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Abstract

In a sequential decision problem at any stage a decision maker, based on the history, takes
a decision and receives a payoff which depends also on the realized state of nature. A strategy,
f, is said to be as good as an alternative strateg@t a sequence of states, if in the long run
f does, on average, at least as wellgadoes. It is shown that for any distributiop, over the
alternative strategies there is a stratggyhich is, at any sequence of states, as good-agmost
any alternativeg.
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1. Introduction

In a sequential decision problem at any stage a decision maker, based on the history,
takes a decision and receives a payoff which depends on the decision as well as on the
realized state of nature. A strategy, determines which (possibly mixed) action to take
after any history. After using’ for a while, the decision maker may examine the track
record of f. For instance, the decision maker may compare the performangendth
the performance of any stationary strategy. Hannan’s (1957) theorem states that there is
a strategy which does as good as any stationary strategy, independently of the history of
states.

Another way to examine the performance of a strategy is to check whether on some
subsets of stages the average payoff is as high as it could have been had a fixed action been
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played instead. Fudenberg and Levine (1999) showed that for any finite division of the set
of stages which is known in advance, there is a strategy that outperforms any strategy that
dictates playing a fixed action in each one of the subsets.

Suppose that and b are two actions. Ana, b)-replacing scheme is a scheme that
dictates playing actio wheneverf dictates playingz. Note that a replacing scheme
depends, at any given stage, on the action dictatefl bgd not only on past information,
and is therefore not referred to as a strategy but as a scheme. Hart and Mas-Colell (2000)
showed that there is a strategy which is simultaneously as good &s, &)l-replacing
schemes. In other words, there exists a stratégyith the property that, independently
of the sequence of realized states, a decision maker has no regret for not playing action
instead of actiom whenever the latter is the one determinedfby

A decision maker may want to play a strategy that is as good as all the strategies or
schemes mentioned above and even as others. In this paper we consider a wide range of
alternatives. An alternative is characterized by a replacing scheme and a function, called an
activeness function, that indicates the active periods of the strategy. A strategy is as good as
an alternative if, over the periods declared by the activeness function as active, the average
payoff actually received is as high as the average payoff that could have been received had
the replacing scheme been played. In this case the decision maker has no regret against the
alternative.

The notion of the activeness function enables us to model a decision maker who wants
to examine the performance of the strategy used in subsets of periods. For instance, in case
the decision maker would like to have a good track record over a set of specially important
days, like weekend days, the activeness function would indicate only the weekend days
as active. The result of Fudenberg and Levine (1999) can be therefore rephrased as
follows. Consider a finite partition of the set of periods and for each subset consider the
corresponding activeness function (the one that indicates only those times in the subset as
active). Such an activeness function and a fixed action constitute an alternative. Fudenberg
and Levine (1999) showed that there exists a strategy which is, in the long run, as good as
any alternative of this kind independently of the history of states.

The model involved replacing schemes and activeness functions unifies the existing
regret free results under a general theorem which is the main result of this paper. The latter
states that for any distribution over alternatives there is a strategy which is as good as any
member of a set of alternatives having probability 1. That is, there is a strategy which is
regret free against a wide range of alternatives. This wide range no-regret theorem implies,
in particular, that against any countable set of alternatives there is a strategy which is regret
free, regardless of the sequence of states.

Hannan theorem can be also expressed in terms of finite automata. Stationary strategies
are the strategies that can be generated by automata with one state. Thus, Hannan theorem
states that there is a strategy which is, in the long run, as good as any strategy generated by
an automaton with one state. The wide range no-regret theorem implies, in particular, that
there is aregret free strategy agaiagy strategy in the countable set of the alternatives that
can be generated by deterministic finite automata. This result may be extended verbatim to
all the stochastic automata with rational numbers transition probabilities and mixed actions.
Since the set of all stochastic automata (not only those restricted to rational numbers) is
not countable, we can only have an “almost surely” statement.
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The proof of existence uses the approachability theorem of Lehrer (1997) which extends
Blackwell’s (1956) theorem to infinite dimensional spaces.

The paper is organized as follows. The model is introduced in Section 2. Examples
are given in Section 3. Existing no-regret theorems are presented in Section 4. The
wide range no-regret theorem is introduced in Section 5. A short review of the extended
approachability theorem, adapted to the current context, is given in Section 6. Section 7
contains the proof of existence. The paper is concluded with some final remarks in
Section 8.

2. Model

Let £2 be a finite state space. At any period nature chooses a statesZramd the
decision maker takes an action from a finite detAt period, sayn, after nature chose
a state, sayy,,, and the decision maker took the action, sgaythe decision maker receives
the payoffu(w,, a,).

A history of lengthn (n =1,2,...), is a list of n states and: actions, i, =
(w1,...,wp,a1,...,a,). Let H be the set of all finite histories and of the null history,
ho. A strategy, f, is a function from the set of all histories to the set of distributions
over A, denotedA(A). That is, f:H — A(A). Note that for any infinite sequence of
statesw = (w1, w2, .. .), the strategyf andw induce a probability distribution over the set
of infinite sequences of actions: At the first stagef determines a distribution according
to which the first action, sayi, is to be chosen. Then at the second stage, based on the
realized statep;, and onaj, f determines a distribution according to which the second
action, ay, is to be chosen, etc. Sometimes, when no ambiguity arises, wevulgo to
denote the distribution induced iy, f).

Definition. A replacing scheme is a function,g from H x A to A. In words, a replacing
scheme replaces an action @) with another action. This replacement may depend on
the history. Note that we use the term scheme rather than strategy. This is so because
a replacing scheme may depend not only on the history but also on an additional action. In
case the strategy is compared to the replacing scheme, the additional action is the one
determined byf.

Definition. An activeness functionis a function/ from H x A to {0, 1}. For an activeness
function 7, we denote byl (h,_1,a,), whereh,_1 € H is a history of lengthn — 1
and a, € A, the number of timed was active up to perio@& along h,_1. That is,
I(hy—1,a,) = Z';:l I(h;_1,a;), whereh,_1 = (w1, ...,0p_1,01,...,dp—1).

We say that a strategy is as good as the pair(g, /) at the sequence = (v1, w2, . ..),
if (w, f)-almost surelyl (h,,—1, a,) —, oo implies

liminf Z;l:ll(ht—la at)[u_(a)t’ ar) — u(wy, g(hy-1, ar))]
n I(hyp-1,a,)

>0, 1)
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where h;_1 = (w1, ...,wi-1,0a1,...,a;-1), t = 1,...,n. The meaning of (1) is the
following. Suppose that according to strategythe action taken at periodis a,. The
payoff then isu(w;, a;). The decision maker compares it with the payoff resulted from
the replacing scheme, u(wy, g(h;—1,a;)). The difference between the two payoffs is
thereforeu(w;, a;) — u(wy, g(hi—1,a,)). Whether or not the decision maker wants to
comparef with g at periods, is determined by the activeness functiorhe comparison

with g takes place only in the periods whefeattains the value 1. The average, up to
time n, of the difference in payoffs over the periods where the comparison takes place is
therefore,

2?21 I(hi—1, a)[u(wy, ar) — ulwy, glhi—1, ar))]
I(hy—1,apn)

For a fixed sequence of states, if on almost any sequence of actions where the activeness
function is active infinitely many times, the limit inferior of these averages is at least zero,
we say thatf is as good asg, I). This means that the performance fis on average
(over the active times) not worse than thagof

In the sequel we refer to a pdig, /) also as an alternative tf.

3. Examples

It is convenient to give a short hand to some frequently used replacing schemes and
activeness functions. For any actian a* denotes the stationary strategy that dictates
playinga all the time, regardless of history. Letb be a pair of actions. There are many
schemes that replaeewith b. The symbo, , stands for the scheme that replagesith
b and keeps all other actions unchanged. Thagis,.(h:—1,a) =b andg, »(hi—1,¢) =¢
foranyc € A, ¢ # a and historyh,_1. By I, we denote the activeness function which is 1
only if the action in the argumentis Thatis,I,(h;—1,b) =1 onlyif b =a.

Let 1 be the activeness function which is always 1. A stratédy as good aga*, 1), at
the sequences, wy, ..., if in the long run the average payoff obtained by employjhig
at least the payoff that could be achieved by playing constantly the actiorother words,
the decision maker does not regret playifignstead of playing constantly the actian
The average payoff obtained by the stratedyat time, sayy, equals the payoff obtained
by playing the actio against the empirical distribution of states at tim&hus, strategy
fisas good ag:*, 1) at a sequence of states, if over almost any sequence of actions, there
is a time from which onf outperforms the action against the empirical distribution of
states. Strategy is, therefore, as good &s8*, 1) for everya € A, if f is not worse than
playing always a best response to the long-run empirical distribution of states.

The use of the activeness functions is better exemplified in what follows. Suppose
that a decision maker would like to examine the performance of the strategy he employs
separately on the even number periods and on the odd number periods.aloetO be
two activeness functions, such thag) = 1 only if # is an even numberan@d =1 — E.

In particular,E and O are complementany is active whenO is not. A strategyf is as
good as(a*, E), if in the long run, the average payoff over the even number periods is
greater than what the actiencould ensure against the empirical distribution of the states
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over these periods. Strategymay be as good as many pairs of replacing schemes and

activeness functions. For instance, strat¢gg as good as bottu*, E) and(a*, 0), if, at

the long run, first, the average payoff over the even number periods is greater than what the

actiona could ensure against the empirical distribution of the states over these periods and,

second, the average payoff over the odd number periods is greater than what the action

could ensure against the empirical distribution of the states over the odd number periods.
Strategyf is simultaneously as good és;, ., I,) and asa™*, 0), if first, over the times

wherea was playedq is not worse that; and, second, over the odd number perigds

as good as the actian

Remark 1. Note that the fact thay is as good asg,.», I,) implies thatf is as good
as(ga4.», 1). The reason is that the denominator of (1) that corresponds.tg, 1,) (the
number of times that was played up to period) is not greater than, the denominator
of (1) that corresponds @, 5, 1).

A decision maker may also want to examine his strategy in a Markovian fashion. For
instance he may want to ensure that the strategy he employs is as good as another strategy
over stages that follow a specific action or a specific state. In order to illustrateuitefise
anda € A and define the activeness functitfy, , as 1 only if the last state and action were
o anda, respectively. Strategy is as good as, say*, M,, ,), if f is as good as the action
b over the periods that follow the occurrenceafa.

4. Existing related results
4.1. Hannan theorem

Hannan (1957) theorem refers only to stationary strategies. It states that there is
a strategy that is as good as any stationary strategy at any sequence of realizations. That is,
without knowing anything about the selection of states by nature, there is a way to ensure,
based on past information only, that the average payoffs is as high as the average payoff
obtained by playing a constant strategy.

Formally, we obtain the following theorem.

Theorem (Hannan, 1957)Thereisa strategy f whichisasgood as (¢*, 1) for anya € A
at any sequence w1, wa, . . ..

4.2. Hart and Mas-Coléll no-regret theorem
Hart and Mas-Colell deals with replacing schemes of the king Similarly to Hannan
theorem it ensures the existence of a strategy which is regret free when only the strategies

of the kindg, » are considered.

Theorem (Hart and Mas-Colell, 2000Thereis a strategy f whichisasgood as (g4 », 1)
at any sequence w1, wp, ... andfor anya, b € A.
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4.3. Fudenberg and Levine no-regret theorem

Suppose thaBs, ..., B is a partition of the set of periods. That is, the sBis..., B
are disjoint and cover the set of all integers. Denoteljy8; the scheme that replaces any
action onB; with the actiorz and leaves any action out 8f; unchanged.

Fudenberg and Levine (1999) showed that Hannan theorem can be generalized to
subsets of periods. In other words, there is a strategy which is better than any fixed strategy
over each one of the subsets.

Theorem (Fudenberg and Levine, 199%pr any partition of the set of stages B1, ..., Bx
there is a strategy f which is as good as (a*| B}, 1) at any sequence wy, wy, ... for any
aeAandl< j<k.

5. A widerange no-regret theorem

This section presents the main result of this paper. Each one of the results that have been
guoted above restricts itself to a specific finite set of replacing schemes. Here we consider
the set of all replacing schemes.

Denote byR the set of all pairdg, I), whereg is a replacing scheme andis an
activeness function. The s@& is measurablé.Let 1 be a probability measure oveéX.

The measure: can be interpreted as the distribution over all possible replacements that
the decision maker compares the strategy he employs to. It can also be interpreted as the
subjective weight of importance the decision maker attributes to any possible alternative.

The measurg. can assign a positive probability to only countably many pairs. As an
example one may think of all the schemes, denoted gsthat are constantly up to stage
t and are constantly thereafter. The set consisting of all paﬂr%)b, 1) is a countable set.
Another example of a countable set is that of all the alternatives (recall, these consist of
a scheme and an activeness function) that can be generated by finite automata.

The result of this paper is that for apythere is a strategy which is regret free against
wn-almost any alternative considered. Thatjfsis as good ag.-almost any paicg, 7). In
otherwords,f is immunized against regret when a wide range of alternatives is considered.
Formally,

Theorem. Given a distribution . over R, thereisa strategy f, such that for any sequence
w1, w2, ..., f isasgood as u-almost any pair (g, I) € R at w1, wa, . ...

Remark 2. In caseu has a countable support, the theorem states that there is a strategy
which is regret free against any alternative in the support. In particular it means that there
is a strategy which is as good as any alternawel) that can be produced by a finite
automaton.

1 Both, g and1, are functions defined g x A and are therefore similar to pure strategies. THuss similar
to the set of a repeated game pure strategies, and is therefore, measurable.



E. Lehrer / Games and Economic Behavior 42 (2003) 101-115 107

Remark 3. Note that due to Remark 1, the theorem implies a stronger result than that of
Hart and Mas-Colell (see Section 4.2): There is a strajegshich is as good a&g, », 1)
at any sequences, wy, ... and for anya, b € A.

Remark 4. The theorem implies, in particular, that/if, I», ... is a sequence of activeness
functions, not necessarily complementary, then there exists a strategpch is as good
asanya*, 1;), j=1,2,...,a € A. In other words, for any, the average payoff obtained
by playing f is, over the periods wherg is equal to 1, at least what any constant action
can ensure at the same set of periods.

This result extends that of Fudenberg and Levine (1999) (see Section 4.3) in two ways.
First, the fact thatf is as good aga*, I;) implies thatf is as good aga*|B;, 1), where
B; is the set of periods wherg is equal to 1. Second, this result allows for more than
finitely many activeness functions, and furthermore, these functions should not necessarily
induce a partition (i.e}_ I; can be greater or smaller than 1).

Remark 5. In this discussion we restrict ourselves to pure replacing schemes. A behavioral
replacing scheme can be defined like a replacing strategy with the only change that the
range of the behavioral replacing scheme is the set of mixed actions (instead of the set of
pure actions). In a similar way one can define a behavioral activeness function. A pair of
a behavioral replacing scheme and a behavioral activeness function is called a behavioral
alternative. Since the game played is with perfect recall, any behavioral alternative is
equivalent to a distribution over pairs of replacing schemes and activeness functions. Thus,
a distribution over behavioral alternatives is equivalent to a distribution over pure pairs.
Therefore, the restriction to pure alternatives does not create any loss in the generality of
the theorem. In other words, the theorem can be rephrased as follows. For any distribution
over behavioral alternatives there is a strategy which is regret free against almost all pure
alternatives at any sequence of states. The “almost all” here means with probability 1
according to both, the distribution over behavioral alternatives and the distribution over
pure alternatives induced by the behavioral alternatives. This statement implies that for
any distribution over behavioral alternatives there is a strategy which is regret free against
almost all behavioral alternatives at any sequence of states.

6. Approachability in large spaces

It is well known that the various no-regret theorems mentioned in Section 4 can be
proven by an approachability theorem. Our result is not exceptional. We prove it by an
approachability theorem in infinite dimensional space. For this purpose we resort to Lehrer
(1997) which extends the approachability theorem of Blackwell (1956). This section is
devoted to a short review of this result.

We think of the decision maker and of nature as two competing players. Instead of
having only one objective as usual (usually to maximize the expected payoff), here the
decision maker has a multiple objective. He wants to ensure that he has no regret against
many alternatives.
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Considering one alternative, the decision maker regrets not playing this alternative, if
the average payoff he actually received is smaller than the average payoff that could have
been received had he played the alternative. In other words, he has no regret if the actual
average payoff is at least the average payoff ensured by the alternative. Thus, for a given
alternative his goal is to ensure that the average realized payoff minus the “could have
been” payoff is at least zero. This goal extends to many alternatives. That is, in case many
alternatives are considered, the goal is to ensure that for each alternative the average of the
actual payoff minus the “could have been” payoff is at least zero.

The formal presentation of the game is as follows. Lebe a probability measure
overR. At any stage the decision maker chooses (possibly in a random fashion) an action
in A. Nature chooses a statesih After ¢ — 1 stages the history of actionsisg, ao, ..., a;—1
and the history of states is1, w2, ..., w;—1. At this time the decision maker decides to
play an actiong,, and nature decides to choose a state,The payoff is a function over
R, denotedX @) Thatis, for any(g, I) € R there is a value attached. In this context, we
referto(g, I) as a coordinate. The value &f“ ®") at the coordinatég, 1), X(““) (g, I),
is

I(ht—l’at)[u(wt’at) _”(wtag(ht—l’at))]a (2)

whereh;_1 = (w1, ...,w;—1,a1, ...,a,—1). The goal of the decision maker is to ensure
that the (long run) average payoff in almost every coordinate is at least zero.

Note that the payoffin (2) depends on the history. Stated differently, in the games played
between the decision maker and nature, the payoffs (recall, these are functiori@)over
depend on the historly,_1.2 As stated above, whether the coordinatel) is active or not
depends on whethér(h,_1, a;) is 0 or 1.

Up to periodn, the coordinatég, I) was activel (h,_1, a,) times. Thus, the average
payoff up to period:, over the active periods, at thg, /) coordinate is precisely the
quotient of (1). That is, considering the alternatige/), the decision maker has no regret
against(g, I), if the average payoff at thg, I) coordinate is, asymptotically, at least O.

Denote byX (g, I) the average payoff in the coordinate 7) up to timen along the
historyh, = (w1, ..., wy, a1, ..., a,). Thatis

’::1 X(at!wt)(g’ 1))

X, (g, )= <
! I(hn—1,an)
Using this notation, strategy is as good asg, /) at the sequence = (w1, w2, .. .), if
liminf X, (g, I) > 0 at(w, f)-almost any sequenea, az, ..., provided thatl — oo. In

order to link it with approachability, a few more notations are needed.

Let C be the set of all non-negative functions over That is,C = { : R — R;
¥(g,I) > 0 for u-almost all(g, I)}. Fix two infinite sequencesy, az, ... of actions and
w1, w2, ... of states. Denote bgl{,—%oo} the indicator of the set of alternativeg;, 1),
satisfyingl — oo. That is,1,;_, ., (¢, I) takes the value 1 if — oo and the value 0
otherwise. Note that the indicatalq— depends on the two sequeneasay, ... and

[— 00}
w1, W2, ....

2 1tis actually a stochastic game with deterministic transition probabilities (i.e., O or 1).
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Let X, (g, 1) = min{X,(g, 1),0}. We say that]l{,-_)oo})_(,, — C, if the difference
betweenC and]l{,-%oo})_(,, goes to zerqu-almost surely. That is, ii{,—%oo})_(;(g, I)—0
n-almost surely. Strategyf is as good asu-almost every(g, I), at the sequence
w = (w1, w2,...), If Lij oy Xn = C (o, f)-almost surely (i.e., forw, f)-almost all
sequences of actions). AIternativer;Iliff,—_)oo})_(,l approaches the sét, then the decision
maker has no regret playing, against almost all alternative strategies.

Lehrer (1997) provides a condition that guarantees that the decision maker has a strategy
that ensures that for any strategy of natlyie, ., X» approaches the s€t The adaptation
to the current context of Theorem 3 in Lehrer (1997) is as follows.

Proposition 1. 1. For any w € £2, if at any period n and after any history of lengthn — 1
hy—1 = (w1,...,w4-1,0a1, ...,a,—1), there is a mixed action p of the decision maker
(adistribution over A) such that

I(hy_1,
f X, (gJ)Z( IEh,, 1“; (a>[u(w,a>—u(w,gmn_l,a))]) du <0,
R

(3)
then thereisa strategy f, such that (w, f) almost surely ]1{,-_)00})_(,, — C.

In the statement of the proposition there are two probabilities involved. The first is the
probability overR, u. The second is the probability over sequences of actions induced
by (w, f). The theorem claims that, if (3) holds, then there exists a strategych that
with (w, f) probability 1,]1{,—%00})_(,, converges taC with p probability 1. Note that the

theorem ensures that, (g, I) — 0 (w, f)-almost surely only subject to the condition that
I is active infinitely many times. There is no way to ensure the convergence of the quotient
of (1) to 0 in case the denominator does not converge to infinity.

The goal of the decision maker is to bring the functip as close as possible to the
target set (of functions);. At periodn the gap betweeX, and the set, referred to
later as the error, is the difference betwegnand the closest point iff to X,,. This is
preciselyX .

In case the decision maker chose the acti@md nature chose the statethe payoff at
timen corresponding to coordinate, 1), is I (h,—1, a)[u(w, a) —u(w, g(hy—1,a))]. The
contribution of this single stage payoff to the averaggg, ) is greater as the coordinate
is less active. That is, the contribution of a single stage payoff to the aveéfage I)
decreases withi (h,_1, a). Furthermore, the contribution of a single stage payoff to the
average at the coordinate, I) depends whethdr(k,_1, a) is 1 or not. Taking these facts
into account, we consider a weighted next-time pay@ih, 1, a)/I (h,—1, a))[u(w, a) —

u(w, g(hy—1,a))], which depends orn/ (h,_1,a) and on I(h,_1,a). Note that the
weighted next-time payoff decreases witth,,_1, a). Furthermore, it is equal to 0 when
I(h,-1,a) = 0. The expected next-time weighted payoff, when the mixed agpids
played, is therefore,

I(hy—1,
Z(Mp(a)[u(w, a) — u(w, g(hn—-1, a))]>.
acA

I(hn—l’ (,Z)
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Inequality (3) says that the integral of the product of the error and the expected weighted
next-time payoff is less than or equal to zero. In terms of the geometry of the space of
functions overR this means that the expected next-time weighted payoff and the average
payoff, X,,, are located in two different sides of a hyper space that separates betyeen
andC.2 In this sense the next-time payoff “corrects” the past error. Proposition 1 states that
if at any periodn, there is a mixed action that ensures that the expected payoff “corrects”
the error accumulated up to periad- 1, then the error can be diminished to zero. That is,
there is a strategy, such thanl{,-%oo})_(,, approachef€ (w, f)-almost surely.

Remark 6. In fact Lehrer (1997) not only provides the condition, it also provides, like in
Blackwell (1956), the strategy that ensures tha]t{iﬁoo}xn(g, I) approachef (w, f)-
almost surely. The strategy defined there dictates at any stage to choose an action according
to the mixed actiorp that satisfies (3).
7. Theproof of the wide-range no-regret theorem

What remains to be done is to show that the condition of Proposition 1 is satisfied. Let

hn—1 be ahistory of length — 1. Denote forany, b € A Ry p ={(g, I); g(hy—1,a) =b}.
For anya {R..»}pea is a partition ofR into finitely many disjoint sets. Thus, for aay

7[ X; (g 1)%@@@—u(w,gmn_l,a))]du

I(hy-1,
_Z / X (g, )= (-1 a)[u(a),a)—u(a),b)]dp,

beA I(hn 1,a)

Thus, for any mixed action, say, (compare with (3))

f Xy 0.1 2 (70 @0, ~ ulo. shy-1. )] ) d

Z\ Tz )

—Z( / X (g DDy (a>[u(w,a>—u(w,g(hn1,a))]du>

acA 1(hp-1,a)
I(hp-1,a)
= X, (g, D=——"—q(@)u(w,a)dn
(1261:4 / I(hnf 1, )
I(hn-1,
-2 f g %q(u)u(w,b)du
acA beAR (hp-1,a)

3 In fact this is not Just a hyper space that separatgﬁrom C. This is the one that passes through the closest
pointinC to X,,, X, — X;, , and is perpendicular t&,, , the difference betweek, andC.
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v— I(hy—1,a)
> X . s @@ d

I(hy—1,b)
— / L (g, )71_(}!” b gD)u(w,a)du

n—1,d )

I(hn—l, b)
- g =————-qb) du)
bEZA / I(hnf 1, b)

I(hn 1aa)
=Y u(w,a) q(a)/x (& D O

acA
Ln1,b)
— b .
Zq()fx & Dyt )

beA

:Zu(w,a)<f)?;( 1)% (a)du
R

The condition of Proposition 1 is that there exigtsuch that
I(hp—1,a)
> ulw,a) p(a)/x O
I(hp-1,a)

acA
I(hy—1,b)
- b _7d \O.
Zp()fx DT u)<

beA

This inequality will be guaranteed if we show that there exisssich that for any: the
term in the parenthesis is equal to zero. That is,
I(hn 1, a)

p(a)/X (g,l)m u

I(hn 1,b)
- (b)/x (5.1 du=0 "
bEZAp R T (4)

Consider the matn*Wb,a}b,aeA, where

— I(h,—
Wb,a=—/X;(g,I)Mdu forb#£a and

I(hp-1,b)
Rb,a
- I(hy-1,b)
Wpp = / X, (g =——"—=du
' " I(hp-1,b)
R—Rpp

Note that) ", W; , = O for everyb. Thought of as a zero-sum game, where the row player
(the player who chooses the actibjis the minimizer, the matri¥¥ has a value zero. To
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see this, note that the column player (here the maximizer) can ensure getting at least 0 by
playing the uniform distribution ovet. Furthermore, against any distribution over tie

(of the column player), say, the row player can choose a row, seyywhoses probability

is maximal. Thus, if(b) is maximal, the expected payoff that corresponds &mds is,

> 5@ Wp.a + (bYW
a#b

_ _ - I(hn—l’ b)
= Z((s(b) s(a)) / X, (g, 1)71_(}1”71’ b du> <0

a#b Rb.a

becauseX, (g, I)(I (hy—1,b)/I(hy—1, b)) < 0. Since the row player can ensure at most
zero against any mixed actigrof the column player, we obtain, by the minmax theorem,
that the row player has an actignthat ensures the value. That is, there exissich that
for any column the payoff is at most zero.

In order to conclude the argument we need to show that withe payoff is precisely
zero for any column. However, this is obvious since there exists an optimal action of
the column player which assigns a positive probability to any column: the uniformly
distributed mixed action. That is, the mixed actiprsatisfies (4), and therefore satisfies
the condition of Proposition 1.

Proposition 1 ensures the existence of a stratégyat guarantees that the average
payoff,]l{,—%oo})_(,, — C (w, f)-almost surely, regardless of nature’s choices. We conclude
that there is a strategf which is regret free againgt-almost all alternativeég, 1) at any
sequence of realizations, wy, .. ..

8. Final remarks
8.1. An alternative proof 4

The main result of this paper can be proven in an alternative way. Sandroni et al. (2000)
proved that there exists a forecasting rule that calibrates with a large set of checking rules.
For any replacing scheme one can find a few corresponding checking rules that have
the following property. A best response to the forecasting rule that calibrates with the
corresponding checking rules is a regret free strategy against the replacing scheme under
consideration. When a large set of replacing schemes is considered one can find, using
Sandroni et al. (2000), a forecasting rule that calibrates with almost all the corresponding
checking rules. Like in Hart and Mas-Colell (2000), a best response to this forecasting rule
is regret free against almost all the replacing schemes under consideration.

From a computational point of view the proof provided here is significantly simpler than
the alternative proof. The reason is that here the approachability theorem requires solving,
at any stage, a fixed sized| x |A|, zero-sum game (recall the matf®¥s 4}p.aca). In

4 The contents of this section has been suggested independently by Rann Smorodinsky and by an anonymous
referee.
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contrast, in the proof of Sandroni et al. (2000) the size of the zero-sum game that the
forecaster needs to solve at any stage (in order to apply the approachability theorem)
increases with time. Furthermore, in the alternative proof the construction of the regret free
strategy must pass through a forecasting rule which is conceptually rather complicated. The
forecasting rule provided by Sandroni et al. (2000) is, at any stage, a random choice from
some set of distributions over the gt

8.2. No-regret and correlated equilibrium

In a game with a few players, each one may consider the other players as nature. In this
case, other players’ chosen actions are, in terms of the previous sections, the realized state
of nature. Denote by; playeri’s set of actions. As stated in Hart and Mas-Colell (2000),
if each playern plays a strategy which is as good @s.», I,) for anya, b € A;, then the
empirical frequency of the joint actions played convergesto the set of correlated equilibria.

It may well happen that the empirical frequency over the even times is meaningless. Thatis,
it may happen that the empirical frequency of the joint actions over the entire set of times

converges to the set of correlated equilibria, while the statistics over the even number times
does not converge to anything meaningful.

The wide range no-regret theorem ensures that each player has a sifatdggh is
regret free against each one of the alternatives,, 1), a, b € A;, and simultaneously
against (recall the activeness functiBnmentioned in Section 2)g, ., E1,), a,b € A;.

That is, over the even number periods whérdictates playing:, f performs at least as

well as the actiob. The same argument as in Hart and Mas-Colell (2000) implies that if
each player employs such a strategy, the empirical frequencies over the entire history and
that restricted to the even number periods, both converge to the set of correlated equilibria.
There is no guarantee that the two frequencies are in any sense similar to each other.

One can employ many other activeness functions that are active on pre-specified subsets
of periods. In case all players do the same and if a subset of periods is infinite, the empirical
frequency of the joint actions (over this subset) converges to the set of correlated equilibria.

8.3. Guessing games

At the end of Section 7 above | defined a matixand showed that the row player
has an action that guarantees that the expected payoff at any column is exactly zero.
The matrix—W belongs to a family of games called Guessing games (see Lehrer, 1998).
A guessing game is a zero sum game in which both players have the same set of Actions,
The payoffs on the diagonal of the game matrix are non-negative while the other payoffs
are non-positive. Finally, the sum of all payoffs in any row is zero. The interpretation of
such a game is as follows. The column player chooses an acteomd the row player
guesses which action was it. In case the row player guesses correctly, he receives a reward
(a payoff in the diagonal) otherwise he is penalized by receiving a non-positive payoff
(off the diagonal). In guessing games, for any guessf the row player, the sum of all
penalties is equal to the reward. Lehrer (1998) uses the fact that any positive combination
of guessing games is a guessing game to show that a player who participates in many
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sequential guessing games at the same time, can ensure that, on average, the payoff in each
one of them is asymptotically non-negative.

One can find references (explicit or insinuated) to guessing games in Hart and Schmei-
dler (1989), Nau and McCradle (1990), and Foster and Vohra (1999).

8.4. No-regret theorem with imperfect monitoring

Rustichini (1999) generalized Hannan theorem to the case of imperfect monitoring. At
any stage the decision maker receives a signal which stochastically depends on the state
and the action chosen. Since the information about the previous choices of nature is partial,
there are many possible distributions oy2rthat are informationally consistent with the
empirical frequency of the signals received (see also Lehrer (1989)). Rustichini showed
that there is a strategy whose long-run average payoff is as high as the payoff obtainable
by playing a best response to the worst mixed choice of nature which is informationally
consistent with the empirical frequency of signals. In other words, there exists a strategy
which is regret free against the worst (in the sense of minmax) mixed choice of nature
which is indistinguishable (using the signhals received through the information structure)
from the actual frequency of states.

| conjecture that Rustichini’s result can be generalized to a wide range of alternatives.
In other words, it is conjectured that in the case of imperfect monitoring there exists
a strategy which is regret free (in a sense adapted to the information structure) against
many alternatives.
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