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Abstract

Upon observing a signal, a Bayesian decision maker updates her probability distribution over the state
space, chooses an action, and receives a payoff that depends on the state and the action taken. An informa-
tion structure determines the set of possible signals and the probability of each signal given a state. For a
fixed decision problem, the value of an information structure is the maximal expected utility that the deci-
sion maker can get when the observed signals are governed by this structure. Thus, every decision problem
induces a preference order over information structures according to their value. We characterize prefer-
ence orders that can be obtained in this way. We also characterize the functions defined over information
structures that measure their value.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Comparison of different information structures1 has been a matter of interest for many years.
In a seminal work, Blackwell (1951, 1953) suggested that information structures will be ordered
according to the expected utility they yield for the decision maker (DM). Such ordering depends
on the particular decision problem that the DM is facing. Indeed, it is possible that one infor-
mation structure is better than another in a certain problem, but when the problem changes the
previously better structure becomes the worse.

* Corresponding author.
E-mail addresses: azrieliy@post.tau.ac.il (Y. Azrieli), lehrer@post.tau.ac.il (E. Lehrer).

1 In the statistics literature, information structures are commonly referred to as statistical experiments.
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The approach taken by Blackwell (1951, 1953) is the following. One information structure,
say I , is said to be ‘better than’ another, (I ′), if whatever the decision problem is, the expected
utility of the DM is higher when the information structure is I . This definition induces a partial
order over information structures. Blackwell showed that this order can be equivalently defined
in several different ways, some of them purely probabilistic.

Blackwell’s work initiated a vast literature in this direction.2 While we consider stochastic in-
formation structures similar to that treated by Blackwell, the questions we pose are of a different
nature.

A decision problem is defined by a state space, a prior distribution, an action set and a util-
ity function. Before taking a decision, the DM receives a stochastic signal that depends on the
state realized. The set of possible signals and the probability of each signal given the state are
determined by the particular information structure of the case. Upon receiving a signal the DM
updates her belief and takes an action that maximizes her expected utility. For a given decision
problem, different information structures determine potentially different maximal-achievable ex-
pected utilities.

When the DM is asked to choose from two information structures, she prefers the one that
yields the higher expected payoff. Thus, a decision problem induces a complete order over infor-
mation structures. The question arises as to what preference orders over information structures
are consistent with an expected utility maximization. That is, what preference orders over infor-
mation structures are induced by some decision problem.

In order to answer this question we analyze information functions. The value of an informa-
tion structure is the maximal achievable expected utility that corresponds to it. The information
function is the real-valued function that attaches to any information structure its value. The in-
formation function can be interpreted as a summary of the data collected by an outside observer
about the payoffs the DM received after having obtained information on the prevailing state
through various structures.

Gilboa and Lehrer (1991) investigated properties of information functions whose domain is
restricted to the set of deterministic information structures. In such information structures the
signal observed by the DM is uniquely determined by the state of nature. Therefore, every de-
terministic information structure generates a partition of the state space, where an atom of the
partition corresponds to a signal. This allows one to translate the model into terms of coopera-
tive games: states of nature take the role of players, and atoms of the partition take the role of
coalitions. Furthermore, the worth of a coalition is the maximal utility achievable on the corre-
sponding atom.

When the information structure is stochastic, the translation to cooperative games is not possi-
ble anymore. Instead, an information function is expressed by means of another function defined
over posteriors. It turns out that the key characteristics of an information function is that this
function (defined over the set of posteriors) is convex and continuous.

Beyond the analysis of the cardinal problem (characterizing value of information functions) in
order to study the ordinal issue (binary relation over structures), we resort to a classical theorem
of von Neumann and Morgenstern (1947). Von Neumann and Morgenstern (vN-M) characterized
the binary relations defined over convex sets that can be represented by affine functions. It turns
out that all (vN-M) axioms go through, except for continuity which does not suffice in its original
form. Instead, continuity in a stronger sense is needed as discussed in Section 3.

2 For a comprehensive survey of this literature, see Torgersen (1991). A shorter review can be found in Le Cam (1996).
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This paper is organized as follows. In Section 2 the model, the ordinal order and the cardinal
order over information structures are presented. Section 3 contains the main results: charac-
terization of the binary orders that arise from decision problems and of information functions.
Section 4 elaborates on an essential property of information functions: additive separability. The
proofs of the main results appear in Section 5. The paper ends with final remarks.

2. The model

Let Ω = {ω1, . . . ,ωn} be a finite set of states of nature, and let μ be the prior probability
over Ω . It is assumed that μ assigns a positive probability to any state (i.e., μ(ω) > 0 for every
ω ∈ Ω). The set of actions available to the DM is denoted by A. The utility of the DM when she
takes the action a ∈ A and when the state of nature is ω ∈ Ω is denoted by u(a,ω).

An information structure is a pair I = (S,M), where S is a finite set of signals and M is a
collection of distributions on S, one for each state. M can be thought of as a stochastic matrix
with n rows; the ith row of M (for 1 � i � n) is the distribution over signals given the state ωi .
Stated differently, the cell Mis of the matrix M is the probability of receiving the signal s ∈ S

given that the state of nature is ωi . Note that the number of columns in M coincides with the
number of signals in S. For the sake of simplicity, we always write m instead of |S|, where no
confusion can arise.

Denote by I the set of all information structures.
For a given information structure I = (S,M), denote by πI = (πs

I )s∈S the distribution on S

induced by M . That is, πs
I = ∑n

i=1 μ(ωi)Mis is the probability of observing s. Also, for s ∈ S,
let qI,s = (q1

I,s , . . . , q
n
I,s) be the distribution on Ω given that the observed signal is s. Formally,

qi
I,s = PI (ωi |s) = μ(ωi)Mis

πs
I

.

A (pure) strategy of the DM is a function σ : S → A which dictates the action to be chosen
after observing each of the signals. If the information structure is I = (S,M) and the DM follows
some strategy σ , then her expected utility is

EI,σ =
n∑

i=1

μ(ωi)
∑
s∈S

Misu
(
σ(s),ωi

) =
∑
s∈S

πs
I

n∑
i=1

qi
I,su

(
σ(s),ωi

)
.

σ̂I is an ε-optimal strategy, subject to the information structure I , if for every s ∈ S, σ̂I (s) = a

implies that
∑n

i=1 qi
I,su(a,ωi) �

∑n
i=1 qi

I,su(b,ωi) − ε for every b ∈ A. In other words, a strat-
egy is ε-optimal if after observing a signal the action prescribed by the strategy ensures at least
the supremum of the expected achievable utility up to an ε. Note that in general, for arbitrary
action set and utility function, there need not be a 0-optimal strategy.

For a certain action set A and a utility function u, let vA,u(qI,s) = supa∈A

∑n
i=1 qi

I,su(a,ωi)

where I = (S,M) is some information structure and s ∈ S. vA,u is the maximal expected utility
that the DM can obtain upon observing s (that is, when the posterior distribution is qI,s ). As a
function on Δ(Ω), vA,u is the supremum of a set of linear functions and is therefore continuous.
Formally,

Lemma 1. If, for a decision problem with action set A and utility function u, the function vA,u is
finite, then it is continuous on Δ(Ω).
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The value of an information structure I = (S,M) (for a given action set A and a utility func-
tion u) denoted VA,u(I ), is the maximal expected utility achievable when signals are received
according to it. That is, VA,u(I ) = ∑

s∈S πs
I vA,u(qI,s).

The following notation will be useful in the sequel.

Notation 1. For any information structure I = (S,M) and a subset of signals T ⊆ S,

(a) I (T ) = (S(T ),M(T )) is the information structure defined as follows: S(T ) = (S \ T ) ∪ {t}.
If s ∈ S \T then M(T )is = Mis , and if s = t then M(T )is = ∑

s′∈T Mis′ , for every 1 � i � n.
(b) I (T ) = (S(T ),M(T )) is the information structure defined as follows: Every signal t ∈ T is

replaced by a set of n signals St = {t1, . . . , tn}, so the new set of signals is S(T ) = (S \ T ) ∪
(
⋃

t∈T St ). For s ∈ S \ T , M(T )is = Mis (1 � i � n). For tk ∈ St (for some t ∈ T ), if i = k

then M(T )itk = Mi,t and if i �= k then M(T )itk = 0.
(c) For two disjoint sets of signals T1, T2 ⊆ S, I (T1, T2) = I (T1)(T2).

In words, I (T ) is the information structure which differs from I only in that the columns
corresponding to the signals in T are lumped together and instead of being informed separately
of the signals in T , the DM is informed that one of the signals in T occurred. On the other hand,
I (T ) is the information structure which is identical to I on S \T , and any column corresponding
to some s ∈ T is replaced by a diagonal n × n matrix.

2.1. Orders induced by decision problems

Let the state space Ω and the prior μ be fixed. Consider a decision problem characterized by
an action set A and a utility function u. The DM may obtain information about the realized state
through various information structures. Each information structure I entails a different maximal
achievable expected payoff VA,u(I ). Therefore, every decision problem induces a binary relation
� over the set I of all information structures in the following way. For every I, I ′ ∈ I , I � I ′ if
and only if VA,u(I ) � VA,u(I

′). Formally,

Definition 1. A binary relation � over I is induced by a decision problem if there is an action
set A and a utility function u :A × Ω → R such that I � I ′ if and only if VA,u(I ) � VA,u(I

′).

Our first goal is to characterize the binary relations over I that are induced by decision prob-
lems. These are the relations that can be rationalized by a utility maximization behavior of a
Bayesian decision maker.

2.2. Information functions

The second issue considered in this paper is the value of information structures. An outside
observer collects data about the value of each information structure for the DM. He cannot ob-
serve the DMs prior distribution nor her utility function, while he can observe her payoffs.

Definition 2. A function V :I → R is an information function if there exist a set of actions A

and a utility function u :A × Ω → R such that V (I) = VA,u(I ) for every I ∈ I .
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Unlike the ordinal preferences in the previous subsection, here it is assumed that the outside
observer knows the exact value of each information structure. Our objective is to find conditions
that this (cardinal) data should satisfy in order to represent the worth of information structures in
a Bayesian decision problem.

3. The main results

3.1. Orders induced by decision problems

In this section we introduce necessary and sufficient conditions for a binary relation over I to
be induced by a decision problem. Let � be a binary relation defined on I , and let 	 (∼) be its
asymmetric (symmetric) parts.

We will use Kreps’ (1988) terminology and will call probability distribution with finite sup-
port simple. Notice that any prior distribution and an information structure induce a simple
probability distribution over Δ(Ω). Indeed, for every λ ∈ Δ(Ω) and for every I = (S,M) ∈ I ,
let DI (λ) = {s ∈ S; qI,s = λ}. For a fixed information structure I , DI (λ) is not empty only
for a finite number of λ’s. The simple probability distribution βI over Δ(Ω) induced by I is
βI (λ) = ∑

s∈DI (λ) π
s
I for every λ ∈ Δ(Ω).

Denote B = {βI ; I ∈ I}. Notice that not all simple probability distributions over Δ(Ω) are in
B. For instance, if λ ∈ Δ(Ω), λ �= μ, where μ is the prior of the DM, then the distribution which
assigns probability 1 to λ is not in B (in fact, any β ∈ B has as expectation the original prior μ).
Nevertheless, it is not hard to see that B is a convex set.

Assume that � is induced by the decision problem with action set A and utility function u.
That is I � I ′ iff VA,u(I ) � VA,u(I

′). Recall that VA,u(I ) = ∑
s∈S πs

I vA,u(qI,s). This means that
VA,u(I ) is the expected value of the function vA,u :Δ(Ω) → R, where the expectation is taken
according to the distribution βI . Therefore, we can think of VA,u as a function on B rather than
on I .

The above discussion implies that a necessary condition that � should satisfy in order to be
induced by a decision problem is that it depends solely on the distribution over the posteriors.
Formally,

Condition 1 (Reducibility). If βI = βI ′ then I ∼ I ′.

Next, notice that VA,u (as a function on B) is affine. That is, VA,u(αβ + (1 − α)β ′) =
αVA,u(β) + (1 − α)VA,u(β

′) for every β,β ′ ∈ B and for every 0 � α � 1. The von Neumann–
Morgenstern theorem (von Neumann and Morgenstern, 1947) provides necessary and sufficient
conditions for a binary relation over a convex set to be represented by an affine real-valued func-
tion. Note that, by Condition 1, we can think of 3 � as a binary relation over the convex set B.
It is important to note, once again, that unlike the vast majority of the literature (see e.g., Kreps,
1988, Corollary 5.12), here � is not defined over all simple distributions but over a subset of
them. As a result, the proof technique is also different.

We state appropriate versions of the von Neumann–Morgenstern axioms. The first two condi-
tions (Weak Order and Independence) are standard.

Condition 2 (Weak Order). � is a weak order over B.

3 For the sake of simplicity we prefer to keep � to denote also the order induced over B.
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Condition 3 (Independence). If β 	 β ′ then αβ + (1 − α)β ′′ 	 αβ ′ + (1 − α)β ′′ for all β ′′ ∈ B
and for all α ∈ (0,1).

The following condition states that the order � is continuous. That is, if β 	 β ′, then for any
β ′′ sufficiently close to β , β ′′ 	 β ′, and moreover, for any β ′′ sufficiently close to β ′, β 	 β ′′.
The question is what would be the appropriate meaning of “sufficiently close to”? It turns out
that the weak-* topology is the right notion.

Roughly speaking, the weak-* topology refers to the simple distributions in B as measures
with respect to which continuous functions are integrated. Two simple distributions are consid-
ered close if the integrals of continuous functions with respect to both are close. Formally, the
weak-* topology is defined by a basis of open sets. A typical open set in the basis is determined
by three parameters: β ∈ B, ε > 0 and a continuous function f defined over Δ(Ω), and is de-
fined as O(β, ε,f ) = {β ′ ∈ B; | ∫ f dβ − ∫

f dβ ′| < ε}. An open set in the weak-* topology is
therefore a finite intersection of sets of the kind O(β, ε,f ).

Condition 4 (Continuity). For any β the sets {β ′; β 	 β ′} and {β ′; β ′ 	 β} are open in the
weak-* topology.

It turns out that another condition is needed for the characterization. Namely, � should be
convex in a certain sense. For the statement of this last condition it is convenient to rethink � as
a binary relation over I (recall Notation 1).

Condition 5 (Convexity). For every I = (S,M) ∈ I and for every T ⊆ S, I � I (T ).

The choice of the term convexity will become clear later on. To understand why this is a
necessary condition, recall the equivalence result of Blackwell (1951, 1953). Blackwell defined
the more informative partial order over information structures. Let I = (S,M) and I ′ = (S′,M ′)
be two information structures. I is more informative than I ′ if there is a stochastic matrix,4 say C,
such that M ′ = MC. That is, M ′ can be obtained by multiplying M with a stochastic matrix.
Blackwell (1951, 1953) showed that I is more informative than I ′ iff for any decision problem
with action set A and utility function u, VA,u(I ) � VA,u(I

′). Notice that I is more informative
than I (T ). It follows that if � is induced by a decision problem than it must be convex.

Theorem 1. A binary relation � over I satisfies Conditions 1–5 if and only if it is induced by a
decision problem.

The proof of this theorem will follow from the next theorem together with the vN-M theorem
(von Neumann and Morgenstern, 1947).

3.2. Characterizing information functions

Here we assume that an outside observer knows the exact value of each information structure
for the DM. We characterize those functions defined on information structures that arise from
decision problems. The first condition is convexity which is identical to the one in the previous
subsection.

4 A stochastic matrix is a matrix whose entries are all non-negative and the sum of each row is 1.



Y. Azrieli, E. Lehrer / Games and Economic Behavior 63 (2008) 679–693 685
Definition 3. A function V :I → R is convex if V (I(T )) � V (I) for every information structure
I = (S,M) and for every subset of signals T ⊆ S.

Next, continuity of V is required. Here, the condition is slightly different than in the previous
subsection.

Definition 4. V :I → R is continuous if for every fixed set of signals S, V is a continuous
function of the stochastic matrix M .

The last condition needed is Additive Separability. It states that V (I) is the expected value of
some other function defined on the set of posteriors. Formally,

Definition 5. V :I → R is additively separable if there exist a function v :Δ(Ω) → R such that
V (I) = ∑

s∈S πs
I v(qI,s) for every I ∈ I . If v is such a function we will say that v corresponds

to V .

We are now ready to characterize information functions. The proof of the following theorem
is postponed to Section 5.

Theorem 2. V :I → R is an information function if and only if it is additively separable, convex
and continuous.

4. More on additive separability

It is obvious that any information function is additively separable. However, this condition
is hard to interpret. We would like to find natural conditions on a function V :I → R that are
equivalent to additive separability. For the next definition recall Notation 1.

Definition 6. A function V :I → R is Independent of Irrelevant Signals (IIS) if

V
(
I (T1)

) + V
(
I (T2)

) = V
(
I (T1, T2)

) + V (I) (1)

for every information structure I = (S,M) and for every two disjoint subsets of signals T1,

T2 ⊆ S.

To justify the term IIS, notice that Eq. (1) can be rewritten as V (I)−V (I(T1)) = V (I(T2))−
V (I(T1, T2)). The left-hand side of this equation is equal to the loss incurred to the DM due to
coarsening the information structure: instead of being informed of each signal in T1 separately,
the signals of T1 are lumped together. This is the value of the information embedded in the set
T1 when the information structure is I . If Eq. (1) holds for every information structure I and for
every subset of signals T2, it means that this value is independent of I . This is so, because when
T2 = S \ T1, the right-hand side of Eq. (1) depends only on T1. Therefore, the left-hand side is
constant across all information structures that contain T1. This implies that the contribution of a
set of signals (columns in the stochastic matrix) to the value of information is independent of the
informational structure out of this set.

Next, recall the reducibility condition of Section 3.1. We say that a function V is reducible if
the order it induces satisfies the reducibility condition. Formally,
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Definition 7. A function V :I → R is reducible if βI = βI ′ implies V (I) = V (I ′) for every
I, I ′ ∈ I .

Proposition 1. V :I → R is additively separable iff it is IIS and reducible.

Proof. Assume first that V is additively separable. Then there exists v :Δ(Ω) → R such that
V (I) = ∑

s∈S πs
I v(qI,s) for every I ∈ I . It is straightforward to see that V is reducible. To check

that V is IIS, fix some I ∈ I and let T1, T2 be two disjoint subsets of signals. We have,

V
(
I (T1)

) + V
(
I (T2)

) =
∑

s∈I(T1)

πs
I(T1)

v(qI(T1),s) +
∑

s∈I(T2)

πs
I(T2)

v(qI(T2),s)

=
∑
s /∈T1

πs
I v(qI,s) + π

t1
I (T1)

v(qI(T1),t1) +
∑
s /∈T2

πs
I v(qI,s) + π

t2
I (T2)

v(qI(T2),t2)

= V (I) +
∑

s /∈T1∪T2

πs
I v(qI,s) + π

t1
I (T1)

v(qI(T1),t1) + π
t2
I (T2)

v(qI(T2),t2)

= V (I) + V
(
I (T1, T2)

)
.

Conversely, assume that V is IIS and reducible. We need to prove the existence of a function
v :Δ(Ω) → R such that V (I) = ∑

s∈S πs
I v(qI,s) for every I ∈ I .

In order to find an appropriate function v, we first need to define two auxiliary information
structures for every vector x = (x1, . . . , xn) with 0 � xi � 1, i = 1,2, . . . , n. The first one is
denoted Bx,1 and has n + 1 signals. The stochastic matrix is⎛

⎜⎜⎝
x1 0 0 . . . 1 − x1
0 x2 0 . . . 1 − x2
...

...
. . .

...

0 0 0 xn 1 − xn

⎞
⎟⎟⎠ .

The second information structure is denoted Bx,2 and has only 2 signals. The distribution over
signals is defined by the matrix⎛

⎜⎜⎝
x1 1 − x1
x2 1 − x2
...

...

xn 1 − xn

⎞
⎟⎟⎠ .

Finally, let Id denote the deterministic information structure with n signals, under which the DM
is fully informed about the true state of nature.

Notice that, since the prior distribution on Ω is μ, qI,s is always of the form5 qI,s = μ◦x
‖μ◦x‖1

,
where x is a vector as above. We define

v

(
μ ◦ x

‖μ ◦ x‖1

)
= V (Id) − V (Bx,1) − V (Bx,2)

‖μ ◦ x‖1
.

To finish the proof, it only remains to check that if v is defined as above then V (I) =∑
s∈S πs

I v(qI,s) for every I ∈ I . Indeed, using IIS we have for any I = (S,M) (recall Nota-
tion 1(b)),

5 For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), x ◦ y denotes the vector of the same length whose ith
coordinate is equal to xiyi .
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∑
s∈S

πs
I v(qI,s) =

∑
s∈S

πs
I

(
V (Id) − V (BM·s ,1) − V (BM·s ,2)

‖μ ◦ M·s‖1

)

= V (Id) −
∑
s∈S

(
V

(
BM·s ,1) − V

(
BM·s ,2))

= V (Id) −
∑
s∈S

(
V

(
I
({s})) − V (I)

)
.

Recursive use of IIS gives
∑

s∈S(V (I ({s})) − V (I)) = V (I(S)) − V (I). It follows that∑
s∈S πs

I v(qI,s) = V (Id) − V (I(S)) + V (I). It only remains to check that V (Id) = V (I(S)).
However, since V is reducible we are done. �

Proposition 1 and Theorem 2 lead to the following conclusion.

Corollary 1. V :I → R is an information function iff it is convex, continuous, reducible and IIS.

We conclude this section with a short discussion on the uniqueness of the function v.
A function v :Δ(Ω) → R uniquely determines a function V :I → R via the equation V (I) =∑

s∈S πs
I v(qI,s). However, given some additively separable function V , the corresponding v is

not unique. The following proposition states that v1 and v2 both correspond to V iff v1 − v2 is a
linear function which vanishes at the prior distribution μ.

Proposition 2. Assume that V :I → R is additively separable with v1 corresponding to it. Then,
v2 also corresponds to V , if and only if there exists a vector x ∈ R

n such that6 xμ = 0 and
v1(q) − v2(q) = xq for every q ∈ Δ(Ω).

Proof. Assume that for a certain x ∈ R
n v2(q) = v1(q) − xq , for every q ∈ Δ(Ω). Moreover,

assume that xμ = 0. We show that v2 corresponds to V . For every I ∈ I ,∑
s∈S

πs
I v2(qI,s) =

∑
s∈S

πs
I

(
v1(qI,s) − xqI,s

) = V (I) −
∑
s∈S

πs
I xqI,s

= V (I) −
∑
s∈S

πs
I

n∑
i=1

xi μ(ωi)Mis

πs
I

= V (I) −
n∑

i=1

xiμ(ωi)
∑
s∈S

Mis = V (I) − xμ = V (I).

In the other direction, assume that v2 corresponds to V and define v = v1 − v2. Let qj =
(q1

j , . . . , qn
j ), j = 1,2, be two distributions over Ω , and let α ∈ [0,1]. For i = 1, . . . , n, define

ri
1 = cα

qi
1

μ(ωi)
and ri

2 = c(1 − α)
qi

2
μ(ωi)

, where c is a positive constant that satisfies ri
1 + ri

2 � 1 for
every i = 1, . . . , n. Finally, define r3 = (1, . . . ,1) − r1 − r2. Consider the information structure
I = (S,M), where S = {s1, s2, s3}, and M is the n × 3 matrix whose j ’th column is rj , j =
1,2,3. Since both, v1 and v2, correspond to V , we have for j = 1,2, V (I) = ∑

s∈S πs
I vj (qI,s) =

cαvj (q1) + c(1 − α)vj (q2) + (1 − c)vj (q3), where q3 = r3◦μ‖r3◦μ‖1
. Reorganizing the terms yields,

6 For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), xy denotes the inner product
∑

xiyi .
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cαv(q1) + c(1 − α)v(q2) = (c − 1)v(q3). (2)

Set T = {s1, s2}. For j = 1,2 we obtain, V (I(T )) = cvj (αq1 + (1 − α)q2) + (1 − c)vj (q3),
which is equivalent to

cv(αq1 + (1 − α)q2) = (c − 1)v(q3). (3)

From (2) and (3) it follows that αv(q1) + (1 − α)v(q2) = v(αq1 + (1 − α)q2) for every two
distributions q1, q2 and for every α ∈ [0,1]. In other words, v = v1 −v2 is linear on Δ(Ω). Thus,
there is x ∈ R

n such that v1(q) − v2(q) = xq (since v is only defined on the simplex, we can
always extend it to a linear function which passes through the origin). Finally, since v1 and v2
agree on the information structure with only one signal, xμ = v1(μ) − v2(μ) = 0. �

The result of Proposition 2 might be interpreted in the following way. Given the prior μ and
an information structure I , the DM forms a probability distribution over the set of posteriors
(this is the distribution βI of Section 3.1). It is easy to see that the expectation of this probability
distribution over posteriors is the prior μ. Now, if v2(q) = v1(q) + xq , where xμ = 0, then an
expected utility maximizer is indifferent between v1 and v2. Indeed, the expected contribution of
the difference xq is always 0 since

∑
s∈S πs

I xqI,s = xμ = 0.

5. The proofs of the theorems

Before proving the main theorems, we first need several lemmas. The first lemma explains the
choice of the name convexity in Definition 3.

Lemma 2. Let V :I → R be additively separable function and v corresponds to V . Then, V is
convex if and only if v is convex on Δ(Ω).

Proof. Let qj = (q1
j , . . . , qn

j ), j = 1,2, be two distributions over Ω , and let α ∈ [0,1]. We start
by showing that if V is convex then αv(q1) + (1 − α)v(q2) � v(αq1 + (1 − α)q2).

For i = 1, . . . , n, define ri
1 = cα

qi
1

μ(ωi)
and ri

2 = c(1 − α)
qi

2
μ(ωi)

, where c is a positive constant

that satisfies ri
1 + ri

2 � 1 for every i = 1, . . . , n. Let r3 = (1, . . . ,1) − r1 − r2, and consider the
information structure I = (S,M) where S = {s1, s2, s3} and M is an n × 3 matrix whose j th
column is rj , j = 1,2,3.

Note that V (I) = ∑
s∈S πs

I v(qI,s) = cαv(q1) + c(1 − α)v(q2) + (1 − c)v(q3), where q3 =
r3◦μ‖r3◦μ‖1

. If T = {s1, s2} then V (I(T )) = cv(αq1 + (1 −α)q2)+ (1 − c)v(q3). Since V is convex,
V (I) � V (I(T )). Thus, cαv(q1) + c(1 − α)v(q2) + (1 − c)v(q3) � cv(αq1 + (1 − α)q2) + (1 −
c)v(q3), which implies that αv(q1) + (1 − α)v(q2) � v(αq1 + (1 − α)q2).

In the other direction, assume that v is convex and let T ⊆ S be a subset of signals of some
information structure I = (S,M). Recall that the set of signals in the information structure I (T )

is (S \T )∪{t}, and the column corresponding to the signal t is the sum of columns of the signals
in T . By convexity of v we obtain

V
(
I (T )

) =
∑

s∈S\T
πs

I v(qI,s) + πtv(qt )

�
∑

πs
I v(qI,s) + πt

∑ πs
I

πt
v(qI,s) = V (I).
s∈S\T s∈T
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Therefore, V is convex. �
The following lemma links between the continuity of V and any v that corresponds to it.

Lemma 3. Let V :I → R and let v correspond to V . Then V is continuous iff v is continuous
on Δ(Ω).

Proof. If v is continuous on Δ(Ω) then, since both πs
I and qI,s are continuous functions of

the matrix M , V is also continuous. On the other hand, assume that V is continuous and let
q1, q2 ∈ Δ(Ω) be close. Consider the information structures Ij = (Sj ,Mj ), j = 1,2, where the

first column of the matrix Mj is the vector ri
j = c

qi
j

μ(ωi)
, 1 � i � n (c is a positive constant such

that ri
j � 1 for all 1 � i � n, j = 1,2), and the rest of the columns are such that the DM is fully

informed on the true state of nature. We have7 V (Ij ) = cv(qj ) + ∑n
i=1(μ(ωi) − cqi

j )v(1ωi
),

j = 1,2. Thus, |V (I1) − V (I2)| = |c(v(q1) − v(q2)) + ∑n
i=1 c(qi

1 − qi
2)v(1ωi

)|. If q1, q2 are
close, then the stochastic matrices M1,M2 are close, and by assumption |V (I1)−V (I2)| is small.
Since |∑n

i=1 c(qi
1 − qi

2)v(1ωi
)| is small when q1, q2 are close, it must be that |v(q1) − v(q2)| is

also small, so v is continuous. �
We are now ready to prove the main results. We start with the cardinal characterization (The-

orem 2) which will be then used to prove Theorem 1.

Proof of Theorem 2. Assume first that V is an information function. Obviously it is additively
separable. Since every information function is monotonic with respect to the ‘more informative’
order, V is convex. Finally, since V is a real-valued function, it follows that the corresponding
function v is finite on Δ(Ω). By Lemma 1, v is continuous and by Lemma 3, V is continuous.

Conversely, assume that V is additively separable, convex and continuous function, and let
v correspond to V . By Lemmas 2 and 3, v is convex and continuous on Δ(Ω). Therefore, at
every point r in the interior of the simplex, there is a vector xr = (x1

r , . . . , xn
r ) (that defines the

tangent to the graph of v at the point r) such that v(q) � qxr for every q ∈ Δ(Ω) with equality
when q = r . In particular, v(q) = supr qxr for every q ∈ Δ(Ω) (note that, by continuity, the last
equality holds also for points q in the boundary of the simplex).

Define the set of actions, A, to be identical to the interior of the simplex. When the state
realized is ωi and the action taken is r , the utility, u(r,ωi), is defined to be xi

r . Thus, when
the distribution over states is q = (q1, . . . , qn) and the action taken is r , the expected utility
is

∑
i q

iu(r,ωi) = qxr . Hence, when the posterior distribution over states is q , the maximal
expected utility achievable is exactly v(q). �
Proof of Theorem 1. Continuity implies the Archimedian condition of von Neumann and Mor-
genstern which states that if β 	 β ′ 	 β ′′, then there are α,γ ∈ (0,1) such that αβ + (1−α)β ′′ 	
β ′ 	 γβ + (1 − γ )β ′′. Indeed, let β 	 β ′ 	 β ′′. By continuity, the set {β; β 	 β ′} is open in the
weak-* topology. In particular, there are finitely many basis open sets O(βi, εi, fi), i = 1, . . . , �,
such that β ∈ ⋂�

i=1 O(βi, εi, fi) and, moreover, every β̃ ∈ ⋂�
i=1 O(βi, εi, fi) satisfies β̃ 	 β ′.

7 1ω is the probability distribution over Ω which assigns probability 1 to ωi .

i
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For every i = 1, . . . , � there is a sufficiently large αi < 1 such that if α > αi , then | ∫ fi d(αβ +
(1−α)β ′′)−∫

fi dβ| < εi −| ∫ fi dβi −
∫

fi dβ|. Thus, | ∫ fi d(αβ +(1−α)β ′′)−∫
fi dβi | < εi .

This implies that αβ + (1 − α)β ′′ ∈ O(βi, εi, fi). Hence, if α > max1�i��{αi}, then αβ +
(1 − α)β ′′ ∈ ⋂�

i=1 O(βi, εi, fi), which implies that αβ + (1 − α)β ′′ 	 β ′, as desired. By em-
ploying a similar argument, one can find γ such that β ′ 	 γβ + (1 − γ )β ′′.

The von Neumann–Morgenstern theorem (see Theorem 5.11 in Kreps, 1988) implies that the
Weak order, Archimedian and Independence conditions ensure that � is represented by an affine
function V . In order to prove that V is a value of information function, by Theorem 2, it is
sufficient to show that it is additively separable, convex and continuous.

In order to prove that V is additively separable we use Proposition 1 and show that V is
Independent of Irrelevant Signals (recall Definition 6). For this purpose fix an information struc-
ture I = (S,M) and two disjoint subsets of signals T1, T2 ⊆ S. Since, 1

2βI(T1) + 1
2βI(T2) =

1
2βI(T1,T2) + 1

2βI , affinity of V guarantees that V (I(T1)) + V (I(T2)) = V (I(T1, T2)) + V (I).
Thus, V is Independent of Irrelevant Signals.

Due to Condition 5, I � I (T ). Thus, V (I) � V (I(T )) and therefore, V is convex. Finally,
we need to show continuity of V (recall Definition 4). Fix a set of signals S and let In = (S,Mn)

be a sequence of information structures. Assume that Mn → M . We show that V (βIn) → V (βI ).
Otherwise, either lim supV (βIn) > V (βI ) or lim infV (βIn) < V (βI ). If lim supV (βIn) > V (βI ),
then, by affinity of V , there is an m sufficiently large so that lim supV (βIn) > V ( 1

2βIm + 1
2βI ) >

V (βI ). Thus, the set O = {β| 1
2βIm + 1

2βI 	 β} contains βI and, by assumption, is open.
Since Mn → M , for sufficiently large n, βIn ∈ O . Thus, V ( 1

2βIm + 1
2βI ) > V (βIn). This

implies that V ( 1
2βIm + 1

2βI ) � lim supV (βIn), which contradicts the choice of m. It implies that
lim supV (βIn) � V (βI ). By a similar method one can show that lim infV (βIn) � V (βI ), and
hence, V (βIn) → V (βI ) which proves that V is continuous.

We therefore conclude that V is additively separable, convex and continuous and is therefore
an information function. �
6. Final remarks

6.1. Information functions with some prior

Theorem 2 refers to the case where the state space Ω and the prior distribution μ are known
to the outside observer. It characterizes those observations that are consistent with a rational
behavior of a decision maker in a Bayesian setting, given that the prior is μ. One may ask a simi-
lar question for an unknown prior. That is, when are the observations consistent with a rational
behavior of a decision maker with some prior μ?

Regarding Ω , if we assume that the outside observer can see the information structure, then
we implicitly assume that he can also see the state space (or at least its cardinality). However, the
observer need not know the prior beliefs of the DM.

The properties IIS, convexity and continuity of an information function V do not depend on the
prior distribution μ. The reducibility condition, although phrased in terms of the distributions βI

(which depends on the prior), could be rephrased without resorting to any particular prior: for any
pair of signals s1, s2 ∈ S whose corresponding columns are proportional, V (I({s1, s2})) = V (I).
This implies that if V has these four properties, then for any distribution μ, as long as it has
a full support (all the states are assigned positive probability), V is an information function
of a decision problem with μ being its prior. In other words, V is an information function with
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a certain prior having full support if and only if it is an information function with any prior having
full support. Furthermore, if V is an information function with a certain prior (not necessarily
with a full support), then by assigning utility 0 to any 0-probability state, one may obtain a
representation of V as an information function with a prior having a full support. It should be
noted, however, that the corresponding v might change with the prior.

6.2. Non-uniqueness of the utility function

The utility function used in the proof of Theorem 2 is defined by the tangent hyperplanes to
the graph of the function v that corresponds to V . However, by Proposition 2 the correspond-
ing v is not unique. More precisely, two functions v1, v2 :Δ(Ω) → R correspond to the same
information function V iff the difference between them is a linear function which vanishes at
the prior distribution μ. It follows that, for a given information function V , the utility function
u :A×Ω → R which induces V is not unique. Indeed, if x ∈ R

n satisfies xμ = 0 then the utility
function ũ defined by ũ(a,ωi) = u(a,ωi) + xi will result in the same information function as
the one induced by u.

When the data is ordinal this non-uniqueness becomes even more drastic. Indeed, the proof
of Theorem 1 uses the vN-M theorem in order to get the representation of � by an affine func-
tion V on the set B. It is known that Ṽ also represents � iff there are α > 0 and K ∈ R such
that Ṽ = αV + K . It follows that, if v : Δ(Ω) → R represents �, then ṽ also represents � iff
ṽ(q) = αv(q) + xq for some α > 0 and x ∈ R

n (not necessarily with xμ = 0). This implies that
similar transformations of the utility function u (multiplying the entire function by some positive
constant and adding the same vector to the utility of every action) will not affect the induced
order.

Eliaz and Spiegler (2005) elaborate on the consequences of the non-uniqueness of the utility
function in a model where one’s utility depends on one’s posteriors. The primitive of their model,
however, is a profile of preference orders over information structures, one order for each prior
distribution.

6.3. Alternative characterizations

By Lemmas 2 and 3, Theorem 2 can be rephrased as follows: V :I → R is an information
function if and only if it is additively separable and every function v that corresponds to it is
convex and continuous.

Another possible statement of the result in Theorem 2 is the following: V :I → R is an
information function if and only if it is additively separable, continuous and monotonic with
respect to the ‘more informative’ order.

6.4. Convexity and monotonicity

As explained in the previous sections (see the discussion after Condition 5 of Section 3.1),
if a function V :I → R is monotonically non-decreasing with respect to Blackwell’s ‘more in-
formative’ order then it is convex. By Theorem 2, under the additional conditions of additive
separability and continuity, the converse also holds. That is, if an additively separable and con-
tinuous function V is convex then it is monotonically non-decreasing with respect to the ‘more
informative’ order. It seems that a direct proof of this point is not easy.
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6.5. The role of continuity

To illustrate the role of continuity, consider the (convex) function v :Δ(Ω) → R which
equals 1 on the vertices of the simplex and 0 elsewhere. The induced function V assigns to
every information structure the probability that the DM will know for sure the true state of na-
ture under this structure. Although V is additively separable and convex it is not an information
function. This follows from Lemma 1.

6.6. Compact action set and continuous utility function

The action set A defined in the proof of Theorem 2 is the interior of the simplex of distrib-
utions over Ω , while the utility function u is defined by the tangent hyperplanes to the convex
function v. Thus, the action set is not compact and the utility function is not necessarily continu-
ous (however, since v is almost surely differentiable, the utility u is almost surely continuous on
A×Ω). The following example shows that, if one assumes a compact action set and a continuous
utility function, then the conditions of Theorem 2 may not suffice.

Example 1. The entropy function (Shannon, 1948) is defined by e(q) = ∑n
i=1 − qi log(qi) for

q ∈ Δ(Ω) (if qi = 0 for some 1 � i � n then qi log(qi) = 0). Since e is concave, consider the
convex function −e. Obviously, the function V induced by −e satisfies the three conditions of
Theorem 2 and, therefore, it is an information function. We claim, however, that it cannot be an
information function of a decision problem having a compact action set and a continuous utility
function. The reason is that the derivative of −e is not bounded near the boundary of the simplex.
Thus, one cannot extend the utility in a continuous way to the boundary of the simplex.

In order to extend the utility to the boundary of the simplex in a continuous way, v should
satisfy an additional condition. Namely, v is Lipschitz (i.e., there is a constant K > 0 such that
for every q, q ′ in the simplex, |v(q) − v(q ′)| � K‖q − q ′‖, where ‖ · ‖ is any norm), as stated
(without a proof) in the following theorem.

Theorem 3. A function V :I → R is an information function of a decision problem with a com-
pact action set and a continuous utility function if and only if it is additively separable, and any
function v corresponding to it is continuous, Lipschitz and convex.

6.7. Finite action set

Definition 8. A real function v defined on the simplex is piecewise-linear if there are finitely
many disjoint sets W1, . . . ,Wk in the simplex, such that8

⋃k
i=1 clWi covers the entire simplex

and v is linear over Wi , i = 1, . . . , k.

The proof of Theorem 2 implies that a function V :I → R is an information function of a
decision problem with finitely many actions if and only if it is additively separable and any v

corresponding to it is a piecewise-linear, continuous and convex function.

8 clW is the closure of W .
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6.8. Measuring information by convex functions

The partial order ‘more informative than’ over information structures can be defined in several
equivalent ways (see Le Cam, 1996). For a continuous and convex function w :Δ(Ω) → R, we
say that ‘I = (S,M) contains at least as much information as I ′ = (S′,M ′) with respect to w’ if∑

s∈S πs
I w(qI,s) �

∑
s∈S′ πs

I ′w(qI ′,s). It is known (see Le Cam, 1996, Theorem 1, p. 130) that
I is more informative than I ′ if and only if I contains at least as much information as I ′ with
respect to w, for every convex and continuous function w.

The above equivalence result can be proved with the help of Theorem 2. Indeed, by The-
orem 2, I contains at least as much information as I ′ with respect to w for every convex and
continuous function w, iff for any decision problem, I yields higher expected utility than I ′.
Thus, since I is better than I ′ in any decision problem iff I is more informative than I ′, the
equivalence follows.
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