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Abstract

In a Bayesian game players play an unknown game. Before the game starts some players may receive a
signal regarding the specific game actually played. Typically, information structures that determine different
signals, induce different equilibrium payoffs. In two-person zero-sum games the equilibrium payoff measures
the value of the particular information structure which induces it. We pose a question as to what restrictions
Bayesian games impose on the value of information. We provide answers for two kinds of information struc-
tures: symmetric, where both players are equally informed, and one-sided, where only one player is informed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Markets or strategic interactions are typically not observable in full detail to the outside ob-
server, be it an econometrician or an analyst. Either the utilities of the agents or the actions
available to them are unobservable. Frequently, only the outcome of the interaction is observable,
if at all. The question arises as to what conditions the observable data should satisfy in order to
be consistent with an underlying theoretical model. Stated differently, what restrictions on the
outcomes of an interaction does the underlying model impose?
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Afriat (1967) examined a situation where only finitely many observations of prices and
consumption-bundles of an agent are available. Afriat’s theorem (see also Varian, 1984) states
that these observations may constitute a finite sample from a demand function induced by a con-
tinuous, concave and monotonic utility, if and only if a certain revealed preference condition is
satisfied. Sonneschein (1973), Debreu (1974) and Mantel (1974) examined functions that map
prices to bundles. They questioned under what conditions such functions might convey the excess
demand of a market with utility maximizing agents. It turns out that any function can be derived
from rational individuals who maximize their utility.

This paper refers to strategic interactions and poses questions of a similar spirit. The exact
specifications of the game played are unobservable to the outside observer. Only the payoffs
received by the agents are knowable. In this case, what conditions should these payoffs satisfy in
order to be consistent with the equilibrium paradigm of interactive models?

More specifically, consider a Bayesian game in which agents might receive information re-
garding the actual game played. As in Aumann (1974), we model the information structure in a
Bayesian game by a partition of the state space into disjoint cells: a player is informed of the cell
containing the realized state. The information structure of the game affects the behavior of the
agents; it determines the equilibrium payoffs. The data available to the economist about the game
includes all possible information structures and the equilibrium payoffs associated with them. As
in Afriat (1967) we look for conditions that data should satisfy in order to be consistent with the
rational behavior of the agents in Bayesian games.

Another purpose of the paper is to study those properties essential to the functions that measure
the value of information, as well as the role of information in Bayesian games and its effect on
equilibrium payoffs. When the information structure changes, typically, the equilibrium payoffs
also change. Specially interesting questions are: what is the extent to which information affects
the outcome of the interaction; are there limitations on the way information affects the outcome;
and should the contribution of additional information be related in any particular way to the
information already available?

As a first step in studying the aforementioned questions, we restrict ourselves to two-person
zero-sum games, and to specific kinds of information structures : one-sided and symmetric.

The main advantage of two-person zero-sum games is that they have a unique equilibrium pay-
off, the value. This implies that any information structure is associated with a unique equilibrium
payoff. Furthermore, in two-person zero-sum games the effect of getting more information is
always positive: the equilibrium payoff cannot decrease as a result of receiving more information.

The value-of-information function of a Bayesian two-person zero-sum game maps each pos-
sible information structure to the corresponding equilibrium payoff. We characterize those real-
valued functions defined over the (symmetric or one-sided) information structures that can be
realized by an underlying Bayesian game, as value-of-information functions. That is, we specify
the properties of functions over the state space partitions that are necessary and sufficient for
being value-of-information functions.

A Bayesian two-person zero-sum game can be also perceived as a partially Bayesian one-player
decision problem under uncertainty. Consider a decision-maker who takes a decision and then
receives a payoff which is computed according to a payoff function that is imperfectly known
to the decision-maker and also according to another “state” that nature chooses. There are two
sources of uncertainty: the payoff function and the “state” of nature. Neither is known to the
decision maker.

The payoff function reflects the decision-maker’s own preferences, and therefore, she might
have a prior over the possible payoff functions that might be relevant. It is an unknown parameter
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for which the agent has a Bayesian a priori probability. The state of nature, however, might
be subject to complete ignorance: the decision-maker might have no assessment or hypothesis
regarding the distribution of the states nature chooses. Thus, the decision maker is facing a partially
Bayesian problem: he holds a prior only over the potential payoff functions and not about the
state of nature.

In such a situation a worst case analysis of nature’s choice suggests that nature is malicious
and it tries to minimize the decision-maker’s payoff by selecting the worst state. Thus, in effect,
the decision-maker plays a Bayesian two-player zero-sum game against nature. We conclude that
the model of two-player zero-sum games covers also Bayesian and partially Bayesian one-person
decision problems.

The issue of measuring the value of information has been previously addressed in the case
of one decision-maker by Gilboa and Lehrer (1991). They characterized those functions that
measure the value of information in optimization problems, where the decision-maker gets to
know an equivalent class of states, rather than the realized state itself, and he has a prior on
the set of states. In this paper we extend the model of Gilboa and Lehrer (1991) to two-person
zero-sum games and determine what kind of functions (of information) might measure the value
of information. We answer this question in two polar cases: symmetric information in which the
partitions of both players coincide and thus both obtain the same information about the state of
nature; and one-sided information in which one player gets some information about the state of
nature while the other does not.

In the case of symmetric information both players are equally informed. After being informed
they actually play a Bayesian game restricted to the states within the informed cell. Therefore, the
value of the original Bayesian game is the expected value of the Bayesian game played aposteriori.
In other words, the value of the Bayesian game is a weighted sum of the values of the restricted
Bayesian games played after the players have been informed. This implies, in particular, that a
value-of-information function of a symmetric information game should be additively separable.
It turns out that this very condition characterizes all possible value-of-information functions: any
additively separable function over partitions is a value-of-information function.

When the information is one-sided, refining the partition of the informed player increases her
equilibrium payoff. Thus, any value-of-information function must be monotonic (with respect to
refinement). Our conclusion concerning one-sided information states that, unlike the case of one-
player decision problems, no further condition beyond monotonicity is required to characterize
the value-of-information functions.

To summarize, in both types of information structures – the symmetric and the one-sided –
the Bayesian model is rich enough to allow for all value-of-information functions as long as they
satisfy the obvious necessary conditions (i.e., additivity in the symmetric case and monotonicity
in the one-sided case).

The paper is organized as follows. In Section 2 we present the model and the main issues treated
by the paper. In Sections 3 and 4 we present the two main results: the characterizing of the value-of-
information functions in symmetric and one-sided information structures. In Section 5 we prove
these results. Section 6 reviews related literature and Section 7 is devoted to final comments.

2. The model

In this section we give a more formal content to the question asked in the introduction. We
first define information structures and the corresponding Bayesian game. We then introduce the
notion of the value of information in this context.
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2.1. Information structures

We consider a game with incomplete information. A state of nature k is drawn from a finite
set K according to a known probability p. None of the players observes k. The players, however,
receive signals that depend on k through an information structure. This information structure is
the main subject of this study and is to be distinguished from the uncertainty embedded in p.

In games with a general information structure, the players receive private signals selected
randomly according to a distribution that depends on the realized state. In this paper we restrict
ourselves to deterministic signals. Note that an information structure with deterministic signals
induces a partition of K. Indeed, each signal can be identified with the subset of states that is
consistent with it. Thus, we follow Aumann (1974) who defines an information structure as a
partition of K into atoms: a player is informed of the atom containing the realized state.

Definition 1. A partitional information structure I = (P1,P2) consists of two partitions of K. Pi

is the partition of player i, i = 1, 2.

The signal player i receives about k is the atom of Pi that contains k.
In this paper we focus on two specific kinds of information structures: symmetric information

in which both players receive the same signal and one-sided information in which only one player
receives information.

Definition 2. A partitional information structure I = (P1,P2) is symmetric if P1 = P2.

Definition 3. A partitional information structure I = (P1,P2) is one-sided if P2 contains only
the set K.

2.2. The game

The two-player zero-sum Bayesian game is defined by a finite state space K; a probability
distribution p over K; a finite action set Ai for each player i = 1, 2; and a payoff function, g,
defined on K × A1 × A2. As usual, the domain of g is linearly extended to mixed strategies.

The two-player zero-sum game associated with the information structure I = (P1,P2) is
played as follows. A state of nature is drawn from K according to the distribution p. Player i
observes the cell of the partition Pi that contains the realized state. Then, both players simulta-
neously choose an action ai ∈ Ai and player 2 pays g(k, a1, a2) to player 1.

A strategy of player i is a function, τi, that associates a probability distribution over Ai to
each cell Bi ∈ Pi. After being informed of Bi ∈ Pi player i chooses an action according to the
distribution τi(Bi). Let Bi(k) denote the cell of Pi that contains k. The payoff corresponding to a
pair of strategies τ1, τ2 is

∑
k∈K p(k)g(k, τ1(B1(k)), τ2(B2(k))). The game defined this way has a

unique equilibrium payoff denoted by vI (p, g).

2.3. Measuring the contribution of information

We now define the value of information in Bayesian games. Consider a game with a state space
K, a payoff function g and a distribution p over K. We define the value-of-information function
of this game as V (I) = vI (p, g). That is, we fix the payoff function g and the distribution p and
let the information structure vary. The value-of-information function reflects the impact of the
information structure on the equilibrium payoff. For instance, player 1 would be willing to pay
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V (P′
1,P2) − V (P1,P2) in order to exchange the structure P1 with P′

1, given that player 2 is
informed through P2.

The objective of this paper is to find what functions on information structures are inconsistent
with the Bayesian model. In particular, we are interested in the restrictions imposed by the Bayesian
model on the way information affects equilibrium outcomes. To this end, we study the value-of-
information functions.

Formally, let V be a function over partitional information structures. The question is when this
function is a value-of-information function of some Bayesian game.

In the case of one decision-maker this problem was analyzed by Gilboa and Lehrer (1991).
They characterized the functions of partitions defined on the set of partitions that are the values
of information of finite games. We need the following definition in order to present their result.

Definition 4. Let V be a function defined over all the partitions of a finite set K. V is additively
separable if there is a function v, defined over subsets of K, such that for any partition P, V (P) =∑

B∈P v(B). In this case we say that V is additively separable with respect to v.

Notation 1. If ∅ �= T ⊆ B ⊆ K and (xi)i∈B is a vector, then x(T ) denotes
∑

i∈T xi, and x(∅) = 0.

Definition 5. Let v be a function defined over the subsets of K. Fix B ⊆ K. We say that a vector
(xi)i∈B is in the B-anti-core of v if x(T ) ≤ v(T ) for every T ⊆ B and x(B) = v(B).

Gilboa and Lehrer (1991) showed that a function V defined over all the partitions of a finite set
K is a value-of-information function of a one-player decision making problem with state space
K if and only if there is a function v, defined over subsets of K, such that (i) V (P) = ∑

B∈P v(B)
(i.e., V is additively separable with respect to v); and (ii) for any L ⊂ K, the L-anti-core of v is
non-empty. Moreover, there is no restriction on the underlying probability distribution over K, as
long as the support is the entire K (i.e., any k ∈ K is assigned a positive probability).

Condition (i) is necessary in a one-player decision problem for the following reason. Let P
be a partition and B ∈ P. Define v(B) as maxa∈A1

∑
k∈B p(k)g(k, a). The ratio v(B)/p(B) is the

optimal payoff that the decision-maker can achieve given that k is in B. The value of the decision
problem V (P) has to be

∑
B∈P v(B). Condition (i) will be extended to the case of two-person

zero-sum games with symmetric information.
In the next two sections we provide similar characterizations of value-of-information functions

in two-person zero-sum games with two particular information structures: symmetric and one-
sided. Note that the one-player case is a special case of a two-person zero-sum game in which player
2 has only one action. Therefore, there are more two-person zero-sum games than one-player
decision problems. Thus, there are more value-of-information functions in two-person zero-sum
games than in one-player decision problems. It implies that the conditions that characterize value-
of-information functions in two-person zero-sum games are weaker than those characterizing
value-of-information functions in one-player decision problems.

3. The value of symmetric partitional information

In this section we focus on two-person zero-sum games with symmetric partitional information
and state our first result.

Definition 6. A function V defined over all the partitions of K is a value-of-information function of
a partitional symmetric information game if there is a distribution p over K and a payoff function
g such that for any partition P of K, V (P) = v(P,P)(p, g).
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The following example illustrates this definition in a Bayesian game with two states.

Example 1. Let K be {1, 2}. The payoff functions g(1, ·) and g(2, ·) are given by the matrices( 1 0
0 0

)
and

( 1 0
0 1

)
, respectively.

Suppose that the probability of state k = 1 is p. If no player is informed of the state selected,

the players actually play the game with matrix
( 1 0

0 1 − p

)
.

The value of this game is 1−p
2−p

. On the other hand, if the players are informed of the game
selected, then with probability p the value of the game played is 0 and with probability 1 − p the
value of the game played is 1

2 . Thus, the average of the Bayesian game is 1−p
2 .

To sum up, there are two possible partitional symmetric information structures: the trivial,
T, where no information about the state selected is given to the players, and the perfect one
(that corresponds to the discrete partition), D, where both players are fully informed of the state
selected. The value-of-information function in this case is therefore given by V (T) = 1−p

2−p
and

V (D) = 1−p
2 . One can see that the additional information given by D is harmful to player 1.

We are now ready to characterize the functions over partitions that are values of information
of two-player zero-sum games with symmetric information.

Theorem 1. Let V be a function defined over all the partitions of K. V is the value of information
of a game with symmetric partitional information if and only if V is additively separable.

Moreover, if V is additively separable, then for any probability distribution p on K that has a
full support there is a payoff function g such that for any partition P over K, V (P) = v(P,P)(p, g).

Note that as in the case of one-player decision problems, additivity is a necessary condition.
Indeed, let v(B) be the equilibrium payoff of the two-player zero-sum matrix game with action
sets A1 and A2, and payoff function

∑
k∈B p(k)g(k, ·, ·). Then, for any partition P, V (P) is the

sum of v(B) over all atoms B of P.
The main contribution of this theorem is to state that in a two-person zero-sum game when

both players receive the same information, no further condition, beyond additivity, is needed for
a function to be the value of information. This means that in a game with symmetric information
the impact of information can be literally unlimited (as long as additivity is preserved). Since the
information is symmetric and the game is zero-sum, it is of no surprise that the impact of additional
information on the value can be positive or negative, or may alternate arbitrarily between having
positive and negative effects.

More surprisingly, maybe, there is no other kind of regularity that information imposes on the
value; in particular the impact of marginal information on the value does not increase, or decrease
with the amount of information available.

Suppose, for instance, that B is a cell of the partition P1. Refine this partition by cutting B into
two to get P′

1. When informed through P′
1 the players get more information about the event B

than when they are informed through P1. The marginal contribution of information (to the value)
in this case is V (P′

1) − V (P1).
Suppose that P2 is another partition with B being its cell. And let P′

2 be the result of a
similar operation we previously did with P1. The marginal contribution of information is now
V (P′

2) − V (P2).
One might expect that the marginal contribution of information would have some regularities.

For instance, when P2 refines P1, the magnitude of the marginal contribution of information on
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P2 could be expected to be smaller than that on P1. It turns out that there is no such regularity:
the marginal contribution of information might be arbitrarily small or large.

To sum up, the Bayesian model imposes only the obvious restriction on the impact of symmet-
ric information—additivity. Had the Bayesian model imposed non-trivial restrictions, one could
check if these restrictions are satisfied and, if not, reject the whole Bayesian model on this ground.
Our theorem implies that when information is symmetric, the Bayesian paradigm cannot be re-
jected on the grounds that the effect of information is inconsistent with the theoretical restrictions.

The proof of Theorem 1 is postponed to Section 5.

4. One-sided information structures

In this section we discuss the case where one player, typically the maximizer, receives some
information about the state selected, while the other player receives no information. Formally,
player 1 will be informed of the cell of partition P, while the other player’s information structure
is the trivial partition, T. All results are stated with this assumption.

Definition 7. A function V defined over all the partitions of K is a value-of-information function
of a game with one-sided information if there is a distribution p over K and a payoff function g
such that for any partition P over K, V (P) = v(P,T)(p, g).

Definition 8. A real-valued function V from the set of partitions of a finite set K is monotonic if
V (P) ≥ V (P′) whenever P refines P′ (i.e., any atom of P′ is a union of atoms of P).

When V is monotonic, additional information implies a higher payoff for the maximizer. Thus,
monotonicity of V means that the value of information is positive for player 1. Note that one-sided
information is identified here with the case where the maximizer is informed while the minimizer
receives no information. The analogous case in which the minimizer is the informed player is
similar to the case treated here and the results can be easily translated from one case to the other.

The next example illustrates the above definitions.

Example 2. Recall Example 1 and consider one-sided partitional information. When the infor-
mation is trivial, the equilibrium payoff, as in Example 1, is 1−p

2−p
. However, when player 1 is fully

informed of the state and player 2 obtains no information, then the game actually played is
⎛
⎜⎜⎜⎜⎝

1 0

p 1 − p

1 − p 0

0 1 − p

⎞
⎟⎟⎟⎟⎠

.

Note that this game is the one-sided information corresponding to the discrete partition D.
When p ≤ 1

2 , an optimal strategy of player 1 is to play Top if the left matrix is realized and the

mixed action
(

1−2p
2(1−p) ,

1
2(1−p)

)
otherwise. An strategy of player 2 is to play the mixed action

( 1
2 , 1

2 ). The equilibrium payoff in this case is 1
2 . However, when p > 1

2 , an optimal strategy of
player 1 is to play Top if the left matrix is realized and Bottom otherwise, while an strategy of
player 2 is to play Right. The equilibrium payoff in this case is 1 − p.

We conclude by writing down the value-of-information function of this one-sided information:
V (T) = 1−p

2−p
, and V (D) = 1

2 if p ≤ 1
2 and V (D) = 1 − p if p > 1

2 . Note that V is monotonic, since

D refines T and indeed, 1
2 ≥ 1−p

2−p
for p ≤ 1

2 and 1 − p ≥ 1−p
2−p

for p > 1
2 .



350 E. Lehrer, D. Rosenberg / Journal of Mathematical Economics 42 (2006) 343–357

When only the maximizer receives more information, his set of strategies expands while the
set of the other players remains unchanged. In two-person zero-sum games it implies that his
equilibrium payoff increases. The reason is that in zero-sum games equilibrium strategies guaran-
tee the equilibrium payoff against any strategy of the opponent and are not merely best response
to the opponents’ strategies. Thus, a greater set of strategies guarantees a higher payoff. Hence,
the value-of-information functions of games with one-sided partitional information (maximizer
is informed) must be monotonic.

It turns out, as the following theorem states, that in games with one-sided information mono-
tonicity is not only necessary but also sufficient for being a value-of-information function. As in
the symmetric case, there is no restriction (as long as monotonicity is preserved) on the possible
impacts of information. In other words, knowing the effect of information cannot help in accepting
or rejecting the Bayesian model.

Theorem 2. A function V from the set of partitions of a finite set K is a value-of-information
function of a partitional one-sided information two-person zero-sum game if and only if it is
monotonic.

The proof of this theorem will be given in the next section.

Remark 1. Games with one-sided information and games with symmetric information share a
common feature: player 1 knows at least what player 2 knows. At first sight it seems that Theorems
1 and 2 can be readily extended to all the games that have this feature.

Let the information structures of players 1 and 2 be denoted, respectively, by P1 and P2.
Suppose that player 1 is more informed than player 2: P1 refines P2.

Consider the following game. An atom B of the partitionP2 is drawn with probability p(B) and
is told to both players; a state k ∈ B is drawn with probability p(k|B); player 1 is informed of the
selected k through PB

1 , while player 2 gets no information. Finally they play the game determined
by k.

After B is told to both players the game actually played is with one-sided information. Theorem
2 states that the value of such a game is given by wB(PB

1 ), where wB is a monotonic. Thus, the
value of the game with the structures P1 and P2 is

∑
B∈P2

p(B)wB(PB
1 ). Denoting vB = p(B)wB,

this implies that for each B ⊂ K there is a monotonic function vB over partitions of B such that
for any partitions P1 and P2 such that P1 refines P2,

V (P1,P2) =
∑
B∈P2

vB(PB
1 ).

Moreover, refiningP2, while keeping it coarser thanP1 (P1 is left unchanged) means that player
2 gets more information, which results in lowering the value. This implies that the functions vB

satisfy in addition the following super-additivity condition:

vB + vB′ ≤ vB∪B′ ,

where B and B′ are disjoint.
We obtained that the existence of monotonic functions vB and super-additivity are necessary

conditions. Are these conditions sufficient for V (P1,P2) to be a value-of-information function?
These conditions ensure that for each B ⊂ K there is a payoff function gB and a probability pB

such that the value of the corresponding game with one-sided information is vB. However, in
order to realize V (P1,P2) as a value of information, one needs to find payoff functions gk so that
gB would be their average on B. It suggests that gB need to satisfy some consistency property. Is
this property implied by super-additivity? We do not know and we leave this problem open.
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5. Proofs of the theorems

5.1. The proof of Theorem 1

We first prove that if V is a value-of-information function of a two-player zero-sum game with
symmetric information then it has to be additive. Recall that since each player knows the set of the
partition P to which k belongs, the strategies τ1 and τ2 of player 1 and player 2 are functions from
the atoms of the partition to probability distributions over A1 and A2, respectively. We will denote
by τ1(B) (resp. τ2(B)), B ∈ P the mixed action corresponding to the information B. Therefore

V (P,P) = v(P,P)(p, g) = max
(τ1)

min
(τ2)

∑
B∈P

∑
k∈B

p(k)g(k, τ1(B), τ2(B)) =
∑
B∈P

h(B),

where h(B) = maxτ1(B) minτ2(B)
∑

k∈B p(k)g(k, τ1(B), τ2(B)). Thus, V is additive.
Assume now that V is an additively separable function of partitions; we want to prove that it is

a value-of-information function. In order to prove this result we will use the following proposition
from Lehrer and Rosenberg (2003).

Denote by �(K) is the set of probability distributions over the set K.

Proposition 1. Given a finite number of pairs (x�, y�) ∈ �(K) × R, � = 1, . . . , L, there exists
a Bayesian two-player zero-sum game with state space K, whose equilibrium payoff is f (p) for
any p ∈ �(K) and f (x�) = y�, � = 1, . . . , L.

Let p be any probability distribution over K that has a full support. For any subset B of K
we denote by pB the conditional probability on B, namely pB(k) = p(k)/p(B) if k ∈ B and 0
otherwise. Note that for any two different subsets of K, B and B′, pB �= pB′ .

There are finitely many subsets of K. Thus, Proposition 1 ensures the existence a Bayesian zero-
sum game with state space K, whose equilibrium payoff is h(B)/p(B) whenever the distribution
over K is pB, B ⊆ K.

Let g denote the payoff function of this game. We have proven that

V (P,P) =
∑
B∈P

h(B) =
∑
B∈P

f (pB)p(B) =
∑
B∈P

p(B) max
τ1(B)

min
τ2(B)

∑
k∈B

pB(k)g(k, τ1(B), τ2(B))

=
∑
B∈P

max
τ1(B)

min
τ2(B)

∑
k∈B

p(k)g(k, τ1(B), τ2(B)),

which is the desired result.

5.2. Proof of Theorem 2

The proof of Theorem 2 makes use of the following proposition.

Proposition 2. A function V from the set of partitions of a finite set K is a value-of-information
function of a one-sided information game if and only if it is a minimum of finitely many value-of-
information functions of one-player decision making problems.

Proof. Let V be the value-of-information function of the game G with state space K, a dis-
tribution p over K, action sets Ai, i = 1, 2, and a payoff function g. We prove that it is
the minimum of finitely many value-of-information functions for one-player decision making
problems.
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Fix a partition P. Denote by G(P) the one-sided information game induced by the partition P.
Consider the following auxiliary multi-stage game, denoted Ḡ(P), that depends on P. The action
set of player 2 in Ḡ(P) is �(A2), while the action set of player 1 in Ḡ(P) is A1.

At the beginning of Ḡ(P) player 2 announces an action, say y; then a state in K is chosen
with respect to the prior distribution p and player 1 is informed of the cell of P that contains it.
Player 1 takes then an action, say a1, and finally, a pure action in A2 is selected according to the
distribution y. The payoff of Ḡ(P) is defined as the expectation of g.

The equilibrium payoffs and the optimal strategies in the two games Ḡ(P) and G(P) coincide.
For each action y of player 2 we define DP

y as the one-player decision problem faced by player

1 in Ḡ(P), after player 2 announces y. The state space of DP
y is K and its payoff function is

g(·, ·, y). Denote by UP
y the value of this problem.

Let yP be an optimal strategy of player 2 in G(P). Note that V (P) coincides with UP
yP . Moreover,

UP
yP ≤ UP

yQ for any partitionQ. Thus, for anyP, V (P) = minQUP
yQ , which completes the necessity

direction of the proof.
As for sufficiency, suppose that V is the minimum of finitely many values of one-player decision

making problems, D1, . . . , Dn. That is, for any partition P, if Ui(P) denotes the value of Di when
the information is induced byP, then V (P) = min1≤i≤n Ui(P). We need to show a zero-sum game
whose value is V.

Theorem 4.4 in Gilboa and Lehrer (1991) implies that without loss of generality all problems
D1, . . . , Dn share the same underlying probability p over K.

Consider the following multi-stage game, G. Player 2 chooses a whole number from 1, . . . , n,
say r. Then a state k is drawn according to p, player 1 is informed of the cell containing this state,
and finally, player 1 takes an action, say a. The payoff of player 1 is the payoff that corresponds
to the action a and the state k in the decision problem Dr.

Note that for any partition P, the value of G when the information is induced by P is
min1≤i≤n Ui(P). Thus, the value of information of G coincides with V, as desired. �

Definition 9. Let F be an algebra of subsets of K. That is, F consists of subsets of K and is closed
under the union and the complement operations. Let v be a real function defined over F. We say
that the anti-core of (v,F) is not empty, if for every A ∈ F there is a vector xA ∈ R|K| such that
xA(A) = v(A) and xA(B) ≤ v(B) for every B ⊆ A such that B ∈ F.

Remark 2. Suppose that F is the set of all subsets of K. The anti-core of (v,F) is not empty
implies that the B-anti-core of v is not empty for every B ⊆ K.

Lemma 1. Let F1 and F2 be two algebras of subsets of K such that F1 ⊆ F2. Assume that
the anti-core of (v,F1) is not empty. Then, for every set of constants cB, B ∈ F2 \ F1, there is u
defined on F2 such that

(a) it coincides with v on F1;
(b) it satisfies u(S) ≥ cS for every S ∈ F2 \ F1;
(c) the anti-core of (u,F2) is not empty.

Proof. Suppose that the algebra G2 refines the algebra G1. We say that G2 is generated from G1
by splitting an atom of G1 into two subsets, if there is an atom A of G1, and a partition of A into
two subsets B and B′ that belong to G2, such that any set C ∈ G2 can be written as C = C1 ∪ C2
with C1 ∈ G1 and C2 ∈ {B, B′, ∅}.
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Without loss of generality we can assume that F2 is generated from F1 by splitting an atom
of F1 into two subsets. This is so because when F2 refines F1, any cell of F1 is a union of cells
of F2. Thus, by finitely many successive splits of sets into two subsets one can generate F2 from
F1. Therefore, if the lemma is proven for any two algebras such that the first is generated from
the second by splitting an atom into two sets, one can apply it successively and obtain the desired
result.

Let B ∈ F2 \ F1 be a set that does not contain any set from F1. That is, B is a proper subset
of some A ∈ F1 (i.e., B is a result of splitting A into two subsets). Thus, the sets of F2 are of the
type D ∪ E, where D ∈ {B, A \ B, ∅} and E ∈ F1.

Since by assumption the anti-core of (v,F1) is not empty, for every S ∈ F1 there is a
vector xS that satisfies the conditions described in Definition 9. For D = B, A \ B, set dD =
maxS;D⊆S and S∈F1 xS(D) and let bD be a number greater than dD. Define u as follows: u coincides
with v on F1; u(D) = bD for D = B, A \ B; and finally, for D ∪ E, where D = B, A \ B and
E ∈ F1, u(D ∪ E) = u(D) + u(E).

Note that if the numbers bD, D = B, A \ B, are large enough, then u(S) ≥ cS for every S ∈
F2 \ F1, as desired. It remains to show that the anti-core of (u,F2) is not empty.

Fix S ∈ F1. If C ⊆ S and C ∈ F1, then u(C) = v(C) ≥ xS(C). If, however, C ⊆ S and C /∈ F1,
then C = D ∪ E, where D = B, A \ B and E ∈ F1. By the definitions of u and dD and since
bD > dD, u(C) = u(D) + u(E) > xS(D) + xS(E) = xS(C).

Now fix S ∈ F2 \ F1.S = D ∪ E, where D = B, A \ B and E ∈ F1. Define the vector xS =
(xS(1), . . . , xS(|K|)) as follows: if k ∈ E, then xS(k) = xE(k), and for k ∈ D, the coordinates
xS(k) are defined so as to satisfy xS(D) = u(D).

Let D ∪ C ⊆ S, where C ⊆ E is in F1. Then, xS(D ∪ C) = xS(D) + xS(C) ≥ u(D) + v(C) =
u(D) + u(C) = u(D ∪ C) which completes the proof that the anti-core of (u,F2) is not
empty. �
Notation 2. Denote by A(P) the algebra generated by a partition P.

Proof of Theorem 2. Let V be a monotonic function defined over the set of partitions of a
set K. We prove that it is a value-of-information function. Since there are finitely many par-
titions of K, by Proposition 2, it is sufficient to show: (a) for any partition P there is vP,
where the B-anti-core of vP is non-empty for any B ⊂ K; (b) for any partition P, V (P) = minQ∑

A∈P vQ(A).
For any partition P we will find vP and define vP(Q) = ∑

A∈Q vP(A) for every partition
Q. The function vP will possess three properties: (i) its B-anti-core is non-empty for ev-
ery B ⊆ K; (ii) V (P) = vP(P); (iii) vP(P) ≤ vP(Q) for any partition Q. This will imply the
result.

Fix a partition P and define vP(A) for A ∈ P so that
∑

A∈P vP(A) = V (P). Thus, property
(ii) is readily satisfied. Extend the definition of vP to A(P) in a linear fashion. Note that this
can be done in a unique way since any element of A(P) can be written uniquely as a union
of cells of P. Moreover, if P refines Q, then V (P) = vP(P) = vP(Q). By monotonicity of V,
V (Q) ≤ V (P) = vP(Q).

We claim that since vP is linear on A(P), the anti-core of (vP,A(P)) is not empty. In order to
justify this claim, fix A ∈ P and let xA be any |K|-dimensional vector with two properties. First, the
support of xA is A (i.e., all the coordinates out of A are equal to zero); and second, xA(A) = vP(A).
Define the vector x = ∑

A∈P xA. Note that for any B ∈ A(P), x(B) = ∑
k∈B

∑
A∈P xA(k) =∑

A∈P xA(A ∩ B). Since P is a partition,
∑

A∈P xA(A ∩ B) = ∑
A∈P and A⊆B xA(A) and there-

fore, x(B) = ∑
A∈P and A⊆B xA(A).
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Since xA(A) = vP(A), we obtain x(B) = ∑
A∈P and A⊆B vP(A). Due to the linearity of vP on

A(P),
∑

A∈P and A⊆B vP(A) = vP(B) . Thus, for any B ∈ A(P), x satisfies x(B) = vP(B) and the
anti-core of (vP,A(P)) is not empty.

We now extend vP to all the subsets of K. The extension is defined so that on every partition
Q it satisfies the linear inequality

∑
A∈Q vP(A) ≥ V (Q). Let cA = vP(A) for every A ∈ A(P)

. Consider the following set of linear inequalities with the variables cA, A ⊆ K and A /∈ A(P):∑
A∈Q cA ≥ V (Q), for every partition Q. Thus, every partition Q induces one inequality. This

is a set of inequalities of the type “greater than or equal to”. Moreover, the coefficients are
either 0 or 1. Such a system has a solution. Furthermore, if (cA)A⊆K and A/∈A(P) is a solution, then
(cA + fA)A⊆K and A/∈A(P) is also a solution, whenever fA ≥ 0.

Now fix a solution (cA) of the previous system of inequalities. Employing Lemma 1 with
F1 = A(P), andF2 equals the set of all subsets of K, we obtain the extension of vP. This extension
satisfies vP(A) ≥ cA for every A ⊆ K. Therefore,

∑
A∈Q vP(A) ≥ ∑

A∈Q cA ≥ V (Q) for every
partition Q. Thus, vP(Q) ≥ V (Q) = vQ(Q) for every Q, which is requirement (iii). Finally, by
Lemma 1, the anti-core of (vP,F2) is non-empty, which is property (i). Thus, by Remark 2 it
completes the proof that a monotonic function is a value-of-information function.

We prove now the inverse direction: if V is a value-of-information function it has to be mono-
tonic. We claim that if P is a refinement of Q, then in a one-sided information game induced
by P player 1 has more strategies than in the game with information induced by Q. For any
strategy τ of player 1 in the game with information structure Q denote by τ(B) the mixed action
prescribed by τ when the state chosen is in B ∈ P. Define the strategy τ′ of player 1 in the game
with the information structure P: when the state chosen is in C ∈ P, where C ⊆ B ∈ P, play
τ(B). Since the set of strategies of player 2 is the same under both information structures, τ′
guarantees at least V (Q) in the game with information structure P. This proves the monotonicity
of V. �

6. Related literature

Most of the existing literature that relates to the role of information in interactive models com-
pares different information structures. Blackwell (1951) and Blackwell (1953) initiated this trend.
He dealt with one-player decision problems and information structures that provide a random sig-
nal whose distribution depends on the realized state of nature. Blackwell characterized when one
information structure always provides at least as high a payoff as another information structure.

More information is always preferred by a rational decision-maker only when the underlying
measures are countably additive. Kadane et al. (1996) proved that this is not the case when the
measures are finitely additive. Wakker (1988), Schlee (1990), Schlee (1991), Safra and Sulganik
(1995) and Chassagnon and Vergnaud (1999) showed that non-expected utility maximizers may
prefer not to be informed. In the case where the action set of the decision-maker depends on the
state, Sulganik and Zilcha (1997) showed that more information does not always increase the
expected payoff.

Lehmann (1988) compared information structures in decision problems with a restricted set of
payoff functions and priors. The payoff functions he examined have the single crossing property
and the priors have the monotone likelihood ratio property. Athey and Levin (1998) and Persico
(2000) also analyzed restricted sets of decision problems.

In a non-zero-sum interactive context, players might prefer dropping payoff-relevant informa-
tion. This might happen when the equilibrium payoffs of the better informed player are lower than
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her equilibrium payoffs before receiving the additional information. Hirshleifer (1971) showed
that in economic situations additional information does not necessarily imply greater payoffs for
the agent. In the games analyzed by Kamien et al. (1990a) and Kamien et al. (1990b) players
receive signals from an outside agent. They showed that the impact of more informative messages
on equilibrium payoffs is sometimes strictly negative. Bassan et al. (2003) introduced conditions
that guarantee that getting more information always improves all players’ payoffs. Neyman (1991)
pointed out that a player might prefer not receiving information because other players would know
that he was receiving this information.

Gossner and Mertens (2001) compared different information structures in two-player zero-
sum games, and Lehrer and Rosenberg (2003) compared them in long-run repeated two-player
zero-sum games. Gossner (2003) showed that the case where a player has more strategies in one
game than in another can be interpreted as having more information.

7. Final remarks

7.1. Non-zero-sum games

In this paper we characterize the functions that are value-of-information functions for two-
player zero-sum games. In the non-zero-sum case, one could define the value-of-information
correspondence that associates the set of corresponding Nash equilibrium payoffs with each infor-
mation structure. Even the relatively easy problem of characterizing the set of value-of-information
correspondences for symmetric or one-sided information structures is an open problem.

7.2. Games with two-sided information

In this work we focus on the two polar cases of symmetric and one-sided information. It would
be interesting to characterize the functions V of pairs of partitions (P1,P2) for which there is a p,
sets of actions, and a payoff function g such that V (P1,P2) = v(P1,P2)(p, g).

As previously noted, when the information of one player becomes finer while the other’s
remains unchanged, the equilibrium payoff should increase. Therefore, V (P1,P2) ought
to be monotonically increasing in the first argument and monotonically decreasing in the
second.

Define CK(P1,P2) to be the coarsening of P1 and P2. That is, CK(P1,P2) is the finest
partition whose cells can be written as a union of cells of Pi, i = 1, 2. Any cell of Pi is a subset
of some cell of CK(P1,P2). CK(P1,P2) is the partition to common knowledge components (see
Aumann, 1976).

We claim that V (P1,P2) should be separably additive on the cells of CK(P1,P2). Indeed, for
any set A ⊆ K and for any partition P denote by P|A the partition induced by P on A. When
k ∈ A ∈ CK(P1,P2), it is common knowledge among the players that a state in A has been
realized. In this case the actual Bayesian game is the original Bayesian game restricted to A. In
this game the information structure is (P1|A,P2|A).

Denote the equilibrium payoff of this game by v(A,P1|A,P2|A). With this notation
V (P1,P2) = ∑

A∈CK(P1,P2) p(A)v(A,P1|A,P2|A), where p is the prior over K. Thus, V is sep-
arably additive over the partition to common knowledge components.

The first immediate generalization of our two results is to the case where one player is better
informed (in the weak sense) than the other. When P1 is finer than P2, then CK(P1,P2) = P2.
Thus, a value-of-information function over such information structures must be separably additive



356 E. Lehrer, D. Rosenberg / Journal of Mathematical Economics 42 (2006) 343–357

on the cells of P2. Furthermore, it must be monotonically increasing in the first argument and
monotonically decreasing in the second (as long as P2 remains coarser than P1). Whether these
conditions are also sufficient is unknown to us. Fully characterizing the value-of-information
functions in this particular case and of course in the general two-sided information case are open
problems.

7.3. General information structures

In this paper we restricted ourselves to games in which the information structure is defined
by a pair of partitions. One could more generally define the value of information as a function of
general information structures (namely functions from K to probability distributions over a finite
set of signals) and ask which functions are value-of-information functions.

7.4. On one-shot incomplete information zero-sum games

Mertens and Zamir (1971) showed that the set of functions that are value functions of one-
shot incomplete information zero-sum games with state space K forms a lattice and is closed
under addition. It is therefore dense in the set of all continuous functions over �(K). This is
not sufficient for our purposes. The proof of Theorem 1 requires that for any finite list of pairs
(x�, y�) ∈ �(K) × IR, � = 1, . . . , L, there exists a Bayesian zero-sum game whose equilibrium
payoff when the prior is x� is precisely (not merely approximately) y�, � = 1, . . . , L.
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