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Abstract

In a sequential decision problem at any stage a decision maker, based on the histor
a decision and receives a payoff which depends also on the realized state of nature. A s
f , is said to be as good as an alternative strategyg at a sequence of states, if in the long r
f does, on average, at least as well asg does. It is shown that for any distribution,µ, over the
alternative strategies there is a strategyf which is, at any sequence of states, as good asµ-almost
any alternativeg.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In a sequential decision problem at any stage a decision maker, based on the
takes a decision and receives a payoff which depends on the decision as well as
realized state of nature. A strategy,f , determines which (possibly mixed) action to ta
after any history. After usingf for a while, the decision maker may examine the tr
record off . For instance, the decision maker may compare the performance off with
the performance of any stationary strategy. Hannan’s (1957) theorem states that
a strategy which does as good as any stationary strategy, independently of the his
states.

Another way to examine the performance of a strategy is to check whether on
subsets of stages the average payoff is as high as it could have been had a fixed act
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0899-8256/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
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played instead. Fudenberg and Levine (1999) showed that for any finite division of t
of stages which is known in advance, there is a strategy that outperforms any strate
dictates playing a fixed action in each one of the subsets.

Suppose thata and b are two actions. An(a, b)-replacing scheme is a scheme th
dictates playing actionb wheneverf dictates playinga. Note that a replacing schem
depends, at any given stage, on the action dictated byf and not only on past information
and is therefore not referred to as a strategy but as a scheme. Hart and Mas-Colell
showed that there is a strategy which is simultaneously as good as all(a, b)-replacing
schemes. In other words, there exists a strategyf with the property that, independent
of the sequence of realized states, a decision maker has no regret for not playing ab
instead of actiona whenever the latter is the one determined byf .

A decision maker may want to play a strategy that is as good as all the strateg
schemes mentioned above and even as others. In this paper we consider a wide r
alternatives. An alternative is characterized by a replacing scheme and a function, ca
activeness function, that indicates the active periods of the strategy. A strategy is as g
an alternative if, over the periods declared by the activeness function as active, the a
payoff actually received is as high as the average payoff that could have been receiv
the replacing scheme been played. In this case the decision maker has no regret ag
alternative.

The notion of the activeness function enables us to model a decision maker who
to examine the performance of the strategy used in subsets of periods. For instance
the decision maker would like to have a good track record over a set of specially imp
days, like weekend days, the activeness function would indicate only the weeken
as active. The result of Fudenberg and Levine (1999) can be therefore rephra
follows. Consider a finite partition of the set of periods and for each subset consid
corresponding activeness function (the one that indicates only those times in the su
active). Such an activeness function and a fixed action constitute an alternative. Fud
and Levine (1999) showed that there exists a strategy which is, in the long run, as g
any alternative of this kind independently of the history of states.

The model involved replacing schemes and activeness functions unifies the e
regret free results under a general theorem which is the main result of this paper. Th
states that for any distribution over alternatives there is a strategy which is as good
member of a set of alternatives having probability 1. That is, there is a strategy wh
regret free against a wide range of alternatives. This wide range no-regret theorem im
in particular, that against any countable set of alternatives there is a strategy which is
free, regardless of the sequence of states.

Hannan theorem can be also expressed in terms of finite automata. Stationary st
are the strategies that can be generated by automata with one state. Thus, Hannan
states that there is a strategy which is, in the long run, as good as any strategy gene
an automaton with one state. The wide range no-regret theorem implies, in particula
there is a regret free strategy againstany strategy in the countable set of the alternatives
can be generated by deterministic finite automata. This result may be extended verb
all the stochastic automata with rational numbers transition probabilities and mixed a
Since the set of all stochastic automata (not only those restricted to rational numb
not countable, we can only have an “almost surely” statement.
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The proof of existence uses the approachability theorem of Lehrer (1997) which e
Blackwell’s (1956) theorem to infinite dimensional spaces.

The paper is organized as follows. The model is introduced in Section 2. Exa
are given in Section 3. Existing no-regret theorems are presented in Section 4
wide range no-regret theorem is introduced in Section 5. A short review of the ext
approachability theorem, adapted to the current context, is given in Section 6. Sec
contains the proof of existence. The paper is concluded with some final rema
Section 8.

2. Model

Let Ω be a finite state space. At any period nature chooses a state fromΩ and the
decision maker takes an action from a finite setA. At period, say,n, after nature chos
a state, say,ωn, and the decision maker took the action, say,an, the decision maker receive
the payoffu(ωn, an).

A history of length n (n = 1,2, . . .), is a list of n states andn actions, hn =
(ω1, . . . ,ωn, a1, . . . , an). Let H be the set of all finite histories and of the null histo
h0. A strategy,f , is a function from the set of all histories to the set of distributi
overA, denoted∆(A). That is,f :H → ∆(A). Note that for any infinite sequence
states,ω = (ω1,ω2, . . .), the strategyf andω induce a probability distribution over the s
of infinite sequences of actions,AN: At the first stagef determines a distribution accordin
to which the first action, say,a1, is to be chosen. Then at the second stage, based o
realized state,ω1, and ona1, f determines a distribution according to which the sec
action,a2, is to be chosen, etc. Sometimes, when no ambiguity arises, we use(ω,f ) to
denote the distribution induced by(ω,f ).

Definition. A replacing scheme is a function,g from H ×A to A. In words, a replacing
scheme replaces an action (inA) with another action. This replacement may depend
the history. Note that we use the term scheme rather than strategy. This is so b
a replacing scheme may depend not only on the history but also on an additional ac
case the strategyf is compared to the replacing scheme, the additional action is the
determined byf .

Definition. An activeness function is a functionI from H×A to {0,1}. For an activenes
function I , we denote byĪ (hn−1, an), wherehn−1 ∈ H is a history of lengthn − 1
and an ∈ A, the number of timesI was active up to periodn along hn−1. That is,
Ī (hn−1, an)=∑n

t=1 I (ht−1, at ), wherehn−1 = (ω1, . . . ,ωn−1, a1, . . . , an−1).

We say that a strategyf is as good as the pair(g, I) at the sequenceω= (ω1,ω2, . . .),
if (ω,f )-almost surelyĪ (hn−1, an)→n ∞ implies

lim inf
n

∑n
t=1 I (ht−1, at )[u(ωt , at )− u(ωt , g(ht−1, at ))]

¯ � 0, (1)

I(hn−1, an)
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where ht−1 = (ω1, . . . ,ωt−1, a1, . . . , at−1), t = 1, . . . , n. The meaning of (1) is th
following. Suppose that according to strategyf the action taken at periodt is at . The
payoff then isu(ωt , at ). The decision maker compares it with the payoff resulted f
the replacing schemeg, u(ωt , g(ht−1, at )). The difference between the two payoffs
thereforeu(ωt , at ) − u(ωt , g(ht−1, at )). Whether or not the decision maker wants
comparef with g at periodt , is determined by the activeness functionI . The comparison
with g takes place only in the periods whereI attains the value 1. The average, up
time n, of the difference in payoffs over the periods where the comparison takes pl
therefore,∑n

t=1 I (ht−1, at )[u(ωt , at )− u(ωt , g(ht−1, at ))]
Ī (hn−1, an)

.

For a fixed sequence of states, if on almost any sequence of actions where the ac
function is active infinitely many times, the limit inferior of these averages is at least
we say thatf is as good as(g, I). This means that the performance off is on average
(over the active times) not worse than that ofg.

In the sequel we refer to a pair(g, I) also as an alternative tof .

3. Examples

It is convenient to give a short hand to some frequently used replacing schem
activeness functions. For any actiona, a∗ denotes the stationary strategy that dicta
playinga all the time, regardless of history. Leta, b be a pair of actions. There are ma
schemes that replacea with b. The symbolga,b stands for the scheme that replacesa with
b and keeps all other actions unchanged. That is,ga,b(ht−1, a)= b andga,b(ht−1, c)= c
for anyc ∈A, c = a and historyht−1. By Ia we denote the activeness function which i
only if the action in the argument isa. That is,Ia(ht−1, b)= 1 only if b= a.

Let 1 be the activeness function which is always 1. A strategyf is as good as(a∗,1), at
the sequenceω1,ω2, . . . , if in the long run the average payoff obtained by employingf is
at least the payoff that could be achieved by playing constantly the actiona. In other words,
the decision maker does not regret playingf instead of playing constantly the actiona.
The average payoff obtained by the strategya∗ at time, say,t , equals the payoff obtaine
by playing the actiona against the empirical distribution of states at timet . Thus, strategy
f is as good as(a∗,1) at a sequence of states, if over almost any sequence of actions
is a time from which onf outperforms the actiona against the empirical distribution o
states. Strategyf is, therefore, as good as(a∗,1) for everya ∈ A, if f is not worse than
playing always a best response to the long-run empirical distribution of states.

The use of the activeness functions is better exemplified in what follows. Sup
that a decision maker would like to examine the performance of the strategy he em
separately on the even number periods and on the odd number periods. LetE andO be
two activeness functions, such thatE(t)= 1 only if t is an even number andO = 1 −E.
In particular,E andO are complementary:E is active whenO is not. A strategyf is as
good as(a∗,E), if in the long run, the average payoff over the even number perio
greater than what the actiona could ensure against the empirical distribution of the st
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over these periods. Strategyf may be as good as many pairs of replacing schemes
activeness functions. For instance, strategyf is as good as both(a∗,E) and(a∗,O), if, at
the long run, first, the average payoff over the even number periods is greater than w
actiona could ensure against the empirical distribution of the states over these period
second, the average payoff over the odd number periods is greater than what the aa
could ensure against the empirical distribution of the states over the odd number pe

Strategyf is simultaneously as good as(ga,b, Ia) and as(a∗,O), if first, over the times
wherea was played,a is not worse thanb; and, second, over the odd number periodsf is
as good as the actiona.

Remark 1. Note that the fact thatf is as good as(ga,b, Ia) implies thatf is as good
as(ga,b,1). The reason is that the denominator of (1) that corresponds to(ga,b, Ia) (the
number of times thata was played up to periodn) is not greater thann, the denominato
of (1) that corresponds to(ga,b,1).

A decision maker may also want to examine his strategy in a Markovian fashion
instance he may want to ensure that the strategy he employs is as good as another
over stages that follow a specific action or a specific state. In order to illustrate it, fixω ∈Ω
anda ∈A and define the activeness functionMω,a as 1 only if the last state and action we
ω anda, respectively. Strategyf is as good as, say(b∗,Mω,a), if f is as good as the actio
b over the periods that follow the occurrence ofω,a.

4. Existing related results

4.1. Hannan theorem

Hannan (1957) theorem refers only to stationary strategies. It states that th
a strategy that is as good as any stationary strategy at any sequence of realizations.
without knowing anything about the selection of states by nature, there is a way to e
based on past information only, that the average payoffs is as high as the average
obtained by playing a constant strategy.

Formally, we obtain the following theorem.

Theorem (Hannan, 1957).There is a strategy f which is as good as (a∗,1) for any a ∈A
at any sequence ω1,ω2, . . . .

4.2. Hart and Mas-Colell no-regret theorem

Hart and Mas-Colell deals with replacing schemes of the kindga,b. Similarly to Hannan
theorem it ensures the existence of a strategy which is regret free when only the str
of the kindga,b are considered.

Theorem (Hart and Mas-Colell, 2000).There is a strategy f which is as good as (ga,b,1)
at any sequence ω1,ω2, . . . and for any a, b ∈A.
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4.3. Fudenberg and Levine no-regret theorem

Suppose thatB1, . . . ,Bk is a partition of the set of periods. That is, the setsB1, . . . ,Bk
are disjoint and cover the set of all integers. Denote bya∗|Bj the scheme that replaces a
action onBj with the actiona and leaves any action out ofBj unchanged.

Fudenberg and Levine (1999) showed that Hannan theorem can be general
subsets of periods. In other words, there is a strategy which is better than any fixed s
over each one of the subsets.

Theorem (Fudenberg and Levine, 1999).For any partition of the set of stages B1, . . . ,Bk
there is a strategy f which is as good as (a∗|Bj ,1) at any sequence ω1,ω2, . . . for any
a ∈A and 1 � j � k.

5. A wide range no-regret theorem

This section presents the main result of this paper. Each one of the results that ha
quoted above restricts itself to a specific finite set of replacing schemes. Here we co
the set of all replacing schemes.

Denote byR the set of all pairs(g, I), whereg is a replacing scheme andI is an
activeness function. The setR is measurable.1 Let µ be a probability measure overR.
The measureµ can be interpreted as the distribution over all possible replacement
the decision maker compares the strategy he employs to. It can also be interprete
subjective weight of importance the decision maker attributes to any possible altern

The measureµ can assign a positive probability to only countably many pairs. A
example one may think of all the schemes, denoted ascta,b, that are constantlya up to stage
t and are constantlyb thereafter. The set consisting of all pairs(cta,b,1) is a countable se
Another example of a countable set is that of all the alternatives (recall, these con
a scheme and an activeness function) that can be generated by finite automata.

The result of this paper is that for anyµ there is a strategyf which is regret free agains
µ-almost any alternative considered. That is,f is as good asµ-almost any pair(g, I). In
other words,f is immunized against regret when a wide range of alternatives is consid
Formally,

Theorem. Given a distribution µ over R, there is a strategy f , such that for any sequence
ω1,ω2, . . . , f is as good as µ-almost any pair (g, I) ∈R at ω1,ω2, . . . .

Remark 2. In caseµ has a countable support, the theorem states that there is a st
which is regret free against any alternative in the support. In particular it means tha
is a strategy which is as good as any alternative(g, I) that can be produced by a fini
automaton.

1 Both,g andI , are functions defined onH×A and are therefore similar to pure strategies. Thus,R is similar
to the set of a repeated game pure strategies, and is therefore, measurable.
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Remark 3. Note that due to Remark 1, the theorem implies a stronger result than t
Hart and Mas-Colell (see Section 4.2): There is a strategyf which is as good as(ga,b, Ia)
at any sequenceω1,ω2, . . . and for anya, b ∈A.

Remark 4. The theorem implies, in particular, that ifI1, I2, . . . is a sequence of activene
functions, not necessarily complementary, then there exists a strategyf which is as good
as any(a∗, Ij ), j = 1,2, . . . , a ∈A. In other words, for anyj , the average payoff obtaine
by playingf is, over the periods whereIj is equal to 1, at least what any constant act
can ensure at the same set of periods.

This result extends that of Fudenberg and Levine (1999) (see Section 4.3) in two
First, the fact thatf is as good as(a∗, Ij ) implies thatf is as good as(a∗|Bj ,1), where
Bj is the set of periods whereIj is equal to 1. Second, this result allows for more th
finitely many activeness functions, and furthermore, these functions should not nece
induce a partition (i.e.,

∑
Ij can be greater or smaller than 1).

Remark 5. In this discussion we restrict ourselves to pure replacing schemes. A beha
replacing scheme can be defined like a replacing strategy with the only change th
range of the behavioral replacing scheme is the set of mixed actions (instead of the
pure actions). In a similar way one can define a behavioral activeness function. A p
a behavioral replacing scheme and a behavioral activeness function is called a beh
alternative. Since the game played is with perfect recall, any behavioral alterna
equivalent to a distribution over pairs of replacing schemes and activeness functions
a distribution over behavioral alternatives is equivalent to a distribution over pure
Therefore, the restriction to pure alternatives does not create any loss in the gener
the theorem. In other words, the theorem can be rephrased as follows. For any distr
over behavioral alternatives there is a strategy which is regret free against almost a
alternatives at any sequence of states. The “almost all” here means with probab
according to both, the distribution over behavioral alternatives and the distribution
pure alternatives induced by the behavioral alternatives. This statement implies th
any distribution over behavioral alternatives there is a strategy which is regret free a
almost all behavioral alternatives at any sequence of states.

6. Approachability in large spaces

It is well known that the various no-regret theorems mentioned in Section 4 c
proven by an approachability theorem. Our result is not exceptional. We prove it
approachability theorem in infinite dimensional space. For this purpose we resort to
(1997) which extends the approachability theorem of Blackwell (1956). This secti
devoted to a short review of this result.

We think of the decision maker and of nature as two competing players. Inste
having only one objective as usual (usually to maximize the expected payoff), he
decision maker has a multiple objective. He wants to ensure that he has no regret
many alternatives.
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Considering one alternative, the decision maker regrets not playing this alterna
the average payoff he actually received is smaller than the average payoff that cou
been received had he played the alternative. In other words, he has no regret if the
average payoff is at least the average payoff ensured by the alternative. Thus, for
alternative his goal is to ensure that the average realized payoff minus the “could
been” payoff is at least zero. This goal extends to many alternatives. That is, in case
alternatives are considered, the goal is to ensure that for each alternative the averag
actual payoff minus the “could have been” payoff is at least zero.

The formal presentation of the game is as follows. Letµ be a probability measur
overR. At any stage the decision maker chooses (possibly in a random fashion) an
inA. Nature chooses a state inΩ . After t−1 stages the history of actions isa1, a2, . . . , at−1
and the history of states isω1,ω2, . . . ,ωt−1. At this time the decision maker decides
play an action,at , and nature decides to choose a state,ωt . The payoff is a function ove
R, denotedX(at ,ωt ). That is, for any(g, I) ∈ R there is a value attached. In this context,
refer to(g, I) as a coordinate. The value ofX(at ,ωt ) at the coordinate(g, I), X(at ,ωt )(g, I),
is

I (ht−1, at )
[
u(ωt , at )− u

(
ωt, g(ht−1, at )

)]
, (2)

whereht−1 = (ω1, . . . ,ωt−1, a1, . . . , at−1). The goal of the decision maker is to ensu
that the (long run) average payoff in almost every coordinate is at least zero.

Note that the payoff in (2) depends on the history. Stated differently, in the games p
between the decision maker and nature, the payoffs (recall, these are functions oR)
depend on the historyht−1.2 As stated above, whether the coordinate(g, I) is active or not
depends on whetherI (ht−1, at) is 0 or 1.

Up to periodn, the coordinate(g, I) was activeĪ (hn−1, an) times. Thus, the averag
payoff up to periodn, over the active periods, at the(g, I) coordinate is precisely th
quotient of (1). That is, considering the alternative(g, I), the decision maker has no reg
against(g, I), if the average payoff at the(g, I) coordinate is, asymptotically, at least 0

Denote byXn(g, I) the average payoff in the coordinate(g, I) up to timen along the
historyhn = (ω1, . . . ,ωn, a1, . . . , an). That is

Xn(g, I)=
∑n
t=1X

(at ,ωt )(g, I)

Ī (hn−1, an)
.

Using this notation, strategyf is as good as(g, I) at the sequenceω= (ω1,ω2, . . .), if
lim inf Xn(g, I) � 0 at (ω,f )-almost any sequencea1, a2, . . . , provided thatĪ → ∞. In
order to link it with approachability, a few more notations are needed.

Let C be the set of all non-negative functions overR. That is,C = {ψ :R → R;
ψ(g, I) � 0 for µ-almost all(g, I)}. Fix two infinite sequences,a1, a2, . . . of actions and
ω1,ω2, . . . of states. Denote by1{Ī→∞} the indicator of the set of alternatives,(g, I),

satisfying Ī → ∞. That is,1{Ī→∞}(g, I) takes the value 1 if̄I → ∞ and the value 0
otherwise. Note that the indicator1{Ī→∞} depends on the two sequencesa1, a2, . . . and
ω1,ω2, . . . .

2 It is actually a stochastic game with deterministic transition probabilities (i.e., 0 or 1).
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Let X−
n (g, I) = min{Xn(g, I),0}. We say that1{Ī→∞}Xn → C, if the difference

betweenC and1{Ī→∞}Xn goes to zeroµ-almost surely. That is, if1{Ī→∞}X−
n (g, I)→ 0

µ-almost surely. Strategyf is as good asµ-almost every(g, I), at the sequenc
ω = (ω1,ω2, . . .), if 1{Ī→∞}Xn → C (ω,f )-almost surely (i.e., for(ω,f )-almost all

sequences of actions). Alternatively, if1{Ī→∞}Xn approaches the setC, then the decision
maker has no regret playingf , against almost all alternative strategies.

Lehrer (1997) provides a condition that guarantees that the decision maker has a s
that ensures that for any strategy of nature1{Ī→∞}Xn approaches the setC. The adaptation
to the current context of Theorem 3 in Lehrer (1997) is as follows.

Proposition 1. 1. For any ω ∈Ω , if at any period n and after any history of length n− 1,
hn−1 = (ω1, . . . ,ωn−1, a1, . . . , an−1), there is a mixed action p of the decision maker
(a distribution over A) such that∫

R

X−
n (g, I)

∑
a∈A

(
I (hn−1, a)

Ī (hn−1, a)
p(a)

[
u(ω,a)− u(ω,g(hn−1, a)

)])
dµ� 0,

(3)

then there is a strategy f , such that (ω,f ) almost surely 1{Ī→∞}Xn →C.

In the statement of the proposition there are two probabilities involved. The first
probability overR, µ. The second is the probability over sequences of actions ind
by (ω,f ). The theorem claims that, if (3) holds, then there exists a strategyf such that
with (ω,f ) probability 1,1{Ī→∞}Xn converges toC with µ probability 1. Note that the

theorem ensures thatXn(g, I)→ 0 (ω,f )-almost surely only subject to the condition th
I is active infinitely many times. There is no way to ensure the convergence of the qu
of (1) to 0 in case the denominator does not converge to infinity.

The goal of the decision maker is to bring the functionXn as close as possible to th
target set (of functions),C. At periodn the gap betweenXn and the setC, referred to
later as the error, is the difference betweenXn and the closest point inC to Xn. This is
preciselyX−

n .
In case the decision maker chose the actiona and nature chose the stateω, the payoff at

timen corresponding to coordinate(g, I), is I (hn−1, a)[u(ω,a)− u(ω,g(hn−1, a))]. The
contribution of this single stage payoff to the averageXn(g, I) is greater as the coordina
is less active. That is, the contribution of a single stage payoff to the averageXn(g, I)

decreases with̄I (hn−1, a). Furthermore, the contribution of a single stage payoff to
average at the coordinate(g, I) depends whetherI (hn−1, a) is 1 or not. Taking these fac
into account, we consider a weighted next-time payoff,(I (hn−1, a)/Ī (hn−1, a))[u(ω,a)−
u(ω,g(hn−1, a))], which depends onI (hn−1, a) and on Ī (hn−1, a). Note that the
weighted next-time payoff decreases withĪ (hn−1, a). Furthermore, it is equal to 0 whe
I (hn−1, a) = 0. The expected next-time weighted payoff, when the mixed actionp is
played, is therefore,∑(

I (hn−1, a)

Ī (hn−1, a)
p(a)

[
u(ω,a)− u(ω,g(hn−1, a)

)])
.

a∈A
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Inequality (3) says that the integral of the product of the error and the expected we
next-time payoff is less than or equal to zero. In terms of the geometry of the spa
functions overR this means that the expected next-time weighted payoff and the av
payoff,Xn, are located in two different sides of a hyper space that separates betweXn
andC.3 In this sense the next-time payoff “corrects” the past error. Proposition 1 state
if at any periodn, there is a mixed action that ensures that the expected payoff “corr
the error accumulated up to periodn− 1, then the error can be diminished to zero. Tha
there is a strategyf , such that1{Ī→∞}Xn approachesC (ω,f )-almost surely.

Remark 6. In fact Lehrer (1997) not only provides the condition, it also provides, lik
Blackwell (1956), the strategyf that ensures that1{Ī→∞}Xn(g, I) approachesC (ω,f )-
almost surely. The strategy defined there dictates at any stage to choose an action ac
to the mixed actionp that satisfies (3).

7. The proof of the wide-range no-regret theorem

What remains to be done is to show that the condition of Proposition 1 is satisfie
hn−1 be a history of lengthn−1. Denote for anya, b ∈ARa,b = {(g, I); g(hn−1, a)= b}.
For anya {Ra,b}b∈A is a partition ofR into finitely many disjoint sets. Thus, for anya∫

R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)

[
u(ω,a)− u(ω,g(hn−1, a)

)]
dµ

=
∑
b∈A

∫
Ra,b

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)

[
u(ω,a)− u(ω,b)]dµ.

Thus, for any mixed action, say,q , (compare with (3))∫
R

X−
n (g, I)

∑
a∈A

(
I (hn−1, a)

Ī (hn−1, a)
q(a)

[
u(ω,a)− u(ω,g(hn−1, a)

)])
dµ

=
∑
a∈A

( ∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
q(a)

[
u(ω,a)− u(ω,g(hn−1, a)

)]
dµ

)

=
∑
a∈A

∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
q(a)u(ω,a)dµ

−
∑
a∈A

∑
b∈A

∫
Ra,b

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
q(a)u(ω,b)dµ

3 In fact this is not just a hyper space that separatesXn fromC. This is the one that passes through the clos
point inC toXn, Xn −X−

n , and is perpendicular toX−
n , the difference betweenXn andC.
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yer
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=
∑
a∈A

∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
q(a)u(ω,a)dµ

−
∑
b∈A

∑
a∈A

∫
Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
q(b)u(ω,a)dµ

=
∑
a∈A
u(ω,a)

( ∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
q(a)dµ

−
∑
b∈A

∫
Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
q(b)dµ

)

=
∑
a∈A
u(ω,a)

(
q(a)

∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
dµ

−
∑
b∈A
q(b)

∫
Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ

)
.

The condition of Proposition 1 is that there existsp such that

∑
a∈A
u(ω,a)

(
p(a)

∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
dµ

−
∑
b∈A
p(b)

∫
Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ

)
� 0.

This inequality will be guaranteed if we show that there existsp such that for anya the
term in the parenthesis is equal to zero. That is,

p(a)

∫
R

X−
n (g, I)

I (hn−1, a)

Ī (hn−1, a)
dµ

−
∑
b∈A
p(b)

∫
Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ= 0. (4)

Consider the matrix{Wb,a}b,a∈A, where

Wb,a = −
∫

Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ for b = a and

Wb,b =
∫

R−Rb,b

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ.

Note that
∑
a Wb,a = 0 for everyb. Thought of as a zero-sum game, where the row pla

(the player who chooses the actionb) is the minimizer, the matrixW has a value zero. T
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see this, note that the column player (here the maximizer) can ensure getting at lea
playing the uniform distribution overA. Furthermore, against any distribution over thea’s
(of the column player), say,s, the row player can choose a row, say,b, whoses probability
is maximal. Thus, ifs(b) is maximal, the expected payoff that corresponds tob ands is,∑

a =b
s(a)Wb,a + s(b)Wb,b

=
∑
a =b

((
s(b)− s(a)) ∫

Rb,a

X−
n (g, I)

I (hn−1, b)

Ī (hn−1, b)
dµ

)
� 0

becauseX−
n (g, I)(I (hn−1, b)/Ī (hn−1, b)) � 0. Since the row player can ensure at m

zero against any mixed actions of the column player, we obtain, by the minmax theore
that the row player has an actionp that ensures the value. That is, there existsp such that
for any column the payoff is at most zero.

In order to conclude the argument we need to show that withp the payoff is precisely
zero for any column. However, this is obvious since there exists an optimal acti
the column player which assigns a positive probability to any column: the unifo
distributed mixed action. That is, the mixed actionp satisfies (4), and therefore satisfi
the condition of Proposition 1.

Proposition 1 ensures the existence of a strategyf that guarantees that the avera
payoff,1{Ī→∞}Xn → C (ω,f )-almost surely, regardless of nature’s choices. We conc
that there is a strategyf which is regret free againstµ-almost all alternatives(g, I) at any
sequence of realizationsω1,ω2, . . . .

8. Final remarks

8.1. An alternative proof 4

The main result of this paper can be proven in an alternative way. Sandroni et al. (
proved that there exists a forecasting rule that calibrates with a large set of checking
For any replacing scheme one can find a few corresponding checking rules tha
the following property. A best response to the forecasting rule that calibrates wit
corresponding checking rules is a regret free strategy against the replacing schem
consideration. When a large set of replacing schemes is considered one can find
Sandroni et al. (2000), a forecasting rule that calibrates with almost all the correspo
checking rules. Like in Hart and Mas-Colell (2000), a best response to this forecastin
is regret free against almost all the replacing schemes under consideration.

From a computational point of view the proof provided here is significantly simpler
the alternative proof. The reason is that here the approachability theorem requires s
at any stage, a fixed size,|A| × |A|, zero-sum game (recall the matrix{Wb,a}b,a∈A). In

4 The contents of this section has been suggested independently by Rann Smorodinsky and by an an
referee.
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contrast, in the proof of Sandroni et al. (2000) the size of the zero-sum game th
forecaster needs to solve at any stage (in order to apply the approachability the
increases with time. Furthermore, in the alternative proof the construction of the regr
strategy must pass through a forecasting rule which is conceptually rather complicate
forecasting rule provided by Sandroni et al. (2000) is, at any stage, a random choic
some set of distributions over the setΩ .

8.2. No-regret and correlated equilibrium

In a game with a few players, each one may consider the other players as nature
case, other players’ chosen actions are, in terms of the previous sections, the realiz
of nature. Denote byAi playeri ’s set of actions. As stated in Hart and Mas-Colell (200
if each playeri plays a strategy which is as good as(ga,b, Ia) for anya, b ∈ Ai , then the
empirical frequency of the joint actions played converges to the set of correlated equ
It may well happen that the empirical frequency over the even times is meaningless. T
it may happen that the empirical frequency of the joint actions over the entire set of
converges to the set of correlated equilibria, while the statistics over the even numbe
does not converge to anything meaningful.

The wide range no-regret theorem ensures that each player has a strategyf which is
regret free against each one of the alternatives(ga,b, Ia), a, b ∈ Ai , and simultaneousl
against (recall the activeness functionE mentioned in Section 2)(ga,b,EIa), a, b ∈ Ai .
That is, over the even number periods wheref dictates playinga, f performs at least a
well as the actionb. The same argument as in Hart and Mas-Colell (2000) implies th
each player employs such a strategy, the empirical frequencies over the entire histo
that restricted to the even number periods, both converge to the set of correlated eq
There is no guarantee that the two frequencies are in any sense similar to each othe

One can employ many other activeness functions that are active on pre-specified
of periods. In case all players do the same and if a subset of periods is infinite, the em
frequency of the joint actions (over this subset) converges to the set of correlated equ

8.3. Guessing games

At the end of Section 7 above I defined a matrixW and showed that the row play
has an action that guarantees that the expected payoff at any column is exactl
The matrix−W belongs to a family of games called Guessing games (see Lehrer, 1
A guessing game is a zero sum game in which both players have the same set of actA.
The payoffs on the diagonal of the game matrix are non-negative while the other p
are non-positive. Finally, the sum of all payoffs in any row is zero. The interpretatio
such a game is as follows. The column player chooses an actiona and the row playe
guesses which action was it. In case the row player guesses correctly, he receives a
(a payoff in the diagonal) otherwise he is penalized by receiving a non-positive p
(off the diagonal). In guessing games, for any guessb, of the row player, the sum of a
penalties is equal to the reward. Lehrer (1998) uses the fact that any positive comb
of guessing games is a guessing game to show that a player who participates in
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sequential guessing games at the same time, can ensure that, on average, the payo
one of them is asymptotically non-negative.

One can find references (explicit or insinuated) to guessing games in Hart and S
dler (1989), Nau and McCradle (1990), and Foster and Vohra (1999).

8.4. No-regret theorem with imperfect monitoring

Rustichini (1999) generalized Hannan theorem to the case of imperfect monitori
any stage the decision maker receives a signal which stochastically depends on t
and the action chosen. Since the information about the previous choices of nature is
there are many possible distributions overΩ that are informationally consistent with th
empirical frequency of the signals received (see also Lehrer (1989)). Rustichini sh
that there is a strategy whose long-run average payoff is as high as the payoff obt
by playing a best response to the worst mixed choice of nature which is informatio
consistent with the empirical frequency of signals. In other words, there exists a st
which is regret free against the worst (in the sense of minmax) mixed choice of n
which is indistinguishable (using the signals received through the information stru
from the actual frequency of states.

I conjecture that Rustichini’s result can be generalized to a wide range of alterna
In other words, it is conjectured that in the case of imperfect monitoring there e
a strategy which is regret free (in a sense adapted to the information structure) a
many alternatives.
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