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Abstract

We study the class of pseudo norms on the space of smooth functions on a
closed symplectic manifold, which are invariant under the action of the group
of Hamiltonian diffeomorphisms. Our main result shows that any such pseudo
norm that is continuous with respect to the C'°°-topology, is dominated from
above by the Lo,-norm. As a corollary, we obtain that any bi-invariant Finsler
pseudo-metric on the group of Hamiltonian diffeomorphisms that is generated
by an invariant pseudo norm that satisfies the aforementioned continuity as-
sumption, is either identically zero or equivalent to Hofer’s metric.

1 Introduction and Main Results

A remarkable fact, which is among the cornerstones of symplectic rigidity theory,
is that the group of Hamiltonian diffeomorphisms of a symplectic manifold can be
equipped with an intrinsic geometry given by a bi-invariant Finsler metric known as
Hofer’s metric. In contrast with finite-dimensional Lie groups, the existence of such
a metric on an infinite-dimensional group of transformations is highly unusual due to
the lack of compactness. In the past twenty years, Hofer’s metric has been intensively
studied with many new discoveries covering a wide range of aspects in Hamiltonian
dynamics and symplectic geometry.

The purpose of this note is to show that, under a natural geometric assumption,
any bi-invariant Finsler metric on the group of Hamiltonian diffeomorphisms of a
closed symplectic manifold induces the same topology on this group as Hofer’s metric.
In order to state this result precisely we proceed with some standard definitions and
notation, and refer the reader to the books [7, 11, 15] for symplectic preliminaries,
and further discussions on the group of Hamiltonian diffeomorphisms and Hofer’s
geometry.

aThis author also uses the spelling “Buhovski” for his family name.



Let (M,w) be a closed 2n-dimensional symplectic manifold, and denote by C§°(M)
the space of smooth functions that are zero-mean normalized with respect to the
canonical volume form w”. With every smooth time-dependent Hamiltonian function
H : M x [0,1] — R, we associate a vector field Xy, via the equation ixy,w = —dH,
where Hy(x) = H(t,x). The flow of Xp, is denoted by ¢! and is defined for all
t € [0,1]. The main object of this note is the group of Hamiltonian diffeomorphisms,
which consists of all the time-one maps of such Hamiltonian flows i.e.,

Ham(M,w) = {¢}; | where ¢%; is a Hamiltonian flow}

When equipped with the standard C'*°-topology, the group Ham(M,w) is an infinite-
dimensional Fréchet Lie group, whose Lie algebra A can be identified with the space
C§°(M). Moreover, the adjoint action of Ham(M,w) on A is the standard action
of diffeomorphisms on functions i.e., Adyf = f o ¢!, for every f € A and ¢ €
Ham(M,w). Next, we define a Finsler (pseudo) distance on Ham(M,w). Given any
pseudo norm || - || on the Lie algebra A, we define the length of a path « : [0,1] —
Ham(M,w) as

1 1
length{a}:/ Hd||dt:/ | H, | dt,
0 0

where Hy(x) = H(t, ) is the unique normalized Hamiltonian function generating the
path a. Here H is said to be normalized if [,, Hw" = 0 for every t € [0,1]. The
distance between two Hamiltonian diffeomorphisms is given by

d(v, ) := inf length{a},

where the infimum is taken over all Hamiltonian paths o connecting ) and . It is not
hard to check that d is non-negative, symmetric and satisfies the triangle inequality.
Moreover, a pseudo norm on A which is invariant under the adjoint action yields a
bi-invariant pseudo distance function, i.e. d(¢, ¢) = d(0,0 ¢) = d(v 0, ¢ 0) for every
¥, ¢,0 € Ham(M,w). From now on we will deal solely with such pseudo norms* and
we will refer to d as the pseudo-distance generated by the pseudo norm || - ||.

Remark 1.1. When one studies the geometric properties of the group of Hamilto-
nian diffeomorphisms, it is convenient to consider smooth paths [0, 1] — Ham(M,w),
among which, those that start at the identity correspond to smooth Hamiltonian
flows. Moreover, for a given Finsler pseudo metric on Ham(M,w), a natural assump-
tion from a geometric point of view is that every smooth path [0,1] — Ham(M,w)

*We remark that a fruitful study of right-invariant Finsler metrics on Ham(M,w), motivated
in part by applications to hydrodynamics, was initiated in a well known paper by Arnold [1] (see
also [2], [8] and the references within). Moreover, non-Finslerian bi-invariant metrics on Ham (M, w)
have been intensively studied in the realm of symplectic geometry, starting with the works of
Viterbo [18], Schwarz [17], and Oh [12], and followed by many others.



is of a finite length. As it turns out, the latter assumption is equivalent to the con-
tinuity of the pseudo norm on A corresponding to the pseudo Finsler metric in the
C>-topology”. We prove this fact in the Appendix to the paper. Throughout the
text we shall consider only such pseudo norms.

It is highly non-trivial to check whether a distance function generated by such
a norm, is non-degenerate, that is d(1,¢) > 0 for ¢ # 1. In fact, for closed sym-
plectic manifolds, a bi-invariant pseudo-metric d on Ham(M,w) is either a genuine
metric or identically zero. This is an immediate corollary of a well known theorem
by Banyaga [3], which states that Ham(M,w) is a simple group, combined with the
fact that the null-set

null(d) = {¢ € Ham(M, w) | d(1,¢) = 0}

is a normal subgroup of Ham(M,w). A distinguished result by Hofer [6] states that
the Lo-norm on A gives rise to a genuine distance function on Ham(M,w) known as
Hofer’s metric. This was discovered and proved by Hofer for the case of R?", then
generalized by Polterovich [14], and finally proven in full generality by Lalonde and
McDuff [10]. In a sharp contrast to the above, Eliashberg and Polterovich [5] showed
that for 1 < p < oo, the pseudo-distances on Ham(M,w) corresponding to the L,-
norms on A vanish identically. A considerable generalization of the latter result was
given by Ostrover-Wagner [13] who proved that for a closed symplectic manifold:

Theorem 1.2 (Ostrover-Wagner [13]). Let || - || be a Ham(M,w)-invariant norm on
A such that || -|| < C|| ||« for some constant C, but the two norms are not equivalent.
Then the associated pseudo-distance d on Ham(M,w) vanishes identically.

In [5], the authors started a discussion regarding the uniqueness of Hofer’s metric
(cf. [4], [15]). For the case of closed symplectic manifolds, one question they rose is:

Question: Does there exist a bi-invariant Finsler metric on Ham (M, w) which is not
equivalent to Hofer’s metric?

In this paper we provide an answer to the above question under the natural con-
tinuity assumption mentioned in Remark 1.1. More precisely, our main result is:

Theorem 1.3. Let (M,w) be a closed symplectic manifold. Any Ham(M,w)-invariant
pseudo norm ||-|| on A that is continuous in the C*-topology, is dominated from above
by the Loo-norm i.e., || - || < C|| - || for some constant C.

Combining Theorem 1.3 and Theorem 1.2, we conclude that:

PWe thank A. Katok for his illuminating remark regarding the naturalness of the assumption
that the pseudo norm is continuous in the C'*°-topology.



Corollary 1.4. For a closed symplectic manifold (M,w), any bi-invariant Finsler
pseudo metric on Ham(M,w), obtained by a pseudo norm ||-|| on A that is continuous
in the C*°-topology, s either identically zero or equivalent® to Hofer’s metric. In
particular, any non-degenerate bi-invariant Finsler metric on Ham(M,w), which is
generated by a norm that is continuous in the C°°-topology, gives rise to the same
topology on Ham(M,w) as the one induced by Hofer’s metric.

Remark 1.5. Let us emphasize that any pseudo norm || -|| on A can be turned into a
Ham(M, w)-invariant pseudo norm via the invariantization procedure ||f]| — || f|lino,
where:

I i = inf{ > 67 £l 3 £ =3 fiv and 6 € Ham(M,w) |
We remark that in the above definition of || f|];,, the sum »_ f; is assumed to be finite.

Note that || - [[ine < || - ||. Thus, if || - || is continuous in the C'*°-topology, then so is
| - |ine- Moreover if || - || is a Ham (M, w)-invariant pseudo norm, then:
<=0 1< i

In particular, the above invariantization procedure provides a plethora of Ham (M, w)-
invariant genuine norms on A4, e.g., by applying it to the || - || cx-norms.

Remark 1.6. We verified that the main result in this paper (Theorem 1.3 above)
is valid also in the case of an open connected symplectic manifold of finite volume.
Although we believe that the main result in [13] (Theorem 1.2 above) could also be
extended to this case, we did not check all the steps thoroughly. We leave this for
future research.

Structure of the paper: In Section 2 we sketch an outline of the proof of Theo-
rem 1.3. In Section 3 we prove a local version of this theorem, which will serve as the
main ingredient in the proof of the general case given in Section 4.

Notation: Let zq,...,x, be the Cartesian coordinates in R". For any multi-index
a=(a1,...,0p),set 0% = 0105 ... 0%, where 0; = J/0x;. For an open set Q C R”
we denote C.()) the space of compactly supported continuous functions on €2, and
let || - |l stand for the L.-norm. For an integer k, define C*(Q) to be the class
of functions f from C.(2) such that 9°f € C.(Q) for all |a| < k. The C*-norm of
u € Ck(Q) is given by

|u||cr = max sup |0%ul
lal<k @

As usual, C>°(Q) is the intersection of all the C*(Q) and is endowed with the C°-

topology. We denote by supp(f) the support of the function f i.e., the closure of the
set {z | f(x) # 0}, and by int(D) the interior of a region D C R". For an open region

°Here two metrics dq, do are said to be equivalent if % d1 < dy < Cdy for some constant C' > 0.



U C R*", we denote by Ham.(U,w) the group of Hamiltonian diffeomorphisms of R?"
which are generated by Hamiltonian functions H : R?" x [0,1] — R whose support
is compact and contained in U x [0,1]. Here w is the standard symplectic form on
R?*" given by w = dp A dq, where {q1,p1,--.,qn,Pn} are the canonical coordinates in
R2?". We say that a function f : R?*" — R is a product function, if it is of the form
f(q,p) = [1=, fi(¢:, p:i). Finally, the letters C, Cy, Cs, ... are used to denote positive
constants that depend solely on the dimension of the ambient space relevant in each
particular context.
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2 Outline of the Proof

Here we briefly describe the strategy of the proof of Theorem 1.3. For technical
reasons, we shall prove Theorem 1.3 for pseudo norms on the space C*°(M), instead
of the space A. The original claim will follow from this result since any Ham (M, w)
invariant pseudo norm || - || on A can be naturally extended to an invariant pseudo
norm || - || on C*°(M) by setting

I£I" = 11f = Myll, where My = v [y fo”

Vol(M)
Note that if || - || is continuous in the C'*°-topology, then so is || - ||. Moreover, the
pseudo norm || || coincides with || - || on the space A. By a standard partition of unity

argument, we reduce the proof of the theorem to a “local result”; i.e., we show that it
is sufficient to prove Theorem 1.3 for Ham, (W, w)-invariant pseudo norms on C°(W),
where W = (—L, L)*" is a 2n-dimensional cube in R*". As a first step toward this
end, we introduce a special Ham,.(W, w)-invariant norm || - || £ e, on C2°(W), which
depends on a given finite collection F C C2°(W'). More precisely:

Definition I. For a non-empty finite collection F C C*(W), let

Lri= {Zci,k 7 fi | cip € R, By € Hamo(W,w), f; € F, and #{(i, k) | cix # 0} < oo},

ik



be equipped with the norm
1flles = inf ) leixl,

where the infimum is taken over all the representations f =) ¢y D7 fi as above.

Definition II. For any compactly supported function f € C°(W), let
Hf”}',mam = inf { liirgci)glf HfZHEf}’

where the infimum is taken over all subsequences { f;} in Lz which converge to f in
the C'*°-topology. As usual, the infimum of the empty set is set to be +00.

The main feature of the norm || - || £ mae is that it dominates from above any
other Ham, (W, w)-invariant pseudo norm that is continuous in the C'*°-topology (see
Lemma 3.3). The next step, which is the main part of the proof, is to show that for a
suitable collection of functions F C C2°(W), the norm || - || £, maz 18 in turn dominated
from above by the L,-norm. This is proved in Theorem 3.4, and in light of the above,
it completes the proof of Theorem 1.3. The proof of Theorem 3.4 is divided into two
main steps which we now turn to describe:

The local two-dimensional case: Here, we shall construct a collection F of smooth
compactly supported functions on a two-dimensional cube W? C R?, such that any
[ € Cx(W?) satisfies || f||7 mar < C||f]loo for some absolute constant C. There
are two independent components in the proof of this claim. First, we show that
one can decompose any f € C®(W?) with ||f]lc < 1 into a finite combination
f= Zj\f:ol ¢;Urg;. Here, ¢; € {—1,1}, ¥; € Ham,(W? w), and g; are smooth radial
functions whose L-norm is bounded by an absolute constant, and which satisfy
certain other technical conditions (see Proposition 3.5 for the precise statement). In
what follows we call such functions “simple functions”. We emphasize that Ny is
a constant independent of f. Thus, we can restrict ourselves to the case where f
is a “simple function”. In the second part of the proof, we construct an explicit
collection F = {fo, f1,f2}, where f; € C°(W?), and i« = 0,1,2. Using an averaging
procedure (Proposition 3.6), we show that every “simple function” f € C°(W?) can
be approximated arbitrarily well in the C'*°-topology by a sum of the form

Zai,k“f’;kfky where E]zk € Ham.(W?,w), k € {0,1,2},
ik

and such that Y ;x| < C||f]le for some absolute constant C'. Combining this with
the above definiton of || - || £ maz, We conclude that || f||# maz < C||f|leo, for every
f € C>(W?). This completes the proof of Theorem 3.4 in the 2-dimensional case.

The local higher-dimensional case: The proof of Theorem 3.4 for arbitrary di-
mension strongly relies on the 2-dimensional case. We extend (in a natural way) the
construction of the above mentioned collection F = {fo, f1, f2} to the 2n-dimensional

6



case. By abuse of notation, we shall denote the new collection by F as well. Based
on the proof of Theorem 3.4 in the 2-dimensional case, and on the construction of the
class F, we show that Theorem 3.4 holds for “product functions”, i.e., for f € C(W)
of the form f = [, fi(¢,p:), where f; € C°(W?). From this we derive, using a
Fourier series argument, that the norm || - ||#me is dominated from above by the
| - |[c2n+1-norm, i.e., for any f € C2°(W) one has

[f 1|7 maz < Cllfll2nsr, (2.1)

for some constant C' (see Proposition 3.14 for the proof of the above two claims).
Next, for any € > 0, we construct a partition of unity function R¢ : R** — R, with
supp(R€) C (—e¢,€)*, and such that

Y Rz —v) =1(x)

vEeZ2n

For any w € X := {0,1,2,3}*", we consider a finite grid I', C W given by:
I = ew + 4eZ*" N (=L + 3¢, L — 3¢)*",

and define

ful) =) R(x —v)f(2)

vel's,
Note, that for € sufficiently small such that supp (f) C (—L + 4¢, L — 4€)*", one has
fla) =" fulx)
weX

For any w € X, the function f, is a finite sum of smooth functions that lie near the
points of the grid I'{,. Moreover, these functions have mutually disjoint supports,
which are spaced commodiously. Next, we fix w € X, and for any v € I'{, we
consider the decomposition of f € C°(W) as a Taylor polynomial of order 2n + 1
and a remainder, around the point v (this specific choice of the order ensures, based
on (2.1), the estimate (2.2) below):

flz) = P2Un+1($ —v) + Rgnﬂ(f —v).

We decompose each f, as fi,(x) = gu(x) + hy(x), where

guw(z) = Z Re(x —v)Py, (x —v), and hy(x) = Z Re(x —v)R5,  (x — ).

vel's, vel's,

Based on (2.1), in Lemma 3.16 (cf. Corrolary 3.17) we show that the | - || £ maz-n0rm
of the remainder parts {h,} can be taken to be arbitrarily small. More precisely,

”hw”}',mam < CIth||C2”+1 < C2€HJCHC2"+2= (22)

7



for some constants C; and C5. On the other hand, using a combinatorial argument
and the above mentioned fact that Theorem 3.4 holds for “product functions”, we

prove the estimate
2n+1

ngH]-',max g 03(2 Hfl
1=0

cie’) (2.3)

for some constant C3. Combining the above estimates (2.2) and (2.3) for all w € X,
and taking € — 0, we conclude that for every f € C°(WW) one has

Hf”f,max < C4Hf”°<>a

for some absolute constant Cy. This completes the proof of the theorem.

3 A Local Version of the Main Result

In this section we prove a local version of our main result (Theorem 3.4 below), which
later will serve as the main component in the proof of Theorem 1.3.

Consider an open cube W = [*" C R?", where I = (—L,L) C R is an open
interval. Endow W with linear coordinates (qq,p1,- - -, qn, Pn), and with the standard
symplectic structure w = dp A dq descending from R?". For a finite non-empty
collection F of functions in C°(W), we define the space

Lri= {Zci,k 7 fi| g € R, @pp € Hamo(W,w), f; € F, and #{(i, k) | cip # 0} < oo}
ik

We equip L with the norm

flles o= inf Y e,
where the infimum is taken over all the representations f = ) c; ), @}, fi as above.

Definition 3.1. For any compactly supported function f € C*(W), let
Hf”f',mam :inf{hgglfnfinﬁf}a (3~1)

where the infimum is taken over all subsequences { f;} in Lz which converge to f in
the C*°-topology. If such sequences do not exist, we set || ||, maz = +00.

Remark 3.2. It follows from the definition above that || - || £ mae: is homogeneous,
Ham,(W,w)-invariant, and satisfies the triangle inequality?. Moreover, let {f.} be a
sequence of smooth functions that converge in the C'*°-topology to f, and such that
for every k > 1 one has || fi|l7 mex < C for some constant C. Then ||f|| mae < C.
The fact that || - || £ mae is non-degenerate (i.e., || f||# maz = 0 if and only if f = 0)
follows from the next lemma.

dWhen || - || £, maz = +00, these statements are trivially true.
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Lemma 3.3. Let F C C*(W) be a non-empty finite collection of smooth compactly
supported functions in W. Then, any Ham.(W,w)-invariant pseudo norm || - || on
C(W) which is continuous in the C*-topology, satisfies || - || < C|| - || 7, maz for some
absolute constant C.

Proof of Lemma 3.3. Let C' = max{||g|; g € F}. For any f = ¢ ;. f; € Lr,
one has:

A< Y learll@5afill < O leirl < Cliflle (3.2)
The lemma now follows from combining (3.2), definition (3.1), and the fact that the
pseudo norm || - || is assumed to be continuous in the C'*°-topology. O

The following theorem, which is a “local version” of Theorem 1.3, shows that
for a suitable choice of a collection F, the subspace Lr C C°(W) is dense in the
C*°-topology, and moreover, that the norm || - || £ mae on C°(W) is dominated from
above by the || - ||o-norm.

Theorem 3.4. There is a finite collection F C C(W), such that || - || £, maz @S @
Fomaz < C|| - || for some absolute constant C.

genuine norm on CX (W), and || - |

The remainder of this section is devoted to the proof of Theorem 3.4, which we
split into two separate cases:

3.1 Theorem 3.4 - the two-dimensional case

We assume that n = 1, and hence W = (—L,L) x (—L,L). We set z = z + iy,
where (z,y) are local coordinates on W, and denote by D, = {|z| < a} the disc with
radius a centered at the origin, and by D, 4 = {a < |z| < A} the annulus with radii
a, A. The proof of Theorem 3.4 in the two-dimensional case follows from the next
two propositions, the proofs of which we postpone to Subsections 3.1.1 and 3.1.2.

Proposition 3.5. There are positive constants a, A, C' such that a < A < L; a smooth
radial function f; with supp(f1) = Da; and a natural number Ny € N, such that every
feCx(W) with || flleo <1 can be decomposed as

No
f=2_ &%y
j=1
where ®; € Ham.(W,w), ¢; € {—1,1}, and g; are smooth radial functions that satisfy:

supp(g;) = Da, g; =f1 on D,, and ||gj|lec < C (3.1.3)



Proposition 3.6. Let 0 < a < A < L. Then there exists a smooth function Fy 4 :
R? — R with supp(F, 1) C W, such that the following holds: for every smooth radial
function f: R? — R, that satisfies

[fllo <1, supp(f) C Dg,a, and [ fw =0, (3.1.4)
R2

there exists an area-preserving diffeomorphism ® : R* — R?, with supp(®) C D, 4,
and such that:

/ O F,aw= fw, for any r >0
T DT

We are now in a position to prove Theorem 3.4 in the two-dimensional case.

Proof of Theorem 3.4 (the 2-dimensional case): Let f € C°(W) with || f||e < 1.
It follows from Proposition 3.5 above that there are positive constants a, A,C, an
integer Ny, and a smooth radial function f; with supp(f;) = Da, such that f can be

No
F=2 g
j=1

where ®; € Ham.(W,w), ¢, € {—1,1}, and {g;} are smooth radial functions that
satisfy (3.1.3). Next, let fo be a smooth radial function with supp(f2) = D, 4 such
that fW2 fow = 1. Moreover, let f, = F, 4 be the function provided by Proposition 3.6

written as

above. We consider the function

hj = g; — f1— ijQ, where c; = / (gj - fl)w
w

Note that there exists a constant C” such that ||h;||c < C’. Indeed:

17illee < €+ litlloe + lesllifollao < € + itlloo + IFalloe (7 €A% + /W )

From Proposition 3.6 it follows that there are area-preserving diffeomorphisms CAISj
with supp(®;) C D, a, such that for any r > 0 one has

/T@jfo)w = é/Thjw (3.1.5)

To complete the proof of the theorem, we shall need the following technical lemma:

Lemma 3.7. Let f € C2°(D) be a compactly supported function in a disk D. Then
1 al 2nik . N—o00 1 2m i0 . 0o
NZf(ze N —— o f(ze)dl, in the C* topology

0
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Postponing the proof of Lemma 3.7, we first finish the proof of the theorem.
Consider a compactly supported Hamiltonian isotopy 73! : W — W, where 6 € R,
and such that T;'(z) = €z in D4. From Lemma 3.7 and (3.1.5) it follows that:

, N
]C\; (Tgﬂ—k> o o Moo, h;, in the C* topology (3.1.6)

k=1

We set F = {fo, f1,f2}. From (3.1.6) and Remark 3.2 it follows that |||l #me < C'.
Moreover, by definition one has: ||f1||£maz [[f2]| #mex < 1. This implies that

ng”]—',max S Cl,a
where C” is the absolute constant given by:

C”:C’+1+7rCA2+/ If1] w
w

Thus, we conclude that || f||£mae < NoC”. This completes the proof of the theorem.

O
Proof of Lemma 3.7. We shall prove the convergence
1 N 2mik N—oo 1 2 0
NZf(zeN)—>% (ze") db
k=1 0
in C¥(D), for any k € N. Note that the operators Py(f) = + Zszl f(ze*¥"), defined

on the space C*(D), have a bounded operator norm which is independent on N.
Therefore, it is enough to check that

oo 1 2
Pnf Nooo, - f(ze )d@,
21

in C*(D) only on some dense subspace. We choose this subspace to consist of all the
finite sums:

Zul cos(10) + vy (r) sin(l6),
1=0

where u; and v; are smooth radial functions supported in the disk D. Note that for
N > m one has

27
Prnsp(2) = ug(r) = %/ sm(zeie) do,
0

and hence the statement of the lemma is satisfied in a trivial way. The proof of the
lemma is now complete. O

We now return to complete the proof of Proposition 3.5 and Proposition 3.6.
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3.1.1 Proof of Proposition 3.5

For the sake of clarity, we fragment the proof of the proposition in several steps:

Step I: We choose a = %, A= % The area of the sector

{zeW|a<]|z]|<A; 0<Argz<g}
is equal to

4\ 4 16 B

T (L I\ m, L* Area(iV)
64 8 32

Using a smooth partition of unity, one can decompose f as f = 22‘11 fx, where the

support of each f; lies in an open sub-rectangle of the square W of area AT€§2(W),

and || fx]|co < 1. Next, we take compactly supported area-preserving diffeomorphisms
®y : W — W, such that fy = @} fi, for k=1,...,33, and supp(fi) C (0,%) x (0, %).

s » 2
Denote L; = % and Ly = % From the above we conclude that it is enough to restrict

ourselves to the case where supp(f) C (0, L1)x (0, Lg). Indeed, if the proposition holds
for such functions, then by replacing Ny with 33Ny, it will hold for any compactly
supported function f € C*(W).

Step II: Following Step I, we assume that supp(f) C (0,L;) x (0, Ls). Next, we
apply the following lemma to the function f.

Lemma 3.8. Let R = [0,L1] x [0,Ls] C R? be a rectangle, and let f : R? — R
be a smooth function with supp(f) C int(R), and ||f|le < 1. Then there exists a
decomposition f = Zle fi, and diffeomorphisms ¥, : R — R, i = 1,2,....8, with
supp(V;) C int(R), such that the functions g; := V! f; satisfy ];—mgi\ < %

The proof of Lemma 3.8 will be given in Subsection 3.1.3.

Remark 3.9. Analogously to Step I, Lemma 3.8 reduces the proposition to the
case where supp(f) C (0, Ly) x (0, Ls), and moreover that there is a diffeomorphism
U W — W with supp(¥) C (0, Ly) x (0, Ly), such that g = U* f satisfies | -2 g| < i—?
Indeed, the general case will follow by replacing Ny with 8 - 33 - Ny = 264N,. Thus,
we assume in what follows the existence of f, g and ¥ as above.

Step III: As in Lemma 3.8, denote by R the rectangle [0, L1] X [0, Ly]. From the fact
that -
Area(R) < Area({z e W |a<|z] <A; 0 < Argz < 5}),

one can easily find an area preserving diffeomorphism ® : W — W with

cI>(7€):{ZEVV|a<|z|<Al;O<A7“gz<g},
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for an appropriate a < A; < A; and such that on R, the diffeomorphism & takes
the form ®(x +iy) = 71 (x)e? ¥ where r () is a monotone increasing function. Let
Cy = mingejor,) 7} (z) > 0, and define h = (®7')*g. Note that one can bound the
radial derivative of h by:

0 12

D < X max g <
max |— — max |—
B =0, M99 = T

Next, we set Cy = and fix a smooth radial function f; such that

Bt
L1Cq?
supp(f1) C Dy, %fl(z) < —Cy for z € D, 4,, %fl(z) < 0 for z € int(Dy) \ {0},

and such that the point z = 0 is a non-degenerate maximum for the function f;. We
denote H = h + f1(z), and observe that H satisfies:

supp(H) C Da, ZH < 0inint(Da)\ {0}, H(z)=f1(2) in Dy U Dy, 4,

and that the point z = 0 is a unique non-degenerate critical point of H, which is
a maximum point. Consider the gradient flow of H. By a standard Morse theory
argument one can find a diffeomorphism Y : W — W, with supp(Y) C D, 4, and
such that K := T*H is a radial function. Finally, we have

fo= )= () B = () (),
— (@*1)*<D*(T*1)*K - (\Ij—l)*q)*fl'
Note, that for z € W\ D, 4, one has
VO (2) =0 (2) = D7(2)

Indeed, this follows from the fact that supp(¥) C R C ®'(D, 4), and that T is the
identity on the complement W \ D, 4. Thus, we conclude that

(VO 'T)*w = (®')*w = w, on the complement W \ D, 4

Next, let S, = {# € W||z| = r}. We shall need the next well known lemma,
which follows for example from Moser’s method and Lemma 3.1.5 of [16]. In order to
keep the exposition self-contained, we include a proof of the lemma below.

Lemma 3.10. Let ' be a symplectic form on W which coincides with the standard
symplectic form w on the complement W \ D, 4, and such that fW W= fww. Then,
there exists a diffeomorphism A : W — W supported in D, a, such that for every
a<r <A, one has A(S,) = Sg, for some a < R < A, and such that N*w = W'

13



Proof of Lemma 3.10. Consider the function S : [0,L) — [0,00), defined by
S(r) = [p «'. Note that S is a smooth function, and that S(r) = mr? for every
r € [0,a] U[A, L). Define a diffeomorphism A, : W — W, supported in D, 4, by

Aq(r,0) = ( w,@) , forre|0,L),

™

and extend it by the identity diffeomorphism to the whole 1. Denote w” = (A]')*w’,
and note that [, " = 7r? for r < A, and W" = &' = w on W\ Dy 4. Next, we
explicitly construct a diffeomorphism A, : W — W supported in D, 4, such that
W' = Ajw, and for 0 < r < L, it takes the form As(r,8) = (r, F(r,6)), for some
smooth map F : (0, L) x ST — S1. To this end, note that w” = Gw for some positive
function G : W — (0, 00), such that G =1 on W\ D, 4. Moreover,

7T7"2=/ w":/ Guw, forall 0<r <L
After differentiating this equality we obtain
2
/ G(r,0)dd = 2m, forevery 0<r <L (3.1.7)
0

On the other hand, we require A, to satisfy:
Ajw =rEy(r,0)dr N df = Fy(r,0)w, for every r € (0, L)

Thus, the condition w” = Alw is equivalent to Fy(r,0) = G(r,0), for r € (0,L). We
define

0
F(r,0) = /0 G(r,s)ds, forre (0,L), 6 € [0,2m) (3.1.8)

In light of (3.1.7), we obtain a smooth map F : (0, L) x S' — S'. Moreover, since
G =1on W\ D, 4, one has F(r,0) = 6 for r € (0,a] N [A, L). Therefore, defining
Ay(r,0) = (r,F(r,0)) for 0 < r < L, where F is given in (3.1.8), we obtain a
diffeomorphism of Dy, supported in D, 4. We extend A, to the whole W by the
identity diffeomorphism. Note that w” = Ajw, and hence v’ = Ajw" = ATAw.
Denoting A = AsA, we conclude the statement of the lemma. O

We now return to the proof of Proposition 3.5. By applying Lemma 3.10 to the
forms w' = (V& 'T)*w and w” = (PP~ !)*w, we obtain two diffeomorphisms A’, A”
as in Lemma 3.10, such that A"w = (V& 'T)*w, and A”*w = (¥d~1)*w. Denote
P = AT 1oU~! §” := A"®PU~L. Note that &, " € Ham, (W, w), and that

f — (Q’*l)*@*(T*l)*K o (\Ilfl)*q)*fl — ((I)/)*<A/71)*K o ((I)//>*<A//—1)*f1

14



Because of the properties of A’; A”, the functions (A'~1)*K, (A”~1)*f; are radial, and
in addition we have
supp((A"™)" K) = supp((A"™")*f1) = Da,
(Alil)*K — (Allfl)*](l — fl on Da,

and
HA) Koo = Nl = sl

This shows that the proposition holds for f as in Remark 3.9, with only two summands
in the decomposition, and with C' = |[|f;||cc. Therefore, we obtain the conclusion of
Proposition 3.5 with Ny = 264 - 2 = 528.

3.1.2 Proof of Proposition 3.6

We start with the construction of a function F', such that for any smooth radial
function f : R? — R, satisfying the conditions (3.1.4) one can find a diffeomorphism
(not necessarily area-preserving) ¥ : R? — R? supported in D, 4 such that for any

r > 0:
/ U*w :/ w = 77’ (3.1.9)

/ U*(Fw) = fw. (3.1.10)

T

and,

We shall take the function F' to be of the form F(r,0) = ¢(r)(0), where ¢,
are smooth functions. About the function ¢(r), we only assume that ¢(r) = 0 for
r € [0,e] U[L —€,00), and that ¢(r) =1 for r € [a, A], when € > 0 is small enough.
The function v is assumed to satisfy fo% ¥(0)df = 0, and will be determined in the
sequel. Moreover, let

([ R(r,0) = /u(r)u(0) + v(r)v(0),

2

u(r) =v(r)=r? forr<aorr > A,

u'(r),v'(r) >0 for r > 0, (3.1.11)
pu(0),v(0) > 0,
[ u(0) +v(0) =1

Here, p,v,u and v, are smooth functions that will be determined explicitly in the
sequel. Note that conditions (3.1.11) ensure that U(r,0) := (R(r,0),0) is a diffeo-
morphism of R? supported in D, 4. Next, we compute

U*w = R(r,0)R,(r,0)dr A df = — (u'(r)p(0) + v'(r)v(6))dr A db,

N | —
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and
U*(Fw) = F(R(r,0),0)R(r,0)R.(r,0)dr A df
= %¢(R(r, ) () (u’(r)u(@) + ' (r)v(6))dr A db.

After differentiating by r and some simplification, conditions (3.1.9), (3.1.10) become
27 27
! 0)do + v 0)do = 4 3.1.12
W) [ w0+ [ vo)an ~amr (3.1.12)
and,
27 27
U'(T)/O P(R(r, 9))¢(9)u(9)d9+v'(7‘)/0 G(R(r,0))(0)v(0)dd = 4mrf(r) (3.1.13)

Note that when a < r < A, one has a < R(r,6) < A, and condition (3.1.13) turns to:
2m 2w
u'(r) »(0)p(0)dl + v'(r) P(0)v(0)dl = 4xr f(r) (3.1.14)

0 0

Next, we choose the functions ¢, u, v to be any smooth functions satisfying:

0)do = [7" v(0)do = T, (3.1.15)

Note that this choice of v, u, v does not depend on the function f. Moreover, with
the above choice, for a < r < A, equations (3.1.12) and (3.1.14) become

{ w(r)+'(r) =

uw'(r) —v'(r)

2rf(r)

Next, we consider equations (3.1.16) for every r > 0, with initial conditions u(0) =
v(0) = 0. The solutions of this system are

(3.1.16)

w(r) = [ s(24 f(s))ds,
{ (r) for 2+ f(s)) (3.117)
o(r) = J7 s(2 f(s))ds
One can easily check, that as required, the function v and v satisfy
u'(r),v'(r) >0, forr >0,
() v(r) (3.1.18)
u(r) =v(r)=r% forr<a andr > A
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Moreover, by definition, they satisfy equations (3.1.12) and (3.1.13) when a < r < A.

Let us now show that these equations hold for r € (0,a) U (4, c0) as well. First, note

that equation (3.1.12) clearly holds when r € (0,a) U (A4, 00). Second, by definition,

for r € (0,a) U (A, 00) one has u(r) = v(r) = r?, and R(r,0) = r. Hence, we compute
2

u'(r) [ o(R(r,0))(0)u(0)dd + ' (r) ' O(R(r,0))(0)v(0)do

0 0

2 2

=u'(r)o(r) [ PO)u(0)dd + ' (r)e(r) [ (0w (0)do

0 0
= 2ro(r / »(0)p(6)do + / (6
= 2r¢(r)(2m — 27)

Combining this with the fact that supp(f) C D, ., we obtain that the functions u
and v satisfy (3.1.12) and (3.1.13) for all » > 0. We conclude that the resulting
diffeomorphism ¥ satisfies conditions (3.1.9) and (3.1.10). Furthermore, since the
diffeomorphism W satisfies (3.1.9), and supp(¥) C D, 4, by using a similar argument
as in the proof of Lemma 3.1.5 in [16], we conclude that there exists an area-preserving
diffeomorphism ® : R? — R?, with supp(®) € D, 4, such that ®(D(r)) = ¥(D(r))
for any r > 0. Thus, we obtain

/T@*F)w - / v = /@(Dn = L(Dn = / v = D, Je

and the proof of Proposition 3.6 is now complete.

3.1.3 Technical Lemmata

In this subsection we prove Lemma 3.8 which was used in the proof of Proposition 3.5.
We start with the following preparation:

Lemma 3.11. There is a smooth function ¢ : R — R with the following properties:

1. supp(¢) = [0,3],
2. ¢(t) >0, for t € (0,3),
3. ¢'(t) >0, for t € (0,3/2), and ¢/(t) <0 for ¢t € (3/2,3),
/ ! /!
4. sup (¢><t)> — qup LWeO-¢®?
te(0,3) o®) te(0,3) ()?

5. Y men®(t4+mn) =1

17



Proof of Lemma 3.11. Consider first the smooth function f : R — R, defined by

e’%, for x > 0,
flz) =

0, for z <0

Note that for z > 0, one has

and hence f”(z) > 0 for x € (0,1), and f”(0) = f”(1) = 0. Note moreover that

f'(x)
f(x)

We approximate, in the C°-norm, the function f”|p 1) arbitrarily close by a smooth
non-negative function % : [0,1] — [0, 00), such that h(z) = f”(x) for = € [0,3], and
such that h(x) = 0 near x = 1. Next, consider the smooth function F': [0,1] — R,
that is uniquely determined by the requirements F”(z) = h(z), and F(0) = F'(0) =
0. Note that the function F is arbitrary close, in the C*-topology, to f|j1], and
F(z) = f(z) for z € [0,1]. Moreover, the requirement that h is C°-close to "o
ensures that £ (z)F(z)— F'(x)? < 0, for every x € (0,1). We further observe that by
definition, F"(x) 4+ F"(1 —z) > 0 for all z € (0, 1), and that F(x) is a linear function

near x = 1. Finally, we define ¢ : R — R as follows:

' 4
) f(zx)? = —Ee_% <0, forz € (0,+00)

@) @) - @)= (

e ;;((wl)) for x € [0, 1],
T fre (1,2)

P(x) = 14;85’:(1:5) for xz € (2, 3],
o for z ¢ [0, 3]

It follows immediately from the definition that ¢ is a non-negative smooth function,
with supp(¢) = [0, 3]. Note moreover that ¢(x) = ¢(3 — ), and that for z € (1,2):

" —F"x—-1)—-F"(2—=x

<0 (3.1.19)

Combining this with the fact that ¢’(3/2) = 0, we obtain that ¢'(z) > 0 for z €
(1,3/2), and ¢'(z) < 0 for x € (3/2,2). Furthermore, from the definition of the
function F, it follows that ¢'(z) > 0 for x € (0, 1] and ¢'(z) < 0 for x € [2,3). Thus,
we conclude that ¢ satisfies the first three requirements of the lemma. We next turn
to show that ¢ satisfies the fourth one. Note that ¢ (z)¢(x)—¢'(z)* < 0 for z € (0, 3).
This follows from the analogous property of F' for € (0,1)U (2, 3); from (3.1.19) for
z € (1,2); and from the fact that ¢"(xq)(zo) — ¢'(20)* = —¢'(x0)* < 0 for zy = 1,2.
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Moreover, from the definition of the function ¢ it follows that ¢(z) = sA—~e~: when

= 2F(D)
x > 0 and z is close to 0, and ¢(z) = #mefﬁ when x < 3 and z is close to 3.
Therefore, we obtain:
7 ()2 1 ()2
@) — daP | @)e) — S
20+ ¢(x)? 73" p(x)?
From the above we conclude that:
" M 2
p SO =02
z€(0,3) o(x)
as required. Finally, there is no difficulty in checking that } _, ¢(z +n) = 1. The
details of this last step are left to the reader. O
Lemma 3.12. Let R = [ay, 1] X [a9, 5] C R? be a rectangle, and consider two

smooth non-negative functions u : (o, 51] — R, and v : [ag, B3] — R, positive on
(v, B1) and (aw, B2) respectively, such that u(x) = e71 near ap; u(z) = efi—= near
b1, v(y) = ever near ag; and v(y) = P near Bs.  Moreover, let ¢(x) be the
function described in Lemma 3.11 above, and let F : R* — R be any smooth function
that satisfies:

1. supp(F) =R
2. F(x,y) >0 for (z,y) € int(R)
3. F(z,y) = u(x)v(y) near the boundary of R

Then there exists an €y > 0, such that for any 0 < € < €y, and a € R, the following
holds: denote by G(v,y) = F(z,y)p(*=*), and assume that G # 0 (this holds when
(a1, 1) N (a,a + 3€) # 0). Moreover, set U = supp(G) = [a1,a2] X [, fa]. Then,
there exists a smooth function ¢ : a9, B2] — (a1, az), which is constant near as, (o,
such that for any y € (ag, B2) one has:

LG(z,y) >0, fora <z <cy),
LG(z,y) <0, forcy) <z <a

Proof of Lemma 3.12. From thelabove assumptions it follows thlat there exist a; <
m < 01 < By, such that u(z) = e for ag < x < 1, u(z) = ePi—= for §; < x < [y,
and F(z,y) = u(x)v(y) when z € (a1, 7] U [d1,51). Pick some ~1,0], such that
ap <9 <7 <6 <6 <y, and denote € = min{%, @}. Next, take any
0 < € < e, and any a € R, and consider the function G(z,y) = F(z,y)p(*2).

Case I: Assume a € [y],d1]. Then, one has 7| < a < a + 3¢ < 4], and therefore
supp(G) = [a,a + 3€] X [ag, fa]. Fix some yg € (ag, B2). Our goal is to show that for
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sufficiently small € (which is independent of 1), there exists a value ¢(yy) € (a, a+3¢),
such that 2G(z,ye) > 0, for a < z < c(yo), and ZG(z, yo) < 0, for c(yo) < = < a+3e.
For this end, we compute:

G y0) _ gF(r.p) 14055
G(z,v0) F(z,y0) € o(*)

Note that, the function z — G(x,10) is a positive function, supported in [a, a + 3¢].

o
Thus, 69&%2’3)0) = 0 at least at one point = € (a,a + 3¢) (e.g., at the maximum point

of z — G(x,yp)). Let us show next that:

0 %G(ZE, yO)

— for all 3 .1.20
9r Glr ) <0, forall z € (a,a+ 3¢) (3 )

i x .
We start by claiming that a% ‘9}1(;( y’)y ) is bounded on [71,01] % (g, B2). Indeed, from

the assumptions of the lemma it follows that F(x,y) = u(x)v(y) near the boundary
of R, and therefore there exist ag < 72 < 9 < (o, such that F(x,y) = u(x)v(y) for
y € [ag, 72| U [0g, F2]. Thus, for a point (z,y) near the boundary of 2R, one has

0 Ly 0u() _ (@)uls) - u(a)?
oxr F(z,y) Ox u(x) u(z)?

(3.1.21)

Restricting ourselves to the case where = € [y],0]] and y € [ag, 2] U [d2, Fo], and
by noticing that u|, g,y is a strictly positive smooth function, we obtain that the

function a%% is bounded on [y, 0] x ((caa, 2] U [d2,52)). On the other hand,

2 x .
because of compactness, the function a%% is bounded on [, §1] X [72, d2]. Hence,

we conclude that 2 %ric(i,)y ) is bounded on (71, 01] % (g, B2). Next, note that
1/x7a 1//u r—a\ _ A(r—a)2
D15 1R — o (=) o)
Ore p(==*) € ()2
From Lemma 3.11 it follows that
¢"(t)o(t) — ¢/ (1)
sup < 0, 3.1.23
te(0,3) Qb(t)Z ( )

and hence (3.1.22) can be chosen to be arbitrarily negative. As a conclusion, we
obtain that for sufficiently small €, say 0 < € < €5, one has

0 7G(z.y) -
%W <0, for every (z,y) € supp(G) = [a,a + 3¢] x (az, ) (3.1.24)

Moreover, for any y € (az, 32), there exists therefore a unique z := ¢(y) € (a, a + 3¢),
L G(zy)
oz

such that 2&==5= = 0. It follows from (3.1.24) and the implicit function theorem,
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2 G(zy) .
that the function y — c(y) is smooth for y € (ag,32). Moreover, since B“G(éy’)y ) is

independent of y, when y is close to ay or to s, it follows that y — c(y) is constant
near the endpoints ap, #». This completes the proof of the Lemma in Case 1.

Case II: Assume that a < 7 or a > ;. Here we have [a, a+3¢] C (—00,v1)U(d1, +00).
Therefore, the function

is independent of y, as well as

20@y) @)  16(52)
Gley)  ule) e o(=o)

for (z,y) € supp(G). Also, for (z,y) € supp(G) one has

9 Py 9 d@)  u(x)u(r) —u'(x)
or F(z,y) 0z u(x) u(z)?
Thus, since u(z) = es=a1 for z € (a1, m), and u(z) = eFi s for x € (01, 81), we obtain

0 LF(x,y)
e < 0, for (z,y) € supp(G)

As in Case I, by combining (3.1.22) and (3.1.23), one has

0 16/(552)

ZZ € f

Iz ¢ 6(=2) <0, for (z,y) € supp(G)
Therefore, we conclude that

0 BQG(:C,y)

2 9T\ ) f

95 Gy <0, for (z,y) € supp(G)

As in the previous case, since x — G(x, ) is positive in the interior of its support
supp(G) = lay,as] X |, Bs], for each fixed yg € (g, Fs) there exists © € (aq,az)
such that %G(w,yo) = 0. Therefore for each fixed yy € (ag,s), there is a unique

a Is]
= G(x, . . =~ G(x,
2. 0@y _ 0. Moreover, since the function 2z -2~ (@.y)
G(z,y) ’ G(z,y)

is independent of y for (z,y) € supp(G), we conclude that the function y — c(y) is
constant on (aa, 33). This completes the proof of lemma 3.12. ]

x = c(yo) € (a1,asz), such that

Lemma 3.13. In the same setting as in Lemma 3.12, for any open neighborhood V' of
U = supp(G) = [a1,as] X [ag, Pa], there exists a compactly supported diffeomorphism
®:V =V, such that H = ®*G satisfies |2 H| < 3Glee * 4nd supp(H) = supp(G).

az—ay ’
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Proof of Lemma 3.13. We divide the proof of the lemma into two steps:
Step I: Let V be an open neighborhood of U = supp(G) = [a1, as] X [ag, fs]. Take
Qg < ag < B9 < (33, such that [ay, as] X [, F2] C V. Moreover, take ay, ay such that

a; < a; < min ¢(y) < max c(y) < az < as,
[c2,062] [a2,02]

and,

~ ai + as ~
a; < < Q2.

One can easily find a smooth family of diffeomorphisms f* : (a1,as) — (a1,a2),
t € (ay,asy), such that:

supp(f*) C [ar, @],

fle5%) =t

fal-;a2 _ ]l(al’a2)

We extend the function ¢(y) to a smooth function on the interval (&, 32), such that
c(y) = 2322 for y close enough to the points &y, B. Next, define a diffeomorphism

Wy (ag,az) X (amgz) — (ay,az) x (&2732)

by the requirement:
\Ill(‘ru y) = (fdy)(x)’ y)

It is not hard to check that the diffeomorphism W, is the identity near the boundary
of the rectangle (ay,as) x (as, Eg), and therefore one can extend it by the identity,
allowing ourselves a slight abuse of notation, to a diffeomorphism ¥; : V — V.
Denote G = ViG. It follows from the definition of W that for y € (ag, 32), one has:

0 aita
5.Gi(z,y) >0, fora; <z <52,
{ 0 ? (3.1.25)

2Gi(z,y) <0, for U2 < g < q,,

and moreover that supp(G1) = [a1,as] X a9, B2], and Gi(z,y) = ui(z)vi(y) for x €

Tr—

a1, as] and y being near oy or Ba, where ug(z) = (f92))* (u(z)p(22)), v1(z) = v(z).

Step II:

Let 0 < e < %5, and consider three families of smooth positive functions xj :
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la1,as] — [0,1], where j = 1,2, 3, such that the following holds:

1, forz € lay,a) + €U [BE2 — ¢ 1202 4 ¢ U[ay — €, ag),

Xi(z) = { |
0, forz € [a; 4 2¢, 852 — 2e] U [B5922 4 2¢ ay — 2¢],
0, forx € [ar, a1 + €] U [BE2 — €, ay],
{ 1, for x € [ag + 2¢, 8592 — 2¢],
[
(45

0, forx € [ar, 25% + €] U [az — €, a],
Xs(z) =

1, for x € [91%2 4 2¢ ay — 2¢],

and moreover,
{ Xg(x) > 07 fOI" X E (a’l + 6, a142ra2 . 6),

x5(z) >0, forz e (252 +€,ay —¢).

Next, denote by C§°([a1,as]) the set of smooth functions [a;, as] — R, such that
the derivatives of any order (including zero) vanish at the boundary points a; and as.
Fix g € C3°([a1, az]), and define h(x) by:

he(x) = ¢'(x)xi(x) + Ax5(z) — Bxs(2),

where A and B are two constants given by:

ajtay
o) - [.7 d(@)xi(x)da
= ajtag ’
fal 7 x5(x) dr
and + o
o) Jiie o' (@)Xi () d

f @ X§($) dx
Note that one has:

and

ﬁ () = (),

1+a2
2

Let g : [a1,a2] — R be the unique function such that ¢/ (z) = h(z), and g.(a;) = 0.
It follows from the definition that

ay +a ay+a
ge(x) = g(z), for = € far,a1+ € U] 12 2 e, 12 2 + €U ag — €, as),

and in particular, g. € C3°([a1, as]). Note moreover that if g(x) satisfies ¢'(z) > 0 for
z € (a1, %5%2) and ¢'(z) < 0 for x € (5% ay), then so does g.(z) i.e., g.(z) > 0 for

z € (a1, 23$%2) and g/(z) < 0 for z € (252 ay).
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Next, we define a family of operators L. : C§°([a1, az]) — C§°([ai, as]), by the
requirement that L.g = g.. It is not hard to check that L. is linear, and continuous
in the C"*°-topology. Moreover, let

a1+a2_26 a1 + ag
2

Z. = lar, a1 + 2€¢] U | + 2€] U [ag — 2¢, as]
Then, from the definition of g., and the fact that x5 and x5 have disjoint supports,
one has the following estimate:

max |g(r)] < max|g'(z)| + max{[Al, | B[}.

[a1,a2]
Furthermore, from the definition of A and B one has:

ai+az

|9(45%)| + e maxzer, [g'(2))|

a2—ai;
e 4e

Al [B] <

Therefore, we conclude that

max |g.(z)| < w + 1+ __de max |¢'(x)]. (3.1.26)
‘ 2o —de Q2=8 __ Ae | zeZ.

la1,a2]

NeXt? define He: [ab a2] X [052a ﬁQ] —R by He('ay) = LeGl('7y) for every y € [052762]'
Note that He|(, as)x[as,8] 15 @ smooth function. Moreover, if € > 0 is small enough,
then from (3.1.26) we conclude that

0 _ 31l _ 3Gl

%He(xvy)l X ay — ay = ay — ala for every ($,y) S [alaa'Q] X [a2aﬁ2]

We fix such an €, and set H := H.. From the definition of H and (3.1.25) one has:

(%:H(:an) >0, for gy <z < CLI*QHQ7
(3.1.27)
%H(’I’y) < 0, fOr alQﬂ << as,
for any y € (aw, 52). Furthermore,
Hlz) = Giloy) (3.1.28)

for x € [ar, a1 +€]U[8F2 — ¢, 252 4 | U[ay — €, as), and y € (s, B2). Note moreover
that since the operator L. is linear, one has that H(z,y) = (L.up)(x)v1(y) for any
x € [ay,as] and y near the boundary points s or [3s.

It follows from (3.1.27) and (3.1.28) above, that there is a unique diffeomorphism
Uy (a1,a3) X (ag, f2) — (ay,az) X (ag, Bs2), of the form Wy(x,y) = (w(x,y),y), such
that

H’(a1,a2)><(a2752) = \IJ;G1|(G1,&2)><(012,52)7
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and supp(Ws) C ([ar + €, 92 — ] U [9E92 + €, ay — €]) X [a2, B2]. Moreover, we have
Gi(z,y) = ui(x)v1(y), H(x,y) = (Leuy)(z)v1(y) for = € [aq, as] and y near ay or [s.
From this we conclude that w(z,y) is independent of y, for y close to as, F>. From
Step I, we have aiy < ag < 3 < 52, such that [a, as] X [as, 52] C V. One can easily
extend the diffeomorphism ¥, to

Uyt (a1,az2) X (&2752) — (a1, az) x (aQaBQ)a

such that W, is the identity near the boundary of (ai,as) X (aq, Bg) Then we can
extend Wy by the identity to a diffeomorphism Wy : V — V. We have H = V3G;.

Finally, denote ® = UW,: V — V. The diffeomorphism ® is compactly sup-
ported inside V', and H = ®*(G satisfies

0 1 _ 3G

. X y H) =
21 < M g () = ()

This completes the proof of the lemma. n
We are finally in a position to prove Lemma 3.8.

Proof of Lemma 3.8. Let f : R? — R be a smooth function with ||f|ls < 1, and
supp(f) C int(R). We fix some parameters oy, o, 3;, B, where i = 1,2, such that

77

0<04i<Oz;-<ﬁ§<ﬂi<Li,fori:1,2;ﬂ1—a1>%L1;and

supp(f) Cint([ah, B1] X [a5, Bo]) C int([on, Bu] X [az, Bs]) C int(R)

Moreover, we choose a smooth function v : R — R, such that supp(u) = [a1, 1],
—1 / —1 /
u(r) = e¥1 for z € (ozl,m;al), u(z) = efi—e for x € (@,ﬁl), u(r) = 1 on
[, A1), u(x) > 0 for z € (aq, /1), and ||ul|oc = 1. Similarly, we take v : R — R,
1

!
Qg+

with supp(v) = [ao, Ba], v(y) = evo2 for y € (o, 22) g, v(y) = v for

y € (%52, 3), v(y) = 2 on [ah, B3], v(y) > 0 for y € (a3, B), and [[v]|s = 2. Next,

we consider the decomposition f = F; — F,, where

Fy(z,y) = f(2,y) +u(x)v(y), and Fa(v,y) = u(z)v(y)

We have || F. || < 3 and F.(z,y) > 0 when (x,y) € (a1, 51) X (g, 52), for ¢ € {1,2}.
From Lemma 3.13 it follows that there is ¢y > 0 such that for any 0 < € < ¢,
and any a € R, the following holds: let G¢(z,y) = Fi(x,y)¢(*=*), where ¢ € {1,2}
(we may and shall assume in what follows that G. # 0). Take V* to be any open
neighborhood of U¢ := supp(G.) = [aj,a3] X [ag, B2]. Then, there is a compactly
supported diffeomorphism ®¢ : V¢ — V< such that H. = ($°)*G. satisfies

| 2H,| < ﬁ, and supp(H.) = supp(G.) (3.1.29)
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Fix 0 < € < ¢y as above. For n € Z and ¢ € {1,2} denote G, = F(z,y)p(*=").
Note that F. = )" _, G, and that only finitely many summands are not identically
zero. For i =1,2,3,4, let K _; = ZjeZ G it4;5. Note, moreover, that the supports of
all the non-zero summands of K ; are pairwise disjoint, and F; = Zle K ;, and thus
f=301 K, — Y, Ky Next, we fix 1 <idp < 4. Consider K_;, = > iz Gsiiot4js
and choose pairwise disjoint open neighborhoods int(R) D V; . O supp(Ge iy+4;) of

10,]
those summands which are not identically zero. Now, apply Lemma 3.13 to each

element in the decomposition K ;, = > ez G io+4;- We obtain that for any non-zero
summand G j,14;, there is a compactly supported diffeomorphism ®; . : Vo . — Vi .,
such that the function H; ; = (@ ;)* G 14 satisfies
0 9 S
|%Hi07j| < and supp(H;, ;) = supp(Ge ig+4;) (3.1.30)

:u(ﬂ-:c (Supp(GC,io+4j))) ’

Here 7, denotes the projection to the interval [0, L;], and p is the Lebesgue measure.
Note that the supports {supp(®;, ;)
the composition of all the ®; ’s for which G ;,14; # 0. Moreover, we denote by I3 &
k=1,2,..., M, all the non-empty supports among {supp(G.;,+4;)}. Note that each

I , isa rectangle contained in [ay, 01] X [ag, B2]. Consider the sequence of rectangles

Bo — Bo —
2k
o, 2t ]

} are mutually disjoint. We shall denote by <I><

ﬁg@,k = [ay, f1] X [ + (2k — 1)

It is not hard to check that there exists a diffeomorphism ¥; : R — R, with
supp(V; ) C int(R), such that W; (Hj &) = 1L ,, and such that on each Hl & it
coincides with a linear contraction on the directions of the axes, Composed Wlth a
translation. As a result, for k;, = (¥ )" (S )* K., one has |2k ;| < 61 o < L_1
The proof of Lemma 3.8 is now complete.

]

3.2 Theorem 3.4 - the higher-dimensional case

The proof of Theorem 3.4 for arbitrary dimension 2n relies on the 2-dimensional case,
and on the following proposition, the proof of which we postpone to Subsection 3.2.1.

Proposition 3.14. There is a finite family of functions F C C(W), such that:

(i) Any f € C(W) that can be represented as a product f(q,p) = [1i, fi(gipi),
for some f; € C°(1?), satisfies that || f|| 7 maz < C|f|loo, for some constant C'.

(i1) For any f € C2(W), one has || f|| 7, maz < C| fllczn+1, for some constant C.
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Remark 3.15. In what follows, we fix F to be the collection of functions given by
Proposition 3.14 above. Moreover, in order to simplify the presentation, we shall use
T1 = (q1,T2 = P1, ., Loan_1 = Qn, Ton = Ppn, as another notation for the coordinates of a
point = (q1, p1, ..., Gn, Pn) in the 2n-dimensional cube W = (=L, L)*".

Proof of Theorem 3.4 (the higher dimensional case). For simplicity, the proof of
the theorem is divided into two steps:

Step I (Decomposing the function): We consider a smooth function r : [-1,1] — R,
satisfying:
1 forte|[-L 1],
T(t) = { [ 3 3]2 9
0 fOI' t e [—1, —3] U [5, 1],
and such that ., r(t +4) = 1, and ||r||c = 1. For any € > 0, we denote

2n
R () = R(21, 2, e T2p) = Hr<%>
=1

Clearly, one has > _ 2. R(x —v) = 1(x). Moreover, for a sufficiently small € > 0,
and a point w € X := {0,1,2,3}*", we consider a finite grid I', C W given by

[ = ew + 4€Z** N (=L + 3¢, L — 3¢)*" (3.2.31)
Furthermore, we define a partition function R (x) by:

Ry(z) =Y R(z —v)
vel's,
Note that Y, xR (z) = I(z) for any x € (=L + 4¢, L — 4¢)**. Next, consider an
arbitrary function f € C°(W). Take ¢y > 0 with supp (f) C (=L + 4ey, L — 4€9)*",
and fix € < €. For any w € X, denote f,(z) = RS (z)f(x). Note that
f(x) =) ful)
weX
Moreover, for a fix w € X one has

fu(z) =) R(z —v)f(x), (3.2.32)

vel,
where the support of each summand satisfies

supp (R(z —v) f(x)) C v+ [—%, %] Qn, forv eI,

Step I (Estimating the norm || f||7 max): Fix v € I

w?

and consider the decomposi-
tion of f € C°(W) to a Taylor polynomial of order 2n + 1 and a remainder, around
the point v:

flz) = P2vn+1(x —v) + R§n+1(‘r —v)
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It follows from (3.2.32) above that f,(x) = g.(z) + hw(x), where

= Z R (x = v) Pypa(z — v), and hy( Z Rf(z —v)R3, 1 (z —v)

vel's, vel's,

Lemma 3.16. With the above notation, there is a constant C = C(n) such that

thHCQn-H g CEHfHCQn+2

Proof of Lemma 3.16. From the fact that all the functions in the family

{R(x — U)RgnJrl (z — 'U)}vel‘gu

have mutually disjoint supports, and the definition of the norm || - ||g2n+1, it follows
that there is a constant C' (depending on the dimension) such that

R (2 = v) Ry ir (= 0)|cons

< Cmax( max  [|R(z — v)]|ox ||Rgn+1(a;—v)||02n+l_k>

vel's, \0<k<2n+1

lhw(@)llczer = max

Note that from the definition of R¢ it follows that for every 0 < k < 2n + 1, one has
IR (z = v)|er < O,
for some constant C’ (independent of k). Note moreover, that for 0 < k < 2n + 1,
1R3 41 (2 = v)leansior < C7[|flloanta €FF, (3.2.33)

for some constant C”. Indeed, let o be a multiindex with |a| = 2n + 1 — k, and
consider the order-k Taylor expansion of 0% f near the point v. The remainder equals
to 0“RY,, ., (x —v), and the estimate (3.2.33) follows from the standard bound on the
size of the remainder. This completes the proof of the lemma. n

Corollary 3.17. From Proposition 3.14 (ii), and Lemma 3.16, we conclude that:
|hwl| 7, maz < Cél| f]|c2n+2, for some constant C' = C(n) (3.2.34)

To complete the proof of the theorem we shall need the following proposition:

Proposition 3.18. There is a constant C' = C(n) such that

2n+1

gl 7 maz < CO N fllese’) (3.2.35)
=0

Postponing the proof of Proposition 3.18 to Subsection 3.2.2, we first complete
the proof of Theorem 3.4. From (3.2.34) and (3.2.35), letting ¢ — 0, we conclude that

Hf“]:,maz S CHfHooa

for some absolute constant (', and the proof is complete. O]
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3.2.1 Proof of Proposition 3.14

Part (i): Let W = [[_, W7, where W? = (—L,L)* C R*(g,p:), and denote by
F? = {fo,f1, 2} the collection of functions constructed in the proof of Theorem 3.4
in the 2-dimensional case. For any multi-index 3 = (I1,...,1,) € X' := {0,1,2}", we
set f5(q,p) = [1—; fir (qx, px). In what follows we denote by F the set {fz; 8 € X'}.

Consider f € C(W?") of the form f(q,p) =[], fi(¢. pi), where f; € C(W;).
Let € > 0. From the proof of Theorem 3.4 in the 2-dimensional case it follows that
there exist functions f;, € Lr2, @ = 1,2,...,n; k € N, such that f; oo, f; in the
C*-topology, and such that || fixllc,, < [[fillz2,maee + € Next, for every 1 <i <n
and k£ € N, we decompose

fir =Y el (@), (3.2.36)
gl
where @Zi € Ham,.(W;,w); 1 € {0,1,2}, and,
Z |CZ,’12| <|firlle,. +€ (3.2.37)
gl

Denote f*(q,p) = [T} fix(g,p:). Clearly, f* k2o, £ e C°(W) in the C*-topology.
Moreover, from (3.2.36) it follows that

where
n . . .
CZ’B - H CZ?};IZJ a‘nd (I)’];/”B(q17p17 ceey Qmpn) = (@Jﬁ];ll (QI7PI)7 ceey q)i:]’gln (Q’n?pn>>
i=1

This shows that f* € £, and moreover that

n

175 < D |czﬂ|:H<Z|cif;;”
Jisl

B=(l1,....In) i=1

) < H (I fiklle,. +¢)

7=t go) (3.2.38)
< H (1 fsll 72, maz + 2€)
=1

Recall from the proof of Theorem 3.4 in the 2-dimensional case that one has

Hfi||f2,ma:r < CHfiHOOv

for some absolute constant C'. Combining this with (3.2.38) we conclude that

(Cl fillso + 2€),
1

[P [VES

n
1=
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and therefore .
£ 117 mae < liminf {|f5] . < [T ClIflloo +2¢)
i=1
In particular, for any € > 0, one has

n

1f 1l 7, maz < H (Cll fillso + 2¢)

=1

Taking € — 0, we obtain

Hf”fmaz < CnH [ filloo = C™ || flloo
1=1

This completes the proof of part (i) of Proposition 3.14. O

For the proof of the second part of Proposition 3.14 we shall need the following
preliminaries. Let f be an integrable function on the m-dimensional torus T, and
denote its Fourier coefficients by
- 1
j} = m
(2m)™ Jr
where 7 = (rq,...,rn) € Z™, and t = (ty,...,t,) € T™. We denote the j"-partial
sum of the Fourier series of f by

Sifity=">_ fre"!

max [r;|<j

ft)emdt,

The next lemma is a well known result in Fourier analysis.

Jj—0

Lemma 3.19. Let f € C=(T™). Then S;(f) —— f in the C*-topology and
S Il < Al fllemn, (3.2.39)
rezm

for some constant A = A(m).

Jj—oo

Proof of Lemma 3.19. The fact that S;(f) —— f in the C*°-topology follows,
e.g., from Theorem 33.7 in Section 79 of [9], and the fact that 0*S;(f) = S;(0*f)
for every multi-index o and j > 0. For the estimate (3.2.39), we use Lemma 9.5 in
Section 79 of [9] to obtain the following upper bound for the Fourier coefficients:

f] < A [ flemsr g an £0, (3.2.40)

[t
for some constant A;. From this we conclude that

S RIS Al flenes [ [T o dpdo < A fllomes
m—1 1

rezm

where A = Aj is a constant which depends solely on the dimension. m
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Remark 3.20. We remark that Lemma 3.19 holds (with different constants) for any
torus of the form 7™ = (R/aZ)™, where a > 0. Moreover, the lemma holds if instead

of the basis that consists of {e%”}, we choose the trigonometric basis consists of
products of {cos(2rt;)} or {sin(%Erit;)} fori=1,...,m.

We now turn to complete the proof of the second part of Proposition 3.14:

Proof of Proposition 3.14(ii). Let f € C°(W). By gluing together the boundary
of the cube W in the standard way, we obtain a well defined smooth function on the
torus T°%" = (R/2LZ)*", which by abuse of notation we still denote by f. We apply
Lemma 3.19 to the function f (note the comment regarding the trigonometric basis
in Remark 3.20). We order the trigonometric basis in Remark 3.20 by {e;}?2,. Note
that each ey is a product function with ||ex][cc = 1. Denoting the corresponding
Fourier sums of f by S, = Zle cie;. We have S, — f in the C*°-topology and
Sore ekl < Al fllgznsr for some A = A(n). We turn back to the situation where we
consider f defined on W. Take any smooth cutoff function p : W — R, which equals
1 on supp(f), equals 0 near the boundary 0W, and which has ||p[|oc = 1 (one can
easily find such p, since supp(f) C W). We can choose p to be a product function.
Then we have pSj = Zle cipe; — pf = fin CX(W), in the C* topology as well.
Moreover, the functions {pe;} are product functions with ||peg||s < 1. From part (i)
or Proposition 3.14, and Lemma 3.19, it follows that for a suitable collection F, one
has

k k
oSkl 2 mar < D leilllpeill £ mar < C Y leil < CA|lffloanss.
i=1 i=1

Hence, from Remark 3.2 we conclude that

Hf”]—',max < CA||ch2n+1,

The proof of the second part of the proposition is now complete.

3.2.2 Proof of Proposition 3.18

For any multi-index a = (i1, 42, ..., 92,), Where |a| < 2n + 1, denote

2n

Go(T) = > ! or! - (W(H(%’ - Uj)ij>736(l’ —v)

iYoo) Oz Ox2. . Ox ]
v=(v1,V2,...,020 ) EL'S, 172 2n 1 2 2n j=1

Note that the function g, is the sum of ¢2, for a = (i, 2, ..., i2,) With o] < 2n + 1.
Note moreover that each summand of g, is a constant multiple of the function

Ealz—v) = (f_n[@j — )" )R (e — v),
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where
= 1,02 .02 e Qg1 Zgl ai 2
Za(x) =y ar | | q < > ( -

We shall need the following lemma which will be proven in the next Subsection.

Lemma 3.21. Let £ € C° ((—¢,€)?") be a compactly supported smooth function which
can be represented as a product & = []7_, ;(q;,p;), where & € C ((—¢,¢€)?). Then,
for every function H(x) =, cr. a,&(x —v), where a, are real coefficients and T, is
the grid defined in (3.2.31), one has

|H || 7 maz < C||H||o, for some absolute constant C

Applying Lemma 3.21, with £ = =, to the function H = ¢¢, we conclude that

C af\al
— 0 || Z max - - v
21'22' ce lgn H a”oo vel, a:[‘zll 81722 . ({Mzz"

< ClZEallsollfllgian

”ggnﬁmaw < CHggHoo:

Since ||7]|oo = 1, and supp(r) C (=1, 1), it follows that || =, s < €. Thus, we obtain

192117 maz < C €|l £l clet

and hence
2n+1
19wl 7, maz < Z C e £l < C' Z e 1Nl
|| <2n+1 k=0
This completes the proof of Proposition 3.18. O

3.2.3 Proof of Lemma 3.21

Note first that the grid TS, = ew +4€Z*" N (— L+ 3¢, L — 3¢)*" admits a decomposition
into the product I'S, = [}, v, where v; = ;" C (=L + 3¢, L — 3¢)* C (—L, L)* are
grids on the plane. Next, let H be as in Lemma 3.21. Given a bijection 7 : ', — I'¢,
we denote

H.(z)= Z ar@w)§(z — )

vel's,

Lemma 3.22. For any bijection 7 : I';, — I',, one has

w?’

= ||HH.7:,max~

Proof of Lemma 3.22. It is not hard to check that every bijection 7 : I, — I'¢,
can be written as a product of transpositions that interchange two neighboring points
such that |v/ — V"] = 4e).
Therefore it is enough to prove the lemma for the case of such a transposition.

of I, (here, by neighboring points we mean v',v” € I'¢,
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Let v = (2, ...,20),0" = (2,...,2) € T, be a pair of neighboring points, where

2zl 2l € v for i = 1,2,...,n. There exists 1 < k < n, such that 2/ = 2/ for i # k,
and moreover z; = z; + 4e or 2] = z; £+ 4ei. The union of the neighboring squares
Q' =z, + [—2¢,2¢]?, and Q" := 2] + [—2¢,2¢]? is a rectangle S = Q' U Q". Since
the support supp(&,) C (—¢,€)?, there exists 0 < € < ¢, such that supp(&;) C
[—e€1,€1]%. Looking at Q) = z, + [—e1,61]%,Qf = 2 + [—e1, 6> C int(S), one can
clearly move @] to @, and @, to ()] simultaneously, using affine translations, such
that at every moment the images of @)}, @, will not intersect, and are contained in
int(S). Moreover, this can be done by a smooth Hamiltonian isotopy @‘}(k, supported
in S, where Ky(t, z¢) : [0,1] x W), — R is the Hamiltonian that generates this isotopy,
and such that we have supp(Ky(t,-)) C int(S) for all ¢t € [0,1] (recall that Wy is
the 2-dimensional projection of W on the kth coordinate plane). For any j # k,
1 < j < n consider a smooth function K;(z;) : W; — R such that K;(z;) = 1
for z; € 2 + [—€,€]* and K;(z;) = 0 for z; € W; \ (2] 4 [~2¢,2¢]*). Now define a
Hamiltonian K : [0,1] x W — R by

K(t; 21, 22, ooy 2n) = Ki(t, 21) H K;(z;)

1<j<n
ik
Note that K (t; 21, 22, ..., z,) = Kg(t, z) for
k—1 n
z=(z1,.,2n) €Uy := H(z; + [—€,€?) x S x H (2} + [—€,€?).
j=1 j=k+1

Moreover, U is invariant under the flow ®%., and

D21, .oy 2n) = (215 0oy 21, (I)iﬂ-(zk)’ Zkdls - Zn),s

for any z = (z1, ..., 2,) € U;. In particular, ®}(2) = 2 +v" — o' for 2 € v/ + [—¢, €]*"

and @ (z) = z+ v —v" for z € v” + [—¢,€]*". Furthermore, for

k—1 n
Uy =[]z + [-2¢,26%) x 5 % [] (2} + [~2¢,2¢]%)
j=1 Jj=k+1

we have that supp(K (t,-)) C U, for all t € [0, 1]. Therefore, since (v+[—e¢, €]*")NUy =
) for all v € T, \ {v/,v"}, we conclude that ®(2) = z for 2 € v + [—¢, €]*" for any
v el \ {v,v"}. Hence if 7 : 'S, — I', is a transposition that interchanges v’ with
v”, we conclude that H, = (®},)*H. Therefore we conclude

||HT”.7:,mar - ||H||]-',ma:s‘

The proof of Lemma 3.22 is now complete. O
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Proof of Lemma 3.21. Consider the decomposition I',, = []}"_; 7i, and write each
7; explicitly as v; = {2zi1,...,zin,} C (=L,L)%. We order each set 7; by setting
zi1 < zip < ... < zn,, for each 7, and consider the lexicographic order < on I,
induced by these orders. We can arrange the elements of I, in increasing order

V1 < Vg < ... < Uy,
where N =[], N;. Take a bijection 7 : I'{, — T, such that
ar(w) < Gr(py if and only if v" < 0", where v, 0" € Ty,

and rewrite H,(z) = Y e ar@w)é(x —v) as

r) =Y bié(r—v)), and by <by < .. < by (3.2.41)
By Lemma 3.22, one has ||H; ||z max = ||H || 7, maz- Next, write

H,(z) = byKy(z Z b)) K; (), (3.2.42)

where K(x) = S27_, &(z — v;). Also set Ko(x) = 0. Then

I H |7 ma < DN N (@) £, maz + > [b; = b
=1

_ Y |
\|bN|||KN<a:>||f,maz+Z(bﬁl 0i) X K5l mar (5 4

= o 19 () 7 + (b = B1) 100 165

<3 (max

vel's

1) e 1117,

1<GEN
Next, consider any K;, where 1 < j < N. There exists a unique sequence
Jo=0< 1 <2< .. <Jn1<Jn=1J,

such that for any 1 < m < n we have

IT Miljm = jmer and  ky o= 22"l < N,
l=m+1 Hl:m+1 Nl

Here we mean H?:nﬂ N; = 1. Take any 1 < m < n. Then provided j,,-1 < jm, We
can write

{"(2) =K, — Kj,,, Hfl (21),
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where we define

flm(zl) = él(zl — zl,kl+1> s fOI‘ l = 1, e, — 1,

km

Em(2m) = Z Em(2m — Zm,im)5

im=1

N,
&' () = Zfl(zz - Zl,il) yforl=m+1,...,n.

=1

Moreover, for any 1 < m < n we have

1™ oo = TT 1€ oo = T 1€1l1o0 = [1€]loc-
=1 =1

From this, and from Proposition 3.14 (i), we conclude that

1€ |7, maz < ClIE™ oo = Cll oo,
for some C'= C(n). We have §
K=Y ¢,
m=1
hence

n
117 maz < Y €™ 17, maz < nCIE oo,
m=1

and this holds for any 1 < 7 < N. Therefore we conclude

1 rmae = H e < 3 (max avr) max 1K 7. mae
vel's,

1< <N

<300 (maxlon] ) €]l = 300

The proof of the lemma is now complete.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 follows from Theorem 3.4 by a standard partition of unity
argument. For the sake of completeness, we provide the details below.

As explained in Section 2, it is enough to prove Theorem 1.3 for Ham(M,w)-
invariant pseudo norms on C*°(M). Indeed, any Ham(M,w)-invariant pseudo norm
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| - || on A that is continuous in the C*°-topology, can be naturally extended to a
Ham (M, w)-invariant pseudo norm || - || on C*°(M), which is again continuous in the
C*-topology, by setting

IFI" = 11f = Myl where My = g [oy fo”

Consider a Darboux chart i : U — M, where U C (R?",wyy) is an open set.
Without loss of generality we assume that the origin of R?" lies inside U. Choose
some L > 0, such that W = (—L,L)** C U. Since (W) C M, we have a natural
embedding C°(i(W)) — C*(M), and therefore any Ham(M,w)-invariant pseudo
norm || - || on C®(M) restricts to C°(i(1V)). From Lemma 3.3 and Theorem 3.4, we
conclude that (when the pseudo norm is continuous in the C*°-topology) there exists
a constant C' > 0 such that

IfIl < Cllfllso, for every function f € C°(i(W))

Next, for any point x € M there exists an open neighborhood V,, C M, and a smooth
Hamiltonian diffeomorphism &, € Ham(M,w), such that ®,(V,) C W. Consider the
open covering |J,c,, Ve = M. The compactness of M allows us to pass to a finite
subcover Ufil Vi, = M. Moreover, one can find a partition of unity {p1, p2, ..., pn '},
such that for every i =1,2,..., N, p; : M — R is a smooth positive function supported
in V,,, and

pr+p2+ ... +pov =1y

Finally, let f € C*°(M), and consider the decomposition

f=pif+pf+..+ponf

Since || - || is a Ham(M, w)-invariant pseudo norm, it follows that

N

[FAIRS ZHMII—ZH =) (i)l

Moreover, it follows from the above that supp ((®,1)*(p;f)) C W, and hence

122 (/) < CH@ZH (piflso = Cllpiflloo < Cllf Nl

Therefore we conclude that

LI < C1I o
where C' = NC'. The proof of the theorem is now complete.
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5 Appendix

Here we prove the claim mentioned in Remark 1.1. More precisely:

Proposition 5.1. Let M be a closed symplectic manifold, and let || - || be a pseudo
norm on the Lie algebra A of Ham(M,w). Then, smooth paths [0,1] — Ham(M,w)
have finite length if and only if the pseudo norm ||| is continuous in the C*°-topology.

Proof. The “if” part of the statement is clear. Let us show the “only if” part.
Throughout, we equip M with a Riemmanian metric, and denote || - ||ooc = || - ||co <
| [ler < ||+ |le2 < ... the corresponding CY, C', C?|...-norms on C*(M).

Let || - || be an invariant pseudo norm on C*°(M) which is not continuous in the
C>-topology. Consider two sequences {ay}, {bx} in the interval [0, 1], such that

O<a <b<aa<b<.. <1

Next, let ¢ : [0,1] — [0, 1] be a smooth function such that ¢(t) = 0 for ¢ € [0, 1]U[2, 1],
and c(t) = 1 for t € [3,2]. For a sequence of smooth functions Hy : M — R, we
define a function H : M x [0,1] — R in the following way:

0 fOI‘te [0,@1]U[b1,a2]u[bQ,CL3]U...,
H(z,t) = c(lz;—“;k)Hk(x) for ¢ € [ay, by, (5.1)
0 for ¢t = 1.

Note that H is smooth on M x [0,1). We next show that for a suitable choice of the
sequence Hy € C*°(M), one has H(z,t) € C*(M x [0, 1]), and moreover

Anﬂmmw:+m (5.2)

Thus, the Hamiltonian flow of H has infinite length with respect to the Finsler metric
@M.NMeﬁmt

1 0 1 %
1
/ 1H (- t)llde = (b — ar) (/ |C(t)|dt) 1Hl = 5 > (b — ai) || -
0 0 3
k=1 k=1
Hence, for the equality (5.2), it is enough to choose Hj such that ||H| > ﬁ
Moreover, to ensure that H(z,t) is smooth in M x [0, 1], it is enough to have
. :
11_I}I11| @H(t, IMlem =0, for any j,m >0 (5.3)
More precisely, assume that ¢ € (ag, bx). Note that in that case
o 1 N\ . t—a, 1\
It len = (52 ) G = IHlon < (52 ) ellos Il
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Therefore, to show (5.3) it is enough to choose Hj, such that

1 J
lim ( ) |Hg||cm =0, for any j,m >0
bk — Q

k—o00

In particular, any sequence Hy € C*°(M), that for every k > 1 satisfies

(R =—
{ bk (5.4)

| Hiller < (b — ag)F,

would give rise (via definition (5.1)) to a smooth function H : M x [0,1] — R, such
that [ | H(-t)||dt = +oo.

Since the pseudo norm || - || is assumed to be non-continuous in the C*°-topology,

one can always find a sequence { H} which satisfies (5.4).

]
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