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Abstract: Homogeneity features of dynamic systems are known to provide for a number of general 
practically important features. In particular, the finite-time convergence is easily proved, and the 
asymptotic accuracy is readily calculated in the presence of input noises, delays and discrete sampling. 
General uncertain single-input-single-output regulation problems are only solvable by means of 
discontinuous control via the so-called high-order sliding modes (HOSM). The homogeneity approach 
facilitates the design and investigation of new HOSM controllers, featuring such attractive properties as 
practical continuity of the control in the presence of noises. Robust output-feedback controllers are 
produced, using robust exact homogeneous differentiators. The asymptotic accuracy of the obtained 
controllers is the best possible under given circumstances. The dangerous chattering effect is removed by 
means of a standard procedure. The resulting systems are robust with respect to the presence of 
unaccounted-for fast stable dynamics of actuators and sensors. Simulation results and applications are 
presented in the fields of control, signal and image processing. 

 

1. INTRODUCTION 

Sliding mode control is one of the main tools to cope with 
heavy uncertainty conditions. The corresponding approach 
(Utkin, 92; Zinober, 94; Edwards et al., 1998) is based on the 
exact keeping of a properly chosen constraint by means of 
high-frequency control switching. Although very robust and 
accurate, the approach also features certain drawbacks. The 
standard sliding mode may be implemented only if the 
relative degree of the constraint is 1, i.e. control has to 
explicitly appear already in the first total time derivative of 
the constraint function. Another problem is that the high-
frequency control switching may cause dangerous vibrations 
(chattering effect, Boiko et al., 2005; Fridman, 2001, 2003). 

The issues can be settled in a few ways. High-gain control 
with saturation is used to overcome the chattering effect 
approximating the sign-function in a narrow boundary layer 
around the switching manifold (Slotine et al., 1991), the 
sliding-sector method (Furuta et al., 2000) avoids chattering 
in control of disturbed linear time-invariant systems. This 
paper surveys the sliding-mode order approach (Levant, 
1993) successfully treating both the chattering and the 
relative-degree restrictions, while preserving the sliding-
mode features and improving the accuracy. 

High order sliding mode (HOSM) (Levant, 1993, 2003) 
actually is a movement on a discontinuity set of a dynamic 
system understood in Filippov's sense (1988). The sliding 
order characterizes the dynamics smoothness degree in the 
vicinity of the mode. Let the task be to make some smooth 
function σ vanish, keeping it at zero afterwards. Then 
successively differentiating σ along trajectories, a 
discontinuity will be encountered sooner or later in the 
general case. Thus, sliding modes σ ≡ 0 may be classified by 

the number r of the first successive total derivative σ(r) which 
is not a continuous function of the state space variables or 
does not exist due to some reason, like trajectory 
nonuniqueness. That number is called the sliding order. 

The words "rth order sliding" are often abridged to              
"r-sliding". The term "r-sliding controller" replaces the 
longer expression "finite-time-convergent r-sliding mode 
controller".  

The standard sliding mode, on which most variable structure 
systems (VSS) are based, is of the first order ( σ&  is 
discontinuous). While the standard modes feature finite time 
convergence, convergence to HOSMs may be asymptotic as 
well. The standard sliding mode precision is proportional to 
the time interval between the measurements or to the 
switching delay, while r-sliding mode realizations may 
provide for the sliding precision of up to the rth order with 
respect to sampling intervals and delays (Levant, 1993).  

Properly used HOSM practically removes the dangerous 
chattering effect (Levant 1993, 2007c). One just needs to 
consider the control derivative as a new control input 
(Levant, 1993, 2007d; Bartolini, Ferrara et al., 1998).  

Asymptotically stable HOSMs arise in many systems  with 
traditional sliding-mode control. In particular, if the relative 
degree of the constraint is higher than 1, an auxiliary 
constraint is usually build, being a linear combination of the 
original constraint and its successive total time derivatives, so 
that it has the first relative degree (Slotine et al., 1991). Such 
HOSMs are also deliberately introduced in systems with 
dynamical sliding modes (Sira-Ramírez, 1993). The limit 
sliding accuracy asymptotics is the same in that case, as of 
the standard 1-sliding mode (Slotine et al., 1991). The 



 
 

     

 

asymptotic convergence to the constraint inevitably 
complicates the overall system performance analysis. 

While finite-time-convergent arbitrary-order sliding-mode 
controllers are still theoretically studied (Levant, 2003, 2005; 
Floquet et al., 2003}, 2-sliding controllers are already 
successfully implemented for the solution of practical 
problems (Bartolini, Ferrara et al., 2000, 1998; Bartolini, 
Pisano et al., 2000, 2003; Ferrara et al., 2000; Levant et al., 
2000; Massey et al., 2005, Sira-Ramírez, 2002; Orlov et al., 
2003, Krupp et al., 2002; Spurgeon et al., 2002, Shtessel et 
al., 2003). 

Almost all known r-sliding controllers possess specific 
homogeneity called the r-sliding homogeneity (Levant, 
2005). Thus, new finite-time convergent HOSM controllers 
are naturally constructed basing on the homogeneity-based 
approach. The homogeneity makes the convergence proofs of 
the HOSM controllers standard and provides for the highest 
possible asymptotic accuracy (Levant, 1993) in the presence 
of measurement noises, delays and discrete measurements. 
Thus, with τ being the sampling interval, the accuracy σ = 
O(τr) is attained (Levant, 2005). These asymptotical features 
are preserved, when a robust exact homogeneous 
differentiator of the order r - 1 (Levant, 2003) is applied as a 
standard part of the homogeneous output-feedback r-sliding 
controller. 

Actually r-sliding controllers (Levant, 2003, 2005, 2006a) 
require only the knowledge of the system relative degree r. 
The produced control is a discontinuous function of σ and of 
its real-time-calculated successive derivatives σ& , ..., σ(r-1).  

The discontinuity set of nested sliding-mode controllers 
(Levant 2003) is a complicated stratified set with 
codimension varying in the range from 1 to r, which causes 
certain transient chattering. To avoid it one needs to 
artificially increase the relative degree. The finite-time-stable 
exact constraint keeping is lost with alternative controllers 
developed in (Shtessel et al., 2003; Barbot et al., 2002) for r 
= 2 and r = 3 respectively. 

Quasi-continuous r-sliding controller (Levant, 2006a) is a 
feedback function of σ, σ& , ..., σ

(r-1) being continuous 
everywhere except the manifold σ = σ&  = σ&&  = ... = σ(r-1) = 0  
of the r-sliding mode. In the presence of errors in evaluation 
of σ and its derivatives, these equalities never take place 
simultaneously with r > 1. Therefore, control practically turns 
to be a continuous function of time.  

Simulation demonstrates the practical applicability of the 
approach in control, signal and image processing. 

2.  PRELIMINARIES 

Definition 1. A differential inclusion x& ∈ F(x) is further 
called a Filippov differential inclusion (Filippov, 1988) if the 
vector set F(x) is non-empty, closed, convex, locally bounded 
and upper-semicontinuous. The latter condition means that 
the maximal distance of the points of F(x) from the set F(y) 
vanishes when x → y. Solutions are defined as absolutely-

continuous functions of time satisfying the inclusion almost 
everywhere.  

Such solutions always exist and have most of the well-known 
standard properties except the uniqueness (Filippov, 1988).  

Definition 2. It is said that a differential equation x&  = f(x) 
with a locally-bounded Lebesgue-measurable right-hand side 
is understood in the Filippov sense (Filippov, 1988), if it is 
replaced by a special Filippov differential inclusion x& ∈ F(x), 
where 

   F(x) = )\)((co
00

NxOf
N

δ
=µ>δ

II . 

Here µ is the Lebesgue measure, Oδ(x) is the δ-vicinity of x, 
and co M denotes the convex closure of M.  

In the most usual case, when  f is continuous almost 
everywhere, the procedure is to take F(x) being the convex 
closure of the set of all possible limit values of f at a given 
point x, obtained when its continuity point y tends to x. In the 
general case approximate-continuity (Saks, 1964) points y are 
taken (one of the equivalent definitions by Filippov (1988)). 
A solution of x& = f(x) is defined as a solution of x& ∈ F(x). 
Obviously, values of f on any set of the measure 0 do not 
influence the Filippov solutions. Note that with continuous f 
the standard definition is obtained. 

In order to better understand the definition consider the case 
when the number of limit values f1, …, fn at the point x is 
finite. Then any possible Filippov velocity has the  form x& = 
λ1 f1 + … + λn fn, λ1  + … + λn = 1, λi ≥ 0, and can be 
considered as a mean value of the velocity taking on the 
values fi during the time share λi∆t of a current infinitesimal 
time interval ∆t.  

Definition 3. Consider a discontinuous differential equation 
x& = f(x) (Filippov differential inclusion x&  ∈ F(x)) with a 
smooth output function σ = σ(x), and let it be understood in 
the Filippov sense. Then, provided that  

1. successive total time derivatives σ, σ& , ..., σ(r-1) are 
continuous functions of x,  

2. the set  

  σ = σ&  = σ&&  = ... = σ(r-1) = 0    (1) 

is a non-empty integral set,  

3. the Filippov set of admissible velocities at the      
r-sliding points (1) contains more than one vector,  

the motion on set (1) is said to exist in r-sliding (rth-order 
sliding) mode (Levant, 1993, 2003). Set (1) is called r-sliding 
set. It is said that the sliding order is strictly r, if the next 
derivative σ(r) is discontinuous or does not exist as a single-
valued function of x. The non-autonomous case is reduced to 
the considered one introducing the fictitious equation t&  = 1. 



 
 

     

 

Note that the third requirement here is not standard: it means 
that set (1) is a discontinuity set of the equation, and it is 
introduced here only to exclude extraneous cases of integral 
manifolds of continuous differential equations. The standard 
sliding mode used in the traditional variable structure systems 
is of the first order (σ is continuous, and σ&  is discontinuous). 

The notion of the sliding order appears to be connected with 
the relative degree notion.  

Definition 4. A smooth autonomous SISO system x&  = a(x) 
+ b(x)u with the control u and output σ is said to have the 
relative degree r, if the Lie derivatives locally satisfy the 
conditions (Isidori, 1989) 

   Lbσ = LaLbσ = … = La
r-2Lbσ = 0, La

r-1Lbσ ≠ 0. 

It can be shown that the equality of the relative degree to r 
actually means that the successive total time derivatives σ = 
σ&  = σ&&  = ... = σ

(r-1) do not depend on control and can be 
taken as a part of new local coordinates, and σ

(r) linearly 
depends on u with the nonzero coefficient La

r-1Lbσ. Also here 
the non-autonomous case is reduced to the autonomous one 
introducing the fictitious equation t&  = 1. 

3. OUTPUT REGULATION PROBLEM 

3.1 Systems nonlinear in control 

First consider an uncertain smooth nonlinear Single-Input 
Single-Output (SISO) system x& = f(t,x,u), x∈Rn, t, u ∈ R 
with a smooth output s(t, x) ∈ R. Let the goal be to make the 
output s(t, x) to track some real-time-measured smooth signal 
sc(t). Introducing a new auxiliary control v ∈ R, u&  = v, and 
the output σ(t, x) = s(t, x) - sc(t), obtain a new affine-in-
control system dt

d (x,u)t = (f(t,x,u), 0)t + (0,1)tv with the 

control task to make σ(t, x) vanish. Therefore, the further 
consideration is restricted only to systems affine in control. 

3.2  SISO regulation problem and the idea of its solution  

Consider a dynamic system of the form 

    x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),    (2) 

where x ∈ Rn, a, b and σ: Rn+1 → R are unknown smooth 
functions, u ∈ R, the dimension n might be also uncertain. 
Only measurements of σ are available in real time. The task 
is to provide in finite time for exactly keeping σ ≡ 0.  

The relative degree r of the system is assumed to be constant 
and known. In other words, for the first time the control 
explicitly appears in the rth total time derivative of σ and 

  σ
(r) = h(t,x) + g(t,x)u,   (3) 

where h(t,x) = σ
(r)|u=0, g(t,x) = u∂

∂ σ
(r) ≠ 0. It is supposed that 

for some Km, KM, C > 0 

 0 < Km ≤ u∂
∂ σ

(r) ≤ KM,         | σ(r)|u=0 | ≤ C ,      (4) 

which is always true at least locally. Trajectories of (2) are 
assumed infinitely extendible in time for any Lebesgue-
measurable bounded control u(t, x). 

Finite-time stabilization of smooth systems at an equilibrium 
point by means of continuous control is considered in 
(Bacciotti et al., 2005; Bhat et al., 2000)). In our case any 
continuous control  

  u =  ϕ(σ, σ& , ..., σ(r-1))    (5) 

providing for σ ≡ 0, would satisfy the equality ϕ(0,0, ..., 0) = 
- h(t,x)/g(t,x), whenever (1) holds. Since the problem 
uncertainty prevents it, the control has to be discontinuous at 
least on the set (1). Hence, the r-sliding mode σ = 0 is to be 
established.  

As follows from  (3), (4) 

       σ(r) 
∈ [−C, C] + [Km, KM] u .    (6) 

The differential inclusion (5), (6) is understood here in the 
Filippov sense, which means that the right-hand vector set is 
enlarged at the discontinuity points of (5), in order to satisfy 
the convexity and semicontinuity conditions from Definition 
1. The Filippov procedure from Definition 2 is applied for 
this aim to the function (5), and the resulting scalar set is 
substituted for u in (6). The obtained inclusion does not 
“remember” anything on system (2) except the constants r, C, 
Km, KM. Thus, provided (4) holds, the finite-time stabilization 
of (6) at the origin simultaneously solves the stated problem 
for all systems (3). 

Note that the realization of this plan requires real-time 
differentiation of the output. The controllers, which are 
designed in this paper, are r-sliding homogeneous (Levant, 
2005). The corresponding notion is introduced further. 

4. HOMOGENEITY, FINITE-TIME STABILITY AND 
ACCURACY  

Definition 5. A function f: Rn → R (respectively a vector-set 
field F(x) ⊂ Rn, x ∈ Rn, or a vector field f: Rn → Rn) is called 
homogeneous of the degree q ∈ R with the dilation 

             dκ: (x1, x2, ..., xn) a ),...,,( 21
21

n
mmm xxx nκκκ   

(Bacciotti et al., 2001), where m1, ..., mn are some positive 
numbers (weights), if for any κ > 0 the identity                   
f(x) = κ

-q f(dκx) holds (respectively F(x) = κ
-qdκ

-1F(dκx), or              
f(x) = κ-qdκ

-1f(dκx)). The non-zero homogeneity degree q of a 
vector field can always be scaled to ±1 by an appropriate 
proportional change of the weights m1, ..., mn.  

Note that the homogeneity of a vector field f(x) (a vector-set 
field F(x)) can equivalently be defined as the invariance of 



 
 

     

 

the differential equation x& = f(x) (differential inclusion x& ∈ 
F(x)) with respect to the combined time-coordinate 
transformation  

             Gκ : (t, x) a (κ p t, dκ x),    

where p, p = - q, might naturally be considered as the weight 
of t. Indeed, the homogeneity condition can be rewritten as  

          x& ∈ F(x) ⇔ )(
)(
)( xdF

td
xdd

p κ
κ ∈

κ
. 

Examples. In the following the weights of x1, x2 are 3 and 2 
respectively. Then the function x1

2 + x2
3 is homogeneous of 

the weight (degree) 6: (κ3x1)
2+( κ2x2)

3 = κ
6(x1

2 + x2
3). The 

differential inequality | 1x& | + 3/4
2x&  ≤ x1

4/3 + x2
2 corresponds to 

the homogeneous differential inclusion 

 ( 1x& , 2x& )∈{(z1, z2): |z1|+ z2
4/3 ≤ x1

4/3+ x2
2} 

of the degree +1. The system of differential equations 
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is of the degree -1 and is finite-time stable (Bhat et al., 2000). 

1°.    A differential inclusion x&  ∈ F(x) (equation x&  = f(x)) is 
further called globally uniformly finite-time stable at 0, if it is 
Lyapunov stable and for any R > 0 exists T > 0 such that any 
trajectory starting within the disk ||x|| < R stabilizes at zero in 
the time T. 

2°.    A differential inclusion x&  ∈ F(x) (equation x&  = f(x)) is 
further called globally uniformly asymptotically stable at 0, if 
it is Lyapunov stable and for any R > 0, ε > 0 exists T > 0 
such that any trajectory starting within the disk ||x|| < R enters 
the disk ||x|| < ε in the time T to stay there forever. 

A set D is called dilation retractable if dκ D ⊂ D for any κ ∈ 
[0, 1]. In other words with any its point x it contains the 
whole line dκx,  κ ∈ [0, 1]. 

3°.  A homogeneous differential inclusion x&  ∈ F(x) 
(equation x&  = f(x)) is further called contractive if there are 2 
compact sets D1, D2 and T > 0, such that D2 lies in the interior 
of D1 and contains the origin; D1 is dilation-retractable; and 
all trajectories starting at the time 0 within D1 are localized in 
D2 at the time moment T. 

Theorem 1 (Levant, 2005). Let x&  ∈ F(x) be a homogeneous 
Filippov inclusion with a negative homogeneous degree -p, 
then properties 1°, 2° and 3° are equivalent and the maximal 
settling time is a continuous homogeneous function of the 
initial conditions of  the degree p. 

Finite-time stability of homogeneous discontinuous 
differential equations was also considered in (Orlov, 2005). 

Idea of the proof. Obviously, both 1° and 2° imply 3°, and 
1° implies 2°. Thus, it is enough to prove that 3° implies 1°. 
All trajectories starting in the set D1 concentrate in a smaller 
set D2 in time T. Applying the homogeneity transformation 
obtain that the same is true with respect to the sets dκD1, dκD2 
and the time κT for any κ > 0. An infinite collapsing chain of 

embedded regions is now constructed, such that any point 
belongs to one of the regions, and the resulting convergence 
time is majored by a geometric series.n  

Due to the continuous dependence of solutions of the 
Filippov inclusion x& ∈ F(x) on its graph Γ = {(x, y)| y ∈ 
F(x)} (Filippov 1988), the contraction feature 3° is obviously 
robust with respect to perturbations causing small changes of 
the inclusion graph in some vicinity of the origin. 

Corollary 1 (Levant 2005). The global uniform finite-time 
stability of homogeneous differential equations (Filippov 
inclusions) with negative homogeneous degree is robust with 
respect to locally small homogeneous perturbations. 

Let x& ∈ F(x) be a homogeneous Filippov differential 
inclusion. Consider the case of “noisy measurements” of xi 
with the magnitude βi

imτ ,  βi, τ > 0, 

              x&  ∈ F(x1+ β1[-1, 1] 1mτ , ..., xn + βn[-1, 1] nmτ ). 

Successively applying the global closure of the right-hand-
side graph and the convex closure at each point x, obtain 
some new Filippov differential inclusion x&  ∈ Fτ(x). 

Theorem 2 (Levant, 2005). Let x&  ∈ F(x) be a globally 
uniformly finite-time stable homogeneous Filippov inclusion 
with the homogeneity weights m1, ..., mn and the degree - p < 
0, and let τ > 0. Suppose that a continuous function x(t) be 
defined for any t ≥ -τ 

p and satisfy some initial conditions x(t) 
= ξ(t), t ∈ [-τ 

p, 0]. Then if x(t) is a solution of the disturbed 
inclusion 

                 x& (t) ∈ Fτ(x(t + [- τ 
p, 0])),     0 < t < ∞ ,  

the inequalities |xi| < γi
imτ are established in finite time with 

some positive constants γi independent of τ  and ξ. 

Note that Theorem 2 covers the cases of retarded or discrete 
noisy measurements of all, or some of the coordinates, and 
any mixed cases. In particular, infinitely extendible solutions 
certainly exist in the case of noisy discrete measurements of 
some variables or in the constant time-delay case. For 
example, with small delays of the order of τ introduced in the 
right-hand side of (7) the accuracy x1 = O(τ3), 1x&  = x2 = O(τ2) 
is obtained. As follows from Corollary 1, with sufficiently 
small ε the addition of the term ε 3/2

1x  in the first equation of 
(7) disturbs neither the finite-time stability, nor the above 
asymptotic accuracy. 

5. HOMOGENEOUS SLIDING MODES 

Suppose that feedback (5) imparts homogeneity properties to 
the closed-loop inclusion (5), (6). Due to the term   [-C, C], 
the right-hand side of (5) can only have the homogeneity 
degree 0 with C ≠ 0. Indeed, with a positive degree the right 
hand side of (5), (6) approaches zero near the origin, which is 
not possible with C ≠ 0. With a negative degree it is not 
bounded near the origin, which contradicts the local 
boundedness of ϕ. Thus, the homogeneity degree of σ(r-1) is 
to be opposite to the degree of the whole system. 

Scaling the system homogeneity degree to -1, achieve that the 
homogeneity weights of t, σ, σ& , ...,   σ(r-1) are 1, r, r - 1, ..., 1 
respectively. This homogeneity is further called the r-sliding 



 
 

     

 

homogeneity. The inclusion (5), (6) is called r-sliding 
homogeneous if for any κ > 0 the combined time-coordinate 
transformation  

      Gκ: (t, σ, σ& , ..., σ(r-1)) a ( κt, κr
σ, κr-1

σ& , ..., κσ
(r-1)) (8) 

preserves the closed-loop inclusion (5), (6). Note that the 
Filippov differential inclusion corresponding to the closed-
loop inclusion (5), (6) is also r-sliding homogeneous. 

Transformation (8) transfers (5), (6) into  

       r

rr

td
d

)(
)(

κ

σκ  ∈ [-C, C] + [Km, KM] ϕ(κr
σ, κr-1

σ& , ..., κσ
(r-1)). 

Hence, (5), (6) is r-sliding homogeneous if 

            ϕ(κr
σ, κr-1

σ& , ..., κσ
(r-1)) ≡ ϕ(σ, σ& , ..., σ(r-1)). (9) 

Definition 6. Controller (5) is called r-sliding homogeneous 
(rth order sliding homogeneous) if (9) holds for any (σ, σ& , 
..., σ(r-1)) and κ > 0. The corresponding sliding mode is also 
called homogeneous (if exists). 

 
Fig. 1. Convergence of various 2-sliding homogeneous 
controllers 

Such a homogeneous controller is inevitably discontinuous at 
the origin (0, ..., 0), unless ϕ is a constant function. It is also 
uniformly bounded, since it is locally bounded and takes on 
all its values in any vicinity of the origin. Recall that the 
values of ϕ on any zero-measure set do not affect the 
corresponding Filippov inclusion. 

A controller is called r-sliding homogeneous in the broader 
sense if (8) preserves the resulting trajectories of (6). Thus, 
the sub-optimal 2-sliding controller (Bartolini, Ferrara et al., 
1998, Bartolini, Pisano et al., 2003) 

       u = - r1 sign (σ - σ*/2) + r2 sign σ*,     r1 > r2 > 0, 

    2[(r1 + r2)Km - C ] > (r1 - r2)KM + C,   (r1 - r2)Km > C, 

is homogeneous, though it does not have the feedback form 
(5). Here σ* is the value of σ detected at the closest time in 
the past, when σ&  was 0. The initial value of σ* is 0.  

Almost all known r-sliding controllers, r ≥ 2, are r-sliding 
homogeneous. The only important exception is the terminal 
2-sliding controller maintaining 1-sliding mode σ&  + βσ

ρ 
≡ 0, 

where ρ = (2k+1)/(2m+1), β > 0, k < m, and k, m are natural 
numbers (Man et al., 1994). Indeed, the homogeneity requires 
ρ = 1/2 and σ ≥ 0.  

5.1 Second order sliding mode controllers 

Let r = 2. As follows from the previous Section it is sufficient 
to construct a 2-sliding-homogeneous contractive controller. 
Their discrete-sampling versions provide for the accuracy 
described in Theorem 2, i.e. σ = O(τ2), σ&  = O(τ). Similarly, 
the noisy measurements lead to the accuracy σ = O(ε), σ&  = 
O(ε1/2), if the maximal errors of  σ and σ&  sampling are of the 
order of ε and ε1/2 respectively.  

Design of such 2-sliding controllers is greatly facilitated by 
the simple geometry of the 2-dimensional phase plane with 
coordinates σ, σ& : any smooth curve locally divides the plane 
in two parts. It is easy to construct any number of such 
controllers (Levant, 2007a). Only few controllers are 
presented here.  

The twisting controller (Levant, 1993)  

u = - (r1 sign σ + r2 sign σ& ), 

has the convergence conditions   

 (r1 + r2)Km - C > (r1 - r2)KM + C,   (r1 - r2) Km > C.  

Its typical trajectory in the plane σ, σ&  is shown in Fig. 1a.  

A homogeneous form of the controller with prescribed 
convergence law (Fig. 1b; Levant, 1993)  

 u = - α sign( σ&  + β|σ|1/2sign σ),  αKm - C > β2/2  

is a 2-sliding homogeneous analogue of the terminal sliding 
mode controller originally featuring a singularity at σ = 0 
(Man et al., 1994).  

The 2-sliding stability analysis is based on the fact that all the 
trajectories in the plane σ, σ&  which pass through a given 
continuity point of u = ϕ(σ, σ& ) are confined between the 
properly chosen trajectories of the homogeneous differential 
equations σ&& = ±C + KMϕ(σ, σ& ) and σ&& = ±C + Kmϕ(σ, σ& ). 
These border trajectories cannot be crossed by other paths, if 
ϕ is locally Lipschitzian, and may be often chosen as 
boundaries of appropriate dilation-retractable regions 
(Levant, 2007a). Recall that a region is dilation-retractable 
iff, with each its point (σ, σ& ), it contains all the points of the 
parabolic segment (κ2

σ, κ σ& ), 0 ≤ κ ≤ 1. 

An important class of HOSM controllers comprises recently 
proposed so-called quasi-continuous controllers. Controller 



 
 

     

 

(5) is called quasi-continuous (Levant, 2006a), if it can be 
redefined according to continuity everywhere except the r-
sliding manifold  σ = σ& = ... = σ(r-1)= 0. Due to always present 
disturbances and noises, in practice, with the sliding order r > 
1 the general-case trajectory does never hit the r-sliding 
manifold, for the r-sliding condition has the codimension r. 
Hence, the control practically remains continuous function of 
time all the time. As a result, the chattering is significantly 
reduced. Following is the 2-sliding controller from such a 
family of arbitrary-order sliding controllers (Levant, 2006a): 

        u = - α 2/1

2/1

||||
sign||

σβ+σ
σσβ+σ

&

&
,    β > 0.  

This control is continuous everywhere except the origin. It 
vanishes on the parabola σ&  + β|σ|1/2sign σ = 0. With 
sufficiently large α there are such numbers ρ1, ρ2, 0 < ρ1 < β 
< ρ2 that all the trajectories enter the region between the 
curves σ&  + ρι|σ|1/2sign σ = 0 and cannot leave it (Fig. 1c). 
The contractivity property of the controller is demonstrated in 
Fig. 1d. 

5.2 Arbitrary order sliding mode controllers 

Following are two most known r-sliding controller families 
(Levant, 2003, 2006a). The controllers  

              u =  - α Ψr-1,r(σ, σ& , ..., σ(r-1)),  

are defined by recursive procedures, have magnitude α > 0, 
and solve the general output regulation problem from Section 
3. The parameters of the controllers can be chosen in advance 
for each relative degree r. Only the magnitude α is to be 
adjusted for any fixed C, Km, KM, most conveniently by 
computer simulation, avoiding complicated and redundantly 
large estimations. Obviously, α is to be negative with 
(∂/∂u)σ(r) < 0. In the following β1, ..., βr-1 > 0 are the 
controller parameters, and i = 1,..., r-1. 

1. The following procedure defines the “nested” r-sliding 
controller (Levant, 2003), based on a pseudo-nested structure 
of 1-sliding modes.  Let q > 1. The controller is built by the 
following recursive procedure: 

        Ni,r = (|σ|q/r+ | σ& |q/(r-1)+ ... + |σ(i-1)| q/(r-i+1))(r- i)/q ; 

        Ψ0,r = sign σ,    Ψi,r = sign(σ(i)+ βi Ni,r Ψi-1,r ); 

Following are the nested sliding-mode controllers (of the first 
family) for r ≤ 4 with tested βi and q being the least multiple 
of 1,..., r: 

1. u = - α sign σ, 

2. u = - α sign( σ& + |σ|1/2sign σ), 

3. u = - α sign( σ&& + 2 (| σ& |3+|σ|2)1/6  sign( σ& + |σ|2/3sign σ)), 

4. u = - α sign{ σ&&& + 3( σ&&
6+ σ&

4+|σ|3)1/12sign[ σ&& + ( σ&
4+|σ|3)1/6 

                     sign( σ& +0.5|σ|3/4sign σ )]}. 

Though these controllers can be given an intuitive inexact 
explanation based on recursively nested standard sliding 
modes, the proper explanation is more complicated (Levant, 
2003), since no sliding mode is possible on discontinuous 
surfaces, and a complicated motion arises around the control 
discontinuity set. 

2. The following procedure defines a family of quasi-
continuous controllers (Levant, 2006a):  

 ϕ0,r = σ,  N0,r = |σ|,      Ψ0,r = ϕ0,r /N0,r = sign σ,  

 ϕi,r = σ(i)+βi
)1/()(

,1
+−−

−
irir

riN Ψi-1,r,  

 Ni,r = |σ(i)|+βi
)1/()(

,1
+−−

−
irir

riN ,     Ψi,r = ϕi,r / Ni,r.  

Following are quasi-continuous controllers with r ≤ 4 and 
simulation-tested βi. 

1. u = - α sign σ, 

2. u = - α ( σ& + |σ|1/2sign σ) / (| σ& |+ |σ|1/2), 

3. u = - α [ σ&& + 2 (| σ& |+ |σ|2/3
)

-1/2( σ& + |σ|2/3sign σ ) ] /  
       [| σ&& |+ 2 (| σ& |+ |σ|2/3

)
1/2], 

4. ϕ3,4 = σ&&& + 3[ σ&& +(| σ& |+0.5|σ|3/4)-1/3( σ& +0.5 |σ|3/4sign σ)] 
                 [| σ&& |+(| σ& |+0.5|σ|3/4)2/3] 1/2, 

     N3,4 = | σ&&& | + 3 [| σ&& |+(| σ& |+0.5|σ|3/4)2/3]1/2, u = - α ϕ3,4 / N3,4 . 

It is easy to see that the sets of parameters βi are chosen the 
same for both families with r ≤ 4. Note that while enlarging α 
increases the class (4) of systems, to which the controller is 
applicable, parameters βi, are tuned to provide for the needed 
convergence rate (Levant et al., 2005). The author considers 
the second family as the best one. In addition to the reduced 
chattering, another advantage of these controllers is the 
simplicity of their coefficients' adjustment (Section 7). 

Theorem 3. Each representative of the order r of the above 
two families of arbitrary-order sliding-mode controllers is   
r-sliding homogeneous and finite-time stabilizing.  

The proof of the Theorem is based on Theorem 1, i.e. on the 
proof of the contractivity property.  Asymptotic accuracies of 
these controllers are readily obtained from Theorem 2. In 
particular σ(i) = O(τr-i), i = 0, 1, …, r-1, if the measurements 
are performed with the sampling interval τ.  

Chattering attenuation. Chattering vibrations are naturally 
considered dangerous, if their energy cannot be neglected; i.e. 
if the energy does not vanish with the gradual vanishing of 
chattering-producing factors (noises, delays, small singular 
perturbation parameters, etc). Corresponding formal notions 
were introduced in (Levant, 2007c). The standard chattering 
attenuation procedure is to consider the control derivative as 
a new control input, increasing the relative degree (Levant, 
1993). It is proved (Levant, 2007c) that the resulting systems 
are robust with respect to the presence of unaccounted-for 
fast stable actuators and sensors, and no dangerous chattering 



 
 

     

 

is generated neither by such additional dynamics, nor by the 
presence of noises and delays. That also remains true when 
the output feedback is constructed, as in the next Section. 

That standard procedure was many times successfully applied 
(Bartolini, Ferrara 1998; Bartolini, Pisano et al., 2003, 
Levant, et al. 2000, etc), though formally the convergence is 
only locally ensured in some vicinity of the (r + 1)-sliding 
mode σ ≡ 0. Global convergence can be easily obtained in the 
case of the transition from the relative degree 1 to 2 (Levant, 
1993, 2007a); semi-global convergence can be assured with 
higher relative degrees (Levant et al., 2007d).  

6. DIFFERENTIATION AND OUTPUT-FEEDBACK 
CONTROL 

6.1 Arbitrary order robust exact differentiation 

Any r-sliding homogeneous controller can be complemented 
by an (r-1)th order differentiator (Atassi et al., 2000; 
Bartolini, Pisano et al., 2000; Krupp, et al., 2000; Kobayashi 
et al., 2002; Yu et al., 1996) producing an output-feedback 
controller. In order to preserve the demonstrated exactness, 
finite-time stability and the corresponding asymptotic 
properties, the natural way is to calculate σ& , ..., σ(r-1) in real 
time by means of a robust finite-time convergent exact 
homogeneous differentiator (Levant, 1998, 2003). Its 
application is possible due to the boundedness of σ

(r) 
provided by the boundedness of the feedback function ϕ in 
(5).  

Let the input signal f(t) be a function defined on [0, ∞) and 
consisting of a bounded Lebesgue-measurable noise with 
unknown features, and of an unknown base signal f0(t), 
whose kth derivative has a known Lipschitz constant L > 0. 
The problem of finding real-time robust estimations of 0f& (t), 

0f&& (t), ... , f0
(k)(t) being exact in the absence of measurement 

noises is solved by the differentiator (Levant, 2003) 

z& 0 = v0 ,  v0 = -λk L
1/(k + 1)| z0 - f(t)|

k/(k + 1) sign(z0 - f(t)) + z1,  

z& 1 = v1 ,   v1 = -λk-1 L
1/k | z1 - v0|

(k-1)/k  sign(z1 - v0) + z2, 

   ...        (10) 

z& k-1 = vk-1 ,  vk-1 = -λ1 L
1/2 |zk-1 – vk-2|

 1/ 2 sign(zk-1 – vk-2) + zk, 

z& k = -λ0
  L sign(zk – vk-1). 

The parameters λ0, λ1, …, λk > 0 being properly chosen, the 
following equalities are true in the absence of input noises 
after a finite time of the transient process: 

z0 = f0(t);       zi = vi-1 = f0
(i)(t),    i = 1, ..., k.         

Note that the differentiator has a recursive structure. Once the 
parameters λ0, λ1, …,λ k-1 are properly chosen for the (k - 1)th 
order differentiator with the Lipschitz constant L, only one 
parameter λk is needed to be tuned for the kth order 
differentiator with the same Lipschitz constant. The 

parameter λk is just to be taken sufficiently large. Any λ0 > 1 
can be used to start this process. Such differentiator can be 
used in any feedback, trivially providing for the separation 
principle (Atassi et al., 2000; Levant, 2005). 

Idea of the proof. Denote  σi = (zi – f(i)(t))/L. Dividing by L 
all equations and subtracting f(i+1)(t) /L from both sides of the 
equation with iz&  on the left, i = 0, …, k, obtain  

0σ&  = -λk |σ0 |
k/(k + 1) sign(σ0) + σ1 ,     

1σ&  =  -λk-1 | σ1 - 0σ& | (k-1)/ k  sign(σ1 - 0σ& ) + σ2, 

 …..         

1−σk& = -λ 1 |σk-1 - 2−σk& | 1/ 2sign(σk-1 - 2−σk& ) + σk, 

kσ&  ∈ -λ0
  sign(σk - 1−σk& ) + [-1, 1]. 

where the inclusion f(k+1)(t)/L ∈ [-1, 1] is used in the last line. 
This differential inclusion is homogeneous with the 
homogeneity degree –1 and the weights k + 1, k, …, 1 of σ0, 
σ1,…, σk respectively. The finite time convergence of the 
differentiator follows from the contractivity property of this 
inclusion (Levant 2003) and Theorem 1.n  

A possible choice of the differentiator parameters with k ≤ 5 
is λ 0 = 1.1, λ 1 = 1.5, λ 2 = 3, λ 3 = 5, λ 4 = 8, λ 5 = 12  
(Levant, 2006a). 

Theorem 2 provides for the asymptotic accuracy of the 
differentiator. Let the measurement noise be any Lebesgue-
measurable function with the magnitude not exceeding ε. 
Then the accuracy |zi(t) - f0

(i)(t)| = O(ε(k+1-i)/(k+1) ) is obtained. 
That accuracy is shown to be the best possible (Kolmogoroff, 
1962; Levant, 1998).  

 6.2 Output-feedback control 

Introducing the above differentiator of the order r-1 in the 
feedback, obtain an output-feedback r-sliding controller  

 u = ϕ (z0, z1, ..., zr-1),  (11) 

0z&  = v0, v0 = - λ r-1 L
1/r| z0 - σ| (r-1)/r sign(z0 - σ) + z1,  

1z&  = v1,  v1 = - λ r-2 L
1/(r- 1)| z1 - v0|

 (r-2)/ (r-1)  sign(z1 - v0) + z2, 

... (12) 

2−rz& = vr-2, vr-2 = -λ1 L
1/2| zr-2 - vr-3|

 1/ 2sign(zr-2- vr-3)+ zr-1, 

1−rz& = -λ0 L sign(zr-1 - vr-2), 

where L ≥ C + sup|ϕ| KM, and parameters λi of  differentiator 
(12) are chosen in advance (Subsection 6.1).  

Theorem 4. Let controller (5) be r-sliding homogeneous and 
finite-time stable, and the parameters of the differentiator 
(11) be properly chosen with respect to the upper bound of 
|ϕ|. Then in the absence of measurement noises the output-
feedback controller (11), (12) provides for the finite-time 



 
 

     

 

convergence of each trajectory to the r-sliding mode σ = 0; 
otherwise convergence to a set defined by the inequalities |σ| 
< γ0ε, | σ& | < γ1 ε

(r-1)/r, ..., σ(r-1) < γr-1 ε
1/r

 is ensured, where ε is 
the unknown measurement noise magnitude and γ0, γ1, ..., γr - 1 
are some positive constants.  

Proof. Denote si = zi – σ(i). Then using σ(i) ∈ [-L, L] controller 
(11), (12) can be rewritten as  

u = - α ϕ (s0+σ, s1+ σ& , ..., sr-1+σ
(r-1)),       (13) 

0s& = - λr-1 L
1/r|s0 |

(r-1)/r  sign(s0) + s1  ,  

1s& = - λr-2 L
1/(r-1)|s1- 0s& |(r-2)/(r-1)sign(s1- 0s& )+s2, 

     ….          (14) 

2−rs& = - λ1L
1/2|sr-2- 3−rs& |1/2sign(sr-2- 3−rs& )+sr-1, 

1−rs&  ∈ - λ0 L sign(sr - 2−rs& ) + [-L, L]. 

Solutions of (3), (11), (12) correspond to solutions of the 
Filippov differential inclusion (6), (13), (14). Assign the 
weights r - i to si, σ

(i),  i = 0, 1, ..., r - 1, and obtain a 
homogeneous differential inclusion (6), (13), (14) of the 
degree -1. Let the initial conditions belong to some ball in the 
space si, σ

(i). Due to the finite-time stability of the 
differentiator part (14) of the inclusion, it collapses in a 
bounded finite time, and the controller becomes equivalent to 
(5), which is uniformly finite-time stabilizing by assumption. 
Due to the boundedness of the control no solution leaves 
some larger ball till the moment, when s0 ≡ … ≡ sr-1 ≡ 0 is 
established. Hence, (6), (13), (14) is also globally uniformly 
finite-time stable. Theorems 1, 2 finish the proof. n 

In the absence of measurement noises the convergence time 
is bounded by a continuous function of the initial conditions 
in the space σ, σ& , ..., σ

(r-1), s0, s1, ..., sr-1. This function is 
homogeneous of the weight 1 and vanishes at the origin 
(Theorem 1). 

Let σ measurements be carried out with a sampling interval τ, 
or let them be corrupted by a noise being an unknown 
bounded Lebesgue-measurable function of time of the 
magnitude ε, then solutions of (3), (11), (12) are infinitely 
extendible in time under the assumptions of Section 2, and 
the following Theorem is a simple consequence of Theorem 
2. 

Theorem 5. The discrete-measurement version of the 
controller (11), (12) with the sampling interval τ provides in 
the absence of measurement noises for the inequalities 

 |σ| < γ0τ
r, | σ& | < γ1τ

 r-1, ..., σ(r-1) < γr - 1τ   

for some γ0, γ1, ..., γr - 1 > 0. In the presence of a measurement 
noise of the magnitude ε  the accuracies  

|σ| < δ0ε, | σ& | < δ1ε
(r-1)/r, ..., σ(r-1) < δr – 1ε

1/r   

are obtained for some δ0, δ1, ..., δr - 1 > 0. 

The asymptotic accuracy provided by Theorem 5 is the best 
possible with discontinuous σ

(r) and discrete sampling 
(Levant, 1993). A Theorem corresponding to the case of 

discrete noisy sampling is also easily formulated basing on 
Theorem 2. Note that the lacking derivatives can be also 
estimated by means of divided finite differences, providing 
for robust control with homogeneous sliding modes (Levant, 
2007b). The results of this Section are also valid for the sub-
optimal controller (Bartolini, Ferrara et al., 1998). Hence, the 
problem stated in Section 2 is actually solved. 

7. ADJUSTMENT OF THE CONTROLLERS 

7.1  Control magnitude adjustment 

Condition (4) is rather restrictive and is mostly only locally 
fulfilled, which implies only local (or semi-global) 
applicability of the described approach in practice. Indeed, 
one needs to take the control magnitude large enough for the 
whole operational region.  

Consider a more general case, when as previously 

 σ
(r) = h(t,x) + g(t,x)u,         

but h might be not bounded, and g might be not separated 
from zero. Instead, assume that a locally bounded Lebesgue-
measurable non-zero function Φ(t,x) be available, such that 
for any positive d with sufficiently large α the inequality  

 α g(t,x)Φ(t,x) > d + |h(t,x)|        

holds for any t, x. The goal is to make the control magnitude 
a feedback adjustable function. 

It is also assumed that, if σ remains bounded, trajectories of 
(1) are infinitely extendible in time for any Lebesgue-
measurable control u(t, x) with bounded quotient u/Φ. This 
assumption is needed only to avoid finite-time escape. In 
practice the system is often required to be weakly minimum 
phase. Note also that actuator presence might in practice 
prevent effectiveness of any global control due to saturation 
effects. 

For simplicity the full information on the system state is 
assumed available. In particular, t, x, σ and its r - 1 
successive derivatives are measured.  

Consider the controller  

 u =  - α Φ(t,x)Ψr-1,r (σ, σ& , ..., σ(r-1)),       (15) 

where α > 0, and Ψr-1,r is one of the two r-sliding 
homogeneous controllers introduced in Subsection 5.2.  

Theorem 1 (Levant, 2004). With properly chosen parameters 
of the controller Ψr-1,r and sufficiently large α > 0 controller 
(15) provides for the finite-time establishment of the identity 
σ ≡ 0 for any initial conditions. Moreover, any increase of 
the gain function Φ does not interfere with the convergence. 

While the function Φ can be chosen large to control 
exploding systems, it is also reasonable to make the function 
Φ decrease significantly, when approaching the system 
operational point, therefore reducing the chattering (Levant et 
al, 2000).  



 
 

     

 

Note that controller (15) is not homogeneous. It is proved in 
(Levant, 2006b) that differentiator (10) converges in finite 
time also with variable parameter L, provided the logarithmic 
derivative L& /L remains bounded. Such a global-convergence 
differentiator can be implemented here, possibly resulting in 
an output feedback. 

7.2 Parameter adjustment 

Controller parameters presented in Section 5 provide for the 
formal solution of the stated problem. Nevertheless, in 
practice one often needs to adjust the convergence rate, either 
to slow it down relaxing the requirements to actuators, or to 
accelerate it in order to meet some system requirements. Note 
in that context that redundantly enlarging the magnitude 
parameter α of controllers from Section 5 does not accelerate 
the convergence, but only increases the chattering, while its 
reduction may lead to the convergence loss. 

The main procedure is to take the controller 

         u = λr
αΨ r-1,r(σ, σ& /λ, ...,  σ(r-1)/λr-1),     λ > 0.  

instead of  

            u =  - α Ψr-1,r(σ, σ& , ..., σ(r-1)) 

providing for the approximately λ times reduction of the 
convergence time. Exact formulations (Levant et al., 2006b) 
are omitted here in order to avoid unnecessary complication.  

In the case of quasi-continuous controllers (Section 5) the 
form of controller is preserved. The new parameters 1

~
β , …, 

1
~

−βr , α~  are calculated according to the formulas 1
~
β = λβ1,  

2
~
β = λr/(r-1)

β2,  ...,  1
~

−βr = λr/2
βr-1,  α~ = λr

α. Following are the 
resulting quasi-continuous controllers with r ≤ 4, simulation-
tested βi and a general gain function Φ: 

1. u = - αΦ sign σ, 

2. u = - αΦ ( σ& +λ |σ|1/2sign σ)/(| σ& |+λ|σ|1/2), 

3. u = - αΦ [ σ&& + 2λ
3/2 (| σ& |+ λ|σ|2/3

)
-1/2( σ& +λ|σ|2/3sign σ ) ] / 

      [| σ&& |+ 2λ
3/2 (| σ& |+ λ|σ|2/3

)
1/2], 

4. ϕ3,4 = 

σ&&& +3λ
2[ σ&& +λ

4/3(| σ& |+0.5λ|σ|3/4)-1/3( σ& +0.5λ |σ|3/4sign σ)]   
     [| σ&& |+λ

4/3(| σ& |+0.5λ |σ|3/4)2/3]-1/2, 

N3,4 = | σ&&& | + 3λ
2 [| σ&& |+λ

4/3(| σ& |+0.5λ |σ|3/4)2/3]1/2,  

u = - αΦ ϕ3,4 / N3,4 . 

8. APPLICATION AND SIMULATION EXAMPLES 

Only the main points of the presented results are 
demonstrated.  

8.1 Control simulation 

Practical application of HOSM control is presented in a lot of 
papers, only to mention here (Bartolini, Pisano et al., 2003, 
Edvards et al., 2002, Levant et al., 2000, Massey et al., 2005). 
Consider a simple kinematic model of car control 

 

 
Fig. 2: Kinematic car model        

  x&  = v cos ϕ,    y&  = v sin ϕ, 

  ϕ& = v/l tan θ,    θ& = u, 

where x and y are Cartesian coordinates of the rear-axle 
middle point, ϕ is the orientation angle, v is the longitudinal 
velocity, l is the length between the two axles and θ is the 
steering angle (i.e. the real input) (Fig. 2). The task is to steer 
the car from a given initial position to the trajectory y = g(x), 
where g(x) and y are assumed to be available in real time. 

Define σ = y - g(x). Let v = const = 10 m/s, l = 5 m,  x = y = ϕ 
= θ = 0 at t = 0, g(x) = 10 sin(0.05x) + 5. The relative degree 
of the system is 3 and the quasi-continuous 3-sliding 
controller (Subsection 5.2) solves the problem. It was taken  
α = 1, L = 400. The resulting output-feedback controller (11), 
(12) is  

u = - [z2+ 2 (|z1|+ | z0|
2/3

)
-1/2(z1+ | z0|

2/3sign z0 )] / 

      [|z2|+ 2 (|z1|+ | z0|
2/3

)
1/2], 

0z&  = v0, v0 = - 14.7361 | z0 - σ| 2/3 sign(z0 - σ) + z1, 

1z&  = v1,  v1 = - 30 | z1 - v0|
 1/2  sign(z1 - v0) + z2, 

2z& = - 440 sign(z2 - v1). 

The controller parameter α is convenient to find by 
simulation. The differentiator parameter L = 400 is taken 
deliberately large, in order to provide for better performance 
in the presence of measurement errors (L = 25 is also 
sufficient, but is much worse with sampling noises). The 
control was applied only from t = 1, in order to provide some 
time for the differentiator convergence. 

The integration was carried out according to the Euler 
method (the only reliable integration method with 
discontinuous dynamics), the sampling step being equal to 
the integration step τ = 10-4. In the absence of noises the 
tracking accuracies |σ| ≤ 5.4⋅10-7, | σ& | ≤ 2.4⋅10-4, | σ&& | ≤ 0.042 
were obtained. With τ = 10-5 the accuracies |σ| ≤ 5.6⋅10-10, 
| σ& | ≤ 1.4⋅10-5, | σ&& | ≤ 0.0042 were attained, which mainly 



 
 

     

 

corresponds to the asymptotics stated in Theorem 5. The car 
trajectory, 3-sliding tracking errors, steering angle θ and its 
derivative u are shown in Fig. 3a, b, c, d respectively. It is 
seen from Fig. 3c that the control u remains continuous until 
the very entrance into the 3-sliding mode. The steering angle 
θ remains rather smooth and is quite feasible. 

  
Fig. 3:  Quasi-continuous 3-sliding car control [15] 

   
Fig. 4: Performance with the input noise magnitude 0.1m 

In the presence of output noise with the magnitude 0.01m the 
tracking accuracies |σ| ≤ 0.02, | σ& | ≤ 0.14, | σ&& | ≤ 1.3 were 
obtained. With the measurement noise of the magnitude 0.1m 
the accuracies changed to |σ| ≤ 0.20, | σ& | ≤ 0.62, | σ&& | ≤ 2.8 
which corresponds to the asymptotics stated by Theorem 4. 
The performance of the controller with the measurement 
error magnitude 0.1m is shown in Fig. 4. It is seen from Fig. 
4c that the control u is a continuous function of t. The 
steering angle vibrations have the magnitude of about 7 
degrees and the frequency 1, which is also quite feasible. The 
performance does not significantly change, when the 
frequency of the noise varies in the range 100 - 100000.  

8.2 Signal processing: real-time differentiation  

Following is the 5th order differentiator: 

z& 0 = v0 , v0 = -8 L1/6| z0 - f(t)|
 5/6sign(z0 - f(t)) + z1 , 

z& 1 = v1 , v1 = -5 L1/5| z1 - v0|
 4/5 sign(z1 - v0) + z2 ,  

z& 2 = v2 , v2 = -3 L1/4| z2 - v1|
 3/4 sign(z2 - v1) + z3 , 

z& 3 = v3 , v3 = -2 L1/3| z3 - v2|
 2/3 sign(z3 - v2) + z4 , 

z& 4  = v4 , v4 = -1.5 L1/2| z4 - v3|
 1/2 sign(z4 - v3) + z5 , 

z& 5 = -1.1 L sign(z5 - v4); f (6) ≤ L. 

It is applied with L = 1 for the differentiation of the function  

           f(t ) = sin 0.5t + cos 0.5t,     | f(6)| ≤ L = 1. 

The initial values of the differentiator variables are taken 
zero. In practice it is reasonable to take the initial value of z0 
equal to the current sampled value of f(t), significantly 
shortening the transient. Convergence of the differentiator is 
demonstrated in Fig. 5. The 5th derivative is not exact due to 
the software restrictions (number of digits). Higher order 
differentiation requires special software development. 

 

Fig. 5. 5th order differentiation 

8.3 Image processing. 

A gray image is represented in computers as a noisy function 
given on a planar grid, which takes integer values in the 
range 0 – 255. In particular, 0 and 255 correspond to the 
black and to the white respectively. An edge point is defined 
as a point of the maximal gradient. Samples of 3 successive 
rows from a real gray photo are presented in Fig. 5a together 
with the results of the first-order differentiation (10) of their 
arithmetical average, L = 3. The differentiation was carried 
out in both directions, starting from each row end, and the 
arithmetical average was taken exterminating lags. A zoom of 
the same graph in a vicinity of an edge point is shown in Fig. 
5b. Some results of the edge detection are demonstrated in 
Fig. 5 c,d.  



 
 

     

 

 

Fig. 5. Edge detection 

These results were obtained by the author in the framework 
of a practical research project fulfilled by the Institute of 
Industrial Mathematics (Beer-Sheva, Israel, 2000) for 
Cognitense Ltd. The simplicity of the differentiator 
application allows easy tangent line calculation for a curve in 
an image. It is shown in Fig. 6 how a crack is found and 
"eliminated" of the edge of a piece given by a photo (the edge 
was already previously found, and its points were numbered).  

9. CONCLUSIONS 

Homogeneity features of dynamical systems and differential 
inclusions greatly simplify the proofs of finite-time stability 
and provide for the easy calculation of the asymptotical 
accuracy in the presence of delays and measurement errors. 

The homogeneity approach provides a convenient effective 
framework for the design of high-order sliding mode 
controllers.  

High-order sliding mode control provides for effective 
solution of general SISO problems under uncertainty 
conditions. Unsolved remain the problems with non-
minimum phase dynamics and with undefined relative 
degree. The general MIMO case under uncertainty conditions 
surely remains the main challenge for the future research.  

Practical image processing applications of the developed 
differentiator are for the first time demonstrated. 

 

 

Fig. 6. Smoothing a curve 
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