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Abstract. Control of high-performance low-cost unmanned air vehicles involves the problems of  

incomplete measurements, external disturbances and modeling uncertainties.  Sliding mode control 

combines high precision with robustness to the aforementioned factors. The idea behind this approach is 

the choice of a particular constraint which, when maintained, will provide the process with the required 

features and remove, therefore, the plant’s uncertainty. However, standard sliding modes are 

characterized  by a high-frequency switching of control, which causes problems in practical applications 

(so-called chattering effect). A second order sliding controller implemented in the present paper features 

bounded continuously time-dependent control and provides higher accuracy than the standard sliding 

mode, while  preserving precise constraint fulfillment within a finite time. It possesses, also, significant 

adaptive properties. The general approach is demonstrated by solving a real-life pitch control problem. 

Results of a computer simulation and flight tests are presented.  

I. Introduction 

  Aircraft and missile systems are equipped with control systems whose tasks are 

to provide stability, disturbance attenuation and reference signal tracking, while their 

aerodynamic coefficients vary over a wide dynamic range due to large Mach-altitude 

fluctuations and due to aerodynamic coefficient uncertainties resulting from inaccurate 

wind tunnel measurements. 

 It is common practice, when designing a control system for an unmanned air 

vehicle (UAV), to represent the flight envelope by a grid of Mach-altitude operating 



AIAA Journal of Guidance, Control and Dynamics, 23(4), 2000, 586-594 

 

points, and then to perform a linearization of the nonlinear state equations at the 

equilibrium points (so-called “trim” points) of the gridded flight envelope. The plant in 

fact becomes a differential inclusion (see Boyd et al. 1994) under continuously varying 

flight conditions. There are many possible ways of dealing with the control of such 

linear time-varying plants, the classical approach being to design a controller for a mid-

envelope point and then to schedule the controller’s gain according to a measured (or 

derived) parameter which represents flight conditions, such as dynamic pressure 

(McRuer, Ashkenas and Graham 1973).  Gain scheduling is aimed at keeping one 

feature of the closed loop (e.g. natural frequency of the dominant poles) approximately 

constant throughout the flight envelope.  In another method, H∞  methods are invoked 

to design a collection of full (Doyle et al. 1989) or reduced order controllers (e.g. Peres 

et al. 1994, Yaesh & Shaked 1995), where, for each operating point in the flight 

envelope grid, a controller with a fixed structure results. The ensuing set of controllers 

is then transformed into a single gain-scheduled controller by obtaining a least squares 

fit of its parameters with respect to dynamic pressure, or  Mach number, etc. A more 

systematic treatment results when it is assumed that the underlying differential inclusion 

resides within a convex polytopic, where a few extreme operating points in the flight 

envelope are selected as the vertices of a convex hull, and all other possible operating 

points are represented as convex combinations of these vertex points. A gain-scheduled 

controller is then designed using LMI (linear matrix inequalities) methods (Gahinet & 

Apkarian 1995). 

 All of the above-mentioned methods are linear design techniques and require 

either exact knowledge of system parameters, or, alternatively, assumption of some 

uncertainty model such as norm boundedness or polytopic uncertainties, thus allowing 

for robust controller design. Most of the currently available methods (e.g. Boyd et al. 

1994) do not combine robustness (with respect to structural uncertainties) and gain 

scheduling. One possible approach is adaptive control design which includes some form 

of observation and parameter identification, and assumes that the uncertainty is inherent  

in a few parameters that are constant or slowly varying. Other approaches use dynamic 
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inversion and feedback linearization (Brockett 1978).  All of the above approaches 

require at least approximate knowledge of some parameters. On the other hand, the 

variable structure system (VSS) method may, in principle, be implemented for dynamic 

systems having only a qualitative description and a number of inequality restrictions. As 

will be shown in the sequel, this approach will provide a high-performance controller 

which is both gain-scheduled and robust, and uses a rather straightforward design 

procedure. 

 Sliding modes are the primary form of operation of VSSs. A sliding mode is a 

motion on a discontinuity set of a dynamic system and is characterized by a 

theoretically-infinite switching frequency. Such modes are used to maintain the given 

constraints with utmost accuracy, and are known for their robustness with respect to 

both external and internal disturbances. Unfortunately, standard sliding modes also 

feature high-frequency switching of input signals (controls). As the switching frequency 

tends to infinity, sliding mode motion trajectories approach trajectories of a smooth 

system described by a formal substitution of a smooth equivalent control (Utkin 1977, 

1992) for the discontinuous control signal. However, such a mode might be 

unacceptable if the control signal has some physical significance, such as angular 

position or force. Indeed, high frequency switching may be destructive for end effectors 

or may cause system resonances. The accompanying (sometimes dangerous) vibrations 

are termed “chattering”.  

 The higher the order of an output variable derivative where the high frequency 

discontinuity first appears, the less visible the vibrations of the variable itself will be. 

Thus, the way to avoid chattering is to move the switching to the higher order 

derivatives of the control signal. The problem is how to preserve the main feature of 

sliding modes: exact maintenance of constraints under conditions of uncertainty. Such 

sliding modes were discovered and termed “higher order sliding modes” (HOSM) 

(Levantovsky 1985, Emelyanov et al. 1986 a,b,c, Chang 1990, Levant (Levantovsky) 

1993, Fridman and Levant 1996, Bartolini et al. 1997a,b). The constraint to be kept 

being given by an equality of some output variable to zero, the order of the sliding mode 
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is the order of the first discontinuous total time derivative of that variable. These sliding 

modes may attract trajectories in finite time like the standard ones or may be 

asymptotically stable. Being removed to the higher derivatives of the control, the 

switching is no longer dangerous, since it takes place within the inner circuits of the 

control system (mostly in a computer) and not within the actuator. HOSM may provide 

for up-to-its-order precision with respect to the measurement time step, as compared to 

the standard (first order) sliding mode whose precision is proportional to the 

measurement step. 

 A practical application of a second order sliding mode with finite time 

convergence is demonstrated in the present paper for the first time. The problem 

considered is to ensure the tracking of the pitch angle of a flight platform to some 

external signal given in real time while the platform is subject to unmeasured external 

disturbances. Some delay and noise are also present in the measurements, and the 

system contains an actuator whose behavior exhibits both delay and discretization 

effects. A new controller is implemented, which is a special hybrid modification of the 

earlier controllers by Levant  (1993). 

 

II. Variable Structure Systems: A Brief Description 

The VSS Concept. The idea of a VSS is illustrated here by a simple example. Consider 

a dynamic system of the form: 

    &&y  = g(t, y, &y ) + 3u,      (1) 

where y ∈ R, and u ∈ R is the control. States y and &y  are available as measurements. 

The problem is to stabilize the system at the origin 0. If g were known, the problem 

would be easy, otherwise it is rather difficult. Let g be some unknown but bounded 

measurable function, |g|<1.  

 The problem could be solved if we could fulfill and precisely maintain the 

constraint condition σ = y + &y = 0. This may be done by VSS control of the type: 

    u = -  sign σ       (2) 

or by  
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    u = -  1 2+ &y sign σ.                (3) 

Indeed, u = - 1 2+ &y sign σ allows for the control to be predominant in the expression 

for &σ , 

   &σ = &y + &&y = &y  + g(t, y, &y ) + 3u,    (4) 

and this in turn leads to the inequalities σ &σ  ≤ 0, | &σ | > 1, thus implying finite-time 

convergence of σ to 0. The control law u = -  sign σ , on the other hand, provides only 

for local convergence within some vicinity of 0 where | &y | < 1. The resulting closed  

loop dynamic system is discontinuous and cannot be analyzed conventionally, since the 

motion on the line σ = 0 is indeterminate. 

 A special theory of such differential equations was developed by Filippov (1988) 

in the early 60s. The phase portrait of the closed loop system is shown in Fig. 1. After 

the system’s trajectory eventually impinges upon the constraint surface σ = 0, the 

constraint σ = 0 is kept here in so-called sliding mode which is further referred to as 

“standard”. The motion in the sliding mode is provided by “infinite-frequency 

switching” control and has to be understood as a limiting motion which is attained with 

gradual disappearance of various switching imperfections such as hysteresis or 

switching delays (Filippov 1988).   

 If the function g were known a-priori, the control law u = - ( &y  + g(t, y, &y ))/3 

found from (4) would ensure that the system remains on the sliding surface σ = 0 once it 

has reached it. Such a control is called “equivalent control” and is denoted by ueq. The 

important fact is that, with no relation to a control providing for σ ≡ 0, the 

corresponding motion is described by (1) with ueq substituted for u. That proposition 

was proved by Utkin (1977, 1992) for dynamic systems linearly dependent on control u 

with ueq uniquely determined from the equation &σ = 0 and generalized by Bartolini and 

Zolezzi (1986) to include some cases of non-linear dependence on control.  It was also 

shown (Utkin 1977, 1992) that in practical applications the average control value tends 

to the equivalent control. 

 Hence, the main advantages and disadvantages of the classical VSS 

methodology are the following: 
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• Highly precise maintenance of constraints is ensured in the face of heavy 

uncertainty conditions, which leads to system performance being insensitive to both 

external and internal disturbances. 

• VSS control is characterized by high-frequency switching while in 1-sliding 

mode, and does not tend to any function of time when switching imperfections 

vanish and switching frequency tends to infinity. Only its average value tends to 

some specific smooth function. As a result the controlled system is subject to the 

“chattering” effect if the control is some physical or mechanical quantity.  

 

 

The idea of 2-sliding mode.  In order to avoid chattering, it was proposed to suitably 

modify the dynamics within a small vicinity of the discontinuity surface in order to 

avoid real discontinuities and at the same time preserve the important properties of  the 

system as a whole. A transition to the modified system defined near the switching 

surface has to be sufficiently smooth. This idea is realized by insertion of a functional 

unit (Slotine, Sastry 1983) or of an auxiliary dynamic system (Emelyanov, Korovin 

1981). In the present paper we are interested in the latter approach.  

  Let  σ = 0 be the constraint condition to be fulfilled, while our dynamic system 

is of relative degree 1, thus implying that the control appears explicitly already in the 

first total time derivative of σ. Hence, control chattering corresponds to chattering in &σ  

and vice versa. The idea is to keep exactly two constraint conditions σ = &σ  = 0 instead 

of the one originally given, providing simultaneously for continuity of &σ . To this end 

the state space is inflated by the addition of the control variable u as a new coordinate. 

The total time derivative &σ  may now be regarded as a regular continuous function 

defined on the extended state space. The task is completed by prescribing the 

appropriate dynamics to the extended state space coordinates. For that purpose the time 

derivative &u  of the control may, for example, be treated as the new control variable. By 

maintaining σ + &σ  = 0 the stated auxiliary problem may be solved via the standard VSS 

approach considered previously. This will lead to the joint fulfillment of the two 
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constraints mentioned above in infinite time by means of a continuous control u(t). 

Attaining the same goal in finite time is a more intricate problem. Provided σ and &σ  are 

continuous functions of the closed-loop system state, the motion in the mode σ = &σ  = 0 

is called “second order sliding mode” motion.  It should  be noted that the function 

&σ (t,x,u) is considered as unknown, and only its current value &σ (t,x(t),u(t))  (or some 

approximation thereof) is available in real time by manipulation of the observed data or 

measurements.  

 In similar fashion, sliding modes of arbitrary order r  are defined as modes 

keeping σ = &σ  = ... = σ(r-1) = 0 with continuous σ, &σ , ..., σ(r-1) and discontinuous (or 

undefined) σ(r) (Levantovsky 1985, Emelyanov et al. 1986a, Levant 1993, Fridman and 

Levant 1996). The terms “rth order sliding mode” are further abbreviated to “r-sliding 

mode”. With discrete measurements, r-sliding modes may provide for sliding precision 

of up to the rth order with respect to the time interval between the measurements 

(Levant 1993). The most interesting r-sliding controllers are those endowed with finite 

time convergence properties, since only they can provide for the above-mentioned 

higher order precision and their information handling and storage requirements are 

usually more modest. Such finite-time convergent algorithms may be constructed for 

any order (Levant 1998b).  

Standard 2-Sliding Controllers. Let the system to be controlled be described by some 

uncertain dynamic system  

&x = f(t,x,u). 

The aim is to fulfill and keep exactly the constraint σ = 0 by means of control u∈R 

continuously dependent on time. Here σ = σ(t,x) is an output variable available in real 

time, and neither f nor dimension of x need to be known. The functions f(t,x,u) and 

σ(t,x) are supposed to be sufficiently smooth.  

 Assume that the standard (1-sliding) controller  u = -sign σ provides for the 

existence of a 1-sliding mode σ = 0.  Thus, it may also be assumed that there are some 

positive constants Km < KM, σ0, C such that the inequalities 
0 < Km < ∂

∂u
&σ(t,x,u) < KM,    | ∂σ

∂
∂σ
∂

& &( , , ) ( , , ) ( , , )t xt x u t x u f t x u+ | < C, u &σ> 0 with |u| ≥ 1 
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hold in some region |σ| < σ0. Here &σ (t,x,u) = σ′t(t,x) + σ′x(t,x)f(t,x,u). The algorithm to 

be constructed has to solve the problem for any dynamic system of the class defined by 

the constants Km < KM, σ0, C. It will obviously be robust with respect to any disturbance 

or uncertainty of the mathematical model which do not stir the system from that class.  

 The above assumptions are needed in order to ensure the existence of an 

equivalent control ueq(t,x) defined in the region |σ| < σ0, satisfying equation &σ (t,x,ueq) = 

0. &ueq  is uniformly bounded by C/Km, |ueq| < 1. As a result this unknown function may 

be tracked by a bounded Lipschitz control. Any proposed algorithm has to hold the 

transient trajectories inside the region |σ| < σ0 where the system possesses “good” 

properties. The following 2-sliding controllers (Levant 1993) solve the stated problem: 

1.  &

,
& ,
& ;

u
u u

u
u

=
− >

− ≤ ≤
− > ≤









 with 
sign  with 0,  
sign  with 0,  

m

M

1
1
1

α σ σσ
α σ σσ

      (5) 

2.    u = u1 + u2,           

u

u
u u

u

2
0 0

0

1

1
1

=
− >
− ≤







=
− >

− ≤




λ σ σ σ σ
λ σ σ σ σ

α σ

ρ

ρ

   sign ,     
   sign ,      

,     
  sign ,      

,
,

&
,

,

   (6) 

            

where αM > αm > C/Km, 0 < ρ ≤  0.5, λ, α, σ0 > 0. A few additional algebraic restrictions 

(Levant 1993) involving αM, αm, ρ, λ, α, C, Km, KM can be easily fulfilled with 

sufficiently large λ,  α, αm, αM/αm, and are omitted here. Controllers (5) and (6) are 

called twisting and super-twisting algorithms respectively. In practice the most 

convenient way to find the appropriate parameter values is to adjust them during 

computer simulation, otherwise redundantly large values may be achieved due to the 

rather rough evaluation technique. Note that control law (5) may be rewritten in a more 

compact form to be used in the sequel : 

                         &
,

& ,
u

u u
r r u

=
− >

− ≤ ≤




 with 
 sign  -   sign 0,  1 2

1
1σ σ

 

where r1 > r2 > 0, αM = r1 + r2, αm = r1 - r2. 
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 Let  t0, t1, t2, ...,   ti+1-ti = τ > 0, be the instants in time when σ is measured. Since 

the exact value of the derivative is not available in practice and only its sign is needed, 

&σ  is replaced by its first difference ∆σi = σ(ti)-σ(ti-1) thus resulting in 

                               &

,
,
,

u
u t u t
t t u t
t t u t

i i

i i i i

i i i i

 =  
- ( ),  ( )

sign ( ),  ( ) > 0, ( )
sign ( ),  ( ) 0, ( )

M

m

>
− ≤
− ≤ ≤









1
1
1

α σ σ
α σ σ

∆σ
∆σ

  (7) 

where t∈ [ti, ti+1). Second order sliding precision with respect to the measurement time 

interval τ is ensured for the above controller (Levantovsky 1985, Emelyanov et al. 

1993, Levant 1993). Also the second algorithm provides the same precision order with 

ρ=0.5. That is one order higher than with the 1-sliding control of the form  u = -sign σi 

(Levant 1993, 1998a).  

 Both 2-sliding controllers have their advantages and disadvantages. Algorithm 

(6) is very robust, since it does not require any information about &σ . It provides for 

proportionality of sup |σ| and sup | &σ | to ε and ε1/2 respectively in the presence of any 

measurement noise of magnitude ε (Levant 1998a). On the other hand, the control 

signal it produces is not Lipschitz when σ is small, and this may result in noise on the 

control signal. Algorithm (5) and its discrete measurement counterpart (7) produce 

Lipschitz control signals, but lose convergence properties when confronted with large 

measurement errors or very small measurement time steps.  

Explanation of 2-sliding algorithms. A detailed explanation having been presented in 

a number of papers (Levant 1993, Emelyanov et al. 1993, Levant 1998a), the main 

points only are clarified here. Denote Λu t x
f t x u( ) = ( , , )⋅ ⋅ + ⋅

∂
∂

∂
∂

( ) ( ) . It is apparent that 

&σ (t,x,u) = Λu(σ(t,x)), |ΛuΛuσ| < C. Calculate &&σ  for the control laws (5) and (6) 

respectively, assuming |u| < 1, |σ| < σ0:
 
 

&&σ = ΛuΛuσ + ∂σ
∂
&

u
&u  = ΛuΛuσ - ~α ∂σ

∂
&

u
sign σ, ~α = 

− >
− ≤





α σ σσ
α σ σσ

M

m

sign  ,  
sign  ,  

&

&

0
0

;           (8) 

&&σ = ΛuΛuσ - 1
2 λ

∂σ
∂
&

u
&σ |σ|

- 1
2

+
∂σ
∂
&

u
&u1  = ΛuΛuσ - 1

2 λ
∂σ
∂
&

u
&σ |σ|

- 1
2 - α ∂σ

∂
&

u
sign σ.        (9) 
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Equations (8) and (9) may be rewritten in the form &&σ = ΛuΛuσ - α
∂σ
∂
&

u
sign σ where α  

is a time-varying parameter. Following is the set of principles which are used in the 

construction of the two aforementioned 2-sliding controllers : 

1. ∂σ
∂
&

u
 is a definite (positive or negative) bounded quantity separated from 0 (it is 

taken positive here) . 

2. The equivalent control ueq(t,x) never leaves some range available for u.  It means 

here that ueq remains within some range [-u0, u0] ⊂ [-1, 1]. Otherwise, the 

constraint σ = 0 could not be kept identically. 

3. The time derivative &u of the control must dominate in expressions (8), (9) for &&σ . 

It means formally that inequality inf ( α
∂σ
∂
&

u
) > sup|ΛuΛuσ| is satisfied providing 

for &&σ σ < 0 (it is sufficient here that inf ( α
∂σ
∂
&

u
) > C). This causes | &u | > sup | &ueq | 

to be held. It also leads to the projection of the trajectory onto the σ &σ plane being 

rotated around the origin. 

4. The idea is to leave the region σ &σ  > 0 as soon as possible and remain within the 

region σ &σ  < 0 for as long as possible. For that purpose α σσ| & >0  must be 

sufficiently large with respect to α σσ| & <0 . 

  For purposes of comparison, consider a controller of the form: 

&
,

,
u

u u
u

=
− >

− ≤




  with 
 sign   with 

1
1α σ

 

where α is a positive constant (Emelyanov, Korovin 1981). Such a controller turns into 

the standard relay controller u = -sign σ as α → ∞. Taking α  = α results in 

                         &&σ = ΛuΛuσ + ∂σ
∂
&

u
&u  = ΛuΛuσ - α ∂σ

∂
&

u
sign σ.   (10) 

 Consider trajectories of (8), (9), (10) on the plane  σ, &σ  in a small vicinity of the 

origin σ = &σ  = 0 corresponding to the 2-sliding mode. Take for comparison trajectory 

segments lying in the half-plane σ ≥ 0, and let α = αM. Let σ = 0, &σ  = &σ 0 at the initial 
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time, and at the final time σ = 0 and &σ  = &σ 1, &σ ′1, &σ ″1 for (10), (8), (9) respectively 

(Fig. 2 a). Then &σ 1 ≈ - &σ 0, on the contrary  | &σ ″1/ &σ 0|, | &σ ′1/ &σ 0| can be shown to be less 

than some constant η < 1. Thus, successively continuing the trajectories from one half-

plane to another, obtain trajectories of  (8) and (9) converging to the origin (Fig 2 b, c). 

The convergence time may now be estimated by the sum of the achieved geometric 

series | &σ 0|, | &σ 1|, ... Indeed, consider the twisting algorithm (8). The absolute value of &&σ  

varying between two positive constants, the convergence time is proportional to the sum 

of absolute values of intersections with axis &σ . The latter being estimated by a constant 

multiplied by ηi

i=

∞

∑
0

, the convergence time is finite. The super-twisting algorithm (9) 

convergence time is similarly estimated. 

Finite difference usage instead of &σ  in algorithm (5). Calculation of the exact derivative 

being extremely not robust, consider now the proposed replacement of  &σ  by ∆σi = 

σ(ti+1)- σ(ti) = &σ(ti)τ + η(ti+1)- η(ti) + O(τ2), where η is the measurement noise. It is easy 

to see that sign ∆σi preserves its value if the noise is small with respect to &στ. Thus, 

errors in the measurements of sign ∆σi are possible only in some vicinity of σ axis in 

the plane σ, &σ , while errors in the measurements of sign σi are possible for |σ| ≤ ε only. 

Since αM > αm > C/Km, the trajectory rotation is preserved with |σ| > ε, and the noise 

influence on the trajectories (Fig. 2b) is negligible for small noises. For larger noises a 

special measurement step feedback τ = min[max(κ|σ(ti)|
1/2,τm), τM] is to be applied, 

turning the twisting algorithm into a robust one. It preserves the accuracy σ = O(τm
2), &σ  

= O(τm) in the absence of noises and σ = O(ε), &σ  = O(ε1/2) in the presence of 

measurement noises with magnitude ε, τm = O(ε1/2) (Levant 1993, 2000, to appear). In 

fact, simulation shows that with a relatively large measurement step characterizing the 

pitch control problem considered further the noise influence may be neglected. 

Nevertheless, another more robust controller was applied ensuring for algorithm 

convergence for larger noises as well. 

Chattering avoidance. Any approach (adaptive, linear or other) attaining exact 

maintenance of the constraint σ = 0 will yield, as a result, the so-called zero-dynamics 

motion (Isidori 1989) described by the formal substitution of the smooth equivalent 
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control for the real control. So any r-sliding controller does, r = 1, 2, .... The difference 

is that with r = 1 the sliding control is a discontinuous infinite-frequency switching 

signal, its average value only being equal to the equivalent control, while the r-sliding 

control, r > 1, is an (r-1)-smooth function really coinciding with the unknown 

equivalent control, when the r-sliding mode is obtained. In the presence of a switching 

delay or discrete-time measurements the r-sliding control contains an infinitesimally-

small high-frequency vibration component with the magnitude proportional to the 

switching delay (measurement step) powered to r-1 (that evaluation is true with respect 

to most of the known finite-time convergent controllers). Having infinitesimal energy, 

such a component cannot be distinguished from natural noises always present in the 

system and is harmless. Another usually more significant source of control vibration is 

the measurement error. The latter problem persists for any feedback control based on 

measurements of the real-time deviation from the constraint. For an instance, any linear 

control technique is, in general, more sensitive to such errors, for it usually requires 

relatively large gains in order to overcome the uncertainty. With discrete measurements 

the corresponding performance is often hardly distinguishable from a standard 1-sliding 

mode with a minimized control magnitude. 

 Let ε be the magnitude of the noise in the measurements of σ, noise being any 

function measurable in the Lebesgue sense. It may be shown (Levant 1993, 2000, to 

appear) that both 2-sliding controllers (the above-mentioned variable measurement step  

is to be used in the twisting controller) are almost insensitive to the noise frequency and 

provide for the magnitude of σ being of the order of ε, while control vibrations u - ueq 

and &σ  have maximal possible magnitudes proportional to ε1/2. 

Example. Consider a simple dynamic system  

&σ = a(t) + 2u,  |a(t)| ≤ 1, | &a (t)| ≤ 1.  

where a(t) is unknown. It satisfies all the assumptions with arbitrary σ0, so that σ0 = ∞ 

may be taken. In that case the twisting algorithm (5) with αm = 2 and αM = 6 is 

effective, and the super-twisting algorithm (6) may be taken in a simplified form 
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u = -2 |σ|1/2 sign σ + u1,     




≤σ−
>−

=
.1     , sign  3

,1    ,
1 u

uu
u&  

Both controllers provide for σ ≡ 0 in the absence of measurement noises, providing for 

finite-time convergence of  u to the unknown function ueq = 0.5a(t). 

Hybrid 2-sliding controller. The controller used in the sequel is derived from the 

following control law (that is already a discrete-measurement form): 

u = u1 + u2,           

u
t t

t t t

u
u t u t

t t u t
t t u t

i i

i i i

i i

i i i i

i i i i
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0 0

0

1

1
1
1

=
− >

− ≤







=
− >
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λ σ σ σ σ

α σ σ
α σ σ
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ρ
   sign ),    ) 

 )  sign ),     ) 

)  with )
 sign )   with ) 0,  )
 sign )   with ) 0,  )

m

M

( ( ,
( ( ( ,

&

( ( ,
( ( ( ,
( ( ( .

∆σ
∆σ

  (11) 

Being a hybrid of the standard 2-sliding controllers (5), (6), this controller is very robust 

and has a faster convergence rate than (5), (6). Its convergence persists even with 

significant measurement errors. Indeed, the use of sign ∆σi improves the convergence 

properties of controller (6), having combined them with the convergence mechanism of 

the twisting controller. At the same time the super-twisting convergence mechanism is 

also preserved when sign ∆σi is invalid, if λ is taken large enough. 

III. Flight Platform Control 

Pitch control problem. The real-life control problem we are confronted with is the 

pitch angle control problem of the Delilah vehicle (Ben-Asher 1995). The Delilah 

vehicle is a small turbojet powered decoy equipped with active and passive Radio 

Frequency (RF) payloads which imitate a full-size aircraft.  Its weight is 400 lbs, with a 

dash speed of about 770 fps, a stall speed of approximately 250 KEAS (equivalent air 

speed in Knots), and a flight ceiling of close to 30,000 ft. Starting 2 seconds after the 

Delilah - host vehicle separation, the pitch angle control loop must quickly track a pitch 

angle command profile which is defined in real time and in situations where the 

structural asymmetry in pitch due to manufacturing tolerances may possibly be rather 

large. Usually a high gain integrator in a PID (proportional + integral + derivative) loop 



AIAA Journal of Guidance, Control and Dynamics, 23(4), 2000, 586-594 

 

would suffice for the task.  However, a high integrator gain would need excessive 

damping and is rather difficult to achieve due to the intricate characteristics of the 

stepper motor servo with which the Delilah vehicle is equipped.  Note that the Delilah 

vehicle is extremely rigid, and hence flexible modes are completely ignored in the 

discussion below.   

Mathematical statement of the problem. The problem is to enforce the tracking of 

the flight platform’s pitch angle θ to a signal θc(t) given in real time during the course 

of the flight, while being subjected to unmeasured external disturbances. The nonlinear 

rigid body dynamics of the system is of six degrees of freedom (DOF) where the 

aerodynamics forces and moments model is based on wind tunnel measurements. The 

Delilah vehicle is equipped with an air data system providing dynamic pressure, Mach 

number and altitude. Therefore, the controller adaptively depends on these flight 

conditions. For simplicity of the design process we have used a linearized model for 

each relevant envelope point on a given grid.  The six DOF simulations were used to 

verify the design before flight tests.  More specifically, the nonlinear  dynamic system 

is replaced by its 5-dimensional numerical linearizations describing the vertical-plane 

motions and calculated at 42 equilibrium points within the “altitude - Mach number” 

flight envelope. Each system possesses the form 

& , & , & ,x Ax C
q

Bu q a x cq bu qt= +






 + = + + =

θ
θ         

where  a, B, x ∈ R3, q, θ, u, b, c ∈ R, A, C - 3× 3 and 3× 2 matrices respectively, u is 

the control (horizontal stabilizer angle). The coordinates are two velocity components  

x1, x2 [ft/sec], height x3  [ft], θ [rad] and q = &θ  [rad/sec]. These coordinates, as well as    

u [rad], θc and &θc  are bounded by some given constants. The corresponding parameters 

of the linearized system as well as most of the coordinates are not available in real time. 

The only measurements available are θ, θc, &θ , &θ c, the dynamic pressure and the Mach 

number (which is equivalent to the altitude and the Mach number). The system has 

second relative degree (Isidori 1989), which implies that the control appears explicitly 

only in the second time derivative of θ. Some delay and noise are also present in the 
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measurements, and the system contains an actuator whose behavior exhibits both delay 

and discretization effects. That actuator also imposes some bounds on the magnitude 

and velocity of the control variation. 

 Rewrite the dynamic equations as: 

     d
dt

x

q
G

x

q
Huθ θ

















=
















+ , 

where the 42 values of G and H are given corresponding to the 42 points within the 

flight envelope, all of which represent open-loop stable systems. The control algorithm 

has to be effective for all of them. It has also to be sufficiently robust in order to 

preserve its properties when controlling a real system not very similar to the given set 

of linear models. We present two such matrix pairs G and H as follows: 

a. altitude = 1334 m ( 4376 ft) , dynamic pressure p = 200 lb/ft2, Mach number M = 0.4 

 

G =

− − − −
− − −

−

− − −























0 01213 0 05233 0 00007 31 91731 54 2126
0 07226 0 70408 0 001 4 02416 433 03
0 12422 0 99225 0 437 387 0

0 0 0 0 1
0 00615 0 03901 0 0 00001 0 596

. . . . .

. . . . .
. . .

. . . .

, H = 

−





















2 062
46 2402

0
0

23 275

.
.

.

  

b. altitude = 1361 m (4464 ft), dynamic pressure p = 900 lb/ft2, M = 0.85 

G =

− − − −
−

−

− −























0 21389 0 0076 0 00024 32 17644 9 83138
0 45528 180203 0 00273 0 41842 903 7794
0 01088 1 0 92914 0

0 0 0 0 1
0 03835 0 1119 0 0001 0 58069 1818247

. . . . .
. . . . .
. . .

. . . . .

,  H = 

−





















25 97
230 3706

0
0

136 15

.
.

.

. 

 The previously mentioned bounds are:  |θc| ≤ 0.21 (12°), | &θc | ≤ 0.175 (10°/s), 

| &&θc | ≤ 0.35 (20°/s2), |&&&θc | ≤ 12 (688°/s3), |x1| ≤ 70 ft/s, x2 ∈ [40, 70] ft/s,                        x3 

∈ [0, 30000] ft , |u| ≤ 0.209 (12°). Measurements are carried out at the rate of 64 times 

per second and the measurement error and measurement delays of  θ, θc are 0.1° = 0.02 

rad and 0.016 s respectively, while the error and delay for q = &θ  and &θ c are 0.02 rad/s 

and 0.005 s. 
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 The actuator is an electro-mechanical unit which translates a controller output 

signal u to control surface motion v. Its output v must track its input u subject to the 

saturation constraint |u| < 0.446 rad (25º).  The actuator receives values of u at 512 Hz 

and at each input sample time, the output changes with steps of  0, 0.2º ( 0.0035 rad) or 

- 0.2º. If the direction of the required shift (i.e. sign(u-v)) changes, v ceases to change 

for 1/32 s. During this delay the actuator continues to receive commands and any 

change of sign(u-v) causes a new delay to begin. 

Primary statement of the problem. The first (“primary”) statement of the problem did 

not allow for measurements of the derivatives q = &θ  and &θ c. The difficulty with the 

“primary problem” statement can be seen from the fact that good tracking of θc by θ 

and boundedness of &&θ c and &q = &&θ  imply good tracking of &θ c by q as well. Thus, any 

successful controller may also be considered as a quality differentiator for arbitrary 

signals θc(t) which are calculated in real time with some noise. Real time 

differentiation, as is well known, is an extremely complicated problem, and, thus, the 

primary problem is also much more sophisticated than the main one.  

 Nevertheless, the primary problem is successfully solved by the presented 

approach. Indeed, a robust differentiator (Levant 1998a) having been applied, the 

primary problem is actually reduced to the main one, certainly, with much larger errors 

in measurements of &θ  and &θ c. While the general problem of differentiation in the 

presence of input noises is really ill-posed, it turns into a well-posed one if the basic 

input signal is assumed to have a derivative with a known Lipschitz constant. Such 

differentiator is based on the super-twisting controller (6) applied to the trivial dynamic 

system &y = v with scalar control v and output y. Indeed, let g(t) be an input signal, then, 

keeping y = g(t) in 2-sliding mode, achieve v = &y = &g (t). That differentiator is proved to 

provide for maximal differentiation error proportional to the square root of the maximal 

magnitude of Lebesgue-measurable input noises. 

 

 

 



AIAA Journal of Guidance, Control and Dynamics, 23(4), 2000, 586-594 

 

IV. Problem Solution 

Solution concept. The relative degree of  the controlled system being 2, a 1-sliding 

control cannot be directly implemented to control output θ. At the same time direct 

implementation of a 2-sliding control is possible, but requires discontinuous control 

influence which cannot be realized by the actuator. The way out is to maintain the 

constraint    

    σ = Λ(θ-θc) + ( q - &θc ) = 0,     (12) 

where Λ > 0, q = &θ . Keeping it in a standard 1-sliding mode is also impossible, for the 

discontinuous control cannot be followed by the actuator output, thus, 2-sliding mode is 

needed. At first glance, each of the standard 2-sliding controllers listed previously 

could have been implemented with sufficiently large constant gain. Nevertheless, this 

simple approach was shown not to work.  

 There are no sufficient control resources to keep σ = 0, even for one of the given 

42 linear approximations. In other words, principle # 2 of the 2-sliding controller 

design is not fulfilled: the variation range of the equivalent control ueq is larger than the 

admissible range of the control u itself. The situation changes only after the natural 

damping of the 2 fast stable (short period) modes, which takes about 2-3 seconds and 

places a restriction on the minimal transient-process duration. The control having been 

applied 2 seconds after the separation of the vehicle from the plane, that does not cause 

any trouble. However, the amplification gains still have to be chosen independently of 

any of the linearized approximations, otherwise the control will influence some of the 

linearized systems too strongly and some of the others too weakly. 

 The controller which would solve the problem with above-listed complications 

may be constructed based on the hybrid controller (11) as a sum of a functional and a 

dynamic unit of the form: 

   u = ufunc + udyn,      

   ufunc = - K1(p,M) λ |σ|1/2sign σ,  

   &u dyn = K2(p,M)
−

− ≤




u u U
r r u U

,
& ,

      | |> ,
- sign sign  | | .

M

M1 2σ σ
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Here UM is the largest admissible value of the control. Dynamic pressure p and the 

Mach number M are measured during the course of the flight. Positive constant 

parameters r1 > r2  and λ are to be taken so as to provide for admissible tracking for one 

system singled out from the above-mentioned 42 linear approximation systems with K1 

= K2 = 1.  Factors K1(p,M), K2(p,M) are quasi-constant scaling factors corresponding to 

the ranges of ueq  and &u eq respectively, and providing for fulfillment of the design 

principles 2, 3 for all the 42 systems with “equal” performance quality. Note, once 

more, that from the theoretical point of view these factors are not needed, for there are 

r1, r2, λ providing for finite-time convergence to 2-sliding mode for all the systems. But 

the performance will vary from system to system. 

 Other problems of the control design are the measurement step of 1/64 seconds 

and the actuator delay which transform infinitesimal overshoots into significant ones. 

All the above-listed good features of 2-sliding controllers presume the measurement 

step to be infinitesimally small.  In fact it is so large in the considered case that the very 

use of 2-sliding control turns out to be questionable. In order to suppress overshoots 

and improve the tracking accuracy, the control gains must be as small as possible. 

Concurrently small gains lead to slow convergence. Thus, the solution is to make them 

dependent upon σ: the gains are to decrease with decrease of |σ|.  

 The actually implemented discretized 2-sliding controller is as follows: 

u = ufunc + udyn,         (13) 

ufunc = - K1(p(ti),M(ti)){ µ (q(ti)- θc
.

(ti)) + min[1, λ (|σ(ti)|1/2+|σ(ti)|)]sign σ(ti)}, (14) 

&u dyn = K2(p(ti),M(ti))
−

− ≤




u t u t U
r t t r t u t U

i i

i i i i i

( )       | ( )|> ,
- ( ) sign ( ) ( ) sign  | ( )| .

M

M

,
( ) ( ) ,1 2σ σ σ ∆σ

  (15) 

r1 = β0,1 + min[β1,1, max(β2,1, γ1|σ(ti)|)], 

r2 = β0,2 + min[β1,2, max(β2,2, γ2|σ(ti)|)]. 

The current time t satisfies here t ∈ [ti, ti+1). During the simulation a few terms were 

found useful to be added here to the functional component of the control. Mark that, 

while in sliding mode, they are negligible (any sliding control completely removes 

disturbances coming to the system through the control channel), and in the absence of 

the actuator, with really small measurement steps they are totally redundant. The term 
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µ(q - 
.

cθ )  is used to improve the stability properties of the open-loop system, and the 

term proportional to σ improves the convergence features of the algorithm. Parameters 

βi,j  are to provide for faster convergence of the algorithm to the 2-sliding mode, 

preserving good sliding accuracy. They have to satisfy some conditions. In particular, 

K2(r1 - r2) must be larger than the derivative of the equivalent control equ& .  It should be 

noted that, with σ small, ri are constant, and the controller coincides with the simple 

hybrid controller (11). Variable parameters ri speed up the transient process. It is worth 

mentioning that, with the parameters chosen in the sequel, this algorithm provides for 

ideal 2-sliding and results in asymptotically exact tracking, when the servo actuator is 

absent and the measurements are exact and continuous. After substitution of ∆σi for &σ , a 

robust algorithm is achieved. Its performance gradually deteriorates (without a drastic 

loss of accuracy) as the measurement step is enlarged and real system imperfections are 

introduced (Filippov 1988). 

Realization of the proposed scheme. The controller was initially adjusted to control 

one particular system chosen from the aforementioned set of 42. The parameters of that 

particular controller were found from computer simulation. Direct analytical 

appointment of the parameters is possible here, but leads to redundantly large values due 

to extensive use of rough linear inequalities. It was chosen 

  Λ = 7,       λ = 0.02,     µ = 0.05,      (16) 

  r1 = 0.01 + min[0.25, max(0.03, 4|σ(ti)|)],    (17) 

  r2 = 0.01 + min[0.18, max(0.01, 3|σ(ti)|)].    (18) 

Setting the amplification gains K1, K2. It was noted previously that in order to use 2-

sliding controllers, control u has to be predominant in the expression for &σ , when u 

assumes its maximal value (principle 2), and its time derivative &u  has to be predominant 

in the expression for &&σ  (principle 3).  In other words, the magnitudes of the control and 

its time derivative have to be larger than the maximum absolute values of the equivalent 

control and its time derivative respectively. The amplification factors for u and &u  are 

evaluated by the proportionality principle as follows: 
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    K1 = K1
0 

sup| |
sup| |

u
u

eq

eq

0
, 

    K2 = K2
0 sup| & |

sup| & |
u
u

eq

eq

0
. 

The upper index 0 indicates here that the corresponding quantity relates to the chosen 

linear system, for which the controller is already adjusted. K1
0, K2

0 are the simulation-

based numbers. By taking into account the given bounds on the coordinates and 

evaluating the equivalent control and then its derivative from the equation &σ  = 7(q - &θc ) 

+ ( &q  - &&θc ) = 0 and its derivative respectively, the following formulae were achieved, 

after neglecting some small numerical quantities: 

  K1 = 44/h5. 
  K2 = 0 613

5

.
h

[0.2|g2, 5g5,2| + 30|g5,5g5,2 + g2,2g5,2| + 15]. 

That allowed for the applicability of the controller to all of the 42 envelope points. The 

numerical coefficients 44 and 0.613 are the result of adjusting the controller to a 

particular system. K1, K2 are to  be expressed now in terms of dynamic pressure p and 

the Mach number M. The gains in the following expressions were found by the least 

squares approximations for K1 and K2 and provide acceptable performance for all of the 

42 given linearized systems: 

     K1 ≅ 221 (p-80)-1 + 1.821⋅10-4 p + 0.1394 (1.1-M)-1- 0.9151 M + 0.1763, (19) 

     K2 ≅ 57.05 (p-80)-1 + 2.4181⋅10-4  p + 0.2333 (1.1-M)-1- 1.114 M + 0.1695. (20) 

For the 42 given systems, p and M vary within the limits 200 - 900 and 0.4 - 0.85 

respectively. 

V. Simulation and Flight Testing 

6 Degree of Freedom (DOF) Simulations. The above VSS algorithm (12)-(20) has 

been realized in a 6 DOF nonlinear simulation of the Delilah Unmanned Air Vehicle 

(UAV) running at a frequency of 64 Hz. The simulation also includes elastic effects 

which have been neglected for simplicity in the analysis. For the first two seconds the 

vehicle flies in open loop. Two seconds following the ejection we begin applying VSS 

control to the longitudinal plane of the flight platform.  
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 The pitch angle command is changed from the measured pitch at 2 sec. to the 

maximum pitch angle command θc max = 2 ° at the rate of qc = 3.52 °/s , that is : 

   θc = θ    at t = 2, 

   θc  =  min (θc + qc ⋅(t - 2), θc max)    at  t > 2 . 

The measurement noise of the pitch rate in the simulation is a random zero-mean white 

sequence with a standard deviation of 0.1°/s.  The pitch angle measurement is corrupted 

by a zero-mean random sequence with 0.01° standard deviation with a correlation time 

of about 2 seconds. Fig. 3 illustrates θc and θ versus time in the nominal simulation. 

The results of 100 Monte-Carlo runs are shown in Fig. 4 (θ versus  time) and Fig. 5 (q 

versus time). These figures include mean and mean plus and minus two standard 

deviations of the 100 simulation runs.  

 The 2-sliding controller implementation assumes the controlled system to be 

smooth. The simulation grid-based system being non-smooth, the simulation results are 

to be worse than in reality. Nevertheless, it can be seen that the pitch angle and the 

pitch angle rate track their commanded signals remarkably well. 

Flight Tests.  The results of a flight test are shown in Fig. 6 (θc and θ) and 7 (qc and q). 

The flight test validates the simulation and proves that the VSS pitch loop indeed 

provides exceptional tracking. 

 

VI. Conclusions 

 The first practical application of the second order sliding technique was 

demonstrated in the present paper by a solution for the pitch control problem of the 

Delilah vehicle. The resulting controller’s performance was analyzed via 6 DOF 

simulations and eventually flight-tested.  The rather straightforward design procedure, 

together with the encouraging flight test results, invite further applications of this 

approach.  One may think of applications to longer duration missions, where the control 

loop must also cope with time-varying disturbance signals which may stem from gusts, 

etc. 
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 It has to be stressed that the tested controller demonstrates reasonable behavior 

even with large measurement time steps and time delays. The performance will be 

significantly enhanced according to any improvement in the above hardware-related 

factors. 
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Fig. 1:  Standard sliding mode 
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Fig. 2: Convergence of standard 2-sliding algorithms: a. Comparison of the 

algorithms; b. Twisting algorithm;  c. Super-twisting algorithm 
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Fig. 3:  θc and θ versus time in the nominal simulation 



AIAA Journal of Guidance, Control and Dynamics, 23(4), 2000, 586-594 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The results of 100 Monte-Carlo runs: θ versus  time 
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Fig. 5  The results of 100 Monte-Carlo runs: q versus time 
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Fig. 6:  Flight test: θ and θc versus time 
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Fig. 7  Flight test: q and qc versus time 

 

 


