equilibrium 

In this section we assume that a game, G = as defined before, is played, 
but that the players do not fully know the game. We assume that each 
player knows his own components, i.e., feasible actions, possible conse- 
quences, and utility functions. 

We model the situation by assuming that each player assesses his envi- 
ronment response function e; by an environment response function Ei. 
The player will choose a s t ra tegyf  to be optimal relative to the subjective 
environment funct ion El. These choices, made by all n-players, result in 
a vector of strategies f = (f~ . . . . .  f,,), which, in turn, induce the real 
objective environments e~ . . . . .  e,. As we already discussed in the one- 

3 The more accurate notations, f.m, and ei.,,,i, are abused here to reduce the number  of 
subscripts. 
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person case, there is no reason to assume that ei = ~i and that if significant 
differences do exist, the player will observe that his assessments are 
wrong, change his subjective beliefs, and modify his strategy. 

However,  an equilibrium situation arises even if Oi # ei, provided that 
the disagreements of the two functions are restricted to be after histories 
that are not observable, i.e., have zero marginal probabilities. When this 
is the case for each player, we are in a multi-person subjective equilibrium 
of the game. 

To make this precise let ~f . ,e  i and/zf~,~ be, respectively, the objective 
and subjective distributions induced on player i's play paths. 

DEFINITION 4.3.1. Let  f =  (f~ . . . . .  fn) be a vector of strategies, and 
e -- (e I . . . . .  en) be the induced environment functions. Let  ~ = (el . . . . .  
0n) be a vector of subjective environment response functions. The pair 
(f,  ~) is a subjective Nash  equilibrium o f  the game G "~ if for each player 
i the following two conditions hold: 

1. Subjective" optimization, f .  is optimal with respect to Oi; 

2. Uncontradicted beliefs, I~h,ei = tZf~,~i. 

The beliefs a player holds at the beginning of the game, as described 
by his subjective environment function ei, may depend on past stochastic 
observations. This dependency was ignored in the single player model of 
Section 3. However,  in the multi-person case, if past observations of 
different players are correlated then it is useful to describe explicitly how 
they create correlation in the individual belief functions. 

To permit the description of correlation, we replace the repeated game, 
G =, by one with a correlation device (M, p, G=). As described earlier, 
an individual strategy f / c a n  be thought of as a v e c t o r  (~ni)miEMi , and for 
a vector of opponents '  strategies,f_/, we have the conditional environment 
response functions (e,,,i),,,ieM i. Recall that f is a correlated equilibrium iff 
every fm is optimal relative to e m 

A subjechvely optimizing player can hold behefs and choose strategies 
that depend on his individual message. Thus, we define a subjective envi- 
ronment response function in the game with correlation, ki, to be a vector 
ei = (e,n)m~eM~. Note that under this definition the subjective player does 
not explicitly assess, nor even model, the correlation device. But his past 
messages can still affect his beliefs (this is in contrast to Aumann (1974) 
where the player 's assessment focused on the correlation device). 

DEFINITION 4.3.2. A subjective correlated equilibrium for G = consists 
of a correlation device (M, p) as above, with a vector of strategies f = 
(fl . . . . .  fn) of (M, p, G =) and a vector of (subjective) environment 
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response functions ~ = (~ . . . . .  ~,) satisfying for each player i and each 
positive probability message mi the following two conditions: 

1. Subject ive  opt imizat ion,  fmi is optimal with respect to O,~i; and 

2. Correlated uncontrad ic ted  beliefs, I£fni,~n ' = t£fn,,emi. 

As already suggested, it is clear that every Nash equilibrium is a subjec- 
tive Nash equilibrium, with e; = 0,. for all i and, similarly, every correlated 
equilibrium is a subjective correlated equilibrium. However, the fact that 
the Oi's may disagree with the e,.'s off of the play path makes the set of 
subjective equilibria significantly larger than the corresponding objective 
notions. Subjective Nash equilibria, which are not Nash equilibria, could 
be of economic interest of their own, as can be seen in the following 
familiar example. 

EXAMPLE 4.2: Competitive Equilibrium Is a Subjective Cournot Equi- 
librium with Finitely Many Producers. Consider a homogeneous-product 
repeated Cournot oligopoly game with n-identical producers. Each pro- 
ducer i has a constant marginal production cost of $g/unit, with which he 
can produce any quantity a; at every one of the discrete times t = I, 
2 . . . . .  The market price in each period is deterministic and linear, i.e., 
p = b - d Y'i ai for some positive b and d with b > g. 

Consider a vector of production levels a* = (at  . . . . .  a*) resulting in 
a competitive market price p = g, i.e., ~ a* = (b - g)/d.  Suppose each 
player plays a constant strategyf~i which prescribes the constant produc- 
tion level a* after every history. The vector of strategies f*  = (f~ . . . . .  
J"~,) is not a Nash equilibrium of the repeated game since each firm i is 
making a zero profit which could be increased by reducing production. 

Nevertheless, the above production levels are supported by a subjective 
equilibrium of the repeated game, if each of the finitely many players 
assumes that he cannot affect the prices. For example, assume that the 
outcome reported to each player at the end of each period consists of his 
own production level and realized market price. Let each player hold 
stationary beliefs described by the subjective environment response func- 
tion ~;Ih,a,(g) = 1. That is, he assumes that with probability one the market 
price will be g regardless of past history of prices and regardless of his 
production level. Clearly, producing a* is a best response to such el. 
Moreover, the price sequence (g, g . . . .  ) is assigned probability one by 
him and, indeed, it has probability one under f*. So f*  does not contradict 
the beliefs ~. Thus, we are in a subjective equilibrium. 

It is easy to see in the above model that the only subjective equilibrium 
which is stationary in actions and beliefs is the competitive one. Thus, 
the only (doubly) stationary subjective equilibrium in the Cournot game 
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is the competitive one. This example illustrates that, while subjective 
equilibrium by itself may allow many outcomes in a game, in the presence 
of additional assumptions on beliefs it may lead to interesting conclusions. 

Note that, in the above discussion, the stationarity of beliefs could be 
significantly weakened provided that we keep each player believing that 
his actions do not alter the price distribution. An interesting case of this 
type is when each player believes that tomorrow's price will be what 
today's price was. 

4.4. Convergence to Subjective Correlated Equilibrium 

In the previous section we justified the notions of subjective Nash and 
subjective correlated equilibria by arguing that players, finding themselves 
in such a situation, will have no reason to alter their beliefs or strategies. 
The condition of uncontradicted beliefs used was strong since it requires 
full coincidence of subjective and objective probabilities of all observable 
events. In this section we present sufficient conditions under which utility- 
maximizing players must converge to play such a subjective correlated 
equilibrium. 

Since the individual strategies, however, may not in general converge 
to a stationary limit strategy, we will follow the same course as we did 
in the one person case. In other words, we will show that after a sufficiently 
long finite time they must play a subjective correlated e-equilibrium for 
arbitrarily small e. 

DEFINITION 4.4.1. Let (M, p, G =) be a correlated game, f a vector 
of correlated strategies, ~ a vector of correlated subjective environment 
functions, and e > 0. We say that (f, ~) is a subjective correlated e- 
equilibrium if the following conditions hold. 

1. Subjective optimization, for every player i and message m i, fmi is 
optimal with respect to ~,,,i" 

2. Correlated e-uncontradicted beliefs, withp probability greater than 
I - e, a message vector m will be chosen with /&m,.~m, being e-close to 

~ f m  I, em i • 

Before stating the convergence result we recall the terminology of Sec- 
tion 4.1. Let f be a vector of strategies of G ~, e be the induced vector of 
environment response functions, ~ be a vector of (subjective) environment 
response functions, and t a positive integer. The correlated game induced 
from time t on is a correlated game (H t, ~.£t, G=), with H t denoting all the 
possible histories of length t, and/~t is /& restricted to the events in H t. 
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f t ,  e t, and gl are the concepts induced on the correlated game by the 
original game in the natural way, as already discussed. 

We say that the players play a subjective correlated e-equilibrium from 
time t on (correlated on the past) if (fl ,  ~') is a subjective correlated 
e-equilibrium in the game ( n  t, tz t, G=). 

Recalling the definition in Section 3, we say that (f/, ~,-) is compatible 
with (f,-, e,-) if/zh,e; is absolutely continuous with respect to /zf~ ~i" The 
following result is, mathematically, an immediate consequence' of the 
convergence result for the one player case. 

THEOREM 4.4.1. Let f be a vector of  strategies and ~ be a vector of  
subjective environment response functions. Suppose f and ~ satisfy the 
following two conditions for every player i: 

1. Subjective optimization, f is optimal relative to Y; 

2. Beliefs compatible with the truth, (fi, el) is compatible with (f/, 
el). 
Then for every e > 0 there is a time T such that for all times t, with t -> 
T, from time t on, the players play a subjective correlated e-equilibrium. 

Remark 4.4. I: Starting with a Correlated Game. It is easy to see that 
Theorem 4.4.1 can be extended to the case that the original strategies 
were correlated. That is, instead of playing G = directly, the players start 
at time zero with the observation of some correlation device and choose 
their strategies to be optimal relative to the message dependent subjective 
beliefs. The conclusion, that they will eventually play a subjective corre- 
lated equilibrium, will be identical to the one in the conclusion of the 
current Theorem 4.4.1. 

EXAMPLE 4.4.1. Applications to Bayesian Equilibria. Bayesianequi- 
librium represents a special type of subjective optimization as we describe 
below. Therefore, the convergence result of this paper has important, if 
not yet fully understood, implications here. 

Following the standard construction of such an equilibrium we let T = 
x/7", denote the set of type vectors with each Ti, player i's type set, assumed 
to be nonempty and at most countable. A prior probability distribution p 
is used to draw a type vector t E T and each player i is then informed 
only of his own realized type ti. 

There is a collection of possible n-person stage games (Gt)t~ T, all sharing 
the same action sets, A = ×~Ai. However,  for every vector of types t, 
there are different stochastic rules generating vectors of consequences. 
In notations, Ht.a(c) denotes the probability of the consequence vector c 
being realized when the players, of the types specified by the vector t, 
take the actions specified by the vector a. After the type vector t is drawn 
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and each player is informed of i,., the infinitely repeated game G{ will be 
played. 

The above formulation may seem unfamiliar due to its generality. The 
more common formulation is the special case with each consequence ci 
constituting the player's payoff and u i ( a  i ,  c i )  = c i. Also, the determination 
of payoffs (consequences) for a given vector of types is usually determinis- 
tic, i.e., IIt. ~ assigns probability one to a single vector of payoffs. 

A vector of strategies g = (gi)i~N, with each gi = (gti)tiET i, is a Bayesian 
Nash equilibrium if each gt~ satisfies the usual best response property to 
the h-conditional distribution on opponents types assuming that they fol- 
low their equilibrium strategies. All of the above information is assumed 
to be common knowledge and we let eti be the computed environment 
response function induced by (T, p, G, g) on player i's tctype. (Thus, 
alternatively, g is a Bayesian-Nash equilibrium if and only if each gti is 
optimal relative t o  eti). 

To interpret the Bayesian equilibrium under the subjective approach 
we let the real repeated game G = be the realized game G~. For each player 
i we let the subjective environment response function O; be eta, and the 
individual strategies f be gT~. The real objective environment response 
function, el, is computed using the realized game Gt  and realized oppo- 
nents' strategies (g7)i~,; (e~ is different from 0i since the latter is computed 

• . /  • , 

not by the reahzed game and reahzed opponents strategies, but by the 
posterior distribution over them given only player i's realized type). With 
this interpretation the two conditions of Theorem 4.4•1 are met. First 
subjective optimization is obviously satisfied directly under the definition 
of a Bayesian equilibrium. Beliefs compatible with the truth also hold. 
Since the beliefs that player type ti holds about his environment are gener- 
ated by a probability distribution over opponent strategies and realized 
game, assigning a positive probability to the chosen vector (gQ and Gt,  
his forecast actually contains a grain of truth. That is, /z~,~ = h/zj~.e ' + 
( 1  - h)/2 with h > 0. Since having a grain of truth implies absolute 
continuity, Theorem 4.4.1 is applicable and we can conclude that, for 
arbitrarily small positive e, after a sufficiently long time the vector of 
strategies g7 will approximate a subjective correlated equilibrium of the 
realized game G~. 

COROLLARY 4.4.1. Let (T, p, G, g) be a Bayesian Nash equilibrium. 
For every vector o f  realized types t and for every e > 0 there is a time T 
such that for every period t >- T, from time t on, the induced strategies 
( g~i) constitute a subjective correlated e-equilibrium of  the realized game 
G7. 

So even if the players started by playing an equilibrium of a Bayesian 
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game they must eventually play close to a subjective correlated equilibrium 
of the actually realized game. Moreover, this is a subjective correlated 
equilibrium with additional structure. Specifically, it is one in which the 
~i's can be justified by some actual opponents' strategies of the real game. 
In other words, an individual player uncertainty is only with regards 
to opponents' strategies and as if he knew the chosen payoff matrix. 
Characterizing the subset of such a subjective correlated equilibrium is 
an interesting open question. 

5. COINCIDENCE OF SUBJECTIVE AND OBJECTIVE EQUILIBRIA 

The convergence theorem of the previous section illustrates conditions 
that must lead the players to a subjective correlated equilibrium. The 
subjective notion of equilibrium is, in most cases, more plausible than 
the objective counterpart, but as already discussed it entails a reduced 
prediction power. Since any player may hold his own individual hypothe- 
sis that justifies his actions, an outside analyst who wants to predict future 
outcomes must collect information about players' subjective beliefs. The 
potential contribution of subjective equilibrium to prediction power de- 
pends on the game and on players' beliefs. The preliminary examples in 
this section illustrate situations, with general conditions on beliefs, involv- 
ing no loss of prediction power when compared to objective equilibrium. 
That is, subjective and objective equilibria predict the same behavior 
possibilities. 

5.1. Optimistic and Pessimistic Conjectures 

In the multi-arm bandit example discussed earlier, the player does not 
know the real distributions that determine his outcomes. A suboptimal arm 
will be repeatedly used whenever the payoffs of other arms are sufficiently 
underestimated. In other words, a subjective equilibrium in this case is 
not an objective one, since pessimistic conjectures regarding unused arms 
are held. 

The same logic extends to multi-player games, as demonstrated in Ex- 
ample 2.2. It is natural to expect that, if we rule out pessimistic beliefs, 
a subjective equilibrium must be an objective one. 

Let f be a vector of strategies of the infinite game, with or without 
correlation, and let ei be the induced environment response function of 
player i. We say that ~i has optimistic conjectures relative tof i f ,  for every 
strategy gi, ui(gi, e~) <- u~(g~, ~). In other words, under any possible 
strategy the player believes that he will do better (in a weak sense) than 
he actually would, given the game and opponents' strategies. 
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PROPOSITION 5.1. Let (f, ~) be a subjective correlated (resp. Nash) 
equilibrium with each ei holding optimistic conjectures relative to f. Then 
f is a correlated (resp. Nash) equilibrium. 

Proof. It suffices to show that for any player i, if his 4,. is optimistic 
and has the uncontradicted-beliefs property, then his strategy f,. must be 
objectively optimal. Suppose to the contrary t h a t f  is not optimal against 
the real el. Therefore, there exists a strategy gi of player i satisfying 
ui(gi, el) ~ ui(f//, el). However, by the optimistic conjecture assumption, 
ui(gi, ei) >- u(gi, ei). Moreover, by the uncontradicted-beliefs property, 
ui(f ,  el) = ui(fi, ei). As we combine the first two inequalities with the 
last equality we get u~(gi, ~i) > u~(f, Oi), which contradicts the optimality 
o f f  against ~. • 

The next example, using a familiar economic model, illustrates that 
subjective and objective equilibria may generate the same behavior pattern 
even if many important parameters of the game are not known. For this 
purpose, we first discuss equivalence of behavior. 

Two strategy v~ctors f and g of G = (or a correlated version of it (M, 
p, G=)) play like each other if the distributions they induce on the space 
of play paths, Z =, coincide, i.e., /xf = /Zg. Note that when this is the 
case, players' payoffs, and even distributions over payoffs, under f and 
g coincide. Moreover, an outside observer with the ability to perfectly 
monitor all players' actions could not distinguish between f and g. Dis- 
agreements between f and g can only occur off the play paths, thus, with 
probability zero. 

5.2. Subjective Cournot Equilibrium Plays Like Cournot Equilibrium 

We consider n-producers (players) of an identical product in a market 
with a deterministic commonly known downward sloping demand func- 
tion, D. 

To fit our model, and to simplify the exposition, we make the following 
assumptions. The set of consequences, prices in this case, consists of all 
non-negative rational numbers. Thus, Ci is a countable set for i = 1 . . . . .  
n. Similarly, we let all players have the same set of actions, feasible 
production levels, Ai = {0, 1, 2 . . . .  }. We assume that in each period the 
market price is established deterministically according to the vector of 
production levels, a = (al . . . . .  a,), by c = D(~  ai). We also assume for 
simplicity that they each have a constant and positive marginal production 
cost, K. So if in a given period a player produces at a level a~ and the 
realized market price (determined by all production levels) is c, his period 
net profit is aic - a i K .  

We let (M, p, G =) be the above game with some initial correlation 
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device (M, p) describing the distribution of information available to the 
players prior to the start of the game. We assume that (f, ~) is a subjective 
correlated equilibrium. Thus, each fm i is a best response to Ore, and 
P-r, ,% =/Xr,,,. e,,, where e,, i is the real environment response function deter- 

mined by the game and the other player's strategies, given m;, while ~,,,i 
is the one induced by the subjective conjecture of i. 

We assume that each player knows the demand function. Formally, we 
do so by assuming that for every A the distribution ~,,,iJhi(a~+~) coincides 
with the distribution D (D-~ (~,,,~[hia) + A). Note that this rules out the price 
taking assumption we used earlier to obtain the competitive prices at a 
subjective equilibrium. 

Our goal now is to show that fp lays  like some g which is a correlated 
equilibrium, or equivalently a Nash equilibrium of (M, p, G=). 

We construct g = (gl . . . . .  g,) as follows. For each player i, after every 
history h; which has a tzf-positive probability we define g; to coincide with 
f., i.e., giJhi =fiJh i. Note that this implies that g plays like f. For/zf zero 
probability histories, hi, define giJhi to choose a large production level L 
with probability one. The level L is chosen in such a way that the amount 
(n - I)L, produced by n - 1 producers, lowers market price below the 
marginal cost, K. 

By the definition of g for every player i, f and g play alike. That is, 
player i cannot tell the difference between f and g because they induce 
the same distribution over the signals observed by player i. 

In order to show that g is an equilibrium, we show that for every possible 
deviation, g[, of player i, ui(g[, ei) <-- u i (g i ,  el),  where ei is the environment 
response function induced by g-i. 

We will show that g[ is not a profitable deviation by showing that the 
outcome generated by (g[, e;) could be generated by some f[ and ei. Since 
f. is individually optimal (against el), ui(fi, ei) >- ui(f,  !, el) = ui(g~, el). AS 
ui(fi, el) = ui(gi, el) because f and g play alike, we conclude that ui(g, 
el) >-- ui(g; ,  el). 

Recall that the demand function, D, is commonly known and that it has 
a negative slope. Suppose that after the history hi the strategyf prescribes 
player i the action ai with positive probability. Since f is a subjective 
equilibrium player i knows to predict the distribution over prices given 
his own ai. As D is one-to-one, player i is able to forecast after h; the 
distribution over the quantity produced by all his competitors. Therefore, 
he knows to predict the distribution over prices not only given a~, but 
also given any other quantity player i may produce. We now deduce that 
after every history with positive probability (w.r.t. f)  player i knows the 
distribution over prices induced by (g[, e,-). In other words, the distribution 
over prices induced by (g[, e i) is the one induced by (g[, el) after every 
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history with positive probability. By iterating the same argument we infer 
that the probability assigned to history hi by (g[, el) and by (g~, e;) is the 
same, provided that hi has a (gi, ~i)-positive probability. 

Definef~ (h;) to be identical to gi(hi) for every history hi which is positive 
w.r.t. (gi, ~;). Otherwise, f,!(hi) is zero. We will show that ui(f~, el) >- 
u~(g~, ei). Fix a time t and let hi be a history of length t. Conditioned 
on hi being (g,., ki)-positive we get that ui(f~, ei), which by definition 
equals ui(g~, el), is equal to ui(g~, ei). As for every other history hi, since 
f,.(h,-) = 0 the return for player i is zero. On the other hand, the payoff 
ui(gi, ei) is at most zero (after hi) because the total amount produced 
by all players drops market price below the cost per unit. Therefore, 
conditioned on h i being a history with probability zero (w.r.t. (gi, ~i)), 
0 = ui( f l  f, el) >>- ui(gi ,  el). 

We may conclude that any period t, ui(f,!, ei) >- ui(gi, e~) and therefore 
this is the case for the whole repeated game. This completes the proof, 
showing that g is an equilibrium. 

6. SUBJECTIVE EXTENSIVE FORM GAMES 

In the previous sections we restricted the subjective approach to re- 
peated stochastic-consequence games. The extension to general extensive 
form games is straightforward. 

We need only to generalize the definition of an environment response 
function. Recall that eilhi~i(ci) represented the probability that consequence 
ci will be realized by player i after the plays described of the individual 
history hi followed by the action ai. The role of hi's in the above must be 
replaced by the player's information sets. For every information set hi, 
the ai's following it must be restricted to actions feasible at this information 
set. The consequences, q 's  in the above, must be replaced by two types 
of objects. First, a consequence ci can be a terminal node with its associ- 
ated payoff to player i, provided that the action ai taken at hi can lead to 
such termination. But it can also describe a new individual information 
set, if following hiai the other players could lead player i back to a "next 
information set." Thus, eilhiai(Ci) is the probability of the play entering the 
information set ci (allowing terminal nodes) conditional on being in the 
information set hi and taking the action ai. 

We use the following example to illustrate the general approach. 
Consider a three-stage alternating-offer bargaining between a seller, S, 

and a buyer, B. At stage one the seller can ask the buyer for two prices, 
V H  (very high) or H (high). In the second stage, the buyer can accept the 
asked price, X, with X = V H  or X = H, yielding the respective payoffs 



158 KALAI  A N D  L E H R E R  

Start S 

M 

VII B L 

accept 

accept 

S 

reject 

accept 

S 

reject 

accept 

L 

M 

accept 

S 

reject 

accept 

S 

reject 

FIGURE 1 

X - Rs, Rb -- X ,  where R, and Rb represent the respective reservation 
values. Or the buyer can counter propose two prices, L (low) or M (moder- 
ate), which the seller then accepts or rejects. If Y is accepted, Y = L or 
Y = M, again the respective payoffs are Y - R,, Rb - Y. ff it is declined, 
the resulting payoffs are 0 and 0. 

The extensive form game is described in Fig. 1. The decision tree of 
the seller, with O denoting nature's nodes, is described in Fig. 2. His 
subjective environment response function will specify six probabilities 
corresponding to the six arcs marked "accepted," L and M. For example, 
e~l H (accepted) represents the probability that a seller's initial H offer will 
be accepted, and e~lvH(M) represents the probability that an initial VH 
offer will be responded to with a counteroffer M. 

However, drastically different games give rise to the same decision tree 
of the seller, as illustrated by the following two scenarios. 

Scenario 1. The buyer consists of two players, b I and b 2, with hierar- 
chical decision making. Upon hearing the asked price X, player bl can 
accept, counter'propose L, counterpropose M, or pass the decision to his 
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partner b 2. If b~ passes, then b 2 decides whether to accept or counter with 
L or M. Now there are three reservation values, and if the item is sold 
at price P, the respective payoffs are ( P  - R s ,  R b  t - -  P ,  Rb 2 - P) .  Moreover, 
the extensive form game of Fig. 1 must be modified. 

Note however, that the seller's decision tree in Fig. 2 is the same. We 
could construct a large number of scenarios, like the one above, all of 
which constitute different game trees with different groups of buyers, but 
all yielding the same individual decision tree for the seller. And for deciding 
his optimal strategy, the seller needs to assess only the response probabili- 
ties in this decision tree without considering all the possible game trees 
behind it. 

S c e n a r i o  2. A Bayesian game with unknown buyer's reservation 
value. Suppose the single buyer has two possible reservation values cho- 
sen according to some prior probabilities. The buyer knows his realized 
value, but the seller does not. Now the extensive game has two versions 
of the original tree, with nature moving first and choosing which of the 
two trees to enter. The buyer knows which tree nature chose, but the 



160 KALAI AND LEHRER 

seller does not. Every pair of corresponding nodes in the two trees are 
put together for the seller in a single information set. 

But, again, the seller's individual decision tree is unchanged and all he 
cares to know are the response probabilities to his various offers. 

When we combine variations, as in Scenarios 1 and 2, we see that there 
is a large number of games, all yielding the seller the same individual 
decision tree. No matter what the game is, in order to choose an optimal 
strategy he only needs to know, or assess, the probability of various 
responses to his offers, i.e., his environment response function. 

The buyer has a similar task. The real game defines for him a known 
decision tree. To decide on his optimal strategy, he needs to assess proba- 
bilities of how the seller (or sellers or sellers-agents or their types) will 
respond to his counteroffers. 

The subjective extensive bargaining game is described by the real game 
together with the two decision trees and individually assessed environment 
response functions. If the situation modeled is a single isolated bargaining 
episode, then the reasonable solution concept is of subjectively optimal 
strategies, i.e., a pair of strategies with each being a best response to the 
subjective environment response function. 

However, to repetitive bargaining situations that allow learning we may 
apply the concept of subjective equilibrium. It consists of a pair of subjec- 
tively optimal strategies that assign the correct probabilities to events on 
the play paths. 

For example, suppose the seller assesses probability 1 to his proposed 
H price being accepted but 0.5 and 0.5 probabilities to his VH proposal 
being accepted or countered with M. Based on this assessment he proposes 
H and decides also to accept any counter proposal. The buyer chooses 
an optimal strategy which indeed counters H with an acceptance because 
he believes that rejecting H will lead the seller to reject any of his counter- 
proposals. We are at a subjective equilibrium. Every player's expectations 
on the play path are met, even though their conjectures regarding off path 
responses may be wrong. 

The above subjective equilibrium is closely related to earlier examples 
in Fudenberg and Kreps (1988) and to a self-confirming equilibrium in the 
Fudenberg-Levin (1993) sense. 

A major difference, however, is that the current model does not assume 
that the players know the game. For example, the real game could be as 
in Scenario 1 above, yet with the seller behaving as if he is in the original 
game facing a single buyer. 

Another interesting discrepancy between the players' model of the game 
and the actual game may be regarding the continuation of the game. The 
buyer may think that the game may continue with additional offers and 
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c o u n t e r o f f e r s ,  y e t  the  se l le r  m a y  th ink  tha t  he m u s t  m a k e  a final r e s p o n s e  
to  the  b u y e r ' s  coun t e ro f f e r .  S ince  at  the  equ i l ib r ium d e s c r i b e d  a b o v e  
the  g a m e  ends  a f te r  the  first p r o p o s a l ,  w h o e v e r  is w r o n g  r ega rd ing  the  
pos s ib i l i t y  o r  imposs ib i l i t y  o f  c o n t i n u a t i o n  n e v e r  finds out .  
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