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Abstract

When a potential hedge between alternatives does not reduce the exposure to uncertainty, we say that the 
decision maker considers these alternatives structurally similar. We offer a novel approach and suggest that 
structural similarity is subjective and should be different across decision makers. Structural similarity can 
be recovered through a property of the individual’s preferences referred to as subjective codecomposable 
independence. This property characterizes a class of event-separable models and allows us to differentiate 
between perception of uncertainty and attitude towards it. In addition, our approach provides a behavioral 
foundation to Concave Expected Utility preferences.
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1. Introduction

In the heart of decision theory, and economics in general, lies the Expected Utility model. It 
is well-known, however, that this model does not capture observed behavior in environments of 
subjective uncertainty. In such environments perception of uncertainty changes when an opportu-
nity of hedging arises; Agents often exhibit strict preference for hedging since that reduces their 
exposure to uncertainty. This well studied phenomenon is referred to as uncertainty aversion. 
Less attention, however, was given to understanding when a potential hedge does not change the 
agent’s perception of her exposure to uncertainty, and more importantly, how this varies across 
agents.

We offer a novel approach to valuation of hedging and suggest that the value of a hedge 
depends on a notion of structural similarity. From a decision maker’s perspective, hedging be-
tween structurally similar alternatives does not reduce the amount of uncertainty she is exposed 
to. Hence, she reveals no preference for hedging between such alternatives. In contrast with 
existing literature, we suggest that structural similarity is subjective and is in the ‘eyes of the be-
holder’; What one decision maker deems structurally similar, might not seem structurally similar 
to another. Our approach gives rise to a class of preferences represented by a subjective non-
additive probability (capacity) capturing the decision maker’s belief, and a general integration 
scheme according to which expected utility is calculated. This class of preferences includes ex-
pected utility (Savage, 1954 and Anscombe and Aumann, 1963) and Choquet expected utility 
(Schmeidler, 1989) as special cases, both of which are based on objective structural similarity. 
We exemplify how subjective structural similarity leads to different predictions from existing 
models. Combining our approach with uncertainty aversion provides a behavioral foundation 
to a class of preferences termed Concave Expected Utility (CavEU) – a capacity-based model 
of uncertainty aversion that employs the concave integral (Lehrer, 2009) for evaluating alter-
natives. This model can accommodate recent Ellsberg-like paradoxes emerging from Choquet 
preferences (Machina, 2009). Lastly, our approach provides sufficient conditions for subjective 
and Choquet expected utility models; These conditions are weaker than the previous standard 
formulations.

1.1. Overview

Ellsberg’s urn example (Ellsberg, 1961) raised conceptual issues with Savage’s (1954) and 
Anscombe and Aumann’s (1963) Subjective Expected Utility (SEU) theory. The example shows 
that the model cannot capture preferences for hedging exhibited in environments of subjective 
uncertainty. These difficulty stems from the sure-thing principle (in Savage) or the independence 
axiom (in Anscombe–Aumann). A solution was offered by Schmeidler (1989) who presented 
Choquet Expected Utility (CEU) theory, in which beliefs are represented by non-additive proba-
bilities and expected utilities are calculated according to the Choquet integral (Choquet, 1955).

Schmeidler assumed that independence is maintained between alternatives that are comono-
tonic. Two functions over a state space are comonotonic if both induce the same ordering when 
the states are ordered according to their associated outcomes. Mixing between comonotonic alter-
natives yields an alternative in the same comonotonicity class. Thus, it is implicit in Schmeidler’s 
approach that hedging between comonotonic acts should not reduce the amount of uncertainty 
the decision maker is exposed to, and no decision maker should have a strict preference for 
hedging between such alternatives.
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We propose that valuation of hedging against uncertainty depends on a notion of structural 
similarity. Alternatives are structurally similar if hedging (between them) does not alter the per-
ception of exposure to uncertainty. Thus, structural similarity should be considered subjective, 
while objective considerations need not dictate attitudes toward uncertainty. For instance, accord-
ing to our approach the decision maker is let the liberty to have strict preferences for hedging 
between comonotonic acts.2 We offer an example for a subjective-independence axiom reflecting 
our approach.

Any act f can be decomposed as a mixture (or lottery), f = αbE + (1 − α)g, between some 
bet b on an event E and a ‘complementary’ act g. Typically, there are different possibilities to 
represent an act this way. The independence axiom we postulate requires that any act can be 
decomposed in at least one way for which the decision maker exhibits no strict preference for 
hedging.3 Note that according to this axiom, independence is required to hold for some bet-act 
decomposition, not for all of them (as suggested by the classic independence axiom), and not 
for bets and acts are comonotonic (as suggested by comonotonic independence). This particular 
decomposition depends on the decision maker and typically differs from one decision maker to 
another. We therefore refer to this axiom as subjective codecomposable independence.

Our approach gives rise to a class of event-separable preferences including, among other, 
SEU and CEU. These preferences all admit a utility form expressed by a subjective non-additive 
probability (capacity), capturing the decision maker’s belief, and a general integration scheme 
according to which expected utility is calculated. More formally, a bet-decomposition of an alter-
native f is a collection of bets {bE}E such that 

∑
bE = f . The value of such a bet-decomposition 

with respect to a belief v is 
∑

bEv(E). Our theory suggests that the utility of an alternative is 
the value (with respect to the non-additive belief) of some decomposition of the alternative into 
bets. It could be interpreted that the decision maker wishes to simplify the task of evaluating an 
act, doing so by decomposing it to elementary alternatives, that is bets. This decomposition into 
basic ingredients alleviates the evaluation of and the comparison between alternatives. Unlike 
CEU, our model allows decompositions that do not have to follow a particular structure.

The subjective independence axiom also implies that one can differentiate between the deci-
sion maker’s perception of uncertainty and her attitude towards it. The perception of uncertainty 
can be described by the subjective belief, while the attitude towards it depends on the decomposi-
tions according to which the decision maker is evaluating the different alternatives. It is possible 
that two decision makers would perceive uncertainty in the same way (that is, entertain the same 
belief) but decompose acts differently, exhibit different attitudes towards uncertainty and thereby 
different preferences.

In order to obtain more structure and some understanding as to how alternatives are being 
evaluated in the presence of a particular attitude towards uncertainty, we impose (in addition to 
subjective independence) the classical uncertainty aversion axiom and refer to such preferences 
as Concave Expected Utility (CavEU). Such preferences admit a representation that employs the 

2 There are other weakening of independence in the literature. The issue of similarity as perceived by a decision maker 
and that, as such, should be subjective has not been discussed. For example, constant independence introduced by Gilboa 
and Schmeidler (1989) postulates that the constants are similar to every act. This is an objective notion of similarity. 
Siniscalchi (2009) introduced an independence axiom across acts that are ‘complementary’ in some sense, but given the 
underlying utils, this notion of similarity as perception of uncertainty is also objective. Catagnoli and Maccheroni (2000)
study independence within an abstract collection of cones of alternatives (see Section 6 for more details).

3 More formally, any act can be decomposed in such a way that the decision maker exhibits uncertainty neutrality 
among acts represented by the same bet and complementary act. For brevity, we use the former wording throughout the 
Introduction.
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concave integral (Lehrer, 2009). Thus, subjective independence allows one to provide a behav-
ioral foundation for this class of preference relations.

Among the class of uncertainty averse preferences, CavEU are more flexible than CEU pref-
erences in the sense that, the acts among which uncertainty neutrality applies are subjectively 
determined and are not dictated by pre-specified structure. Thus, CavEU preferences are less vul-
nerable to ‘paradoxes’ such as those introduced by Machina (2009). This is interesting because, 
while there are indeed some non-separable models that accommodate the Machina examples,4

CavEU is an event-separable model just like CEU preferences and can still accommodate Machi-
na’s examples.

1.2. Organization

The rest of the paper is organized as follows. The formal framework of choice under uncer-
tainty is presented in Section 2.1. Subjective codecomposability and the emergence of a capacity 
are presented in Sections 2.2 and 2.3. Section 3 provides a discussion of Choquet Expected 
Utility, Concave Expected Utility and the essential differences between the two approaches. 
Uncertainty aversion and the characterizations of CavEU preferences are formally discussed 
in Section 4. The relation of codecomposability to SEU and CEU is presented in Section 5. Sec-
tion 6 concludes with a discussion of the related literature and additional aspects of the model 
we present. All the proofs are in Appendix A.

2. Subjective decomposability

2.1. Environment

Consider a decision making framework in which an object of choice is an act from the state 
space to utility outcomes. More formally, let S be a finite non-empty set of states of nature.5

An act is a function from S to R+. The collection of acts is denoted by F with typical elements 
being f, g, h. We interpret f (s) as the payoff induced by act f ∈ F in state s ∈ S and assume it 
is the utility exerted by the decision maker if f is chosen and s is the realized state. Note that we 
assume the decision maker’s vNM utility has already been identified.

Remark 1. 1. One can also consider the restatement by Fishburn (1970) of the classical 
Anscombe–Aumann (Anscombe and Aumann, 1963) set-up. In that case, standard axioms imply 
that the vNM utility index can be identified and that the formulation of alternatives as utility acts, 
as we resort to here, is well defined. Such results have been established repeatedly and we rely 
on these results. Note, however, that the axioms presented throughout do not rely on the assump-
tion that the utility has been identified, and are formulated in a manner so they could be applied 
directly to Anscombe–Aumann acts as well.

2. The assumption that utils are non-negative an unbounded can be omitted and similar re-
sults as presented in the following sections would be obtained. Section 6.1 discusses briefly the 
implications of weakening the structural assumptions on utils.

4 See, for example, footnote 9 in Machina (2009) and also Dillenberger and Segal (2015) for an additional discussion.
5 We conjecture that the main results will follow for a general state space. Nevertheless, the proof methods we resort 

to here will not be useful.
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Fig. 1. Decomposition of f into f ′ and a bet on event E. Fig. 2. Decomposition of f into f ′′ and a bet on event F .

Abusing notation, for an act f ∈ F and a state s ∈ S, we denote by f (s) the constant act that 
assigns the utility f (s) to every state of nature. Utils (and constant acts) will be typically denoted 
by a, b, c. Mixtures (convex combinations) of acts are performed pointwise. That is, if f, g ∈ F
and δ ∈ [0, 1], then δf + (1 − δ)g is the act in F that yields δf (s) + (1 − δ)g(s) utility for every 
s ∈ S. Mixture coefficients will be denoted by δ, α, etc.

In our framework, a decision maker is associated with a binary relation � over F representing 
his ranking. � is the asymmetric part of the relation. That is f � g if f � g but it is not true 
that g � f . ∼ is the symmetric part, that is f ∼ g if f � g and g � f . A binary relation � is 
complete if for every f, g ∈ F , either f � g or g � f . It is transitive if for f, g, h ∈ F , f � g

and g � h imply f � h. As discussed in the Introduction, an important property of preferences is 
independence. It will be useful for later discussion to present the formal definition at this point. 
We say that a binary relation � satisfies the independence axiom over a (convex) collection of 
acts F ′ ⊆ F if for every f, g, h ∈ F ′ and every δ ∈ (0, 1), f � g if and only if δf + (1 − δ)h �
δg + (1 − δ)h.

2.2. Codecomposable independence

A bet is an act that yields some positive utility b > 0 over a non-empty event E ⊆ S and 
the utility 0 over the complement event. Such a bet will be denoted by bE . An act which is 
not a bet can always be represented as a convex combination, or a decomposition, of some bet 
and another act. That is, for f ∈ F we can find a bet bE , an act f ′, and δ ∈ [0, 1] such that 
f = δbE + (1 − δ)f ′. This is exemplified in Fig. 1. As can be seen from Fig. 2, there are many 
decompositions of this sort for an act.

Pick one decomposition of f , say, to the bet bE and the complementary act f ′ (as appears 
in Fig. 1). In particular, f ∈ [bE, f ′] = {αbE + (1 − α)f ′ : α ∈ [0, 1]}. Now, as can be seen in 
Figs. 1 and 3, every act g ∈ [bE, f ′] can be decomposed, similarly to f , to the bet bE and the 
act f ′. A decision maker might (but not necessarily) perceive the acts f and g, and any other 
act in [bE, f ′], to have a “similar” structure. If so, it is reasonable to assume, as in Schmeidler
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Fig. 3. Decomposition of g into f ′ and a bet on event F . Fig. 4. Decomposition of h into f ′′ and a bet on event F .

(1989), that the decision maker will not have a strict preference for hedging (in other words, the 
decision maker will exhibit uncertainty neutrality when mixing) between such acts.

Note, however, that a different decision maker may not find g structurally similar to f . It is 
plausible that she entertains a different notion of structural similarity, and finds h /∈ [bE, f ′] and 
f similar since they share a(nother) decomposition structure (see, for example, Figs. 2 and 4). 
While one decision maker exhibits uncertainty neutrality when mixing between f and g due to 
his own subjective notion of structural similarity, another decision maker finds f and h struc-
turally similar, exhibiting uncertainty neutrality when mixing between f and h while exhibiting 
other uncertainty attitudes for mixtures between f and g. Also note that the bet aF and the act f ′′
(in Figs. 2 and 4) are not comonotonic, hence mixing the two yields acts that are not necessarily 
comonotonic with f .

Now, structural similarity and the particular decomposition of an act (whether it is as in Fig. 1, 
Fig. 2, or rather a third alternative) is a subjective matter. Our main axiom, Subjective Codecom-
posable Independence, postulates that a similarity structure exists but is subjective: every act can 
be decomposed to a bet on some event and a complementary act such that, the decision maker 
exhibits uncertainty neutrality across all acts that can be decomposed to a bet on the same event 
and the complementary act.

Formally, for a bet bE and an act f ′, let

cone(bE,f ′) = {αbE + βf ′;α,β ≥ 0}
be the cone generated by bE and f ′.

Subjective Codecomposable Independence. For every non-bet act f , there exist a bet bE and f ′
such that f ∈ [bE, f ′) and � satisfies independence over cone(bE, f ′).

The axiom states that the preferences satisfy independence in particular domains of acts. For 
every act one can find (at least) one event and a complementary act such that independence holds 
between all acts in the cone generated by the complementary act and a bet on that event. There 
are finitely many events, so it is possible to verify what event is the one according to which we 
decompose the act. However, the complementary act could be one of infinitely many acts (all 



E. Lehrer, R. Teper / Journal of Economic Theory 158 (2015) 33–53 39
in the same interval). Therefore, it is possible to find a complementary act, if such exists, with 
finitely many tests. Nevertheless, the axiom is not falsifiable.

The next axiom can be considered as complementary to subjective codecomposable indepen-
dence, which does not have any bite when the act under consideration is a bet.

Worst-Outcome Bet Independence. For every two bets bE and dG, bE � dG if and only if αbE �
αdG for every α ∈ (0, 1).

Worst-outcome bet independence allows us to directly compare different bets on different 
events, and states that whenever a bet bE is preferred to a bet dF , then mixing both with the 
worst bet 0S does not reverse the preference. A stronger version which compares any two acts 
and their mixtures with the worst outcome, referred to as worst-outcome independence, can be 
found in Chateauneuf and Faro (2009). Thus, our axiom is also implied by c-independence (see 
Gilboa and Schmeidler, 1989) and comonotonic independence (Schmeidler, 1989).

2.3. A capacity emerges

To explore the implications of subjective codecomposable independence we need to present 
some notations and definitions. A capacity v over S is a function v : 2S → [0, 1] satisfying: 
(i) v (φ) = 0 and v(S) = 1; and (ii) K ⊆ T ⊆ S implies v (K) ≤ v (T ).

Fix and act f . A collection {(aE, E) : E ⊆ S, aE ≥ 0} is a decomposition of f if∑
aE1E = f .6 Clearly, every act has many decompositions. Consider for example the act g

that induces a utility on event A and b utility on the complement event, Ac, where b > a. Two 
of many decompositions of g are a1S + (b − a)1Ac and a1A + b1Ac .

Similarly to the classical expected utility theory, the value of the decomposition {(aE1E)}E , 
with respect to a capacity v, is simply 

∑
aEv(E). When a capacity is a probability distribution 

over the states S, then the values of all decompositions of an alternative coincide and equal to its 
expected utility with respect to that probability. However, when the capacity is not a probability 
distribution (that is, not additive) then this fact is no longer true, and different decompositions 
obtain different values.

Definition 1. We say that a binary relation � over all acts F admits an event-separable repre-
sentation if there exist a homogeneous functional V : F → R and a capacity v : 2S → [0, 1] such 
that:

1. V represents �, that is V (f ) ≥ V (g) ⇔ f � g for every f, g ∈ F ;
2. V (bE) = b · v(E) for every bet bE ; and
3. for every act f ∈F ,

V (f ) =
∑

aEv(E) for some
∑

aE1E = f, (1)

where aE ≥ 0.

Thus, a binary relation admits an event-separable representation if an act is ranked accord-
ing to the value, with respect to the capacity, of one of its decompositions into bets. Choquet 
Expected Utility (Schmeidler, 1989) is one example, out of many, for such preferences. We will 

6 1E is the characteristic function of the event E.
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discuss this theory, and the alternative presented in this paper, in more detail in the following 
sections.

In addition to the axioms above, which rise from the new approach we present, we will pos-
tulate throughout the following standard assumptions:

Weak Order. � is complete and transitive.

Monotonicity. For every f, g ∈ F , f (s) > g(s) for all s ∈ S implies f � g.

Continuity. For every f ∈F the sets {g ∈F : g � f } and {g ∈ F : g 
 f } are closed.

Theorem 1. Let � be a binary relation over F satisfying weak order, monotonicity, continuity,
worst-outcome bet independence, and subjective codecomposable independence. Then, � ad-
mits an event-separable representation. Moreover, if both (V , v) and (V ′, v′) represent �, then 
V ′ = V and v′ = v.

Theorem 1 states that given standard assumptions and subjective codecomposable indepen-
dence, a binary relation admits an event-separable representation. The axioms are sufficient to (a) 
identify a unique non-additive belief representing how the decision maker perceives uncertainty; 
and (b) state that alternatives are ranked according to the value of one of their decompositions, 
which describes the decision maker’s attitude towards uncertainty. Note that the belief can be 
identical across different decision makers while their attitudes towards uncertainty, and therefore 
their decisions, could be different.

Remark 2. The theorem can be rephrased as an ‘if and only if’ statement. Let C be a collection 
of bet-act cones of the form cone(bE, g). We say that C is a bet-act cone cover (of F ) if every 
non-bet act f is a member of the relative interior of at least one cone in C. The axioms in 
Theorem 1 are necessary and sufficient for the existence of a bet-act cone cover and a continuous 
and monotonic representing functional V , where V is linear within each cone in C. Theorem 1
implies that linearity over some bet-act cone cover is a consequence of the axioms. Furthermore, 
every representation of this kind is event separable.

It is important to note that it is not true that every preferences admitting an event-separable 
representation as in Eq. (1) satisfies our axioms. Such preferences need not imply that the repre-
sentation is linear within each cone in some bet-act cone cover (see Example 3 in Appendix A). 
This is why Theorem 1 cannot be readily phrased as a logical equivalence statement.

The next example shows a difference between MMEU preferences (Gilboa and Schmeidler, 
1989) and event-separable preferences. It also shows that preferences could be represented by a 
linear V over cones and yet, not be event-separable.

Example 1. Consider preferences over alternatives over three states that can be represented by 
the following value function.7 For every f = (f1, f2, f3), V (f ) = f1+f2

2 if f1+f2
2 ≤ f3, and 

V (f ) = f3 if f1+f2
2 ≥ f3. Note that every act is a member of one of the cones {f : f1+f2

2 ≤ f3}
and {f : f1+f2

2 ≥ f3}. Moreover, the preferences satisfy independence within each of these cones. 

7 These are Gilboa–Schmeidler (Gilboa and Schmeidler, 1989) preferences where the priors are taken to be (the convex 
hull of) (0.5, 0.5, 0) and (0, 0, 1).
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Do these preferences satisfy our axioms and admit an event-separable representation? The answer 
in no.

To show why, consider the alternative g = (2, 0, 1) and let us assume that the preferences are 
indeed event-separable as in Theorem 1. That means there is a decomposition g = ∑

E aE1E , 
where V (g) = ∑

E aEv(E). Note however that the only event with positive value is the grand 
event itself. This event cannot be involved in any decomposition of g, because the second coor-
dinate of g is zero. This means that 

∑
E aEv(E) = 0, which contradicts the fact that V (g) > 0. 

Thus, these preferences do not admit an event-separable representation and do not satisfy sub-
jective codecomposable independence.

Note that subjective codecomposable independence is a weak assumption; it is not possible 
to determine exactly what is the decomposition according to which an alternative is ranked. 
A question is whether making stronger behavioral assumptions can help identify the integration 
mechanisms, and whether such integration mechanisms are natural and interesting while being 
different than Choquet? We investigate this direction in Section 4 below. We impose the classical 
uncertainty aversion axiom and show that the only decision model that is based on a capacity, as 
in Theorem 1, is the Concave Expected Utility model discussed in Section 3 in the context of the 
Machina examples.

2.4. Proof sketch: Theorem 1

The detailed proof of Theorem 1 appears in Appendix A. We here present an intuitive sketch. 
Subjective codecomposeable independence guarantees that every act f is contained in a cone 
generated by some bet and another act, where an affine function over this cone represents the 
preferences. Due to worst-outcome bet independence every bet can be directly compared to the 
constants, which guarantees that all these affine functions (one for every cone) can be calibrated 
with the one defined on the constant acts and thereby can be merged together in a consistent 
way. This yields a functional V over all acts that represents the preferences and is affine over the 
subjective cones. In particular, part 1 of Definition 1 is satisfied.

Now, due to worst-outcome bet independence, V is homogeneous over bets. That is, 
V (αbE) = αV (bE). In particular V (0) = 0. Thus, normalizing V (1S) = 1 and defining v(E) =
V (1E), we obtain that v is a capacity due to monotonicity. This implies that part 2 of Definition 1
is satisfied.

In case f is a non-bet act the main idea is the following. Subjective codecomposeable 
independence assures us that f is a mixture (convex combination) of some bet bEf

and a 
‘residual’ act g such that V is affine over cone(bEf

, g). In particular, V (f ) = V (αbEf
+

(1 − α)g) = αV (bEf
) + (1 − α)V (g), and since V is homogeneous over bets, we get that 

V (f ) = αbV (1Ef
) + (1 − α)V (g). By repeating this argument for g and substitute V (g) into 

V (f ), one obtains a summation of bets and a smaller residual, the one obtained from decompos-
ing g. This procedure is reiterated over and over again. However, and this is the delicate part of 
the proof, the sequence of residuals obtained from this process might not vanish. That is, it might 
converge to an act h which is not a bet and satisfies V (h) > 0.

When decomposing f such that V (f ) = αbV (1Ef
) +(1 −α)V (g), we show that it is possible 

to choose the decomposition in a way that af = αb is maximal. Then, when decomposing the 
residual, say g, it is impossible that g is decomposed in an affine fashion to a bet on Ef . This 
will contradict the maximality of af . Since the state space is finite, there are finite number of 
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events. This means that there must be a finite step in this process of decomposing the residuals. 
From part 2 of Definition 1, which was established above, the proof is complete.

3. Non-additive beliefs and expected utility

This section provides an informal discussion and (partial) comparison between the classic 
Choquet Expected Utility model and an alternative theory considered in this paper. The aim 
of this section is to present and motivate some of the key concepts relevant to the point the 
current paper is trying to make. The formal decision theoretic foundation for the alternative 
theory appears in the following section.

Following Ellsberg’s urn example (Ellsberg, 1961), Schmeidler (1989) was the first to present 
an alternative to the classical subjective expected utility theory by incorporating non-additive be-
liefs. Schmeidler weakened the independence axiom and introduced comonotonic independence 
which serves as a behavioral foundation for Choquet Expected Utility (CEU). The Choquet ex-
pected utility (see, Choquet, 1955) of g takes the form

VCEU(g) =
∑

i

bi · v(Ei), (2)

where 
∑

i bi · 1Ei
is the unique decomposition of g such that {Ei}i form a chain (that is, 

Ei+1 � Ei for every i). We refer to such a decomposition as the Choquet decomposition. For ex-
ample, if g induces utility a on event A and utility b, where b > a on the complement event Ac , 
then the Choquet decomposition of g is (b − a)1Ac + a1S and the Choquet expected utility of 
g with respect to a capacity v is (b − a)v(Ac) + av(S). The intuition as to why comonotonic 
independence (along with the standard axioms) implies that preferences are represented by CEU
is discussed in Section 5. In fact, we will show that a version of the axiom in the spirit of code-
composability is sufficient for this task.

As mentioned in the previous section, every alternative has more than one decomposition. 
Evaluating acts by using the Choquet decomposition is only one of many ways to do so. Consider, 
for instance, an alternative theory in which an act is evaluated according to the maximum value 
over all of its decompositions. The decomposition in which the maximum is obtained is referred 
to as the optimal decomposition. Such valuations are denoted by VCAV and preferences that admit 
such a utility form are referred to as Concave Expected Utility (CavEU). The term hints that such 
preferences always exhibit (weak) affinity for hedging.

To illustrate how CavEU may be different than CEU, consider the following example. Let 
the state space be S = {s1, . . . , s4} and define a capacity v over the state space as follows: 
v(s) = 1

12 for every state s, v({s1, s2}) = v({s1, s3}) = v({s2, s3}) = v({s1, s4}) = 1
6 , v({s2, s4}) =

v({s3, s4}) = 3
12 , v({s1, s2, s3}) = v({s1, s3, s4}) = v({s2, s3, s4}) = 1

3 , v({s1, s2, s4}) = 5
6 and 

v(S) = 1. Note that the contribution of the state s2 to any event that contains neither s1 nor 
s2 is greater than the contribution of s1. Formally, for any event E that does not contain the 
states s1, s2, v(E ∪ {s1}) ≤ v(E ∪ {s2}). Moreover, the inequality is strict when E = {s4}. In this 
sense, if we interpret v as how the decision maker perceives uncertainty, then s2 is more likely 
than s1.

Now, consider the acts f = (0, 1, 2, 3) and g = (1, 0, 2, 3). Note that f and g differ only 
in states s1 and s2. The act f returns the lower outcome in the less likely state and the higher 
outcome in the more likely one. It is the opposite case for g; it returns the higher outcome in 
the less likely state. It is plausible then, that a decision maker perceiving uncertainty through v
would rank f over g. Nevertheless, expected utility according to CEU does not support that; 
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VCEU of both f and g is 8
12 : VCEU(f ) = v({s2, s3, s4}) + v({s3, s4}) + v({s4}) = v({s1, s3, s4}) +

v({s3, s4}) + v({s4}) = VCEU(g). That is, the Choquet expected utility, holding the belief v, is the 
same for both f and g and the decision maker is indifferent between the two. However, CavEU
ranks f strictly higher than g: VCAV(f ) = v({s2, s4}) +2v({s3, s4}) = 9

12 > 8
12 = v({s1, s3, s4}) +

v({s3, s4}) + v({s4}) = VCAV(g).
Through the example above we can also demonstrate the idea of subjective structural similar-

ity. We have seen that the optimal decomposition of f with respect to v is 1{s2,s4} + 2 · 1{s3,s4}, 
implying that a decision maker following such preferences finds 1{s2,s4} and 1{s3,s4} structurally 
similar in the sense that mixing between them does not expose him less to uncertainty. Notice 
also that 1{s2,s4} and 1{s3,s4} are not comonotonic. Thus, the similarity structure associated with 
such preferences are different than that associated with CEU preferences. On the other hand, 
consider any convex capacity v′.8 CavEU preferences with respect to v′ coincide with CEU with 
respect to v′ (Lehrer, 2009). In that case, bets on comonotonic events are structurally similar. 
Thus, the capacity discussed above and v′ provide an example of different CavEU preferences 
associated with different similarity structures. This is unlike CEU preferences for which the sim-
ilarity structure is determined by comonotonicity regardless of the beliefs.

4. Uncertainty aversion

Since Schmeidler (1989) and Gilboa and Schmeidler (1989) uncertainty aversion has been one 
of the most studied phenomenon in the theory of decision making. Unlike Schmeidler (1989) who 
focused on comonotonic-independence, following our discussion regarding subjective structural 
similarity, we here wish to impose the weaker subjective codecomposable independence, and add 
structure by postulating uncertainty aversion.

Uncertainty Aversion. For every f, g ∈F , if f ∼ g then δf + (1 − δ)g � g for every δ ∈ [0, 1].
Before we state the result, we make a formal definition of the concave integral (Lehrer, 2009)

with respect to capacities. The concave integral of an act f : S → R+ with respect to a capacity 
v : 2S → [0, 1] is defined by

Cav∫
f dv = max

{∑
aEv(E) :

∑
aE1E = f,aE > 0

}
. (3)

The integral considers all possible decompositions of an act and evaluates it according to the 
decomposition with the maximal value (with respect to the capacity). It is immediate that the 
concave integral is indeed a concave functional. Indeed, fix a capacity v. While 

∑
aE1E and ∑

bF 1F may be optimal decompositions of f and g respectively, there might be a decomposition 
of αf + (1 − α)g with a value (with respect to the capacity v) greater than that of 

∑
αaE1E +∑

(1 − α)bF 1F .
We refer to preferences � over all acts F as CavEU if there exist a capacity v, such that for 

all f, g ∈F

f � g ⇐⇒
Cav∫

f dv ≥
Cav∫

gdv. (4)

8 The notion of a convex capacity is due to Shapley (1971).
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We know from Theorem 1 that along with the standard axioms, subjective codecomposable 
independence implies that preferences admit an event-separable representation. It turns out that 
from this family of preferences, there is only one class adhering to uncertainty aversion. This is 
the class of CavEU preferences.

Theorem 2. Let � be a binary relation over F . Then the following are equivalent:

1. � satisfies weak order, monotonicity, continuity, worst-outcome bet independence, subjec-
tive codecomposable independence and uncertainty aversion; and

2. � is CavEU.

We know, due to Theorem 1, that the belief (or, capacity) representing the preferences is 
unique. However, the Theorem allows for very general preferences and there is not much more 
that can be said about such beliefs. Since now we have restricted attention to preferences that 
adhere to uncertainty aversion, it is possible to identify a particular structure for the decision 
maker’s beliefs.

Proposition 1. v can represent a CavEU preference relation (in the sense of Definition 1) if and 
only if v can be written as a minimum of finitely many measures over S (that is, v = mini μi ).

The proposition states that CavEU preferences can be represented by a belief that is a lower 
envelope of finitely many measures. That is, if preferences are event-separable and uncertainty 
aversion is satisfied, then the capacity, representing the DM’s perception of uncertainty, can be 
modeled as the minimum of a (finite) collection of measures over the state space.

Note that the concave integral is well defined for every capacity v, even when it does not sat-
isfy this property. However, the propositions states that in this case Definition 1, and in particular 
point 2 of the definition, does not hold. Indeed, let v be a capacity and an event E such that ∫ Cav 1Edv > v(E). Define the capacity v̂ by v̂(F ) = ∫ Cav 1F dv for every F ⊆ S. Of course, 
v̂ ≥ v where v̂(E) > v(E). Nevertheless, by Lehrer and Teper (2008) we have that the integral 
with respect to both v and v̂ represent the same preferences. In particular, the content of Propo-
sition 1 is that v = v̂ if and only if v is the minimum of finitely many additive measures. This 
result is due to Kalai and Zemel (1982).

5. Codecomposable independence and expected utility models

It is interesting to see the links between the codecomposable independence approach to ex-
isting models. Clearly, both SEU and CEU are particular classes of preferences admitting an 
event-separable representation. It turns out that providing stronger versions of our independence 
axiom yields exactly SEU and CEU. Note that both versions resort to objective structural con-
siderations.

For an act f and a utility level a ∈ R+, let Ef
a = {s ∈ S : f (s) ≥ a} be the event in which 

f performs better that a. A stronger codecomposable independence axiom can be formulated 
taking into account decompositions of acts to comonotonic bets.

Cumulative Codecomposable Independence. For every act f , and every comonotonic bEf and 
f ′ such that f ∈ [bEf , f ′), � satisfies independence over cone(bEf , f ′)

The axiom postulates that if f, g, h ∈ F can all be expressed as a linear and positive combi-
nation of the comonotonic bet bEf and act f ′, then independence involving f, g, h holds. Like 
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Schmeidler’s approach, this again is an objective structural similarity assumption. Note that, 
in this case, f, g and h are comonotonic, and hence this axiom is weaker than Schmeidler’s 
comonotonic-independence. Resulting from such a strengthening of subjective codecomposable 
independence is the following proposition. Note that worst-outcome bet independence is implied 
by cumulative codecomposable independence.

Proposition 2. The following two statements are equivalent:

1. � satisfies weak order, continuity, monotonicity, and cumulative codecomposable indepen-
dence;

2. � admits a CEU representation.

The following example provides intuition as to why cumulative codecomposable indepen-
dence is enough to obtain that alternatives are evaluated by their Choquet decomposition. The 
detailed proof appears in Appendix A.

Example 2. Assume V is a homogenous functional representing preferences. Define the capacity 
v as follows: v(E) = V (1E) for every event E. Let g be the act that induces utility a on event A
and utility b on the complement event Ac, where b > a. The act g can be rewritten as g = a1S +
(b − a)1Ac = a

b
(b1S) + b−a

b
(b1Ac). Thus, g is a convex combination of two comonotonic bets, 

bS and bAc . From cumulative codecomposable independence we infer that V (g) = a
b
V (b1S) +

b−a
b

V (b1Ac), and since V is homogenous, that V (g) = a
b
bV (1S) + b−a

b
bV (1Ac) = aV (1S) +

(b − a)V (1Ac) = av(S) + (b − a)v(Ac). We thus obtain that V (g) is precisely the Choquet 
integral of g with respect to v.

Lastly, we explore a further strengthening of our approach by postulating that for every de-
composition of f to a bet bE and a complementary act f ′, the preference relation satisfies 
independence over [bE, f ′].
Codecomposable Independence. For every bet bE and act f ′, � satisfies independence over 
cone(bE, f ′).

Assuming codecomposable independence along with the axioms specified above allows us to 
formulate the following result.

Proposition 3. The following two statements are equivalent:

1. � satisfies weak order, continuity, monotonicity, worst-outcome bet independence, and
codecomposable independence;

2. � admits an SEU representation.

Proposition 3 states that given the standard axioms, codecomposable independence allows 
us to identify a subjective probability with respect to which the decision maker calculates the 
expected utility of the different alternatives and ranks them accordingly. Note that worst-outcome 
bet independence, is, again, not needed as it is implied by codecomposable independence.

It should be noted that recently Borah and Kops (2014) suggest that the independence axiom 
can be substantially weakened while still maintain a subjective expected utility representation. 
Roughly speaking, they show that it is enough to require independence across acts that differ 
only in one state.
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6. Additional comments

6.1. On the assumptions on utils

We assume that the vN–M utility is non-negative. It is possible to assume the utility is neg-
ative while strengthening the axiomatic structure by postulating c-independence (instead of the 
weaker worst-outcome bet independence). This will imply that the functional form is translation 
covariant and any non-negative utility act can then be analyzed by translating it to a non-negative 
one.

We have also assumed throughout that the utility is unbounded. Subjective codecomposable 
independence is stronger when the utility is bounded. It might be impossible to obtain some 
decompositions for an act since the complementary act to a particular bet may require levels 
of utility that are not specified (or identified) by the decision maker’s preferences. That implies 
more structure on our representation. Consider the least monotonic capacity v over the state 
space S = {s1, s2, s3, s4, s5, s6} that satisfies v(s1, s4, s5) = v(s2, s5, s6) = v(s3, s4, s6) = 2

3 and 
v(S) = 1. Note that v(E) ≤ 2

3 whenever E �= S. It is easy to verify that v is totally balanced. Con-
sider the act f = (0.5, 0.5, 0.5, 1, 1, 1). It can be decomposed as f = 1

21{s1,s4,s5} + 1
21{s2,s5,s6} +

1
21{s3,s4,s6}, which implies that 

∫ Cav
f dv ≥ 3 · 1

2 · 2
3 = 1. Let the utility be bounded in [0, 1]

and assume, adhering to subjective codecomposeable independence, that 
∫ Cav

f dv = ∑
aEv(E)

for some decomposition f = ∑
aE1E , where 

∑
aE = 1. Thus, 

∑
aEv(E) = ∑

E �=S aEv(E) +
aSv(S) ≤ 2

3

∑
E �=S aE +aS = 2

3 (1 −aS) +aS ≤ 2
3 · 1

2 + 1
2 = 5

6 <
∫ Cav

f dv (the second inequality 

is due to that aS cannot exceed 1
2 because f = ∑

aE1E). This is a contradiction. Hence, it cannot 
be that the capacity v represents preferences that adhere to subjective codecomposeable inde-
pendence and uncertainty aversion when the utility is bounded. This illustrates how subjective 
codecomposeable independence entails more structure on preferences when utility is bounded 
relative to unbounded utility. In a separate note (see Lehrer and Teper, forthcoming) we show 
that a property termed the Sandwich property is necessary and sufficient for the representation of 
CavEU preferences when utility is bounded.

6.2. On examples by Machina

In a recent paper, Machina (2009) introduced two “paradoxes” for the Choquet Expected 
Utility model. He “exploits” comonotonic independence exhibited by such preferences and con-
structs several examples in which such preferences cannot accommodate choices that may be 
considered natural. For CavEU preferences, however, he optimal decomposition depends on the 
decision maker’s subjective similarity structure and is not pre-specified structurally as in Eq. (2). 
Hence, CavEU preferences are less vulnerable to such “paradoxes”.

The Reflection Example. An urn contains one hundred balls of four different colors a, b, c, 
and d. All you know is that there are fifty balls that either a or b, and fifty balls that are either 
c or d . A decision maker chooses an act, then a ball is randomly drawn and a reward in utils9

is given to the decision maker according to the color of the ball and the chosen act. Table 1
summarizes the rewards related to four acts.

9 Even though the analysis would go through if entries are monetary, we consider utils for brevity and simplicity.
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Table 1
The Reflection Example.

Bet a b c d

f1 400 800 400 0
f2 400 400 800 0
f3 0 800 400 400
f4 0 400 800 400

Table 2
The 50–51 Example.

Bet a b c d

f5 800 800 400 400
f6 800 400 800 400
f7 1200 800 400 0
f8 1200 400 800 0

One can see that f3 and f4 are mirror images of f2 and f1 respectively. It is then plausible that, 
if a decision maker strictly prefers f1 to f2 (i.e. f1 � f2) we would expect that she should strictly 
prefer f4 to f3 (i.e. f4 � f3). This is inconsistent with CEU preferences, as explained in Machina
(2009). Indeed, the Choquet decompositions of f1, .., f4 are such that VCEU(f1) > VCEU(f2) if 
and only if VCEU(f3) > VCEU(f4).

We show now that the reversal as discussed in Machina is possible under CavEU preferences. 
Consider the least monotonic capacity v such that v(a) = v(b) = v(c) = v(d) = 0, v(bc) = 1

100
and v(ab) = v(cd) = 1

2 . The optimal decomposition of f1 is 400 · 1ab + 400 · 1bc . However the 
optimal decomposition of f2 is 400 ·1ab . Thus, according to CavEU with respect to the described 
capacity, VCAV(f1) > VCAV(f2). The reason is that 400 · v(ab) + 400 · v(bc) > 400 · v(ab). For a 
similar calculation VCAV(f4) > VCAV(f3). Indeed, an optimal decomposition for f3 is 400 · 1cd , 
while an optimal decomposition for f4 is 400 · 1cd + 400 · 1bc . Hence, CavEU is consistent with 
f1 � f2 and f4 � f3.

The 50–51 Example. The second example refers to a similar urn as above, only now there are 
101 balls, out of which 51 are c or d . Table 2 summarizes the rewards related to four acts.

Note that f7 and f8 are obtained from f5 and f6 by increasing the rewards related to color a
(which are the highest possible) by 400 and by reducing the rewards related to color d (which are 
the lowest possible) by 400. Machina argues that it is reasonable for uncertainty averse decision 
makers to prefer f5 to f6 (denoted f5 � f6) and at the same time to prefer f8 to f7 (f8 � f7). 
However, the Choquet decompositions of f5, . . . , f8 are such that VCEU(f5) > VCEU(f6) if and 
only if VCEU(f7) > VCEU(f8).

Consider now the least monotonic capacity that takes the following values: v(ab) =
50
101 , v(ac) = .5, v(cd) = 51

101 , v(abc) = .75 and v(abd) = .76. It is possible to show that given 
this capacity, VCAV(f5) > VCAV(f6) and that VCAV(f8) > VCAV(f7).

Remark 3. Note that in both examples the capacities are not symmetric with respect to the exoge-
nous “information” provided regarding the underlying uncertainty. It is impossible to construct 
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an informationally-symmetric capacity for which CavEU can explain the behavior pointed out 
by Machina.

6.3. How does it fit in the lit?

Catagnoli and Maccheroni (2000) notice that many of the weakening of independence (e.g., 
Schmeidler, 1989 and Gilboa and Schmeidler, 1989) take a form of independence within a col-
lection of cones with a particular structure. They study the implication of independence within 
an abstract class of cones and show that preferences can be represented with an abstract function 
which is linear within every cone.

In terms of models of choice under uncertainty, the most related ones are confidence pref-
erences presented by Chateauneuf and Faro (2009), maxmin expected utility (MEU) that were 
introduced by Gärdenfors and Sahlin (1982) and axiomatized by Gilboa and Schmeidler (1989)
and, of course, CEU preferences.

CavEU is clearly a particular case of confidence preferences, but requires more structure 
since not every confidence preferences satisfy the decomposability property.10 To see that, con-
sider MEU preferences, which are a particular case of confidence preferences. Not every MEU
preference relation can be represented as a (concave) integral (as seen in Example 1); MEU sat-
isfies the c-independence axiom, while it is clear from subjective codecomposable independence
that it does not have to be satisfied by CavEU. Since these two axioms are not nested, the two 
models are not nested. The subclass of CavEU preferences that do admit an MEU representa-
tion (or equivalently, satisfy c-independence) are those that can be represented with a capacity 
having a large core (see, Lehrer, 2009).11 In other words, a representation in the style of Eq. (4)
of preferences over acts ranged to the entire real line (i.e., utils could be negative and positive) 
can be carried out by a capacity having a large core. As for the axiomatization of such prefer-
ences, worst-outcome bet independence appearing in Theorem 2 would have to be strengthen to 
c-independence.

This brings us to CEU preferences. Lovasz (1983) (pp. 246–249) and Schmeidler (1989)
show that the Choquet integral is a concave functional if and only if the capacity is convex. 
Hence we have that when the capacity is not convex CavEU and CEU differ. In addition, due 
to Lehrer (2009) and Lehrer and Teper (2008), CEU and CavEU preferences coincide if and 
only if the capacity representing the preferences is convex. In this case it is also MEU. The latter 
point emphasizes that within the class of uncertainty averse preferences, the class of CavEU
preferences is more general than that of CEU.

Appendix A

Proof of Theorem 1. For an act f ∈ F , let c(f )S ∼ f be a constant act that is indifferent to f . 
Due to monotonicity, continuity and weak order, c(f ) exists and is unique. Define the real valued 
function V : F → R by V (f ) = c(f ). Clearly, V represents the preferences. That is, for every 
f, g ∈ F , f � g if and only if V (f ) ≥ V (g). Note that V (α1S) = α for every α ≥ 0. Now,

V (aE) = V (ac(1E)S) = ac(1E) = aV (1E) (A.1)

10 In particular, CavEU are those confidence preferences where the support of the confidence function has finitely many 
extreme points that constitute the set of measures dominating the capacity.
11 The definition of large core is due to Sharkey (1982).
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for every a ≥ 0 and E ⊆ S, where the left equality is due to worst-outcome bet independence
(applied to the bets c(1E)S and 1E). This homogeneity property implies that V (0) = 0. Define 
v : 2S → [0, 1] by v(E) = V (1E). v is a capacity. Indeed, v(∅) = V (0) = 0, v(S) = V (1S) = 1
and v is monotonic since V is monotonic.12 Now, if f = aE is a bet, then the claim in the theorem 
is immediate due to Eq. (A.1).

Pick a non-bet act f ∈ F . The main idea of the proof lies behind the following 4 claims.

Claim 1. There is a bet bE and an act f ′ such that f ∈ cone(bE, f ′) and V is affine over 
cone(bE, f ′). In particular, V is homogeneous, that is, V (αf ) = αV (f ) for every α ≥ 0.

Proof. Indeed, pick a non-bet act f ∈ F . Subjective codecomposable independence implies that 
there exist an event Ef ⊆ S and an act f ′ such that f ∈ [bEf

, f ′) (i.e., f = (1 − δ)bEf
+ δf ′ for 

some δ ∈ (0, 1)) and � respects independence over cone(bEf
, f ′). Note that since f is not a bet, 

f ′ and bEf
are algebraically independent. Since � respects independence over cone(bEf

, f ′)
it can be represented (over cone(bEf

, f ′)) by a unique affine function that agrees with V on 
0, bEf

and f ′. In other words, for every g = a1bEf
+a2f

′ ∈ cone(bEf
, f ′), V (g) = a1V (bEf

) +
a2V (f ′) represents �. In particular, V (αf ) = αV (f ) for every α ≥ 0. �

The following claim is an immediate corollary of Claim 1.

Claim 2. There exists an event Ef , an act f ′ ∈ F , a > 0 and δ ∈ [0, 1] such that f = aEf
+ δf ′

and V (f ) = V (aEf
) + δV (f ′).

Proof. There exist an event Ef ⊆ S and an act f ′ such that f ∈ [bEf
, f ′) (i.e., f = (1 −δ)bEf

+
δf ′ for some δ ∈ (0, 1)) and V (f ) = (1 −δ)V (bEf

) +δV (f ′). Now, letting a = (1 −δ)b we have 
that (1 − δ)V (bEf

) = aV (1Ef
) = V (aEf

). �
Claim 3. There is a maximal a ≥ 0 such that f = δg + aEf

+ ∑
E �=Ef

bE and V (f ) = δV (g) +
V (aEf

) + ∑
E �=Ef

V (bE).

Proof. Enumerate all events but Ef and consider now

Ef =
{

(bEf
, bE1, . . . , bE2|S|−1 , g, δ) : g ∈ F, δ ∈ [0,1], f = δg +

∑
E

bE,

V (f ) = V (g) +
∑
E

V (bE)

}
.

This set is not empty due to Claim 2, closed13 since V is continuous, and bounded since f is. 
Hence Ef is a non-empty compact set. Let

a∗f = argmax
{
a : (aEf

, bE1, . . . , bE2|S|−1
, g, δ) ∈ Ef

}
.

Since Ef is compact, a∗f is well defined. �
12 Note that due to monotonicity and continuity, f (s) ≥ g(s) for every s implies f � g.
13 In the product topology over R2|S|−1 ×F × [0, 1].



50 E. Lehrer, R. Teper / Journal of Economic Theory 158 (2015) 33–53
From Claim 3 there is a residual act h and a collection of bets {bE}E �=Ef
such that f =

δh + a
∗f
Ef

+ ∑
E �=Ef

bE and

V (f ) = δV (h) + V (a
∗f
Ef

) +
∑

E �=Ef

V (bE). (A.2)

Now, if the residual act h is a bet, then from Eq. (A.1) the theorem is proved. Assume h is not a 
bet. The following claim is a twist on Claim 2.

Claim 4. There exist an event Eh �= Ef , an act f ′ ∈ F , a > 0 and δ ∈ [0, 1] such that h =
aEh

+ δf ′ and V (h) = V (aEh
) + δV (f ′).

Proof. The proof is similar to that of Claim 2, but we need to show that Eh �= Ef . Assuming 
Eh = Ef contradicts the maximality of a∗f . Indeed, if Eh = Ef then f = δf ′ + aEf

+ a
∗f
Ef

+∑
E �=Ef

bE and V (f ) = δV (f ′) +V (aEf
) +V (a

∗f
Ef

) +∑
E �=Ef

V (bE), and a +a∗f > a∗f . �

Claim 4 suggests that it is not possible to apply subjective codecomposable independence to 
decompose h while resorting to Ef . The same arguments apply when we decompose h according 
to Claim 3; if Ef appears in such a decomposition of h, and we substitute the decomposition of 
V (h) with that of V (f ) appearing in Eq. (A.2), we again obtain a contradiction to the maximality 
of a∗f .

Following this argument, decompose h as V (h) = γV (k) +V (a∗h
Eh

) +∑
E �=Eh,Ef

V (dE), and 
substitute its decomposition with that of f appearing in Eq. (A.2) to obtain

V (f ) = δγV (k) + V (δa∗h
Eh

) +
∑

E �=Eh,Ef

V (δdE) + V (a
∗f
Ef

) +
∑

E �=Ef

V (bE). (A.3)

Again, if k is a bet then the theorem is proved. Otherwise, repeat the procedure we did for h. 
We decompose k as in Claim 2, where following similar arguments as before, Eh �= Eh, Ef , and 
so does every event in the decomposition of k as in Claim 3, which we substitute with V (k) in the 
decomposition of f . We repeat this procedure for residual acts of each step. If at any point the 
residual act is a bet, then the theorem is proved. Other wise, it must be that this procedure ends 
after at most 2|S|−1 steps. Indeed, since at each step the associated event (as in Claim 2 for f ) 
according to which we decompose the residual act from the prior step, must be different from all 
events resorted to in previous steps, at the 2|S|−1th step the residual act must be a bet. Otherwise 
we can decompose it using subjective codecomposable independence, which contradicts the fact 
that we already exhausted all possible event.

By Claim 1 V is homogeneous. To prove uniqueness, suppose that there are two homogeneous 
V, V ′ : F → R that represent � and satisfy V (1S) = V ′(1S) = 1. Fix f ∈ F . Without loss of 
generality V (f ) ≤ V ′(f ). Let b ∈ R+ such that V (f ) ≤ V (bS) = b = V ′(bS) ≤ V ′(f ). Since 
both represent �, f 
 bS 
 f . Thus, V (f ) = b = V ′(f ). Since this is true for every f , V = V ′
and by definition v = v′. �
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Proof of Theorem 2. The concave integral satisfies subjective codecomposable independence
due to Proposition 5 in Even and Lehrer (2014) (and it is immediate that the rest of the axioms 
are implied by integral).14

Following Theorem 1, we have that � is represented by a homogeneous and continuous V
such that V (1E) ≥ v(E). Ambiguity aversion implies that V is a concave functional. By Lemma 1
in Lehrer (2009) we have that V (·) ≥ ∫ Cav

(·)dv. However, for every f ∈ F concavity of V
implies that V (f ) ≤ ∑

αEV (1E) for all decompositions of f , implying that V (f ) ≤ ∫ Cav
f dv. 

Therefore V (·) = ∫ Cav
(·)dv. �

Proof of Proposition 1. Due to Lemma 1 in Lehrer and Teper (2008), without loss of generality 
we can assume that v is totally balanced. Thus, the proposition is proved due to Theorem 1 in 
Kalai and Zemel (1982). �
Proof of Proposition 2. It is clear that the axioms are satisfied by the CEU preferences. As 
for the inverse direction, we show first that cumulative codecomposable independence implies 
worst-outcome bet independence. Assume cumulative codecomposable independence and con-
sider the two following bets: bE and dG. Without loss of generality bE � dG. Due to continuity
there is c ≥ 0 such that bE ∼ cE∪G. In particular, bE � cE∪G � dG. We show that for every 
α ≥ 0, αbE � αcE∪G � αdG, implying αbE � αdG and worst-outcome bet independence.

Consider the act f = 1E + 1E∪G. By cumulative codecomposable independence, f ∈
[1E∪G, 1E], and � satisfies independence over cone(1E∪G, 1E). In particular, bE � cE∪G im-
plies that for every α ≥ 0, αbE � αcE∪G. We can now apply the same reasoning to f =
1G + 1E∪G and conclude that since cE∪G � dG, then αcE∪G � αdG for every α ≥ 0. Thus, 
worst-outcome bet independence is satisfied.

It remains to show that given cumulative codecomposable independence (which obviously 
implies subjective codecomposable independence), the decomposition of any act obtained in the 
proof of Theorem 1 is the Choquet one. To see that, pick an act f ∈ F and, let a1 = max{f (s) :
s ∈ S} and E1 = {s ∈ S : f (s) = a1}. Also denote a2 = max{f (s) : s ∈ Ec

1}. Let f ′ be the act 
defined by f ′(s) = f (s) whenever s ∈ Ec

1 and a2 otherwise (that is, f ′ coincides with f over the 
complement of E1, and over E1 it is defined as the second highest value f attains). Now, f =
f ′ + (a1 − a2)1E1 = a2

a1
( a1
a2

f ′) + a1−a2
a1

(a1E1). Note that E1 and f ′ are comonotonic, hence by 

cumulative codecomposable independence we have that V (f ) = a2
a1

V
(

a1
a2

f ′
)
+ a1−a2

a1
V

(
a1E1

) =
V (f ′) + (a1 − a2)V (1E1) = V (f ′) + (a1 − a2)v(E1). Repeating the same procedure to f ′ we 
obtain the desired result. �
Proof of Proposition 3. It is clear that the axioms are satisfied by the EU preferences. As for 
the other implication, codecomposable independence implies cumulative codecomposable inde-
pendence, which by the previous proof, implies worst-outcome bet independence. Thus, all that 
is needed to show is that given codecomposable independence the capacity obtained in the proof 
of Theorem 1 is additive, hence a probability.

Pick any event E ⊂ S and state s ∈ S \ E and consider an act of the form f = 21{s} + 1E . On 
one hand, from the proof of Proposition 2 we know that V (f ) = v(E∪{s}) +v({s}). On the other 

14 Note that the additivity property presented in Proposition 5 in Even and Lehrer (2014) is not satisfied by every 
functional form as in Definition 1 and is not a characteristic property of such preferences. It is strictly stronger than 
subjective codecomposable independence.
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hand, we can write f = 1
2 (41{s}) + 1

2 (21E) and due to codecomposable independence we have 
that V (f ) = 1

2 (41{s}) + 1
2 (21E) = 2v({s}) + v(E). Thus, v({s} + v(E ∪ {s}) = 2v({s}) + v(E), 

implying that v({s}) + v(E) = v(E ∪ {s}). Since E is an arbitrary event, we get that v(F ) =∑
s∈F v(s) for any event F ⊂ S, implying that v is a probability over S. �

Example 3. In this example we specify preferences admitting an event-separable representation 
that do not satisfy our main axiom. Let S = {1, 2}. Define the capacity v as follows. v(S) = 2
and v(i) = 0, i = 1, 2. We first define V over acts in the simplex (i.e., acts whose coordinates 
sum up to 1). Let f = (x, 1 − x) be an act in the simplex. Define

V (f ) =

⎧⎪⎨
⎪⎩

0 if x < 1
4 ;

0 if 3
4 < x;

1 − 4| 1
2 − x| if 1

4 ≤ x ≤ 3
4

For instance, V (1, 0) = 0, V ( 1
2 , 12 ) = 1, V ( 1

4 , 34 ) = 0 and V ( 1
3 , 23 ) = 1

3 . Now extend V to the 
entire set of acts in a homogeneous way. For instance, V (3, 0) = 0, V (1, 1) = 2, and V (1, 2) = 1. 
Finally, define � accordingly.

V is clearly continuous. We verify first that V is event separable with respect to v. Any 
(x, 1 − x) in the simplex such that either x < 1

4 or 3
4 < x, satisfies (x, 1 − x) = x(1, 0) +

(1 −x)(0, 1) and V (x, 1 −x) = 0 = xV (1, 0) + (1 −x)V (0, 1). This means that V is event sepa-
rable in this case. Now consider 1

4 ≤ x ≤ 1
2 . Here, (x, 1 −x) = (2 −4x)( 1

4 , 34 ) + (4x −1)( 1
2 , 12 ) =

2−4x
4 (1, 0) + 3(2−4x)

4 (0, 1) + 4x−1
2 (1, 1) and V (x, 1 − x) = 1 − 4| 1

2 − x| which indeed equals 
4x − 1 = 2−4x

4 V (1, 0) + 3(2−4x)
4 V (0, 1) + 4x−1

2 V (1, 1). Thus, V is event separable also when 
1
4 ≤ x ≤ 1

2 . The case where 1
2 ≤ x ≤ 3

4 is similar and therefore omitted. We conclude that V
is event separable on the simplex and since V is homogeneous, it is an event-separable repre-
sentation of �. However, � violates Subjective Codecomposable Independence, because when 
decomposing ( 1

4 , 34 ), for instance, one obtains the bets (1, 0) and (0, 1), but V is not linear over 
the cone generated by them.
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