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1. Introduction. In strategic interactions some relevant aspects of the environment might be imperfectly
known to players. However, to maximize their payoffs, players might look for additional information. The impact
of different information on the outcome of a strategic interaction is the subject of this paper.
We chose to analyze this question in the set-up of games with incomplete information. Before the game

starts each player obtains a noisy signal about the state of nature. The players’ signals are determined by an
information structure that specifies how they stochastically depend on the state of nature. Upon receiving the
signals, the players take actions and receive payoffs that depend on the actions taken and on the state of nature.
In general, evaluating the impact of the information structure on the outcome of the game is not an easy task

for a few reasons. First, the interpretation of “outcome” depends on the solution concept applied. Second, for
most solution concepts there are typically multiple outcomes (equilibria). Finally, players might get correlated
information, which typically has a significant effect on the outcome. These reasons do not exist when dealing
with zero-sum games. In these games, there is one natural solution concept, the value, which induces a unique
payoff.
There are two main approaches to analyze the connection between information and payoffs. The first is to

compare between two information structures and find which is payoff-wise better than the other. This direction
has been widely studied in the literature. Blackwell [4] initiated this direction and compared between information
structures in one-player decision problems. He proved that an information structure always yields a higher value
of the problem than another one if and only if it is more informative in a certain sense. Blackwell’s result was
extended to zero-sum games by Gossner and Mertens [12]. It is well known that this property does not extend
to nonzero-sum games, and various attempts have been made to understand when it might be extended (see, for
instance, Hirshleifer [13], Bassan et al. [3], Kamien et al. [14], Neyman [19], Lehrer et al. [17]).
The second approach is to study the impact of an information structure on the outcome of a specific interaction.

A typical question in this line is whether the outcome depends in any particular and discernable way on the
information. Because any specific game might have its own idiosyncrasies, an insight into the subject can be
obtained only by looking at all possible interactions.
For a given game we define the value-of-information function that associates any information structure with

the value of the corresponding Bayesian game. We study the properties that are common to all such functions
and thereby the connection between information and outcomes that is not specific to a particular game.
Gilboa and Lehrer [10] treated deterministic information structures and characterized those functions that are

value-of-information functions of one-player decision problems. Blackwell’s [4] result implies that monotonicity
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is a necessary condition, but it turns out not to be sufficient. Their result has been extended to random information
structures by Azrieli and Lehrer [2].
Lehrer and Rosenberg [16] studied the nature of value-of-information functions in two cases: (a) one-sided

deterministic information: the game depends on a state of nature that is partially known only to player 1
(i.e., player 2 gets no information); and (b) symmetric deterministic information: the game depends on a state
of nature that is equally known to both players. In case (a), the more refined the partition the higher the value.
Lehrer and Rosenberg [16] showed that any function, defined over partitions, that is increasing with respect to
refinements is a value-of-information function of some game with incomplete information on one side.
This paper extends the discussions to the case where both players get some partial information on the state

of nature. We focus on zero-sum games with lack of information on both sides and independent information.
The type k of player 1 and the type l of player 2 are drawn independently of each other. Each player obtains
no information about the other player’s type and just a partial information about his own. This special case of
independent types has been extensively studied in the context of repeated games with incomplete information
(see Aumann and Maschler [1], Mertens and Zamir [18]).
Formally, the information structure in a two-player interaction is characterized by a pair of probability tran-

sitions ��1� �2� where �i is a probability transition between the set of types of player i and his set of messages.
Each player is informed only of his message, which therefore endows him with some partial information on his
own type (and no information at all on his opponent’s type). Then a zero-sum game, whose payoffs depend on
the players’ types, is played. The value of this game depends on the information structure, ��1� �2�. The func-
tion that associates to every information structure the corresponding value is called the value-of-information
function of this game. The goal of this paper is to characterize those functions that are a value-of-information
function of some game.
The result concerning games with one-sided information is relevant to the current two-sided information

case. In the one-sided and deterministic information case it is proved that a function is a value-of-information
function if and only if it is increasing when the information of the informed agent is refined. When the lack
of information is on both sides, we show that any value of information function has to be increasing when
player 1’s information gets refined and decreasing when the information of player 2 is refined. The notion
of refining information has two meanings: monotonicity related to Blackwell’s partial order over information
structures, and concavity over the space of conditional probabilities. That these conditions are necessary is a
consequence of known results. Our contribution is to prove that they are sufficient.
The implication of this result is that essentially no further condition beyond monotonicity with respect to

information is required to characterize the value-of-information functions. This means that the model of Bayesian
game with varying information structures can be refuted only by observations that contradict monotonicity.
Obviously, one can never observe the complete relation between the outcome of an interaction and all possible
information structures. However, it is plausible to assume that different information structures are used in differ-
ent times in the same or similar interaction. This might happen, for instance, due to information acquisition. An
outside observer who knows the relevant information structure and gets to know the outcomes of the interaction
will then be able to tell whether his finding is consistent with the Bayesian model.
One may wonder how an outside observer could know the information structure without knowing the payoffs.

The information structure determines the knowledge the players have about the state of nature and in this respect
is “objective.” The payoffs, on the other hand, are expressed in vN-M utility terms and are in nature “subjective.”
The outside observer might have an access to the objective ingredient of the game and not the subjective ones.
The center of the proof is the duality between payoffs and information. This means that giving more informa-

tion to a player amounts to giving him more payoffs in some sense (see also Gossner [11]). The proof method
uses duality technique inspired by Fenchel conjugate of convex functions (see Rockafellar [20]). The duality
technique has been introduced by De Meyer [6]. For any game with incomplete information on one side, De
Meyer defined a dual game in which the value is the Fenchel conjugate of the value of the initial game. The
subject of dual games has been widely investigated (see De Meyer and Rosenberg [9], De Meyer and Marino [7],
De Meyer and Moussa-Saley [8], Laraki [15], Sorin [21]).
The paper is organized as follows. We first present the model with the notion of game and of information

structure. We define the value of information function. We introduce the notion of standard information structure
so that we can state properly the main result that characterizes value-of-information functions. We define the
main notions of concavity, convexity, and Blackwell monotonicity, and we state the result. We then sketch the
proof and state the main structure theorem before proceeding to the proof itself.
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2. The model

2.1. Game and information structures. A zero-sum game with incomplete information is described by a
pair of type-sets, K for player 1 and L for player 2, action spaces A and B for player 1 and 2, respectively, and
a payoff function g
 A×B×K×L→�.
The sets K and L are assumed to be finite, and types �k� l� ∈ K × L are randomly chosen with a given

independent distribution p⊗q. Moreover, the distributions p and q are assumed to have a full support.
Before the game starts the players obtain a noisy signal that depends on the realized parameter. When �k� l�

is realized, player i obtains a signal mi from a measurable space �Mi��i�. The signal is randomly chosen
according to the distribution �i = �i�h�, where h = k� l, depending on i. �1 (resp. �2) is thus a transition
probability from K (resp. L) to �M1��1� (resp. �M2��2�). Ii 
= �Mi��i� �i� is called the information structure of
player i.

2.2. Strategies and payoffs. The action spaces might be infinite, and we therefore have to assume that
they are endowed with �-algebras � and �.1 Upon receiving the messages player 1 takes an action a ∈ A,
and player 2 takes an action b ∈ B. Players are allowed to make mixed moves, and a strategy of player 1 is
thus a transition probability �
 M1 → A while a strategy of player 2 is a transition probability �
 M2 → B. In
other words, for all m1, ��m1� is a probability on �A��� according to which player 1 chooses his action if
he receives the message m1. Furthermore, for all A

′ ∈ �, the map m1 → ��m1��A
′� is measurable. A similar

condition applies to � .
When the types are �k� l� and the actions are �a� b�, player 2 pays player 1 g�a�b� k� l�. For all k� l, the payoff

map �a� b�→ g�a�b� k� l� ∈ � is assumed to be �⊗�-measurable. A strategy � (resp. �) induces, together
with p� �1 (resp. q� �2), a probability distribution over M1×A×K (resp. M2×B×L), which we denote by ��

(resp. �� ). We also denote �� and �� the marginals of �� and �� on A×K and B×L, respectively. Let also
���� denote �� ⊗�� .
The payoff associated with a pair of strategies ��� �� is the expected payoff, namely g��� �� 
=

E���� �g�a� b� k� l��. However, because we deal with general functions g, this expectation could fail to exist for all
��� . A strategy � of player 1 is called admissible if the payoffs it induces are bounded from below for any strat-
egy of player 2. Formally, � is admissible if there exists m ∈� such that, ∀ l� b, E�� ��g�k�a� l� b���� <	, and
E�� �g�k�a� l� b��≥m. Admissible strategies of player 2 are defined in a similar fashion. The sets of admissible
strategies are denoted �ad and Tad. Note that g��� �� is well defined if either � ∈�ad or � ∈ Tad.
A game � is represented by � = �A���B��� g� with the above measurability assumptions.

2.3. Standard information structures and value of information functions. The relevant aspect of an
information structure is that it induces a probability distribution over conditional probabilities over the state
space. Upon receiving the message m1, player 1 computes the conditional probability that the realized state is k,
denoted by Pk�m1�. Because the message m1 is random,

2 P�m1� 
= �Pk�m1��k∈K ∈  �K� is a random variable,
and the information structure thus induces (ex ante) a distribution over  �K�. We refer to this distribution as the
law of the information structure and denote it by �I1�. Denote by  p� �K�� the set of all probability measures
" over  �K� whose average value is p (i.e., E"�P�= p). Note that �I1� belongs to this set.
Different values of m1 could lead to the same conditional probability P�m1�. There is thus apparently more

information embedded in m1 than in P�m1� alone. However, this additional information is irrelevant for pre-
dicting k, because k and m1 are independent given P�m1�. Therefore, after computing P�m1�, player 1 might
forget the value of m1 and play in a game � a strategy that just depends on P�m1�. Indeed, consider an arbitrary
strategy � and the probability �� it induces jointly with p� �1 on M1 ×A×K. Denote 
��P� the conditional
probability on A given P�m1�= P .3 Denote next 
� the strategy that consists in playing 
��P�m1�� upon receiving

1 We further make the technical hypothesis that �A��� and �B��� are standard Borel. A probability space �A��� is standard Borel if there
is a one-to-one bimeasurable map between �A��� and a Borelian subset of �. This hypothesis ensures the existence of regular conditional
probabilities, when required. We could have dispensed with this hypothesis at the price of restricting the definition of a strategy in the
next section. A strategy � would then be defined as a measurable map from ��0�1�×M1���0�1�⊗�1� to �A���, where ��0�1� is the Borel
�-algebra on �0�1�. Upon receiving the message m1, player 1 selects a uniformly distributed random number u ∈ �0�1� and plays the action
��u�m1�.
2 For any measurable set M , we denote by  �M� the set of probability distributions over M .
3 Because �A��� is Borel standard, such a transition probability from  �K� to A exists.
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the message m1. It appears that the marginals �� and � 
� of �� and � 
� on K×A coincide.4 Because the payoff
in � depends just on �� , we infer that for every strategy � of player 2, g��� ��= g� 
����.
The standard information structure I ′1 that is associated to I1 is defined as follows. The message set is M

′
1 
=

 �K�, and the message is m′
1 
= P�m1� when the message under I1 is m1. Clearly, the posterior probability on

K given m′
1 is in this case equal to m′

1. It is therefore more convenient to use the letter P for the message sent
by I ′1, because it is precisely the posterior. The standard information structure I ′2 for player 2 corresponding to
I2 is defined in the same fashion, and the message sent by I

′
2 is be denoted Q.

In a game � , for each strategy � of player 1 under the information structure I1, the above defined strategy 
�
can be used under information structure I ′1 because it depends only on P�m1�=m′

1. Because we showed that �
and 
� yield the same expected payoff in � , it implies that the highest payoff that player 1 can guarantee in �
can also be achieved under the standard information structure I ′1. A similar argument can be used for player 2.
This implies that the values of � and of the game with standard information structure I ′1� I

′
2 are the same. From

this point on, we therefore focus on games with standard information structures, understanding that the results
on the values of such games apply to general games with incomplete information

2.4. Value-of-information function. The game with the information structures I1 and I2 is denoted by
��I1� I2�. It has a value, denoted V��I1� I2�, if

V��I1� I2�= sup
�∈�ad

inf
�∈T
g��� ��= inf

�∈Tad
sup
�∈�

g��� ��&

Our goal is to study the relationship between the value of the game and the information structures. We showed
in the above subsection that if �I ′1� I

′
2� is the standard information structure associated to �I1� I2� then, whenever

the value exists, we have V��I1� I2�= V��I
′
1� I

′
2�. This means that the value V �I1� I2� depends only on the law

induced by the information structure on  �K�. We can therefore define a value-of-information function as a
function over such laws.
Definition 2.1. A function v
  p� �K��×  q� �L��→ � is a value-of-information function if there is

a game � such that for any standard information structure �I1� I2� the value V��I1� I2� exists and V �I1� I2� =
v��I1�� �I2��.
The purpose of this paper is to characterize the value-of-information functions when we let information

structures vary, while A, B, K, L, and g remain fixed throughout.
The rest of the paper is devoted to characterizing value-of-information functions by focusing on functions

defined over distribution over posteriors.

3. The main theorem. Before we state the main theorem, we need a few definitions concerning the notions
of concave-convex functions and of Blackwell monotonicity. These turn out to be central in the characterization
of value-of-information functions.

3.1. Concavity-convexity and Blackwell monotonicity
Definition 3.1. Let "1�"2 be two probability measures in  p� �K��. We say that "1 is more informative

than "2, denoted "1 �"2, if there exist two random variables X1 and X2 such that the distribution of Xi is "i,
i= 1�2� and E�X1 �X2�=X2. A similar definition holds for distributions in  q� �L��.
Note that “being more informative than” is a partial order.
Blackwell [4] proved that "1 is more informative than "2 iff in any one-player optimization problem (with

the state space being K with probability p) the optimal payoff corresponding to the law of "1 is no lower than
that corresponding to the law of "2.
We use this notion here to define Blackwell monotonicity in our context.

4 To see this, observe that once �k�m1� has been chosen by nature, a is selected by the lottery ��m1�, that is independently of k. So, for an
arbitrary function T of �a� k�: E�� �T �m1�=

∑
k0
Pk0 �m1�E�� �T �a� k0� �m1�. It follows that

E�� �T � P�m1�� = E�� �E�� �T �m1� � P�m1��

= ∑
k0

Pk0 �m1�E�� �T �a� k0� � P�m1��

= ∑
k0

Pk0 �m1�E 
��P�m1���T �a� k0��

= E� 
� �T � P�m1���

and thus E�� �T �= E� 
� �T � for any function T of �a� k�. This indicates that �� =� 
� .
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Definition 3.2. A function v
  p� �K��× q� �L��→� is Blackwell monotonic if
(i) ∀*, the map "→ v�"�*� is increasing with respect to �,
(ii) ∀", the map *→ v�"�*� is decreasing with respect to �.
Another property of function that often has been used in the context of repeated games with incomplete

information is concavity-convexity (see Aumann and Maschler [1]).
Definition 3.3. A function v
  p� �K��× q� �L��→� is concave-convex, semicontinuous if
(i) ∀*, the map "→ v�"�*� is concave, upper semicontinuous (usc) with respect to the weak topology on

 p� �K��,
(ii) ∀", the map *→ v�"�*� is convex, lower semicontinuous (lsc) with respect to the weak topology on

 q� �L��.
Note that we have here two notions, Blackwell monotonicity and concavity-convexity. Both reflect in different

ways the fact that information is valuable in zero-sum games.
Let v be a function on  p� �K��× q� �L�� that is supposed to be a value of information function. Concavity

with respect to " compares two situations. In the first, player 2 knows that player 1’s information is given by
+"+ �1−+�"′, meaning that with probability + the law of the conditional probability is ", and with probability
1−+ it is "′, but player 2 does not know the outcome of the lottery. In this situation the value of the underlying
game is v�+"+ �1− +�"′� *�. In the second situation, player 2 knows the outcome of the lottery so that the
value of the game is +v�"�*�+ �1−+�v�"′� *�. Player 2 is better informed in the second situation, and hence
the value is smaller. This is the concavity condition. Concavity therefore expresses the fact that having more
information about the other player’s signal is valuable.
Blackwell monotonicity, on the other hand, relates to the information owned by the player about the state

space he is directly informed of. Blackwell monotonicity compares the value the function takes at distributions
"1 and "2 that relate to each other in the following way. There exists a random vector �X1�X2� such that
E�X1 �X2�=X2 and Xi is "i distributed, i= 1�2. This means that the conditional probability over K given by "1

is more precise than the one given by "2, and the value of the game is therefore higher.5 Therefore, Blackwell
monotonicity expresses the fact that having some more precise information on one’s own type is valuable.
The properties of concavity-convexity and Blackwell monotonicity are logically independent. To illustrate this

fact consider the function f defined on  p� �K�� as f �"�=−E"��p−p��. This function is linear in " and, in
particular, concave. Suppose now that "2 is a Dirac mass at p and "1 ∈ p� �K�� puts no weight at p. Clearly,
"1 is more informative than "2 and at the same time f �"1� < 0 = f �"2�. It implies that f is not Blackwell
monotonic.

3.2. Main theorem. The main result of this paper, proved in the next sections, is as follows.

Theorem 3.1. The map v
  p� �K��× q� �L��→� is a value-of-information function iff it is concave-
convex, semicontinuous, and Blackwell-monotonic.

Blackwell proved that monotonicity is a necessary condition for a function to be the value of a one-player
optimization problem. Because the value of a game is also the optimal value of an optimization problem of
player i, assuming implicitly that player −i plays a best reply, Blackwell monotonicity is a necessary condition
here also. Lehrer and Rosenberg [16] proved that this is also the case in games with incomplete information on
one side with deterministic information.
As in Lehrer and Rosenberg [16], Theorem 3.1 proves that only the concavity-convexity property and

Blackwell monotonicity are common to all value-of-information functions. It implies that when one observes
the results of interactions under various information functions, the only properties of the observed results that
one may expect to obtain are concavity-convexity and Blackwell monotonicity, which are necessary. Thus, one
implication of Theorem 3.1 is that only violations of concavity-convexity property or Blackwell monotonicity
can refute the hypothesis that the interaction can be modeled as a game played by Bayesian players. For an
elaboration of this point, see Lehrer and Rosenberg [16]. Admittedly, such violations can hardly be observed in
reality because it is very rare to observe outcomes of the same zero-sum interactions under various (if not all)
possible information structures.

5 More formally, consider the following information structures. First, nature picks at random the vector �X1�X2� with the corresponding
joint law and then selects k with the lottery X1 ∈ �K�. According to information structure 1, the message sent by nature to player 1 is the
pair �X1�X2�. The posterior of player 1 is thus X1, and the law of this information structure is "1. According to information structure 2, the
message sent by nature to player 1 is X2. Had he observed X1 in addition to X2, his posterior would have been X1. However, because he
has not observed X1, his posterior is E�X1 �X2�=X2. Therefore, the law of information structure 1 is "2. Going from information structure
1 to 2 consists for player 1 in a loss of information: it reduces strategies the set of available strategies. Therefore, v�"1� *�≥ v�"2� *�.
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3.3. The deterministic case. In the special case of deterministic information, more can be said. It turns out
that in this case, the concave-convex property and Blackwell monotonicity coincide.
When �1 and �2 are restricted to be deterministic functions, it is equivalent for player 1 to know m1 or to

know the subset of K for which the message would be m1. A deterministic information structure can therefore
be modeled as a pair of partitions �, �, respectively, of K and L, with the interpretation that if the true state
is k, l, then player 1 is informed of the cell of � that contains k and player 2 is informed of the cell of �
that contains l. Note that there are only finitely many such partitions. A value-of-information function is now a
real function defined over the set of partitions. We denote by � and �, respectively, the sets of partitions of K
and L.
Recall that a partition � is said to refine a partition � ′ if any atom of � ′ is a union of atoms of �. Blackwell

monotonicity in this case is translated to the following. A function V from � ×� to � is increasing (resp.
decreasing) in � (resp. �) if for any �, � ′ in �, such that � refines � ′, and any � in �, V �����≥ V �� ′���
(resp. for any � ∈� and ���′ ∈� such that � refines �′, V �����≤ V ����′��.

Theorem 3.2. Let v be a function on pairs of partitions of K and L. It is a value-of-information function
iff it is Blackwell monotonic. Moreover, it can be then obtained as the value of a finite game (i.e., A and B are
finite).

This theorem differs from Theorem 3.1 in two respects. First, the games are finite. This finiteness can be
derived from Theorem 3.1, taking into account that there are only finitely many partitions. Second, the condition
of concavity-convexity of the function is missing here. The reason is that any function over partitions that is
Blackwell monotonic can be extended to a function over laws of posterior probabilities that is concave-convex,
semicontinuous, and Blackwell monotonic (this result is proved in §10). Thus, Theorem 3.2 derives from The-
orem 3.1 and extends (Lehrer and Rosenberg [16]) that applies to games with incomplete information with
deterministic information.

4. A structure theorem. The first main step of the proof is to prove a structure theorem that characterizes
concave-convex and Blackwell monotonic functions.
This theorem extends the well-known characterization that states that a convex function is the maximum of

the linear functions that are below it. In our set-up a linear function on " (a distribution over  �K�) is the
integral of some function on  �K� with respect to ". Therefore, a concave function f satisfies that for any law
"0 on  �K�, f �"0� is the infimum of

∫
-�p�d"0�p� over continuous functions - (defined on  �K�) that satisfy

E"�-�P��≥ f �"� for every law " on  �K�.
The second part of the theorem characterizes functions that have the concave-convex property and are also

Blackwell monotonic. It gives a clearer sense of the difference between both notions. For a function to be
Blackwell monotonic in addition, it needs to be the infimum of

∫
-�p�d"�p� over continuous functions - such

that (i) the integral is greater than f �"�, and (ii) - is convex.
The intuition behind this result is that -�p� represents the payoff that can be achieved by some strategy of

player 2 when the conditional probability on K is p and player 1 plays optimally. The integral
∫
-�p�d"�p�

represents the expected payoff, and the minimum is taken with respect to available strategies of player 2.
Blackwell monotonicity implies that a martingalization of the conditional probabilities gives more information
to player 1 and enables him to increase the payoff so that - is convex.
To formally state the result, we need a few notations. . 0 and . 1 denote, respectively, the sets of continu-

ous and continuously differentiable functions from  �K� to �. The set of convex functions in .i is denoted
.i�vex, i= 0�1. Similarly, /0 and /1 denote, respectively, the sets of continuous and continuously differentiable
functions from  �L� to �. /i� cav is the set of concave functions in /i.
For a given function - ∈. 0 and a law " in  p� �K��, we denote by �-�"� the expectation of - with respect

to " (i.e.,
∫
-�p�d"�p�). Similarly, for * ∈ q� �L�� and 0 ∈/0, 0̃�*� denotes

∫
0�q�d*�q�.

For f 
  p� �K��→�, we define .i
f (resp. .

i�vex
f ) to be the set of functions - ∈.i (resp. - ∈.i�vex) such

that ∀" ∈ p� �K��, f �"�≤ �-�"�. Similarly, for f 
  q� �L��→�, /i
f , and /

i� cav
f denotes the set of 0 ∈/i,

(resp. /i� cav ) such that ∀* ∈ q� �L��� 0̃�*�≤ f �*�.
Theorem 4.1. (i) If a function f 
  p� �K��→ � is concave and usc with respect to the weak topology,

then ∀", f �"�= inf-∈. 0
f

�-�"�.
(ii) If f is also Blackwell increasing, then ∀", f �"�= inf-∈. 0�vex

f

�-�"�;
(iii) furthermore, ∀"
 f �"�= inf-∈. 1�vex

f

�-�"�.
This theorem will be proved in §7.
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5. The conditions of Theorem 3.1 are necessary. In this section we show that any value-of-information
function is concave-convex and Blackwell monotonic.

Theorem 5.1. If v is a value-of-information function, then v is concave-convex, semicontinuous, and
Blackwell monotonic.

Proof. Indeed, one can compute the expected payoff g��� �� given a pair of strategies ��� �� with � ∈ Tad.
This is

g��� ��= E�I1�

[∑
k

Pk E��P���� �g�a� b� k� l��
]
�

where ��P� denotes the strategy followed, given the conditional probability P . Note that because � is the family
of all possible ��P� for all P , one has

sup
�

g��� ��= E�I1�

[
sup
��P�

∑
k

Pk E��P���� �g�a� b� k� l��
]
= E�I1��-�P���

where -�P� 
= supa∈A
∑

k Pk E�� �g�a� b� k� l��. As supremum of linear functions of P , - is convex lsc on  �K�.
Note that because � is admissible, - is bounded from above on  �K� and 0 is thus continuous on  �K�.
sup� g��� �� is thus the expectation of a convex function in P , and by Jensen’s inequality, it is Blackwell

increasing in �I1�, and so is v��I1�� �I2��= inf� sup� g��� ��.
Moreover, because - is continuous, we also proved that sup� g��� �� is linear and continuous in �I1� in

the weak topology on  p� �K��. As the infimum of linear weakly continuous function of �I1�, v��I1�� �I2�� is
concave and usc for the weak topology on  p� �K��. �

6. Sketch of the proof of Theorem 3.1. For an arbitrary concave-convex, Blackwell monotonic, and semi-
continuous function v, we construct a game � such that V��I1� I2�= v��I1�� �I2��� ∀ I1� I2. We fix the function v
and the laws " and * on  p� �K�� and  q� �L��.
The construction is based on two observations. The first is an implication of the structure theorem. Assume

that player 2 is asked to choose a function - ∈ . 1�vex
v�·� *� (interpreted as a payoff function to player 1) with the

restriction that when the signal of player 1 is P , the payoff is -�P�. The value of the corresponding game is,
by the structure theorem, inf-∈. 1�vex

v �·� *� �-�*�= v�"�*�.
The second observation is needed to construct a game that induces -�P� as a payoff for any given convex

function -. For any convex and differentiable function - and any point p̃ ∈ �K�, one can consider the following
function H-�P� p̃� of P� p̃ ∈ �K� that is the affine function of P that is tangent to - at point p̃:

H-�P� p̃�= -�p̃�+�2-�p̃�3P − p̃�& (1)

At fixed P , this function is maximal in p̃ when P = p̃ and its maximum is -�P�. In other words, because - is
convex, it is the envelope of all linear functions that are below it.
This suggests the following construction. Once informed of P , player 1 selects p̃ ∈ �K�. Player 2, after being

informed of Q, selects - ∈. 1�vex
v�·� *�. The payoff is

-�p̃�+ 〈
2-�p̃��P − p̃〉&

The game defined so far is not a well-defined incomplete information game simply because the set of player 2’s
strategies depends on *. To overcome this problem, we note that if a function - belongs to . 1�vex, then for some
large enough 4 (interpreted as a cost), -+4 belongs to . 1�vex

v�·� *�. This means that ∀" ∈ p� �K��, �-�"�+4≥
v�"�*�. The cost 4 needs to be larger than

w�-�*� 
= sup
"̃∈ p� �K��

v�"̃� *�− �-�"̃�& (2)

The idea is to let player 2 choose any function - ∈. 1�vex and to use -+w�-�*� in the previous game. Note
that w is the Fenchel transform of v. The payoff in this new game is thus

-�p̃�+�2-�p̃��P − p̃�+w�-�*�&
Note that the first two terms in this payoff function are affine in P , which is the necessary property for a function
to be the payoff function of a game where player 1 is incompletely informed.
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We show now that w�-�*� can be expressed as the value of a game where player 2 is incompletely informed.
The dual version of the structure theorem states that v�"̃� *�= sup0∈/1� cav

v�"̃� ·�
0̃�*�. Introducing this in Equation (2),

we get
w�-�*�= sup

�"̃�0�∈	
0̃�*�− �-�"̃��

where 	 is the set of pairs �"̃�0� such that "̃ ∈  p� �K�� and 0 ∈ /1� cav
v�"̃� ·�. Because 0 is concave, 0�Q� =

inf q̃∈ �L� 0�q̃� + �20�q̃��Q − q̃�. Therefore, w�-�*� is the value of the game where, once informed of P ,
player 1 selects �"̃�0� ∈ 	 . On the other hand, after observing Q, player 2 chooses q̃ ∈  �L�� and the payoff
is 0�q̃�+�20�q̃��Q− q̃�− �-�"̃�.
Combining the two games together, we obtain the following game. Upon receiving their respective messages

P and Q, player 1 selects �p̃� �"̃�0�� ∈  �K�×	 � and player 2 selects q̃ ∈  �L� and - ∈. 1�vex. The payoff
is then

-�p̃�+�2-�p̃��P − p̃�+0�q̃�+�20�q̃��Q− q̃�− �-�"̃�&
An alternative way to describe this game is the following. v�"�*� is the value of the game where, after being

informed, player 2 selects q̃ ∈ �L�, player 1 selects 0 ∈/1� cav
v�"� ·�, and the payoff is 0�q̃�+�20�q̃��Q− q̃�. The

action space /1� cav
v�"� ·� of player 1 in this game depends on ". This problem is solved as we let player 1 choose a

fictitious information structure "̃ and use it to choose 0 ∈/1� cav
v�"̃� ·�. However, to verify that the optimal choice of

player 1 is indeed "̃=", we impose a cost �- associated to each choice of "̃.
This construction is similar to the dual game introduced by De Meyer [5, 6]. He proposed to introduce,

for each incomplete information game where the information on the state is a parameter of the game, a dual
game in which the information becomes a choice of the informed player and the parameter of the game is
the cost of choosing a particular information structure. De Meyer [5, 6] proved that the value of such a game
is the Fenchel transform of the value of the original game. He also defined the bidual game in which the
uninformed player chooses a cost function first and then the corresponding dual game is played. The Fenchel
duality equality proves that the value of the bidual game is identical to the value of the dual game. Here we
use a similar construction. Player 2 chooses a cost function - ∈ . 1�vex, and player 1 chooses an information
law "̃ ∈  p� �K��. Simultaneously, both players play the previous game: player 1 chooses 0 ∈ /1� cav

v�"̃� ·� and
p̃ ∈ �K�� and player 2 chooses q̃ ∈ �L�.
The payoff is

0�q̃�+ 〈
20�q̃��Q− q̃〉− �-�"̃�+-�p̃�+ 〈

2-�p̃��P − p̃〉&
Note that concavity of 0 and convexity of - imply that the payoff is maximum when p̃ = P and minimum

when q̃ =Q, and this minimax payoff is 0̃�*�+ �-�"�− �-�"̃�. If "̃ �= ", then there is a choice of - that can
make the payoff arbitrarily small so that the optimal choice of player 1 is "̃ = ". The payoff is then 0̃�*�,
which is by definition at most v�"̃� *�= v�"�*�.

7. Proof of the structure Theorem 4.1. For f 
  p� �K��→ �, we define . 0
f (resp. . 1

f ) as the set of
continuous (resp. continuously differentiable) functions -
  �K�→� such that ∀" ∈ p� �K��, f �"�≤ �-�"�.
For i= 1�0, .i�vex

f denotes the set of convex functions - ∈.i
f . Recall Theorem 4.1.

Theorem 7.1. (i) If a function f 
  p� �K��→ � is concave usc with respect to the weak topology, then
∀", f �"�= inf-∈. 0

f

�-�"�.
(ii) If f is further Blackwell increasing, then ∀", f �"�= inf-∈. 0�vex

f

�-�"�.
(iii) In this case, we also have ∀", f �"�= inf-∈. 1�vex

f

�-�"�.
Proof. We prove the first claim. Let f be a concave weakly usc function on  p� �K��. Because  p� �K��

is weakly compact, f is bounded from above so that . 0
f �= �. The definition of . 0

f implies that ∀"�f �"� ≤
inf-∈. 0

f

�-�"�.
As for the converse inequality, for a given "̄ ∈  p� �K��, let t be such that t > f �"̄�. The set A 
= 8" �

f �"� < t9 is then an open set in the weak topology, and it contains "̄. Therefore, there exists a positive : and a
finite family 8-1� ; ; ; �-n9 of continuous functions such that B 
= 8" � ∀ i
 �-i�"� < �-i�"̄�+ :9 is included in A.
In other words, if we define L�"� s� ∈�n+1 as

L�"� s� 
= � �-1�"̄�+ :− �-1�"�� ; ; ; � �-n�"̄�+ :− �-n�"�� f �"�− t− s��
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then ∀", ∀ s ≥ 0
 L�"� s� �∈ �0�	�n+1. Because f is concave and �-i is linear, the set H 
= 8L�"� s� � " ∈
 p� �K��� s ≥ 09 is convex and can thus be separated from the open convex cone �0�	�n+1. There exists
therefore �41� ; ; ; �4n�4� �= 0 in �n+1

+ such that ∀", ∀ s ≥ 0:
n∑
i=1
4i
( �-i�"̄�+ :− �-i�"�

)+4�f �"�− t− s�≤ 0&

Note that 4 > 0. Otherwise, one of the 4i should be strictly positive (�41� ; ; ; �4n�4� �= 0), and the left-hand
side of the last inequality evaluated at "= "̄ would then be strictly positive. This is a contradiction.
Therefore, with +�x� 
= t +∑n

i=14i/4�-i�x�− :− �-i�"̄��, we infer that + ∈ .f . We have thus t ≥ +̃�"̄� ≥
inf-∈. 0

f

�-�"̄�. Because this inequality holds for all t > f �"̄�, we conclude that inf-∈. 0
f

�-�"̄�≤ f �"̄�, as needed.
We now prove Claim 2. Let f be also Blackwell increasing. Let - be in . 0

f and let 0 
= vex�-� be the
convexifiaction of -. That is, 0 is the largest lsc convex function dominated by -. Because for all x in  �K�
there is a probability distribution "x on  �K� such that E"x �p�= x and that 0�x�= E"x �-�p��, for any random
variable X with probability distribution " in  p� �K��, we may consider a random vector Y whose conditional
distribution given X is "X . �X�Y � is thus a martingale.
So, if Y ∼"′ we get "′ �". Because - ∈.f and f is Blackwell increasing, we infer that 0̃�"�= E�0�X��=

E�E�-�Y � �X��= E�-�Y ��= �-�"′�≥ f �"′�≥ f �"�. This is true for all ". Thus, we have actually proved that
if - ∈. 0

f , then vex�-�=0 ∈. 0
f . Therefore, f �"�≤ inf-∈. 0�vex

f

�-�"�≤ inf-∈. 0
f

�-�"�= f �"�.
Claim 3 follows from the fact that a convex continuous function - on  �K� can be uniformly approximated

by a function -2 ∈. 1�vex, up to an arbitrary : > 0. Indeed, - is the supremum of the set 
 of affine functionals
g dominated by - on  �K�. For : > 0, the family Og 
= 8p ∈  �K�
 g�p� > -�p�− :/29 indexed by g ∈ 
 is
thus an open covering of the compact set  �K�. It therefore contains a finite subcovering 
′, and we conclude
that -1�p� 
=max8g�p�+ :/2
 g ∈ 
′9 is a convex function that satisfies - ≤ -1 ≤ - + :/2. The function -1,
as a maximum of finitely many affine functionals is the restriction to  �K� of a Lipschitz concave function
defined on �K (also denoted -1). Let us next define, for an arbitrary �> 0, -2�x� 
= E�-1�x+�Z��, where Z is
a random vector whose components are independent standard normal random variables. Then -2 is continuously
differentiable because of the smoothing property of the convolution operator. -2 is also convex because for any
+ ∈ �0�1�� x� x′ ∈�K ,

+-2�x�+ �1−+�-2�x
′� = E

[
+-1�x+�Z�+ �1−+�-1�x

′ +�Z�]
≥ E

[
-1�+x+ �1−+�x′ +�Z�

]
= -2�+x+ �1−+�x′�&

From Jensen’s inequality, we get -1�x�≤ -2�x�≤ -1�x�+�CE��Z��, where C is the Lispchitz constant of -1.
For � small enough, we obtain, - ≤ -2 ≤ -+ :. �

8. The duality between v and w. The Fenchel transform w of v was defined in Equation (2) as

w�-�*�= sup
"∈ p� �K��

v�"�*�− �-�"�&

The next theorem states that v is the Fenchel transform of w.

Theorem 8.1 (Fenchel Duality Equation).

∀"�*� v�"�*�= inf
-∈. 1�vex

w�-�*�+ �-�"�&

Proof. From the definition of w in Equation (2), we have that ∀-�*, ∀"
 w�-�*� ≥ v�"�*� − �-�"�.
Therefore, ∀"�*, ∀-
 w�-�*�+ �-�"�≥ v�"�*�. It follows that ∀"�*� inf-∈. 1�vex w�-�*�+ �-�"�≥ v�"�*�.
On the other hand, if - ∈ . 1�vex

v�·� *�, then ∀", �-�"� ≥ v�"�*�. Therefore, ∀", 0 ≥ v�"�*�− �-�"�, and thus
w�-�*�≤ 0. From Claim 3 in Theorem 4.1, we conclude that

v�"�*� = inf
-∈. 1�vex

v�·� *�

�-�"�

≥ inf
-∈. 1�vex

v�·� *�
w�-�*�+ �-�"�

≥ inf
-∈. 1�vex

w�-�*�+ �-�"�&
The theorem is thus proved. �
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9. Proof of Theorem 3.1

9.1. Definition of � . The game � is defined as follows. The action space A for player 1 is  �K�× 	 ,
where 	 is the set of pairs �"̃�0� such that "̃ ∈ p� �K�� and 0 ∈/1� cav

v�"̃� ·�. The action space B for player 2 is
. 1�vex × �L�. In state �k� l�, if a= �p̃� "̃�0� ∈A and b= �-� q̃�, the payoff g�k� l� a� b� is

g�a�b� k� l� 
= -�p̃�+ D

Dpk
-�p̃�−�2-�p̃�� p̃�− �-�"̃�+0�q̃�+ D

Dql
0�q̃�−�20�q̃�� q̃�&

We need only to consider pure strategies in this game. Once informed of P , player 1 selects deterministically
an action aP , i.e., p̃P ∈  �K�, and �"P �0P� ∈ 	 . Once informed of Q, player 2 selects bQ, -Q ∈ . 1�vex and
q̃Q ∈ �L�.
The expected payoff with respect to �P�Q� is then

∑
k� l

PkQlg�aP � bQ� k� E�= -Q�p̃P �+�2-Q�p̃P ��P − p̃P�− �-Q�"P�+0P�q̃Q�+�20P�q̃Q��Q− q̃Q�&

9.2. Player 1 can guarantee v��I1�� �I2�� in ���I1�� �I2��. Consider the following strategy of player 1 in
���I1�� �I2��. p̃P 
= P , "̃P 
= �I1�, and 0P 
=0 for an arbitrary 0 ∈/1� cav

v��I1�� ·�.
The expected payoff with respect to �P�Q� is

-Q�P�− �-Q��I1��+0�q̃Q�+�20�q̃Q��Q− q̃Q�&
Because P and Q are independent, and the law of P is �I1�, the expectation of the first term with respect to Q is
EP �-Q�P��= �-Q��I1��. When taking expectations, the first two terms cancel each other. Furthermore, because 0
is concave, we get 0�q̃Q�+�20�q̃Q��Q− q̃Q� ≥0�Q�, and the payoff of player 1 is at least EQ�0�Q��= 0̃��I2��.
Because 0 ∈/1� cav

v��I1�� ·� is arbitrary, we conclude that player 1 can guarantee sup0∈/1� cav
v��I1 �� ·�

0̃��I2��, which is equal
to v��I1�� �I2�� (it follows from a dual version of Theorem 4.1).

9.3. Player 2 can guarantee v��I1�� �I2�� in ���I1�� �I2��. The strategy q̃Q 
=Q and -Q 
= - for an arbitrary
- ∈. 1�vex leads to the following expression for the expected payoff with respect to �P�Q�:

-�p̃P �+�2-�p̃P ��P − p̃P�− �-�"P�+0P�Q�&
Because - is convex, -�p̃P �+ �2-�p̃P ��P − p̃P� ≤ -�P�. With respect to P , the payoff of player 1 is thus
at most

-�P�− �-�"P�+ 0̃P ��I2��&
Because �0P 3"P� ∈ 	 , we have 0P ∈/1� cav

v�"P � ·�� and thus 0̃P ��I2��≤ v�"P � �I2��. The payoff of player 1 with
respect to P , is less than

-�P�− �-�"P�+ v�"P � �I2��&
According to Equation (2), w�-� �I2�� is greater than or equal to the last two terms in this expression, and
player 1’s expected payoff is thus at most

�-��I1��+w�-� �I2��&
Because the function - ∈ . 1�vex in the above strategy of player 2 is arbitrary, player 2 can guarantee
inf-∈. 1�vex �-��I1��+w�-� �I2��. According to Theorem 8.1, this is exactly v��I1�� �I2��, as desired.

10. Finite partitions. In this section we prove that any function V ����� of partitions that is monotonic,
with respect to refinements, is equal to V �����= v����� ����, where v is a concave-convex, Blackwell mono-
tonic, semicontinuous function on  p� �K�� ×  q� �L��. A given V � defined on finitely many points of
 p� �K��× q� �L��, will be extended to the whole set.
For any nonempty subset C of K, denote PC the conditional probability on K given C. That is, PC�k 
=

�pk/p�C���k∈C . Note that if C �= C ′, then PC �= PC ′ . Let S denote S 
= 8PC
 � �= C ⊆K9. S is thus a subset of
 �K�. Any partition � induces a law ���: a distribution over S, which assigns to PC the probability p�C��C∈� .
The law ��� belongs thus to the set  p�S� of probability distributions on S with expectation p.

Lemma 10.1. For any partition � of K, the law ��� is an extreme point of  p�S�.
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Proof. Suppose that r� q ∈ p�S� are such that 4q+ �1−4�r = ��� for some 4 ∈ �0�1�. In particular, the
support of both q and r is 8PC3C ∈ �9& The expectations of q and r are equal to p. It implies that for every
C ∈�, q�PC�= r�PC�= p�C�, meaning that q = r = ���. �

A decomposition of a measure " ∈ p� �K�� is a pair �+�"•� such that
(i) + is a probability on partitions: + ∈ ���.
(ii) "• is a map from � to  p� �K�� such that

∑
�∈� +���"� =".

(iii) ∀� ∈�, ����"� .
Notice that there always exists a decomposition of a measure ". Indeed, because the trivial partition 8K9 is
Blackwell dominated by any measure " ∈  p� �K��, the Dirac measure + on 8K9 joint with "• defined by
"� 
= ��� if � �= 8K9, and "8K9 
=", is a decomposition of ". We denote by I�"� the set of + ∈ ���, such
that there exists a decomposition �+�"•� of ".
A decomposition �J� *•� of a measure * ∈ q� �L�� is defined analogously as follows.
(i) J is a probability on partitions: J ∈ ���.
(ii) *• is a map from � to  q� �L�� such that

∑
�∈� J���*� = *.

(iii) ∀� ∈�
 ���� *�.
We also define K�*� as the set of J ∈ ���, such that there exists a decomposition �J� *•� of *.
For a Balckwell monotonic function V 
 �×� →�, consider the following function v:

v�"�*� 
= sup
+∈I�"�

inf
J∈K�*�

∑
�∈�

∑
�∈�

+���J���V �����&

The next theorem states that v�"�*� can be viewed as the value of a game where both players have optimal
strategies.

Theorem 10.1.

v�"�*� = max
+∈I�"�

min
J∈K�*�

∑
�∈�

∑
�∈�

+���J���V �����

= min
J∈K�*�

max
+∈I�"�

∑
�∈�

∑
�∈�

+���J���V �����&

Proof. Because the payoff is bilinear in �+� J�, we just have to prove that I�"� and K�*� are convex
compact sets. Thus let +�+i ∈I�"�, i= 0�1 and let r i ≥ 0 be such that 1=∑

i r
i and +=∑

i r
i+i. Then there

exists "i•, such that �+i�"i•� is a decomposition of ". Defining thus "� 
= �
∑

i r
i+i���"i��/+��� if +��� > 0

and "� 
= ��� otherwise, we infer that �+�"•� is also a decomposition of ". Indeed, as a convex combination of
two points in  ���, + belongs to  ���. Next, we prove in Lemma 10.2 that the set 8" ∈ p� �K��
 "� ���9
is convex. Therefore, as a convex combination of two points in this set, "� also belongs to it and thus "� � ���,
whenever +��� > 0. We also have "� = ��� if +��� = 0. Therefore, �+�"•� is a decomposition of " and +
belongs to I�"�, which proves that I�"� is a convex set.
We next prove that it is also closed. Let 8+n9n∈� be a sequence of points in I�"� that converges to +, and let

"n• be such that �+n�"n•� is a decomposition of ". Because  p� �K�� is a compact set in the weak topology,
we may assume (by considering a subsequence if needed) that ∀� ∈�
 8"n�9n∈� converges weakly to a limit
that we denote "� .
To conclude that + ∈ I�"�, we have to prove that �+�"•� is a decomposition of ". Clearly, + belongs to

 ���, because this set is closed. It is also obvious that
∑

� +���"� = limn→	
∑

� +
n���"n� = ". Finally, we

prove in Lemma 10.2 that the set 8" ∈ p� �K��
 "� ���9 is closed in the weak topology. Because for every
n, "n� belongs to this set, we also have "� � ���, and �+�"•� is thus a decomposition of " as required. �

Lemma 10.2. For "′ ∈  p� �K��, let R"′ denote R"′ 
= 8" ∈  p� �K��
 " � "′9. Then R"′ is a convex
subset of  p� �K��, which is closed in the weak topology.

Proof. Let "i ∈ R"′ , r i ≥ 0, i = 0�1 be such that 1 = ∑
i r
i, " = ∑

i r
i"i. Because "i � "′, there exists

a random vector �Xi
1�X

i
2� satisfying E�Xi

2 � Xi
1� = Xi

1, where X
i
1 is "

′-distributed and Xi
2 is "

i-distributed. We
may assume that these two random vectors are independent and defined on the same probability space, which
also contains an independent random variable U taking the value i with probability r i, �i= 0�1�. The random
vector �X1�X2� defined as Xj 
= XU

j satisfies the property that X1 is "′-distributed, and X2 is "-distributed.
Furthermore,

E�X2 �U�X0
1 �X

1
1 � = E�UX1

2 + �1−U�X0
2 �U�X0

1 �X
1
1 �
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= U E�X1
2 �U�X0

1 �X
1
1 �+ �1−U�E�X0

2 �U�X0
1 �X

1
1 �

= UX1
1 + �1−U�X0

1

= X1&

Therefore, E�X2 �X1�=X1, and thus "�"′, as desired.
If 8"n9n∈� is a sequence in R"′ that weakly converges to ", then for all continuous convex function -,

�-�"n�≥ �-�"′�. Due to the weak convergence of 8"n9n∈�, we get �-�"�= limn→	 �-�"n�≥ �-�"′�. Because this
holds for all continuous convex function -, we infer that "�"′, and the proof is complete. �

We are now ready to prove the main result of this section.

Theorem 10.2. v is a Blackwell monotonic, concave-convex, semicontinuous function on � p� �K�� ×
 q� �L���, such that

∀� ∈�� ∀� ∈�
 v����� ����= V �����& (3)

Proof. (1) We start by proving Equation (3). To do so, we first argue that if + ∈I��� ′��, then + can assign a
positive probability only to partitions � that are less informative than � ′ (i.e., � ′ is a refinement of �). Indeed,
let �+�"•� be a decomposition of �� ′�. Then �� ′�=∑

�∈� +���"� . Because S is the support of �� ′�, we infer
that "� ∈ p�S� for all �, such that +��� > 0. We demonstrate in Lemma 10.1 that the law of any partition � ′

is an extreme point of  p�S�. Therefore, for all �, such that +��� > 0, "� = �� ′�� ���.
A similar argument shows that if J ∈K���′��, then ∀� satisfying J��� > 0, and the following holds: ��′�� ���.

Let +∗ denote the Dirac measure on � ′. Then +∗ ∈I�� ′�, because �+∗�"∗
•� is decomposition of ��

′�, where "∗
•

is defined as "∗
� 
= ���. Therefore,

v��� ′�� ��′�� ≥ inf
J∈K���′��

∑
�∈�

∑
�∈�

+∗���J���V �����

= inf
J∈K���′��

∑
�∈�

J���V �� ′���

≥ V �� ′��′��

because � �→ V �� ′��� is decreasing with respect to the order of refinement and ��′� � ���, J-almost surely.
A dual argument indicates that v��� ′�� ��′��≤ V �� ′��′�.
(2) We next prove that " �→ v�"�*� is concave. Let " be a convex combination of "i, i= 0�1: "= 41"

1 +
40"

0, with 4i ≥ 0 and 41 +40 = 1. Let +i ∈I�"i� be such that
v�"i� *�= inf

J∈K�*�
∑
�∈�

∑
�∈�

+i���J���V �����&

We then argue that + 
=∑
i 4i+

i belongs to I�"�. Because +i ∈ I�"i�, there exists a decomposition �+i�"i•�
of "i. Define then "• by "� 
= �

∑
i 4i+

i���"i��/+��� if +��� > 0, "� 
= ��� otherwise. �+�"•� turns out to
be a decomposition of ", and thus + ∈I�"� as announced. Indeed, because  ��� is convex, + ∈  ���. Next∑

�∈� +���"� =∑
i 4i�

∑
�∈� +i���"i��= ". Finally, "� � ��� because the set 8" ∈  p� �K��
 " � ���9 is

convex, as proved in Lemma 10.1.
The concavity of " �→ v�"�*� then follows easily:

v�"�*� ≥ inf
J∈K�*�

∑
���

+���J���V �����

= inf
J∈K�*�

∑
i

4i

(∑
���

+i���J���V �����

)

≥ ∑
i

4i

(
inf

J∈K�*�
∑
���

+i���J���V �����

)

= ∑
i

4iv�"
i� *�&

(3) That "→ v�"�*� is Blackwell increasing is a straightforward consequence from the definition of v and
the following monotonicity property of I�"� that we now prove: if "�"′, then I�"�⊂I�"′�.
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Indeed, if "�"′ and + ∈I�"�, then there exists a decomposition �+�"•� of " and a random vector �X�X ′�
with respective marginals " and "′, satisfying E�X ′ � X�= X. The outcome of the following procedure is then
a "′-distributed random variable. Select first � ∈� according to +, then select X according to "� , and finally
select X ′ with the lottery OX (where Ox denotes the conditional law of X ′ �X = x).
In this way we get that "′ = ∑

t∈T +���"′
� , where "

′
� denotes the law of X ′ when X is selected with

probability "� and X ′ is selected with probability OX . Because ��� � "� � "′
� , we infer that �+�"′

•� is a
decomposition of "′, and thus + ∈I�"′�, as desired.
(4) We next argue that " �→ v�"�*� is lsc. We show that the set H 
= 8"
 v�"�*� ≥ a9 is closed in the

weak topology on  p� �K��. Let 8"
n9 be a sequence in H that weakly converges to ", and let �+n�"n•� be a

decomposition of "n such that v�"n� *� = infJ∈K�*�
∑

��� +
n���J���V ����� ≥ a. Considering a subsequence,

we may assume that +n → + and ∀� ∈ �
 "n� → "� , as n goes to 	. Then
∑

�∈� +n���"n� = "n → " =∑
�∈� +���"� . Because 8" ∈  p� �K��
 " � ���9 is closed in the weak topology (see Lemma 10.2), we

conclude that �+�"•� is a decomposition of ". Therefore, v�"�*�≥ infJ∈K�*�
∑

��� +���J���V �����& Now, for
all J ∈K�*�, ∑

���

+���J���V �����= lim
n→	

∑
���

+n���J���V �����≥ v�"n� *�≥ a&

Therefore, v�"�*�≥ a and " ∈H , as desired.
(5) To conclude the proof, notice that Theorem 10.1 allows us to interchange sup and inf in the definition of

v�"�*�. The argument presented above can be adapted to prove that *→ v�"�*� is convex, usc, and Blackwell
decreasing and to complete the proof. �

11. A concluding remark. The payoff functions constructed above need not be bounded. It is clear, how-
ever, that if we restrict attention to bounded games, the value function is still concave-convex and Blackwell
monotonic. It is easy to prove that it is also Lipschitz. The inverse direction is not straightforward.
We leave open the question of what happens when the components of the state on which the players have

some information fail to be independent. Phrased differently, suppose the state is chosen from a set K, then each
player gets a state-specific signal. In the lack of independence, signals are correlated. Thus, given a signal, a
player can obtain some information about the signal of his opponent. In this situation the notion of monotonicity
is unclear, and the duality method is not well understood.
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