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Abstract

The Arnold conjecture states that a Hamiltonian diffeomorphism
of a closed and connected symplectic manifold (M,w) must have at
least as many fixed points as the minimal number of critical points of
a smooth function on M.

It is well known that the Arnold conjecture holds for Hamiltonian
homeomorphisms of closed symplectic surfaces. The goal of this paper
is to provide a counterexample to the Arnold conjecture for Hamilto-
nian homeomorphisms in dimensions four and higher.

More precisely, we prove that every closed and connected symplectic
manifold of dimension at least four admits a Hamiltonian homeomor-
phism with a single fixed point.

Keywords: C° Symplectic geometry, Symplectic and Hamiltonian homeo-
morphisms, Arnold conjecture, Hamiltonian dynamics.
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1 Introduction and main results

1.1 The Arnold conjecture

Let (M,w) denote a closed and connected symplectic manifold. This paper
is concerned with the celebrated conjecture of Arnold on fixed points of
Hamiltonian diffeomorphisms.

Conjecture (Arnold). A Hamiltonian diffeomorphism of M must have at
least as many fized points as the minimal number of critical points of a smooth
function on M.

What makes this conjecture so remarkable is the large number of fixed
points predicted by it. This is often interpreted as a manifestation of sym-
plectic rigidity. In contrast to Arnold’s conjecture, the classical Lefschetz
fixed-point theorem cannot predict the existence of more than one fixed
point for a general diffeomorphism. Ever since its inception, this simple and
beautiful conjecture has been a powerful driving force in the development of
symplectic topology. The most important breakthrough towards a solution
of this conjecture came with Floer’s invention of what is now called Hamil-
tonian Floer homology which established a variant of the Arnold conjecture
on a large class of symplectic manifolds [9} 10} 12]. The above version of the
Arnold conjecture has been established on symplectically asphericaﬂ mani-
folds by Rudyak and Oprea in [33] who built on earlier works of Floer [11] and
Hofer [20]. We should mention that prior to the discovery of Floer homology,
the Arnold conjecture was proven by Eliashberg [7] on closed surfaces (see
also Sikorav [35]), by Conley and Zehnder [6] on higher dimensional tori, and
by Fortune and Weinstein [13, [14] on complex projective spaces.

1M is said to be symplectically aspherical if w and c1, the first Chern class of M, both
vanish on 2 (M).



1.2 The Arnold conjecture and Hamiltonian homeomorphisms

Throughout this paper we will denote by Symp(M,w) and Ham(M, w) the
groups of symplectic and Hamiltonian diffeomorphisms of (M,w), respec-
tively. As is nowadays standard, we call symplectic homeomorphism any
homeomorphism which can be written as a uniform limit of symplectic
diffeomorphisms; the set of all symplectic homeomorphisms is denoted by
Sympeo(M,w); see Section

As a first attempt at defining Hamiltonian homeomorphisms, we will say
that a homeomorphism ¢ of M is a Hamiltonian homeomorphism if it can
be written as a uniform limit of Hamiltonian diffeomorphisms. This class of
homeomorphisms has been studied very extensively, from a dynamical point
of view, in the case of closed surfacesﬂ For example, Matsumoto [28], build-
ing on an earlier paper of Franks [15], has proven that Hamiltonian homeo-
morphisms of surfaces satisfy the Arnold conjecture. An important develop-
ment in the study of Hamiltonian homeomorphisms of surfaces has been Le
Calvez’s theory of transverse foliations [25] which has not only proven the
Arnold conjecture but also the Conley conjecture on periodic points of these
homeomorphisms [26].

In striking contrast to the rich theory in dimension two, there are virtually
no results on fixed point theory of Hamiltonian homeomorphisms in higher
dimensions. Indeed, none of the powerful tools of surface dynamics seem to
generalize in an obvious manner to dimensions higher than two. Our first
theorem proves that in fact one can not hope to prove the Arnold conjecture
in higher dimensions.

Theorem 1. Every closed and connected symplectic manifold of dimension
at least 4 admits a Hamiltonian homeomorphism with a single fized point.

This theorem might suggest that, in dimensions higher than two, one
should search for a different notion of Hamiltonian homeomorphisms. In-
deed, such notion does exist within the field of continuous, or CV, symplectic
topology. Motivated in part by developing a continuous analogue of smooth
Hamiltonian dynamics, Miiller and Oh have suggested an alternative, more
restrictive, definition for Hamiltonian homeomorphisms; see Section for
the precise definition. From this point onward by Hamiltonian homeomor-
phisms we will mean those homeomorphisms of M prescribed by Definition
We denote the set of all Hamiltonian homeomorphisms by Hameo(M, w).

2This is precisely the class of area preserving homeomorphisms with vanishing mean
rotation vector.



The group Hameo(M,w) has met some success. Indeed, recent results
in C%symplectic topology [23, 22, 24] have demonstrated that Hamilto-
nian homeomorphisms inherit some of the important dynamical properties
of smooth Hamiltonian diffeomorphisms; see Theorem [8] Furthermore, they
have played a key role in the development of C°-symplectic topology over
the past several years. However, our main theorem proves that the Arnold
conjecture is not true for this notion of Hamiltonian homeomorphisms either.
In fact, as we will explain below, it shows that there is no hope for proving
the Arnold conjecture, as formulated above, for any alternate definition of
Hamiltonian homeomorphisms which satisfies a minimal set of requirements.

Theorem 2 (Main Theorem). Let (M,w) denote a closed and connected
symplectic manifold of dimension at least 4. There exists f € Hameo(M,w)
with a single fized point. Furthermore, f can be chosen to satisfy either of
the following additional properties.

1. Let H be a normal subgroup of Sympeo(M, w) which contains Ham (M, w)
as a proper subset. Then, f € H.

2. Let p denote the unique fized point of f. Then, f is a symplectic
diffeomorphism of M\ {p}.

A few remarks are in order. First, we should point out that every Hamil-
tonian homeomorphism possesses at least one fixed point. This is because a
Hamiltonian homeomorphism is by definition a uniform limit of Hamiltonian
diffeomorphisms and it is a non-trivial fact that a Hamiltonian diffeomor-
phism has at least one fixed point. E|

With regards to the second property, we point out that it is natural to
expect f to have at least one non-smooth point. Indeed, since Hamilto-
nian Floer homology predicts that a Hamiltonian diffeomorphism can never
have as few as one fixed point, our homeomorphism f must necessarily be
non-smooth on any symplectic manifold (M,w) with the property E| that
Hameo(M,w) N Diff (M) = Ham (M, w).

Lastly, we remark that it is well known that Ham(M,w) is a normal sub-
group of Symp(M,w). Hence, it is reasonable to expect that any alternative
candidate, say H, for the group of Hamiltonian homeomorphisms should con-
tain Ham(M,w) and be a normal subgroup of Sympeo(M,w). It is indeed

3 This fact is an immediate consequence of Floer’s proof of the Arnold conjecture; see
also [17].

4 Tt can be shown that this property holds for closed symplectic surfaces, as well as for
the standard CP? and monotone S? x S2.



the case that Hameo(M,w) < Sympeo(M,w). Therefore, the first property
in the above theorem states that there is no hope of proving the Arnold
conjecture for any alternate definition of Hamiltonian homeomorphisms.

1.3 Does there exist a fixed point theory for Hamiltonian
homeomorphisms?

In Gromov’s view [I8], symplectic topology is enriched by a beautiful in-
terplay between rigidity and flexibility. Recent results, such as [311, 22] 3],
have demonstrated that this contrast between rigidity and flexibility perme-
ates, in a surprising fashion, to CY symplectic topology as well. Symplectic
rigidity manifests itself when symplectic phenomena survive under C° lim-
its; see |9, 8, 2, BI, 22] for some examples. On the other hand, there exist
instances where passage to C limits results in spectacular loss of rigidity
and prevalence of flexibility; see [3] for an example.

The main theorem of our paper tells us that fixed points of Hamiltonian
diffeomorphisms become completely flexible under C? limits. It is interesting
to contrast this prevalence of flexibility with the strong rigidity results of
Franks [I5], Matsumoto [28], and Le Calvez [25, 26] in the two-dimensional
setting. Given the main result of this article, one might conclude that there
is no hope of developing a sensible fixed point theory for any notion of
Hamiltonian homeomorphisms in dimensions greater than two. However,
there exist some interesting open questions which remain unanswered.

The most prominent open question is that of the Conley conjecture which
in its simplest form states that a Hamiltonian diffeomorphism on an aspheri-
cal symplectic manifold has infinitely many periodic points. This conjecture
was proven by Hingston [I9] on tori and Ginzburg [I6] in the more general
setting. As mentioned earlier, the Conley conjecture has been proven for
Hamiltonian homeomorphisms of surfaces by Le Calvez [25], 26]. We have
not been able to construct a counterexample to the Conley conjecture in
higher dimensions.

The second question relates to the theory of spectral invariants. For
the sake of simplicity, we limit this discussion to the case of symplectically
aspherical manifolds. In that case, the theory of spectral invariants, which
was introduced by Viterbo, Oh and Schwarz [37, 29| [34], associates to each
smooth Hamiltonian H, a collection of real numbers {c(a,H) € R : a €
H,.(M)\ {0}}, where H,(M) denotes the singular homology of M. These
numbers are referred to as the spectral invariants of H and they correspond
to critical values of the associated action functional. Hence, the number of
distinct spectral invariants of a Hamiltonian H gives a lower bound for the



number of fixed points of the time-1 map ¢k, .

Recall that the cup length of M is defined by cl(M) := max{k + 1 :
Jay, - ,ar € H*(M) : Vi,deg(a;) # 0 and a1 U --- U ag # 0}. Combining
techniques from Hamiltonian Floer theory and Lusternik-Shnirelman theory,
Floer [11] and Hofer [20] proved that if a Hamiltonian diffeomorphism, of an
aspherical symplectic manifold M, has fewer spectral invariants than the cup
length of M, then it must have infinitely many fixed points; see also [21].

It is well-known that one can associate spectral invariants to any contin-
uous Hamiltonian function; see for example [30]. In an interesting twist, it
turns out that the Hamiltonian homeomorphism that we construct in the
proof of Theorem [2| is generated by a continuous Hamiltonian which has at
least as many distinct spectral invariants as cl(M). Hence, we see that the
correspondence between spectral invariants and fixed points breaks down
in the continuous setting. See Remark This leads us to the following
question:

Question 3. Suppose that H is a continuous Hamiltonian with fewer spectral
tmwvariants than the cup length of M. Does gb}q, the time—1 map of the flow
of H, have infinitely many fixed points?

A positive answer to this question could be interpreted as a C° version of
the Arnold conjecture.

We end this section with a brief discussion which will add to the im-
portance of the above question. This concerns the theory of barcodes, or
persistence modules. As pointed out in [32], Hamiltonian Floer theory al-
lows one to associate a so-called barcode to any smooth Hamiltonian; see
also [1l 27, B6]. Barcodes can be viewed as generalizations of spectral in-
variants. The barcode of a smooth Hamiltonian encodes all the information
contained in the filtered Floer homology of that Hamiltonian. In the same
way that one can associate spectral invariants to a continuous function, one
can also associate a barcode to a continuous Hamiltonian function. In yet
another interesting twist, it turns out that the Hamiltonian homeomorphism
of Theorem [2] can be generated by a continuous Hamiltonian which has the
same barcode as a C2-small Morse function. See Remark 21

1.4 A brief outline of the construction

Construction of the homeomorphism f, as prescribed in Theorem [2] takes
place in two major steps. The first step, which is the more difficult of the
two, can be summarized in the following theorem.



Theorem 4. Let (M,w) denote a closed and connected symplectic manifold
of dimension at least 4. There exists » € Hameo(M,w) and an embedded
tree ' C M such that

1. T is invariant under 1, i.e. Y(T) =T,
2. All of the fized points of ¥ are contained in T,
3. 1 is smooth in the complement of T'.

For the proof of Theorem [2] we will in fact need a refined version of the
above result; see Theorem The proof of this theorem forms the technical
heart of our paper. An important ingredient used in the construction of
the invariant tree 1" is a quantitative h-principle for curves. Quantitative
h-principles have recently been introduced to C° symplectic topology by
Buhovsky and Opshtein and have had numerous fascinating applications;
see [3]. We should point out that M having dimension at least four is used
in a crucial way in the proof of this theorem.

The second major step of our construction consists of “collapsing” the
invariant tree T' to a single point which will be the fixed point of our homeo-
morphism f. Here is a brief outline of how this is done. Fix a point p € M.
We construct a sequence ¢; € Symp(M,w) such that ¢; converges uniformly
to a map ¢ : M — M with the following two properties:

L o(T) = p,
2. ¢ is a symplectic diffeomorphism from M \ T to M \ {p}.

Note that the first property implies that ¢ is not a 1-1 map and hence, the
sequence <pi_1 is not convergent. Define f : M — M as follows: f(p) = p
and

Vo e M\ {p}, f(z)=porop !(z)

It is not difficult to see that p is the unique fixed point of f. Indeed, on
M\ {p}, the map f is conjugate to ¢ : M \ T — M \ T which is fixed point
free by construction.

By picking the above sequence of symplectomorphisms ; carefully, it
is possible to ensure that the sequence of conjugations ;e L converges
uniformly to f. The uniform convergence of (pﬂ/)(pi_l to f relies heavily on
the invariance of the tree T" and it occurs despite the fact that the sequence
cpz-_l diverges. The details of this are carried out in Section . It follows
that f can be written as the uniform limit of a sequence of Hamiltonian

diffeomorphisms.



It is not difficult to see that f is smooth on the complement of its unique
fixed point. However, proving that f is a Hamiltonian homeomorphism and
that it satisfies the first property listed in Theorem [2] requires some more
work; see Section

1.5 Organization of the paper

In Section [2, we recall some preliminary results from CY symplectic geometry.
Symplectic and Hamiltonian homeomorphisms are introduced in Section
In Section [2.2] we introduce a quantitative h-principle for curves which plays
an important role in our construction.

In Section [3.1] we prove that the existence of a Hamiltonian homeomor-
phism with an invariant tree, as described in Theorem [ implies the main
theorem of the paper. In Section [3.2] we prove the existence of a Hamilto-
nian homeomorphism as described in Theorem [] assuming a technical and
important result: Theorem Section [3.3] which occupies the rest of the
paper, is dedicated to the proof of Theorem 25| This section contains the
technical heart of the paper.
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2 Preliminaries from C'-symplectic topology

In this section we introduce some of our notation and recall some of the basic
notions of C*—symplectic geometry. In Section We give precise definitions
for symplectic and Hamiltonian homeomorphisms. In Section we state a
quantitative h-principle for curves which will play a crucial role in the proof
of Theorem 2

2.1 Symplectic and Hamiltonian homeomorphisms

Throughout the rest of this paper, (M, w) will denote a closed and connected
symplectic manifold whose dimension is at least 4. We equip M with a
Riemannian distance d. Given two maps ¢,v: M — M, we denote

doo(¢,v) = sup d(¢(x),¥(x)).
zeM
We will say that a sequence of maps ¢; : M — M, converges uniformly, or
C -converges, to ¢, if doo(¢i, @) — 0 as i — oco. Of course, the notion of
C%—convergence does not depend on the choice of the Riemannian metric.
Recall that a symplectic diffeomorphism is a diffeomorphism 6 : M — M

such that 0*w = w. The set of all symplectic diffeomorphisms of M is denoted
by Symp(M, w).

Definition 5. A homeomorphism 0: M — M is said to be symplectic if it
is the CO~limit of a sequence of symplectic diffeomorphisms. We will denote
the set of all symplectic homeomorphisms by Sympeo(M,w).

The Eliashberg-Gromov theorem states that a symplectic homeomor-
phism which is smooth is itself a symplectic diffeomorphism. We remark
that if @ is a symplectic homeomorphism, then so is #~1. In fact, it is easy
to see that Sympeo(M,w) forms a group.

REMARK 6. More generally, one can define a symplectic homeomorphism
to be a homeomorphism which is locally a C°-limit of symplectic diffeomor-
phisms; see [3] for further details.

Recall that a smooth Hamiltonian H : [0,1] x M — R gives rise to a
Hamiltonian flow ¢tH A Hamiltonian diffeomorphism is a diffeomorphism
which arises as the time-one map of a Hamiltonian flow. The set of all
Hamiltonian diffeomorphisms is denoted by Ham(M,w); this is a normal
subgroup of Symp(M,w). We next define Hamiltonian homeomorphisms as
introduced by Miiller and Oh [30].



Definition 7 (Hamiltonian homeomorphisms). Denote by B an open (pos-
sibly not proper) subset of M. Let (qbt)te[oﬂ be an isotopy of M which is
compactly supported in B. We say that ¢' is a hameotopy, or a continuous
Hamiltonian flow, of B if there exists a sequence of smooth and compactly
supported Hamiltonians H; : [0,1] x B — R such that:

1. The sequence of flows gbﬁqi CO converges to ¢, uniformly in t, i.e.
max deo (¢l ,¢') — 0 as i — .
t€0,1] ¢

2. The sequence of Hamiltonians H; converges uniformly to a continuous
function H : [0,1] x M — R, i.e. ||H; — H||oo — 0 as i — oo, where
| - lloc denotes the sup norm. Furthermore,

We say that H generates ¢', denote ¢' = ¢%, and call H a continuous
Hamiltonian.

A homeomorphism is called a Hamiltonian homeomorphism if it is the
time—1 map of a continuous Hamiltonian flow. We will denote the set of all
Hamiltonian homeomorphisms by Hameo(B,w).

It is not difficult to check that Hameo(M,w) is a normal subgroup of
Sympeo(M,w).

A continuous Hamiltonian H generates a unique continuous Hamiltonian
flow; see [30]. Conversely, Viterbo [38] and Buhovsky-Seyfaddini [4] (see
also [23]) proved that a continuous Hamiltonian flow has a unique (up to
addition of a function of time) continuous generator.

One can easily check that generators of continuous Hamiltonian flows sat-
isfy the same composition formulas as their smooth counterparts. Namely,
if ¢%; is a continuous Hamiltonian flow, then (¢%,)~! is a continuous Hamil-
tonian flow generated by H(t,z) = —H(t, ¢%;(x)); given another continuous
Hamiltonian flow ¢%, the isotopy ¢}, ¢t is also a continuous Hamiltonian

flow, generated by H#K (t,x) := H(t,z) + K(t, (¢%) 1 (2)).

We will finish this section by recalling an important dynamical property
of continuous Hamiltonian flows. Recall that a submanifold C of a symplec-
tic manifold (M, w) is called coisotropic if for all p € C, (T,,C)* C T,C where
(T,C)“ denotes the symplectic orthogonal of T,,C. For instance, hypersur-
faces and Lagrangians are coisotropic. A coisotropic submanifold carries a
natural foliation F which integrates the distribution (T'C')*; F is called the
characteristic foliation of C.

Assume that C' is a closed and connected coisotropic submanifold of M
and suppose that H is a smooth Hamiltonian. The following is a standard

10



and important fact which relates Hamiltonian flows to coisotropic subman-
ifolds: H|¢ is a function of time if and only if ¢!, (preserves C' and) flows
along the characteristic foliation of C. By flowing along characteristics we
mean that for any point p € C' and any time ¢t > 0, ¢4, (p) € F(p), where
F(p) stands for the characteristic leaf through p.

The following theorem, which was proven in [22], establishes the afore-
mentioned property for continuous Hamiltonian flows.

Theorem 8. Denote by C' a closed and connected coisotropic submanifold
and suppose that ¢ is a continuous Hamiltonian flow. The restriction of H
to C' is a function of time if and only if ¢%; preserves C' and flows along the
leaves of its characteristic foliation.

The above theorem indicates that continuous Hamiltonian flows inherit
some of the fundamental dynamical properties of their smooth counterparts.
In light of this, it would seem reasonable to expect the Arnold conjecture to
hold for Hamiltonian homeomorphisms. But of course, Theorem [2] tells us
that this is quite far from reality.

2.2 A quantitative h-principle for curves

Quantitative h—principles were introduced in [3], where they were used to
construct interesting examples of symplectic homeomorphisms. We will need
the following quantitative h—principle for curves in the construction of our
counterexample to the Arnold conjecture.

Proposition 9 (Quantitative h-principle for curves). Denote by (M,w) a
symplectic manifold of dimension at least 4. Let € > 0. Suppose that vo,71 :
[0,1] = M are two smooth embedded curves such that

1. yo and 1 coincide neart =0 and t =1,

1. there exists a homotopy, rel.end points, from g to v1 under which
the trajectory of any point of vo has diameter less than e, and the
symplectic area of the element of mo(M,v1470) defined by this homotopy
has area 0.

Then, for any p > 0, there exists a compactly supported Hamiltonian F,
generating a Hamiltonian isotopy ¢°* : M — M, s € [0,1] such that

1. F wanishes near vo(0) and vo(1) (in particular, ¢* fizes vy and 1 near
the extremities),

11



2 pto=m,
3. deo(9®, Id) < 2e for each s € [0,1], and | F||s < p,
4. F is supported in a 2e-neighborhood of the image of vo.

The existence of a Hamiltonian F' satisfying only properties 1 and 2 is well
known. The aspect of the above proposition which is non-standard is the fact
that F' can be picked such that properties 3 and 4 are satisfied as well. We
should point out that the above proposition is a variation of a (considerably
more difficult) quantitative h—principle for discs which appeared in Theorem
2 of [3]. The proof we will present is an adaptation of the arguments therein
and thus, it will not be a detailed proof.

In the next Section of the paper, we will need the following fact, which is
standard, and follows from Proposition [0} and hence will not be proven here.

Lemma 10. Denote by (M,w) an exact symplectic manifold of dimension
at least 4. Suppose that vo,71 : [0,1] — M are two curves such that

1. yo and 1 coincide neart = 0,1,
1. fol Yo = fol Vi A where X is any I-form such that w = dA,
i15. there exists a homotopy, rel. end points, from ~yy to 1.

Then, for any p > 0, there exists a compactly supported Hamiltonian F,
generating a Hamiltonian isotopy ¢° : M — M, s € [0,1] such that

1. F wvanishes near the extremities of vy and 71,

2. ployy=m,
3. |[Fllso < p-

Proof of Proposition[9 First, by a slight Hamiltonian perturbation of vy via
a Hamiltonian diffeomorphism generated by a C'*°-small Hamiltonian func-
tion which vanishes near {70(0),70(1)}, we can, without loss of generality,
assume that 79 = 1 on [0,6] U [1 — §,1], and that the images of Yo|(51—s)
and 71](571_5) are disjoint, where § > 0 is a small positive real number.
By assumption there exists a homotopy & : [0,1] x [0,1] — M such that
h(0,t) = vo(t), h(1,t) = ~1(t) and for any fixed ¢, the path s — h(s,t)
is of diameter smaller than e. Since the dimension of M is at least 4, by
the weak Whitney immersion theorem, we can approximate h by a smooth

12



map A’ : [0,1] x [0,1] — M such that h'(0,t) = yo(t) and h'(1,t) = v (t)
for t € [0,1], W (s,t) = v(t) = 71(¢t) for (s,t) € [0,1] x ([0,d] U [1 — 4, 1]),
and such that the restriction b’/ ’[0,1]><(6,1—5) is a smooth immersion with a
finite number of self-intersection points occuring inside the relative interior
h((0,1) x (8,1 —0)), and whose image h’([0, 1] x (5,1 —4)) does not intersect
70([0,0] U[1 —4,1]). Furthermore, similarly as was done in Lemma A.1 from
[3], one can find a smooth map h” : [0,1] x [0, 1] — M whose image lies in an
arbitrarily small neighborhood of A/(]0, 1] x [0, 1]), such that as before we have
R"(0,t) = ~vo(t) and h"(1,t) = 41(¢) for t € [0,1], h"(s,t) = yo(t) = 11 (t)
for (s,t) € [0,1] x ([0,0] U [1 — §,1]), and the image h”(]0,1] x (5,1 — 9))
does not intersect vp([0,0] U [1 — 6,1]), but moreover such that the restric-
tion h"[j9.1]x(5,1—6) is @ smooth embedding, and such that for any fixed ¢ the
diameter of the curve s — h(s,t) is less than 2e. Note that by construction,
h, h' and h" give the same element of mo(M,v1170). Abusing our notation,
we will denote h” by h again.

Let m be a sufficiently large positive integer. Then, for each 1 < i <
m — 3, the image h([0,1] x [-L,ZE3]) has diameter less than 2e, for given
0<i,j <m—1wehave h([0,1] x [£, %)) N 7([0,1] x [L, ZE1]) o ¢ only
if j € {i —1,4,i+ 1}, and moreover we can find a neighborhood U; of each
h([0,1] x [-£, £E1]) such that Uj is diffeomorphic to a ball, such that we again
have U; NU; # 0 only if j € {¢ — 1,4,i+ 1}, and such that the diameter of
U,_1uU; U Ui+1 is less than 2¢, for every 0 < ¢ < m —1. Moreover, the union
U =UyU...UU, can be assumed to be diffeomorphic to a ball, as well
as U; N Ujyq, for each 0 < ¢ < m — 1. Then in particular, w is exact on U,
i.e. w=dA\ on U, for some differential 1-form A on U. By our assumptions,

fo VoA = fo YA

Step 1: Mapping points to points. For each 1 <7 < m — 1, we pick a
Hamiltonian G; which is supported in U;_1 N U; such that

06, (0(t) =n(t), Vte[h -k L +k]

where x > 0 is sufficiently small. In particular, the G;’s have mutually
disjoint supports.

We let G = Z:’;_ll G; and let 7, = ¢, 0 9. We also remark that each
G; can be picked such that |G|/ is as small as one wishes. Hence, we may
assume that |G|~ < p/3.

Step 2: Adjusting the actions. Note that the two curves 71\[%7%] and
’y(')][ ERSESE coincide near their end-points and are both contained in U;. We
would like to find a Hamiltonian diffeomorphism which is supported in U;

13



and maps 76][ ERyEsy to ’yl|[ ERgESty However, there is an obstruction to finding
such a Hamiltonian diffeomorphism. These two curves do not necessarily
have the same action. The goal of this step is to modify 7( to remove this
obstruction.

Claim 11. There exists a Hamiltonian H with the following properties:

1. The support of H is contained in U, and we have ¢ (U;) C U; for
every t € [0,1] and 0 < i < m.

2. The curve v = (¢}) o ¥y coincides with vi near t = L, for i =
0,1,...,m,
3. vg\[L Y has the same action as 'yl\[i- i1y, fori=0,1,...,m—1,

4. Hlloe < p/3.

5. For each 0 < i,j < m — 1, the images of’y(’)’|(i~ 1y and of’yl|( ISR

i
intersect only if i = j. mr
Proof. Denote 7671 = 7,. We perform (m — 1) steps, where at step ¢ (1 <
i < m—1) we construct a curve me 41, and find a Hamiltonian isotopy from
70,i t0 V0,041
Let us describe the ith step. Let fy(’)’i be the curve provided by the previous
step. First, perturb the curve 76’1- in an arbitrarily small neighborhood of

t = .. — %, so that the perturbed curve vy, satisfies:
° '7(/)/,1' coincides with 76’1- on [0, % — %"‘] U [% —£.1],

e we have ’yé/,i([l — 3K i %]) cU,_1nNnU;,

m 4°m

e the A-actions of the restrictions of 4 ; and 1 to [=L, L] coincide.

Such perturbation can be performed similarly as in the Remark A.13 from

13].
Now, we claim that there exists a smooth Hamiltonian function H; sup-
ported in U;—1 N U;, such that 45, = (gb}%) 07, on [0, ;- + #], and such

’m
that ||H;|lco < p/6. For doing this, roughly speaking, it is sufficient to iso-
tope (via the Hamiltonian flow) a small segment of 7671- so that it coincides

with ~g;, near ¢t = ;-, or more precisely, for ¢ € [% — ‘%, % + k]. And no-

tice, that we are not restricted to keeping the "right end-point" 7(/)/1(% + k)
fixed along the isotopy. Therefore, for keeping the Hofer norm of the isotopy
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small, we can just "shrink" the curve ’y(’)i\[lfLK R to the small segment
’ m 8 'm

Yoilri_ s i _ae) = 76’2.|[l_7j i_3s) near the left end-point, and then "ex-
ilm 8 ’'m 4 ilm 8 'm 4

pand this segment" to coincide with ~{ i’[ i _Tm i Jm]
For a more precise explanation, denote a = i — @ b=2=L + K, choose a

smooth function c : [a,b] — [a,a + ] such that c(t)y =t for t € [a a+ gl
and ¢(t) > 0 on [a,b], and consider families of curves as, s : [a,b] — M
s € [0,1], where as(t) = g (st + (1 — s)c(t)), Bs(t) = vg,:(st + (1 — s)c(t)).
Note that ag = By. It is easy to see that one can find Hamiltonian functions
H!, H! supported in arbitrarily small neighborhood of 76 i(la+§,b]) and
7071([61 + §,0]) respectively, such that as = ng, o ap and Bs = (;SH,, o By
for each s € [0,1], and such that HH’HOO,HH”HOO < p/12. Now let H;
be the Hamiltonian function of the Hamiltonian flow (¢3,, o (¢H{)71)se[0,1]-
The function H; is supported in U;—1 N U;, satisfies HfI lloo < p/6, and
Y. = (¢11,) © 70,5 on [0, ;% + k]. Now define the curve ), : [0,1] = M by
’Y(/),z‘+1 = ¢11*{¢ © 7(/),1'-

After performing all the (m — 1) steps, the A-actions of g, ; and 71 on
[=1, L] coincide for any 1 < < m — 1. But since the actions of 4(,,, ; and
71 coincide on the whole [0, 1], it also follows that the actions of v ,,,_; and 1
coincide on [mT_l, 1]. Note that since all H; have disjoint supports (since the
support of H; is contained in U;—1 NU;), if we denote H' = Hy +...+ Hypp— 1,
then |[H'||oc < p/6 and 7j o1 = (¢51) 0791 = (d3r) © 70

It is possible that for different 0 < ¢, j < m—1, the images of 'y(’)’m_ll(#%)

and of 1 ]( FRFESN, intersect. But then, one can easily find a C*°-small Hamil-
tonian function H " supported inside an arbitrarily small neighborhood of
U ([ + E @ — £]), such that in particular we have ||[H"||, < p/6,
such that ~( = gf) T © ’yé’m,l satisfies the property 5 from the statement of
the Claim, and moreover such that the Hamiltonian function H := H"$H’
that generates the flow (¢t;, 0@, ) satisfies the property 1 from the statement
of the Claim.

O

Step 3. Mapping 7|+ ix1) to y1|ii ity
Claim 12. There exist Hamiltonians K; such that
1. K; is supported in U,

2. the support of K; intersects the images of 76’|[ AFESY and of ’Yl|[i FESY

J
m’ m

only for j =1,

15



3. | Killo < p/6,
4. ¢}<i o ’76,‘[%,%] = ’71|[7%,%]-

Proof. Before passing to the proof, let us remark that in general one can
apply directly Lemma A.3 (a) of [3] to our situation, but we would not have
obtained the estimate on || - ||s. Therefore the proof is more subtle. Let us
roughly explain the steps of the proof. The first step is to make a very small
(C*°) perturbation of the curve 7 (via the Hamiltonian diffeomorphism
¢} below), in order to put the curves ~( \[ i it1) and 71|[ i it1) in general
pos?ition. Then, we use the following idea. If two curves which coincide near
the endpoints and with equal actions, are C*°-close, then clearly one can
find a very small (with respect to the Hofer norm) Hamiltonian function
that moves the first curve to the second. However, if such curves are not
C*°-close, then we can use a “conjugation trick™ Instead of moving the first
curve to the second via a Hamiltonian diffeomorphism, we find a third curve
which is C*°-close to the first curve, and such that the pair “(first curve,
second curve)” could be mapped to the pair “(first curve, third curve)” via a
symplectomorphism. After that, it is clearly enough to move the first curve
to the third curve by a Hamiltonian flow with a very small Hofer’s norm,
and then conjugate the flow with the symplectomorphism. The details of
this are carried out below.

The restrictions 76’][%7%} and 71|[%7%} both lie in U;, have the same
A-actions, and coincide near the endpoints. Let x > 0 be such that {/(t) =
Y1(t) for t € [L, L 4 k] U [EEL — k, ZE] (we use the old notation  in a new
situation, and in fact it is enough to replace the old x by £). One can slightly
perturb 7 via a Hamiltonian diffeomorphism gf)}q generated by a C*°-small

Hamiltonian function K}, so that v{j; := ¢, o satisfies v{/; (¢t) = 71 (¢) for

t €[5k +r]U[EEL — &, B, and moreover 4 (5 +k, 55 — k) Ny (5 +
Kk, L — k)) = (. We may assume that K/ is supported in U;, the support

’'m
of K] intersects the image of 76’|[%’%} and of 71][%7%] only for j = i, and
that ||l < p/12.

Now, one can clearly find a C*°-small Hamiltonian function K|’ supported
in U;, so that the support of K intersects the image of ~( \[ FRpESY and of
’yl][ 4 g+1) only for j =4, and such that the curve 7| := (¢}.,) o 71 coincides
with 7y on [L, L 4+ #/J U [EEL — /2] and moreover +f((L + &/, 2L —
) Ny((L + K, 2L — /) = 0, for some &' > k. We may assume that
1K || < p/12.

Denote " = (k+k') /2. The curves ’}/6/1|[#'+H,,’i+

1_
m

/
K] and 71“%—}-/{”,%—%"]
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lie in U;, coincide near the endpoints, have the same A-action, and their
images do not intersect 71([0,1]). By Lemma A.3 (a) of [3], there exists
a Hamiltonian function K!” supported in U; and away from the endpoints
Yo (55 +5"), 4G (B — k"), such that 7] = ¢k, 0y on [£4k", L —k"]. By
a general position argument and a cut-off aréument, we may further assume
that the support of K" does not intersect 71 ([0, 1]), as well as 'y(’)’([%, %])
for j #£ i. Denote ¢ := qb}({,,.

To finish the proof, let kl be the Hamiltonian function that generates the
flow (1o (¢5.) totpo ®%1)sel0,1]- Then K; has all the desired properties.
For instance, for the propertgf 4 of the statement of the Claim, we first of all
have v; = 1! o 7 since the support of ¥ does not intersect the curve 7,
and then we get

n=yom =9 o (gpn) o = v o (dpn) oo

=9~ o (¢pn) T o0 i 07G = K, 0

O

Let Koqqa = K1+ K3+ -+ and Kgyen = Ko + K4+ - -+, where K;’s are
provided to us by the above claim. We let K be a Hamiltonian such that
Ok = By © Do

odd even

One can deduce the following facts, without much difficulty, from the

above claim:

1. ¢5%(U;) CUi—1 UU; UU;yq for each 0 < i < m and s € [0,1] (where we
put U1 = Um+1 = 0)7

2. qb}( o '7(/), =,
3. Ko < p/3.

We now let F' be a Hamiltonian such that ¢% = ¢% o ¢}, 0 ¢¢,. Examining
the properties of K, H, and G we see that

1. F vanishes near the extremities of 7o (and hence 71), in particular ¢
fixes the extremities,

2. ¢p o0 =,
3. deo(¢f, 1d) < 2¢e for each s € [0,1], and || F||« < p,

4. F is supported in a 2e-—neighborhood of ~y.
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3 Proof of Theorem [2

The most important step towards the proof of Theorem [2 will be to establish
the following result which is a refined version of Theorem[d] Throughout this
section (M, w) will denote a closed and connected symplectic manifold whose
dimension is at least four.

Theorem 13. Let H be a Morse function on M. If H is sufficiently C?—
small, then for every e, p > 0, there exists 1) € Hameo(M,w) and an embed-
ded tree T' (see Deﬁm’tion such that:

o T is y-invariant, i.e. Y(T) =T,
o T contains all the fized points of 1V,

° dco(qﬁ}{, Y) <eand o qb;Il s generated by a continuous Hamiltonian
F such that | F|ls < p,

e ) coincides with a Hamiltonian diffeomorphism in the complement of
any neighborhood of T'.

The notion of an embedded tree which appears in the above theorem is
defined as follows.

Definition 14. We will say that a compact subset T of a smooth manifold M
1s an embedded tree if there exists a finite tree Ty and an injective continuous
map x : To — M, such that T = x(Ty) and the map x is a smooth embedding
of the interior of each edge of Ty.

Note that we do not ask more than continuity at the vertices of Tj. Note
also that the restriction of x to any compact interval included in the interior
of any edge is a smooth embedding.

In Section below, we explain why Theorem [I3] implies Theorem [2}
The proof of Theorem [13] then occupies Sections [3.2] and [3.3]

3.1 From an invariant tree to a single fixed point

In this section, we explain how one can build a Hamiltonian homeomorphism
with a single fixed point from a Hamiltonian homeomorphism preserving an
embedded tree (see Definition that contains all of its fixed points; in
other terms, we prove that Theorem [13] implies Theorem [2] This will rely
on the following proposition.
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Proposition 15. Let ¢ be a symplectic homeomorphism of (M,w), and
T C M be an embedded tree which is invariant under 1, that is Y(T) = T.
Assume that all the fized points of ¢ are contained in T. Then, there exists
f € Sympeo(M,w), with only one fized point p, and such that f o~! €
Hameo(M,w).

Moreover, if 1 is smooth on M \T, then f can be chosen to be smooth on
M\ {p}. If ¥ coincides with a Hamiltonian diffeomorphism in the comple-
ment of any neighborhood of T', then f can be chosen in any normal subgroup
of Sympeo(M,w) which contains Ham(M,w).

Note that in the last sentence of the above proposition, we do not claim
that f can be chosen to be smooth on M \ {p} and simultaneously be con-
tained in any normal subgroup of Sympeo(M, w) which contains Ham (M, w).
As will be clear from the proof, our method of building f in the normal clo-
sure of Ham (M, w) has the effect of creating a second non-smooth point. We
do not know if both properties can be satisfied at the same time.

Proof of Theorem[3. Theorem provides us with a Hamiltonian homeo-
morphism v which satisfies all the requirements of Proposition Thus,
there exists a symplectic homeomorphism f with only one fixed point p and
such that f o¢~! € Hameo(M,w). Since ¢» € Hameo(M,w) we deduce
that f € Hameo(M,w) as well. Moreover, v coincides with a Hamiltonian
diffeomorphism in the complement of any neighborhood of T. This implies
that f can be chosen in any normal subgroup of Sympeo(M,w) containing
Ham(M,w). It also implies that v is smooth in the complement of T' and
hence that f can be chosen to be smooth in the complement of p. ]

The following lemma will be useful for the proof Proposition [I5]

Lemma 16. Let (M,w) be a symplectic manifold of dimension at least 4
and let T C M be an embedded tree. Let d be a Riemannian distance on
M. Then, for every € > 0 and every open neigborhood U of T, there exists
a Hamiltonian function H supported in U such that diam(¢k,(T)) < e and
[Hlloo <&

Proof. Let Ty be a finite tree and x : Ty — 1" a map as in Definition Let
U be an open set containing T'. Without loss of generality, by replacing U by
a smaller open set if needed, we may assume that U is simply connected. We
first pick a Hamiltonian function Hy supported in U, such that qﬁ}% maps all
the vertices of T inside a ball B included in U and of diameter less than ¢.
By continuity of y, there exist an open neighborhood W of the set of vertices
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of T and a closed subinterval J; C Int(I;), for every edge I;, i = 1,...,r of
To, such that

o T=WnT)Ux(J1)U---Ux(J),
° (b}{O(W) C B.

To achieve the proof, we only need to find a Hamiltonian isotopy which moves
the pieces of curves x(J1), ..., x(Jy) into B with the endpoints kept in B
along the isotopy. This can be achieved by successively choosing Hamiltonian
functions Hy’s (for @ = 1,...,r) such that for all i, ¢} (¢3, (x(Ji))) C B
and the support of H; meets neither gzb}fo (W N'T) nor any of the curves
¢}1k(x(<]k)), for k =1,...,i—1and x(Jg), for k =i+ 1,...,r. Then, the
Hamiltonian diffeomorphism h = gb}{T o---0 gb}{l o qS}{O sends T into B, hence
diam(h(T)) < e.

Moreover, it is a standard fact that the above Hamiltonian functions
Hy, ..., H, can be chosen arbitrarily small in the || - ||oc norm. Thus, h can
be generated by a Hamiltonian H satisfying ||H || < €. O

Proof of Proposition[15 Let ¢ and T be as in the statement of the propo-
sition. We will build the symplectic homeomorphism f as a C°-limit of
conjugates of .

For that purpose, let Wo D W7 D -+ D Wy D --- D T be a sequence of
nested open neighborhoods of T such that ﬂk>0 W,="T.

Claim 17. There exists a sequence of open sets (U;);en, a sequence of Hamil-
tonian diffeomorphisms (h; = ¢}{i)ieN and a subsequence (Wy,)ien with the
following properties: For all i € N,

o Ui = ¢i(Wy,;), where i = hjo---0hyohg,
o U1 CUj,
e H,q is supported in Uj,

° diam(UiH) < %,

Proof. We will construct these sequences by induction. First set Uy = Wy,

Hy = 0 and kg = 0. Then, assume that we have constructed sequences
(Ui)icqo,....jv> (Hi)icqo,...53> (Wk;)ieqo,....j3, With the desired properties.
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According to Lemma applied to the tree ¢;(T), we can pick a Hamil-
tonian function Hj41 supported in Uj, such that ||Hjq1]|c < ?ﬂ% and, de-
noting hjy1 = (ﬁ}{jﬂ, hjt1(¢;(T)) is included in a ball B; C Uj, of diameter
less than 3% Then pick kj11 > k; sufficiently large so that

h]"i‘l(@]'(ij-H)) - Bj'
. 1 —
Then, diam(hj11(0;j(Wk,,,))) < 57 and we can set Uj1 = hj1(0; (Wi, )

J
Since B; C Uj, we have Uji1 C U; and the three sequences (Ui)igqo,....j+1}
(Hi)ieqo,....j+13 (Wk;)ieqo,... j+1y still have the required properties. By induc-
tion, we obtain the claimed infinite sequences. O

Since diam(U;) converges to 0 when 4 goes to infinity and since the U;’s
are nested, the intersection of the closures ﬂieNE is a single point. Let p
denote this point.

Consider the sequence of maps @; = h;o---ohy. By construction, ifx € T
then ¢;(z) € U;, hence it converges to p. Moreover, for every neighborhood
U of T, the restrictions SOi|M\U stabilize for i large. For every = ¢ T, denote
by ¢(z) the point @;(z) for i large enough. The map ¢ is a diffeomorphism
from M\ T to M \ {p}.

We define for all z € M \ {p},

f(x) =povopl(a),

and f(p) = p. We see that p is the unique fixed point of f. Indeed, if we
assume that f admits another fixed point ¢ # p then, ¢(gq) would be a fixed
point of ¢ which is not contained in T" and this would be a contradiction.

The first part of Proposition [15| thus follows if we prove that f is a sym-
plectic homeomorphism. This will be a consequence of the next claim, which
requires us to introduce additional notations.

Without loss of generality, we may assume that for all ¢, the function
H;(t,-) vanishes for ¢ in the complement of an open subinterval of [0, 1].
Let 79 = 0 and for every ¢ = 1,2,..., let ;, = 2221 2% We consider the
sequence of smooth Hamiltonian functions K; defined as concatenations of
time-reparametrizations of the H;’s as follows:

Ki(t,$) _ {2k+1Hk(2k+l(t—Tk),:E), Vee M, k=0,1,...,i, t € [Tk,Tk+1]

Vre M, te I:T/L'Jrl, 1]
Each Hamiltonian K; generates the smooth isotopy ¢! given by:

<,0t o Qbﬁ:l(tim) ohg_10---0hy, VE=0,1,...,i, t € [Tk, Tk+1)
‘ hiO"-Oho, Vt € [Ti+1,1].
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Note that by construction, for all indices i < j, one has K; = K and ¢} = gp?-
on the time interval [0, 7;4+1]. Also, note that for t = 1, we have ¢} = ¢;.

Claim 18. The isotopies ptotpo(pt)™1 CO-converges to an isotopy of homeo-
morphisms ft as i — oo, satisfying f' = f. In particular, f is a symplectic
homeomorphism.

Proof of Claim[18 We denote f! = ¢t oo (p!)~! and let, for t € [0,1) f*
be the homeomorphism defined by f* = f! for any i € N such that 7,41 > t.
We set fl = f.

First, note that by construction f is a bijection. Note also that on any
time interval, of the form [0,1 — §], with § > 0, f* coincides with f for 4
large enough. We will prove that the sequences ff and (ff)™! respectively
CP-converge to f* and (f*)~!. This will imply that f! is a homeomorphism
for all ¢ (including ¢ = 1) and prove the claim.

Let B be a ball around p. For i large enough, U; C B, hence (p;(Wkl) C B
for all j > ¢ and ¢ € [7j41,1]. The uniform continuity of 1) and the invariance
of T implies that for j > 4 large enough, )(Wy,) C Wy,. Thus,

F(U;) = ¢hopo(h)(U;) C B (1)

for j large enough and ¢ € [7j41,1]. Let jo be such a large j.
For all j, it can be easily checked that

]t-i-l = p; © f]t © (pz)_la

where
Id, vt e [07 Tj+1]
20+2 (t—r:
Pé‘ = Hj+1( T]+1)’ vt € [Tj+177—j+2]
hj+1, Vi e [Tj+27 1].

It follows that if ¢ € [0,7;11], then (ff, )" (z) = (f})"!(z) for all z € M.
If t € [Tj41,1], then for all j > jo, ,03- is supported in U; C Uj, C B, thus for
all z ¢ B, (1) yields (f})~" o (p§)~"(x) = (f})~'(«) ¢ U;. This implies that
( ;H)_l(a:) = (f;)_l(x) for all z ¢ B. Thus, the sequence (f!)~! stabilizes
in the complement of B, independently of t. Moreover, by construction the
limit point of (f{)~1(z) for x ¢ B is nothing but (f*)~!(x).

It follows that for j large enough, f]t o (f)~! is supported in B, hence is
CYclose to Id. This shows that f! C%converges to ff. The same argument
shows that (ff)~" converges to (f*)~!. O
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We will now prove that the homeomorphism f o ¢~! is a Hamiltonian
homeomorphism.

The homeomorphism f o 1~! is the time one map of the isotopy f! o
b~ 1. According to Claim this isotopy is the C°-limit of the isotopies
oo (pt) o™l Since these isotopies are generated by the continuous
Hamiltonians

Fi(t’x) = Ki(tvx) - Ki(tv cng © 7!}_1 © (9011?)_1(33))’

the following claim implies that f* o ¢~ is a hameotopy and hence that
fow~!is a Hamiltonian homeomorphism.

Claim 19. The continuous Hamiltonians F; converge uniformly as i — oo.

Proof. The condition || H;|co < 3—1, implies that the sequence of Hamiltonians
K; converges uniformly to the continuous function K given for all z € M
and all ¢ € [0,1) by K (t,x) = 2" H, (281 (t — 1), z) with k € N such that
t € [Tk, Tk+1], and K (1,2) = 0. Now according to Claim ployp™lo(ph)~t
converges umformly to (f)~1. Therefore, F;(t,z) converges uniformly to

(f
K(t,z) - K(t, () (). O

We now pursue the proof of Proposition Since ¢ is a smooth from
MN\T to M\ {p}, it is obvious that if ¢ is smooth in the complement of T’
then the above construction provides a symplectic homeomorphism f which
is smooth in the complement of p.

Let us now assume that v coincides with a Hamiltonian diffeomorphism
on the complement of any neighborhood of T'. Let f be constructed as above.
We will modify f to define a new symplectic homeomorphism f which is in
any normal subgroup of Sympeo(M,w) containing Ham (M, w).

Let K be a smooth Hamiltonian whose time-one map does not fix the
point p. Then ¢k (p) # f o ¢ (p) and we can find a small enough ball B
around p, such that ¢L-(B) N f o ¢k (B) = 0.

For ¢ large enough, f coincides with p; o1 o %—1 on M \ B. Since by as-
sumption 9 coincides with some Hamiltonian diffeomorphism on M\ ¢, L(B),
we deduce that we can write f = h o g, where h is a Hamiltonian diffeomor-
phism and ¢ is a symplectic homeomorphism which is the identity on the
complement of B. Now set

f=hogogiogto(pr)!

We see that f belongs to any normal subgroup of Sympeo(M,w) contain-
ing Ham(M,w). We claim that p is the only fixed point of f. To see this,
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first note that ¢} 0g~1o (¢} )1 is the identity on the complement of ¢} (B).
It follows in particular that f = ho g and f coincide on M \ ¢} (B), hence
that p is the only fixed point of f in M \ ¢1-(B). But if 2 € ¢} (B), then
f(z) belongs to f o ¢k (B), hence is distinct from z.

We point out that since g has only one non-smooth point, we see that f
has two non-smooth points, p and ¢k-(p). O

REMARK 20. We can now justify what we claimed in the discussion of Sec-
tion [L.3] namely the fact that our Hamiltonian homeomorphism f with a
unique fixed point can be generated by a continuous Hamiltonian admit-
ing cl(M) distinct spectral invariants. As in Section we restrict our
discussion to the case of an aspherical symplectic manifold.

We begin by recalling that spectral invariants of a smooth Hamiltonian
depend on the Hamiltonian Lipschitz continuously; see [34]. It follows that
one can define spectral invariants for any continuous function.

The argument showing that f can be generated by a continuous Hamil-
tonian with, at least, cl(M) distinct spectral invariants requires four steps:

(i) The initial Hamiltonian H of the construction (see Theorem is a
C?-small Morse function. For such a Hamiltonian, Floer theory is nothing
but Morse theory and it follows from the classical Lusternik-Schnirelman
theory that H must have at least ¢l(M) distinct spectral invariants.

(ii) The Hamiltonian homeomorphism v obtained in Theorem [13| can be
chosen so that v o (;S;Il is generated by a Hamiltonian arbitrarily small in
Il - ||oo norm. By continuity of spectral invariants, this implies that ¢ can be
generated by a (continuous) Hamiltonian, which will be denoted by G, with
spectral invariants close to those of H.

(iii) In the above proof of Proposition the Hamiltonian homeomor-
phisms f; = p; 010 cp;l are conjugate to . Hence, they can be generated
by the Hamiltonians G o (pi_l which have the same spectral invariants as G.

(iv) Our Hamiltonian homeomorphism f is constructed so that for i large,
fi_1 o f is generated by a uniformly small Hamiltonian function F;. Thus, f
is generated by the Hamiltonian (G o gpi_l)#ﬁ- whose spectral invariants are
close to those of Go w;l and hence to those of H. By choosing small enough
perturbations, we can ensure that at least ¢l(M) of these spectral invariants
are distinct.

REMARK 21. We should point out the argument presented in the above
remark can be modified to prove the following (stronger) statement on closed
symplectic manifolds which are not necessarily aspherical: the Hamiltonian
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homeomorphism f can be generated by a continuous Hamiltonian, say G,
whose spectral invariants are exactly the same as the spectral invariants of
the initial C?-small Morse function H.

In fact, one could go even further: it is possible to show that the continu-
ous Hamiltonian G has the exact same barcode as the initial C?-small Morse
function H. Hence, despite the fact that the time—1 map of G has only one
fixed point, from a Floer theoretic point of view G can not be distinguished
from H. For further information on the theory of barcodes see [I], 27, 32} [36].

Although these claims, and their proofs, are very interesting, in the in-
terest of not lengthening the paper we do not present them here.

3.2 Building the tree from a Morse function

In this section we begin the proof of Theorem Our first step will be to
perturb our initial C%-small Morse function H so that it satisfies a number
of additional properties. This is the content of the following lemma. In order
to simplify our presentation, throughout the rest of this section, we will refer
to local maxima/minima of a function as maxima/minima. An extremum
point of a function will be a point which is either a local maximum or a local
minimum.

Lemma 22. On every closed symplectic manifold (M,w) and for every
Morse function H on M, there exists a Morse function H on M, arbitrarily
Cl-close to H, with the following set of properties:

1. The function H takes distinct values at distinct critical points,

2. FEwvery critical point p of H which is an extremum admits a neighborhood
with Darboux coordinates (x1,...,Tp,Y1,---,Yn) in which H is of the
form H(p) + ¢> (22 + y?), where ¢ € R\ {0} is a constant which can
be chosen to have arbitrarily small magnitude,

8. For every critical point of H which is not extremal, there exist local

Darbouz coordinates (T1,...,Tn,Y1,---,Yn) in which H = c(x? —y?) +
Q, where ¢ is some non-zero constant, and @Q is a quadratic form in
the variables (xa, ..., Tn,Y2,. .., Yn)-

The relevant consequence of the third condition is that locally near p, the
Hamiltonian flow of H preserves the symplectic 2-plane P = {(z1,0,...,0,y1,
0,...,0)} and acts as a linear hyperbolic flow on it. Indeed, Xz = Xc(zf—yf)"‘
X@, where Xy, X (,2_,2), X denote the associated Hamiltonian vector fields.
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It can easily be checked that Xg|p = 0. Hence, the restriction of the Hamil-
tonian flow of H to the plane P coincides with the Hamiltonian flow of

c(xf —u7).

Proof. We can assume without loss of generality that H is a Morse function
on M which has pairwise distinct critical values. We then modify H near
every critical point as follows. Let p be a critical point of H. Up to addition
of a constant, we may assume that H(p) = 0.

Assume that p is a local minimum and let (x1,..., 2z, y1,-..,yn) be Dar-
boux coordinates near p. We first make a C2-small perturbation of H so that
in a small neighborhood of p, it coincides with its Hessian near p. Then, note
that given two positive definite quadratic forms @1 < Q2 and two open sub-
sets U,V such that 0 € U c U C V, there always exists a smooth function
h which coincides with @1 on U and with Q2 on the complement of V,
and having 0 as its only critical point. Now define H by replacing H by
such a function h obtained in a neighborhood of p from the quadratic forms
Qr=c> x?—l—yf for some small ¢ > 0 and for ()2 the Hessian of H. This per-
turbation can be made arbitrarily C'-small by using a small neighborhood
of p. Local maxima are worked out similarly.

Now assume that p is not an extremum. By the Morse lemma, and since
p is not an extremum, there exists a local chart on a neighborhood of p,
parametrised via coordinates (v1, ..., Un, w1,...,w,) by a small open ball W
centered at the origin in the Euclidean space R?" such that p = (0,0, ...,0)
in these coordinates, and moreover H has the form H = H(p) + v} — w? +
S o dv? £w? Now, let (z1,...,2n,Y1,...,Yn) be Darboux coordinates in
a neighborhood of p, such that p = (0,0, ...,0) in these coordinates as well.
Then, choose a diffeomorphism ¢ of M, supported in a very small ball around
p, such that near p, ¢ carries the coordinate system (vy,...,v,, wi,...,wy)
to the coordinate system (z1,...,%n,y1,...,yn). Consider its “rescalings”
ox: M — M, for A € (0,1), defined by

U1 v w1 w
qﬁ,\(vl,...,vn,wl,...,wn):AQS(X, & n),

OOy
for (vi,...,vn,w1,...,w,) € AW C R?" and by the identity on the com-
plement of A\W. Now, replacing H by the pushforward H := ((b,\)*ﬁ =Ho
(éx)~!, we get that for small enough )\, H is a smooth function on M which
is C'-close to H, and which has the form H = H(p)+x}—y? + 3.7, a2 +y?
in a small neighborhood of p.

O
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In the above lemma, the fact that H and H are C'-close implies that
dco (gi)llq, gbllq) is small and gi)}q ) d);; is generated by a uniformly small Hamil-
tonian. Hence, Theorem [L3| now amounts to the following proposition.

Proposition 23. Let H be a Morse function on M satisfying the properties
of Lemma . If H is sufficiently C?*-small, then for every e,p > 0, there
exists 1 € Hameo(M,w) and an embedded tree T (see Definition such
that:

o T is ip-invariant, i.e. Y(T) =T,
o T contains all the fized points of 1,

° dco(qﬁ}{, Y) <eand o qb;Il is generated by a continuous Hamiltonian
F such that | F|ls < p,

e Y coincides with a Hamiltonian diffeomorphism in the complement of
any neighborhood of T'.

Our proof of Proposition 23] will make use of the notion of Reeb graph
whose definition we now recall.

Definition 24. We assume that a function H : M — R is given. For every
point x € M we define C(x) as the connected component of x in the level set
H~Y(H(x)). For a subset X C M, we define C(X) = J,cx C(z).

The Reeb graph is the quotient space R = M/ ~, where ~ is the equiva-
lence relation given by x ~y if and only if C(x) = C(y).

It follows from basic Morse theory that if H is a Morse function whose
critical values are pairwise distinct, then the space R actually carries the
structure of a graph whose vertices correspond to the critical points of H
and such that an edge e, , between two critical points p and ¢ corresponds
to a connected open subset U, , C M such that:

e U, , contains no critical point of H,

e The canonical projection U, , — Up, 4/~ is a fibration onto an interval
(this interval can be seen as parametrizing the edge),

e The closure U, 4 has two boundary components, one containing p and
the other containing q.

By construction, H descends to a well defined function on R, which we
still denote H. This function is monotone on each edge. We assign orienta-
tions to the edges so that H is decreasing on each of them. As for any oriented
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graph, any vertex p admits a bi-degree which is a couple (d_(p),d+(p)),
where d_(p) is the number of edges with head end at p and d(p) is the
number of edges with tail end at p. This bi-degree is related to the Morse
index of p. Indeed, local maxima have bi-degree (0,1), local minima have
bi-degree (1,0), and all the other points have bi-degree (1,1), (2,1) or (1,2)
(but (2, 1) is only possible for points of Morse index dim(M) — 1 and (1,2)
is only possible for points of Morse index 1).

Figure 1: The Reeb graph of a height function H on a 2-torus, the bi-degrees
of the different vertices (Note that the bi-degree (1,1) cannot happen on a
surface) and an example of an edge e, ; with the corresponding open set Up 4.

Proof of Proposition[23 Let €,p > 0. Since M is connected, so is the Reeb
graph R of H, and there exists a subgraph 7 of R which is a tree and contains
all the vertices of R. To each vertex of T we associate the corresponding
critical point of H. This gives an embedding of the vertices of T into M.
The complicated part of the proof will be to embed the edges.

By assumption, near every critical point p of H which is not extremal,
there exist Darboux coordinates (1, ..., Tn, Y1, - -, Yn) such that H = c(x3—
y?)+Q’, where ¢ # 0 and Q' is a quadratic form whose kernel is the plane P =
{(1,0,...,0,41,0,...,0)}. As mentioned after the statement of Lemma
this implies in particular that locally near p, the flow of H preserves P
and acts on it as the flow of the quadratic form ¢(z3 — y?), which is linear
hyperbolic. Thus the flow of H admits in P two orbits converging to p when
time goes to +00 and two orbits converging to p when time goes to —oc.
Moreover, in the plane P and still locally near the point p, these four orbits
are the frontiers of four regions; two of them correspond to H < H(p) and
the two others to H > H(p).
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To each edge e),, with tail end at p, we associate one of the two orbits
converging to p in the past. The local picture above shows that this orbit
belongs to the closure U, ;. Whenever there are two such edges (i.e. d1(p) =
2) we demand that the two associated orbits are distinct. Again, the local
picture shows that this is possible. We let x,, , be a point located near p on
the orbit associated to ej 4. To summarize the situation, we have:

T t t——o00

Upq 2 $u(wpq) — P
We associate in a similar way to each edge e, ;, with head end at p a point
Yq,p Such that:

—_— t—+
Ugp 2 05r(Yap) — D
For each oriented edge e, , we now choose a path 7,4 : [0,1] — M satis-
fying the following properties:

e Forallt €[0,1], 4(H ov,4(t) <0,
e 7,4(0) =pif p is a local maximum and v, 4(0) = x, , otherwise,
e Y,4(1) = ¢ if ¢ is a local minimum and 7, 4(1) = y, 4 otherwise.

Note that it follows from the above properties that U, , = C(v((0,1))).

For each non extremal critical point p, and for each piece of orbit 8 which
is either of the form {¢%;(zpq) : t € (=00, 1]} or {@Y(yep) : t € [—1,400)},
we choose some open sets V),(/3), such that

image(83) C V,(8) € M \ {p}.

We choose these open sets sufficiently small such that all the V,(5)’s, for p
ranging over all non-extremal critical points of H and 3 over all pieces of
orbits as above, are pairwise disjoint.

We are now ready to construct the perturbation of H and the embedding
of 7. We will proceed by induction on the edges of 7. For that purpose
we number the edges ej, e, ..., en, and for each index i, we let p; and ¢; be
respectively the tail end and head end of e;. With the previous notations,
this means that e; = ep, 4. We also rename the points z; = x,, 4 and
Yi = Ypi,qi>» When they are defined and the paths «; = 7p, 4. For the sake
of brevity, we omit the piece of orbit from the notation and denote V,, and
V4, the corresponding open subsets of the form V,,(3) when they are defined,;
it will always be clear from the context which orbit is considered. If p; is a
local maximum, we set V,,, = 0; if ¢; is a local minimum, we set Vg, = 0.
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Figure 2: The right-hand side represents the tree 7 obtained from the Reeb
graph of Figure On the left hand side, the arrows correspond to the
four orbits converging to non extremal points, and the blue curves represent
possible choices for the curves 7, 4.

Assume that for some j > 0, we have realized the edges eq,...,e; in M,
i.e, we have built smooth embeddings «a1,...,a; : R = M and Hamiltonian
homeomorphisms 01, ..., 8;, such that the following holds:

1.

2.

limy oo i (t) = p; and limg 4 o (1) = g5,
For alli € {1,...,7} and all t € R, 0; 0 ¢}, (i (t)) = a;(t + 1),
0; o ¢} has the same fixed points as ¢},

For all i € {1,...,5}, a; takes values in V,,, UC(7;((0,1))) U V,, and
the images of the «;’s are pairwise disjoint,

For all i € {1,...,j}, 0; is generated by a continuous Hamiltonian F;
supported in {p;} UV,, UC(7:((0,1))) U V,, U{g}, and the interiors of
the supports of the 6;’s are pairwise disjoint,

dco(0;,1d) < € and ||Fil|oo < p-

For any neighborhoods of p;, ¢;, the homeomorphism 6; coincides with
a Hamiltonian diffeomorphism in the complement of the union of those
neighborhoods.
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We want to show that it is possible to build a1 and ;41 such that the
above properties 1-7 still hold. After shrinking the open sets V, \%

Di+10 Va1
if needed so that they intersect neither the supports of Fi,..., F; nor the
images of the curves aq,...,a;, we construct aj1 and 041 by applying

Theorem [25| below to the critical points pji1, gj41, to the curve ;41 and to

the open subsets Vj,, ,, Vg, ;-
Following this process by induction, we get curves aq, ..., an and Hamil-
tonian homeomorphisms 64, ..., 0y satisfying Properties 1-7. The union of

the images «;, denoted by T, is an embedding of the tree 7 in M in the
sense of Definition [T4 Moreover, it is easy to check that the Hamiltonian
homeomorphism ¢ = 0y o---06;0 gb}q meets the requirements of Proposition

23l O
3.3 Connecting two critical points

The goal of this section is to explain the construction of the individual edges
of the invariant tree of Proposition 23] This is achieved in Theorem [25]
3.3.1 Statement of the result

Theorem 25. Let H be a Morse function as described in Lemma[23 and de-
note by p, q two critical points of H, at most one of them being an extremum.
We assume that there exists a smooth embedded curve 7 : [0,1] — M such
that

e v(0) = p if p is a mazimum of H, and ¢';(v(0)) — p when t goes to
—oo if p is not a mazimum,

e (1) = q if q is a minimum of H, and ¢4y (y(1)) — q when t goes to
400 if q is not a minimum,

o forallt e [0,1], £(H(v(t))) <O.

Let €, p > 0 be positive real numbers, let Vp,, V, be open sets such that

V, =10, if p is a mazximum,
Vp D {4 (7(0)) : —co <t <1}, if p is not a mazimum,

and

Vg =19, if ¢ is a minimum,
Ve 2 {4 (v(1)) : =1 <t < +oo}, if q is not a minimum.
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Then, there exist § € Hameo(M,w) and a smooth embedded curve o : R —
M, with the following properties:

1. limy oo (t) = p and limy— 4 oo a(t) = ¢,

2. ot (at)) =alt+1) foralt €R,

3. 00 ¢k has the same set of fized points as ¢k,

4. Fot allt € R, a(t) belongs to the open set V,, UC(~((0,1))) UV,
5

. 0 is generated by a continuous Hamiltonian F which is supported in
{p} UV, UC(((0,1))) U Vg U {q}.

deo(Id,0) < e and || Flle < p.

S

7. For any neighborhoods of p,q, the homeomorphism 0 coincides with a
Hamiltonian diffeomorphism in the complement of the union of those
neighborhoods.

One of the main difficulties we will have to face in proving Theorem
is to perform perturbations of ¢}, without creating new fixed points. Away
from the fixed points of qSllq, i.e. critical points of H, a C°-small perturbation
will not create such fixed points. However, a C%-small perturbation near a
critical point can create new fixed points, and for this reason neighborhoods
of critical points will require special treatment. In order to surmount these
difficulties, we will build the perturbation and the invariant curve of Theorem
in three steps: First, we build one end of the curve near one of the
two critical points (this construction is achieved in Section in the case
of a local minimum/maximum). We then extend the invariant curve such
that it reaches a sufficiently small neighborhood of the second critical point
(Section . Finally, we finish the construction of the invariant curve in
the neighborhood of the second critical point (Section |3.3.4)).

3.3.2 Connecting a max/min to a nearby point

We denote by R?" the Euclidean space of dimension 2n equipped with the
standard symplectic structure wy = Y ;- ; dz; Ady;. In the following theorem,
|lz|| denotes the Euclidean norm of a point 2 € R,

Theorem 26. Let H : R*™ — R be a Hamiltonian of the form H =
> (@2 + y?), where c is a non-zero constant. There exists A > 0 such
that if |c| < A, then the following statement holds for any point x € R?" and
any €,0 > 0.
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Denote by B C R*™ an open ball which is centered at the origin and
contains the point x. There exists a Hamiltonian homeomorphism 6, whose
support is compactly contained in B, and a smooth injective immersion « :
[—1,00) = B\ {0} with the following properties:

~

. aft) = ¢ty (z) fort € [-1,0] and a(t) — 0 as t — oo, where 0 denotes
the origin,

2. 0o gL(a(t)) =a(t+1) foralt e [-1,00),
3. 0o gi)}{ has only one fized point and that is the origin,

4. The support of 0 intersects the complement of the ball B(0,|z||) of
radius ||z|| only in an e-neighborhood of {¢t;(z) : t € [1,2]},

5. deo(1d,0) < € and ||F||oo < 6, where F' denotes a continuous Hamil-
tonian such that qb}; =40,

6. For any neighborhood of 0, there exists a compactly supported Hamil-
tonian diffeomorphism of B which coincides with 0 in the complement
of that neighborhood.

Proof of Theorem[26. Without loss of generality we may assume that ||z|| =
1. We remark here that throughout the proof we will use the fact that ¢,
for each ¢, is a linear isometry of R?", without explicitly mentioning it. We
will assume that & > 0 is very small in comparison to ||¢},(z) — z]|.

We will now pick a sequence of curves «q, a1, ..., which will be joined
together, at a later stage, to form the invariant curve a. Let zg = x and
define g : [0,1] = B, t — ¢%(zg). Let 0 < p < 1 be a constant such that
1 — p is very small in comparison to €. Now, let z; = pgb}{(xo) and more
generally, for each i > 1,2; = p'¢d%;(z0) and let o; : [i,i + 1] — B denote
the curve a;(t) = p'el; (zo) for each ¢ € [i,i + 1]. Denote y; := ¢k (x;). Note
that «; satisfies the following identity:

oi(t) = ¢ '(wi) = ¢~ (i), VE € [ii+1]. (2)

Step 1. Preliminary preparations for the construction of the in-
variant curve.

For each non-negative integer i, let a; : [0,1] — B be the curve a;(t) :=
(1 — t)y; + tzsy1. Observe that, the length of a; is p' — p**tl. Note that
p' — pt1 < ple. Furthermore, the image of a; is disjoint from the remaining
a;’s and is contained in the shell {z € R?" : pi™! < ||2]| < p'}. See Figure
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Figure 3: Settings for the beginning of the proof of Theorem [26]

We will now introduce some of the notation which will be used throughout
the proof. Let Uy be a shell which is a slight enlargement of the shell {z €
R?" : p < ||z|| < 1}. For i > 0, we set U; := p'Up. Note that U; is a shell
which is a slight enlargement of the shell {z € R?*" : pi*tl L ||2]| < p'} and
furthermore, U; NU; =0 if j ¢ {i — 1,47+ 1}.

Next, let Wy be a small neighborhood of the image of the curve ag which
is contained in Up and has the following properties: the diameter of Wy
is less than e, Wy is convex, Wy U pWj is also convex, and there exists
a small positive number  such that ¢4 (yo), ¢ (z1) € Wy if and only if
t € (—2k,2k). Lastly, we require that Wy N pdt,(Wo) = 0. Observe that, for
this last requirement it is sufficient to take A < 7. For ¢ > 0, we define W, :=
p'd4 (Wy), or equivalently, W; = pd},(W;_1). What is important to observe
about the sets W; is that they have the following properties: W; is a small
neighborhood of the image of a; which is contained in U; and the diameter of
W is less than p’e. The sets W; are convex and so are ¢}{(WZ) UW;41. The
W;’s are pairwise disjoint and furthermore W ﬂqb}{(Wl) # (Qonlyif j =i+1.
Also, note that for ¢ € [—1,1] we have ¢l (yi), ¢4y (zit1) € W; if and only
if t € (—2k,2k). Finally, we remark that among the sets W} the only one
which intersects the image of ¢}{ oy is W;. Our set up is summarized in

Figure [3]

34



Next, we find Hamiltonians, say G;, such that G; is supported in W;, and

06, (0 (yi)) = O (wis1), Yt € [~k k], 3)

Let G := )2, G;; we remark that by Lemma we can pick G; such that
|Gil|so is arbitrarily small. Note that the G;’s are supported in W;’s which
are pairwise disjoint. Therefore, G is well-defined and in fact |G|l can be
made arbitrarily small. Furthermore, G generates a hameotopy whose flow is
the (infinite) composition Hfi1¢tgii to see this observe that the flows qﬁtGi are
supported in W;’s which are disjoint and whose diameters are smaller than
p'e. We point out that <Z51G coincides with a Hamiltonian diffeomorphism of
B in the complement of any neighborhood of 0.

Let ¢; denote the Hamiltonian homeomorphism ¢}, o ¢k;.

Step 2. A first approximation to the invariant curve a. Consider the
smooth curve o/(t) : [-1,00) — B given by the following formula:

O/(t) = {Qﬁ?{(l') te [_110]7 .
og, o i(t) telfiyi+1], Vi>0.

To see that the above formula defines a smooth curve one can check, using
Equations and (3), o/(t) = ¢’ (2;) for t € [i — k,i + k] for each i > 1.
One can ensure that o/ is injective, by perturbing the Hamiltonians G, if
necessary, and by picking the constant A, from the statement of the theorem,
to be sufficiently Smallﬂ we leave it to the reader to check the details of this.
The curve o/ and its image under 1, are drawn in Figure [4]

It is evident that 11 (c/(t)) # o/ (t + 1) for ¢ > 0. In Steps 3 and 4, we
will be modifying o/ and 9 to establish the invariance stated in the second
property from the statement of the theorem. The next few claims record
some properties of these two curves which will be used later in Steps 3 and
4.

Claim 27. For A sufficiently small, {1 (d/(t)) = /(t+ 1) fort € [-1,0].
Proof. If t € [—1,0], then one can easily conclude from the definition of o/

that we have 1 (o/(t)) = ¢g, ¢ 0l (x) = o, ¢4 (x) = o/ (t +1). O

Claim 28. For each i > 0, the two curves ¥1(a/[jj41)) and o'[j11 49
coincide near their endpoints. More precisely, 1(d/(t)) = o/'(t + 1) for
tefi,i+rU+1—ki+1].

S AL 5 is sufficiently small for our purposes.
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Figure 4: The curve o/ in blue and its image by ¢ in green.

Proof. We will check that if ¢t € [i — k,i + k], then 91 0 &/(t) = &/(t + 1).
To see this write t = i + s, where s € [—k, k], and note that 11 o o/(t) =
L0k oy (1) = BLOU() = 0b,0% () = Gir(wis1) = a/(t + 1). The last
equality follows from the fact that for i > 1, we have o/(t) = ¢';*(x;) when
te€fi—k,i+kK]. O

For each ¢ > 0, let V; be the shell U; UU;+1. Note that V; N'V; = 0 if
G {i—2i—10i+1,i+2).

Claim 29. For each i > 0, there exists a homotopy, which is constant near
endpoints, from 1 o o/[j;41) to '|ji41,49) which is supported in Vi and
furthermore, under this homotopy the trajectory of any point of ¥ oo/][i’iﬂ}
has diameter less than 2p'e.

Proof. We point out that, as a consequence of Claim 28] the above two curves
coincide near their endpoints. The idea of the proof of this claim is very
simple: the straight-line homotopy F(s,t) = (1—s)th100/|[; ;411 + 5 [[i41,i4+9]
satisfies all the required properties. The fact that W; U pW; is convex, and
of diameter less that 2p'e, is used here to ensure that the trajectories of
the points ¢ o o/|[z-7,-+1](t) for t near 4,7 + 1 are of diameter less than 2p'e.
Checking the proof of this claim in detail, although quite straight forward,
is rather tedious. Hence, we will omit the proof. O

Step 3. Constructing the curve «. Let A be the 1-form Y " | x;dy;. We
define the action of any curve a : [0,1] — R?" to be the integral fol a*\. We
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will now finish the construction of the curve a.

We begin by defining a|(_; ;) = o/|[_171] and proceed to inductively con-
struct the curve « such that it satisfies the following properties: for each
i > —1, the two curves 1 o a|}; ;41] and a};;1 ;49] have the same action, and
a coincides with o for all values of t except near t = i + %, where 7 > 1.
Suppose that, for some k > 1, we have constructed such « : [-1, k] — R?".
Next, we make a C? small perturbation of the curve o |(k,k+1), in an arbi-
trarily small neighborhood of the point o/(k + %) to obtain a new curve,
which we will call o/ j41), such that ¢ o afjp_1 4 and a|j g4 have the
same action. It is evident from the construction that a coincides with o for
all ¢ except for values of ¢ near ¢ + %, where 7 > 1. It is also clear that «
be can be picked to be arbitrarily C° close to o/. We should add that it is
a well-known fact that one can make an arbitrary adjustment to the action
of a curve by performing a C°-small perturbation; see for example Remark
A.13 of [3).

We finish this step by pointing out that the curve « satisfies the first of
the four properties listed in the statement of Theorem

Step 4. Turning o into an invariant curve. In this final step of the
proof, we will perturb v; to a Hamiltonian diffeomorphism  such that
Yoa(t)=alt+1).

Claim 30. For each ¢ > 0, there exists a Hamiltonian K; supported in
Vi = U; U Uiy such that

1. ¢}Q oroa(t)=alt+1) for each t € [i,i+ 1],

2. deo(1d, ¢}<1) < 4p'e and K; can be picked such that | K;| s is as small
as one wishes,

3. supp(K;) is contained within the 4e neighborhood of a([i + 1,7 + 2]),

4. a([j.j+ 1)) Nsupp(K;) = 0 if j # i + 1. Similarly, v1 0 a([j,§ + 1)) N
supp(K;) = 0 for j # .

Proof. In the previous step we constructed « such that i o O‘|[i7i+1] and
@[i41,i+2) have the same action. Furthermore, since we obtained af; ;41
from o[}; ;41 by making a CP%-small perturbation of '|[ji41) near t =4 + 3
we conclude, by Claim that there exists a homotopy, which is constant
near endpoints, from 1 o a|j; ;1] t0 @j41,i49 Which is supported in V; and
furthermore, under this homotopy the trajectory of any point of 17 o oz|[m-+1}
has diameter less than 2p‘c. The first three properties of the claim then
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follow immediately from Proposition [9] As for the fourth property, since
the dimension of M is at least four, by making a small perturbation of the
homotopy from ; o a\WH] to a|[i+17i+2], we may assume the image of the
homotopy does not intersect a([j,j + 1]), for 7 # i + 1, or ¢ o a([j,j +
1]), for j # 4. Fix small x; > 0 such that the homotopy is constant on
Y1 0 jjigw,]ulit1—r,]- Let W be a small neighborhood of the image of the
restricted homotopy from 11 o a|[i+ni7i+1_,ﬁ] to a\[i+1+,ii7i+2_m] such that
a(lj,i +1DNW =0,if j #i+1and Y1 oa([j,j+ 1)) N W = for j # i.
Now, it is easy to see that K; can be picked to have its support contained in
W. This implies the fourth property of the claim. O

Note that for each 4, V; NV} # @ only if j € {i —2,i— 1,4,i+ 1,7 + 2}.
Hence, we see that the sets Vg, V3, Vs, . .. are mutually disjoint and therefore
the supports of Ky, K3, Kg, . .. are mutually disjoint as well. This combined
with the fact that || K|/~ can be picked to be as small as we wish, implies that
the sum Fy := Ko+ K3+ Kg+- - - defines a continuous function. Furthermore,
as a consequence of the disjointness of the supports of these functions, we see
that Fp is a continuous Hamiltonian whose flow is gb}o = 5(0 o gbtKg o gbtKG e
Similarly, we define F} = K1+ K4+ K7+ --- and F5 = Ko+ K5+ Kg+---.
These functions generate the hameotopies ¢! . = Pk, © ¢7}(4 o QStI(? -+« and

}2 = ¢, © ¢§(5 o qﬁ’}(g .-+, respectively. Observe that, as a consequence of
the second item in Claim Foy, 1, 5 can be picked such that their norms
are as small as one wishes.

We define 0 := ¢p, 0 ¢p, 0 ¢ 0 pfy and ¢ := 0o ¢y = ¢, © P, 0 dpy 0 1h1.
Clearly, 6 is a Hamiltonian homeomorphism which is compactly supported
in B.

We will now check that 6 and the curve « satisfy the properties listed in
the statement of Theorem [26] We have already checked the fact that the
first property is satisfied.

First, we will show that ¥(a(t)) = a(t + 1), for all t € [-1,00). If
t € [-1,0], then this follows from Claim 27] Indeed, for ¢t € [~1,1] we
have a(t) = o/(t). Moreover, for ¢t € [~1,0] we have 1(a/(t)) = ¢, © ¢, ©
gi)};o (V1( (1)) = g{)}pz o qb}% o (;S}po (/(t+1)) =d/(t +1). The reason the last
equality holds is that, by the 4th item of Claim odt+1)=at+1)is
not contained in the support of any of Fy, F, F». Next, consider ¢ € [0, 00).
Fix i and t € [i,i + 1]. According to Claim [30} a(t + 1), ¢ (a(t)) ¢ supp(Kj)
for any j other than j = i. Hence, ¥(a(t)) = (f)}72 o ¢}1 o QS%O o (aft)) =
ok o vn(alt) = a(t +1).

To establish the remaining properties we will need the following claim.
We define a nested sequence of balls B; D B;;1 as follows: For ¢ > 0 we set
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B; = {0} U (Ug>;Vk). Note that By is a slight enlargement of the unit ball
and furthermore By contains the supports of all Fy, Fi, F», and G.

Claim 31. Suppose that p € By—{0}. Let i denote the smallest integer such
that p € U;. Then, for each j € {0, 1,2},

e ifi >0, then qﬁ};j (p) € Bi—1 and H(b};j (p) —pl| <4p e .
o ifi =0, then qb};j (p) € By and H(ﬁ}pj (p) — p| < 4e.

© 66(p) € Bioy and [ 64p) —pl| < o',

Proof. We begin with the statement about gb}mj (p). We will only prove this
for j = 0,7 > 0 and leave the remaining cases to the reader. Recall that
Fy = Ko+ K3+ K¢ + - -+ and that supp(K,,) C Vi, = Uy, U Upp4q for all
m. Hence, the point p can only be in the support of K;_1, K;, K;11. Now,
only one of these three Hamiltonians enters the definition of Fy and so we
see that ¢, (p) € {¢}<¢_1 (p), d)}ﬂ (p), ¢}(i+1 (p)}. The result then follows from
Claim The statement about ¢k (p) is proven similarly. O

We will now prove that 1 has no fixed points other than 0. Recall that
Y = fo¢},. Using the above claim, and the fact that § = gb};Q ogb}?l oqﬁ};b Yo
we see that

L. [|0 0 ¢k (p) — oL (p)|| < 13p"~%e, when p € B; and i > 4
2. |00 ¢L(p) — ¢k (p)|| < 13¢, when p € B; and i < 3.

Suppose that p € U; where ¢ > 4. We will show that p can not be a fixed
point of § o ¢1;. First, note that since U; is a slight enlargement of the shell
{z: p*L < |2]| < p'}, we can assume that |p| > pi*2. Recall that, we picked
€ to be very small in comparison to the number C = ||¢};(2) — z||, where z is
any point such that ||z|| = 1. It follows that ||¢};(p) —p|| = Cp*+2. Hence, we
see that if Cp't2 > 13p*~%¢, then 0 o ¢1(p) # p. Of course, by picking  to
be sufficiently small we can make sure that the inequality Cp't? > 13pi—4¢
holds. (Recall that we picked p such that 1 — p is small in comparison to ¢.)
We leave the case where p € U; and 7 < 3 to the reader.

Next, we will show that the support of 6 satisfies the fourth property
from the statement of the theorem. Indeed, examining the proof we can
see that the Hamiltonians G;, K; were all picked to be supported within at
most a 4e neighborhood of «a([i + 1,7 + 2]). Of these Hamiltonians it is
only Gy, Ko whose supports intersect the complement of B(0, ||z||). This

39



implies that the support of 6 intersects the complement of B(0, ||z||) only
in a 4e-neighborhood of «([1,2]). Now, we leave it to the reader to check
that «([1,2]) is contained within an e-neighborhood of {¢%;(z) : ¢ € [1,2]}.
Replacing € by £ throughout the proof yields the result.

We now check the 5th property from the statement of the theorem. Since
0 = ¢p, © G, © G, © by, it is an immediate consequence of Claim [31| that
dco(0,1d) < 13¢. Hence, if we replace € by 35 then we obtain deo(Id,0) < e.
Next, let F' denote the generating Hamiltonian of the continuous Hamilto-
nian flow qbt gb o ¢k,. It follows from the composition formulas
mentioned in Section ﬁthat 1 Flloo < [ E0]loo + [ F1lloo + [|F2lloc + |G lloo-
As we have already mentioned, Fy, F1, F5, G can be picked to have norms as
small one wishes. Hence, the same is true for || F/s.

Finally, we check the 6th and final property. Recall the nested sequence of
balls B; D Bjy1 introduced before Claim . Let Bj denote the complement
of B;. Observe that in BY, for any i, each of QS}TO, qﬁ}pl, d)}%, and gblG coincides
with a Hamiltonian diffeomorphism. Furthermore, using Claim it can
easily be checked that each of these homeomorphisms maps Bf into Bf,
Combining these facts together we see that 6 coincides with a Hamiltonian
diffeomorphism in the complement of each B;. ]

3.3.3 Connecting two non critical points by an invariant curve

The main goal of this section is to prove the following technical result which
is needed for the construction of the invariant curve of Theorem 25

Theorem 32. Denote by H : M — R a smooth autonomous Hamiltonian
on a closed symplectic manifold (M,w) of dimension at least 4. Let z,w
be two points in M. Suppose that there exists a smooth embedded curve
v :10,1] = M such that v(0) = z,v(1) = w, such that H is not constant on
v, and the map T : [0,1] x R — M defined by T'(s,t) = ¢y (y(s)) is a smooth
embedding on ({0} x [—2,1]) U ((0,1) x [0,1]) U ({1} x [—1,2]).

Then, for any constants €,p > 0 and any neighborhood U of T'([0,1] x
[0,1]), there exist

e a Hamiltonian diffeomorphism ) : M — M,

e and a smooth embedded curve o : [0,k + 1] — M, where k € N,

such that:

1. ¢Y(a(s)) = a(s+ 1) for any s € [0, k],
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2. There eists tg € (1,2) such that for all s € [0,tg], a(s) = ¢52(2),
and a([to, b+ 1]) € U U C(4((0, 1)),

1
3. Let V' be any neighborhood of the point ¢, (w). Then, o can be chosen
to satisfy the following property:

= ¢} €03 -0 U[3+0b1
a(k+s) ¢H(w)’ S [17 2 1] [2 + ’ ]

GV, Se[i—b,§+b],
for some small b > 0. Furthermore, ¥ o a(k + s) = ¢35 (w) for s €
[0,%—b]U[%+b,1]7

4. deo(,0Y) < e and the Hamiltonian diffeomorphism 0 := 1) o ¢' is
generated by a Hamiltonian, say F', such that ||F||ec < p. Furthermore,
F' is supported inside U U C(v((0,1))),

5. 1Y has the same set of fixed points as gﬁ}{

Proof of Theorem[33. By replacing U with a smaller open subset we can
assume that there exists a diffeomorphism ® : U — (—¢,1 +¢) X (—¢,1 +
¢) X (—¢,e) x ... x (—¢,¢) € R?" where ¢ > 0 is sufficiently small. By
slightly decreasing c, if necessary, we may assume that ® is a bi-Lipschitz
map, where we consider the metric ¢ on M and the standard euclidean
metric on (—¢,1+¢) x (—¢,1+¢) X (—¢,¢) X ... x (—¢,c). We can further
suppose that this diffeomorphism identifies T'(s,t) with (s,t,0,...,0) for all
s,t € [0,1]. Note that here we are relying on the fact that I' is an embedding
on [0, 1] x [0, 1].

Step 1. Preliminary preparations for the construction of the in-
variant curve. We begin by picking ¢ > 0 such that § < § and Vo,y € M

if d(x,y) <0, then vt € [0, 1), d(6fy (x). ¢}y (1)) < 5. (4)
Pick m € N large enough such that d(v(%),v(2)) < % Foreach 0 <7 < m,
we define small neighborhoods U; of T'([-1, £t1] x [0,1]) by

U, = CIJ_I((% —a, % +a)x (—c,14+¢) X (—¢,¢) X ... x (—c¢,0)),

where a > 0 is taken to be so small that U;NU; # @ only if j € {i—1,4,i+1}.
Clearly, U; C U for all 1.

Take r > 0 satisfying the following two criteria: r is small in comparison
to 6 and the rneighborhood of (L) is contained in U;. For each 0 <
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i < m choose a ball B; in the r-neighborhood of v(--) such that B; C
U; NC(v((0,1))), such that H(B;) N H(B;) = 0 for any 0 < i < j < m, and
such that moreover H(xzg), H(xy,) ¢ H(B;) for each 0 < i < m. It is not
hard to show that such a choice of B; is always possible; here it is important
to remember that, because I' is an embedding, v does not pass through any
of the critical points of H. Note that we may also assume that B;11 C U;
forO0<i<m—1.

We can ensure that for each « € B; U B;11 the image of the curve ¢t —
¢4 (z),t € [0,1] is contained in Uj; this will be used in Step 4.

By the Poincaré recurrence theorem, we can find points x; € B;,0 < ¢ <
m, and integers k; > 2 with the property that d)];} (z;) € B;. Let y; := qﬁllcj ().
By an arbitrarily C?-small perturbation of H inside the open set U away from
the curves (¢4 (20))iec[-2,0] and (¢ (zm))icpo,2), if needed, we may assume
that the curve (¢%(2i))ie|—1,k;+1] is embedded, for each . If 4 is 0 or m, we
set g = qﬁl_f(z),yo =z,kg =2 and 2, = W, Ym = qﬁ}{(a:m),km =1. We
remark that for each 0 < ¢ < m, the points z; and x;11 do not belong to the
same level set of H; this will be used in the next step of the proof. Figure
below, describes the settings from Step 1.

/$0 /¢11'-I($0)/y0:’2

e HY /
B 1
T % W . 1c)
B || o) dh(e)
- >~---+_-_->_-__+j'\ LD - - P e
~ I
B; )
Tio _/d)H(:EZ) /(b%{(xz)
R TS S
. ;,+¢H,_(xl) Yi+1 /¢}{(9€z‘+ ) 0% (2it1)
B ' 1 2
Bm—\ ' /¢H(xm—})/ 1 (Tm-1)
i i

Figure 5: Settings from Step 1.
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Step 2. Turning the sequence zg,...,z, into a genuine orbit. For
each 0 < ¢ < m — 1 pick smooth embedded curves a; : [0,1] — M such that

e a;(0) =y; and a;(1) = zj41,
e the diameter of a; is smaller than § (note that d(y;, x;+1) < 9),

e the image of a; is disjoint from the image of a;, for j # ¢, and it is
contained in the open set Uj,

e for each ¢ the image of a; does not intersect any of the curves ¢t —
@'y (z;), t € [=1,k; + 1], for any value of j, except at the two points
yi = (ﬁ%(l‘z) and z;41 = gb%(miJrl). Moreover, for each ¢ the image of
a; does not intersect the curves (¢4 (0))iei—2,0] and (¢4 (zm))icp,2),
except at the point zg and x,,, respectively.

The above conditions, combined with the fact that the points x; were
picked such that y; and ;41 are not on the same trajectory of ¢l;, guarantee
that for each 0 < ¢ < m — 1 we can find W(a;), a small neighborhood of
the image of a;, with the following properties: W (a;) C U;, the diameter of
W (a;) is less than §, these neighborhoods are disjoint, and each of the curves
(0% (Wi))eei—1,1) and (¢%(wit1))ee(—1,1) takes values in W(a;) if and only if
t € (—2k4,2k;) where k; > 0 is small. Now, let kK = min{k1,...,km—1}. By
shrinking the neighborhoods W (a;) we may assume the following;:

If t € [—1,1], then for 0 < i < m — 1 we have

Ou(yi) € W(a) <= ¢Yy(zip1) € W(w) < te(-25,25).  (5)
If ¢ € [2,1], then
S (yo) € W(ag) < t € (—2k,25). (6)
If t € [~1,2], then
By (2m) € Wlam) <= t € (~2k,25). (7)

Next, we find a Hamiltonian, say G1, the time-1 map of whose flow we
will denote by 7, such that G; is supported in the union of W(a;)’s, and

(0 (yi) = S (wir1), V't € [k, K]. (8)

Let 11 := T¢};; observe that w’fi (x;) = x4 for each 0 < i < m—1. Also,
note that deo(7, Id) < & and thus deo (11, ¢};) < & < e. Lastly, we remark
that G can be picked such that ||G1|/ is as small as desired.
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Step 3. A first approximation to the invariant curve a. Let k =
ko+k1+ ...+ kp—1 and consider the smooth curve oy : [0,k +1] — M given
by the following formula: For 0 < ¢ < m, let K; = Z;‘:o k; and define

% (o) t€[0,1]
70 ¢4 (z0) t € [1, Ko

ay(t) == '}I_K"(xiﬂ) te K, Kiy1—1],0<i<m—2
7o Mi(zi) te [Kiyr—1,Ki],0<i<m—2
O F () te [k, k+1]

The fact that the above formula yields a smooth curve is an immediate
consequence of Equation . Since the z;’s belong to different level sets of
H, by slightly perturbing Hamiltonian diffeomorphism 7 if needed we can
guarantee that this curve is embedded.

REMARK 33. In this remark, we will prove that the curve oy satisfies the
second property from the statement of the theorem.

We take tg = Ky — 2k = 2 — 2k. Then, it follows from the definitions of
a1 and 7, and the fact that xo = ¢%(2), that a;(t) = ¢4 2(2) for t € [0,1).
We remark that aq([tg, k+1]) C UUC(y((0,1))). This can easily be checked
from the definition of oy and noting the following facts: 7 is supported in
U,and {z; : 1 <i<m} CcUNC(y((0,1)). In Step 4 we will have to modify
aj to obtain o. However, we will never change aq on [0, #] and all of the
modifications will take place inside U. Hence, the second property from the
statement of the theorem will continue to hold for o as well.

REMARK 34. Note that o1 (k+s) = ¢3;(w), for s € [0,1], and Y100 (k+s) =

St (w) for s € [0,1]. So at this stage the third property is also satisfied
for any choice of V' and any sufficiently small value of b. Throughout the
remainder of the proof we will have to modify the curve «;. However, the
modifications on [k, k + 1] will be such that the the formula given in the
third property will remain true. Furthermore, we will also modify 7 to
a different map . Now, ¢ will be constructed such that the support of
0 := o ¢, will not intersect the curve ¢} oa([k, k+1]). It will then follow
that ¢ o a(k + s) = ¢% ' (w) for s € [0,3 — b] U [ + b,1]. This establishes
the third property from the statement of the theorem.

REMARK 35. For 0 <1 < k, we let ai|y 41y : [0,1] = M denote the curve
Oz1|[l7l+1](t) = aq(l +1t), Vt € [0,1]. Note that 1)1 o al‘[l—l,l] = a1|[l,l+l] for
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Il ¢ {K; : 0 < i< m—1}. For the remaining values of | the two curves
Y1 oaq|y_1 and aify 4] only coincide near their endpoints. Indeed, it can
easily be checked, using Equations and , that both of the above curves
coincide with the curve ¢ — ¢ (z;i+1) on [0,k] U [1 — &, 1].

REMARK 36. Let | = K;,0 < i< m — 1. The two curves 91 o a1|[l—1,l] and
1]y 141) are both contained in U;. This follows from the construction of 7
and the fact that the curves ¢ — ¢4 (x;) and t — ¢ (y;), t € [0, 1], are both
contained in U;. We leave the details of this to the reader.

We will next check that for each | € {K; : 0 < i < m—1} the C° distance
between the two curves 11 o aq|y_1y and aq|; 44 is small. More precisely,
we will prove:

Claim 37. d(¢Y1 oa1(l —1+1t),a1(l + 1)) < e, for each t € [0,1], and for
eachl € {K;:0<i<m—1}.

Proof of Claim. Using the definition of oy, it can easily be checked that
a1 (Ki +1) = ¢y (zi1) and aq (K; — 14 1) = 768 () = 75 (y). Tt
follows that 11 0 g (K; — 1 +t) = 7oL T (y:).

Now, recall that the curves ¢ — ¢ (y;) and ¢ — ¢l (x;) intersect the
support of 7 only for ¢t € (—2k, 2k). Using this fact it can be checked that

T(Z)fg(yi), t € [0,2x],
ToToE (i) = { ol (i), t € [2r,1 - 25],
T¢}{(T¢;Il+t(yi))’ le [1 - 2'%7 1]

If t € [0,2r] then 7¢4 (y;), ¢4y (zit1) € W(a;) and the set W(a;) has
diameter less than §, thus d(7¢% (v;), ¢ (wit1)) < 6 < e.

If t € [2k,1—2k], then we must prove that d(¢%; (vi), ¢y (it1)) < . This
follows immediately from Equation and the fact that d(y;, x;+1) < 0.

Finally, we consider the case t € [1—2#, 1]: Write ¢4y (7;) = ¢4 (b5 T (2:)).
Note that in this case ¢ *(y;) and ¢ (2;41) are both contained in the
set W (a;) which has diameter less than . We see, via Equation , that

ATy (réy T W), P (i) <

do (7, 1d) + d(@h (ro (1)), Ok (05 T (wi41))) < 6+ 5 <,

which proves our claim. O
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Figure 6: A portion of the curve «; in blue, its image by v in green, and
the curve o obtained from a7 by local perturbations which are represented
in red.

Step 4. Constructing the curve «a. Let V denote a contractible open
subset of M. Since V is contractible there exists a 1-form A such that w = dA
inside V. Using the 1-form A we can define the action of any curve a : [0,1] —
V to be the integral fol a*A. Of course, the action of a curve depends on A,
however the difference of action between two curves with the same endpoints
does not depend on the choice of A or V.

For any 0 < I < k, the two curves a4 and 91 o[y ) coincide near
their endpoints. Furthermore, one can find a contractible neighborhood of
Ozl\wﬂ] which contains 11 oy Indeed, as mentioned in Remark if
I ¢ {K;:0<i<m~—1}, then ¢ oai|j_1 = a1y 41)- Hence, we can take
any sufficiently small neighborhood of 1|11 If I = K, 0 < <m — 1,
then by Remark [36] both curves are contained in U; which is contractible.

If I = 1 the two curves O‘l‘[llerl] and 7 o al’[lfl,l] coincide. Beginning
with [ = 2, for each 2 < I < k we successively make C?-small perturbations
of al‘[hlﬂ] near t =1+ % to obtain an embedded curve a with the property
that the two curves afj ;1) and 1 o a;_;; have the same action and are
still contained in the same contractible open set mentioned in the previous
paragraph. Here, we are again using the fact that one can make an arbitrary
adjustment to the action of a curve by performing a C°-small perturbation;
see Remark A.13 of [3]. See Figure [6]

We will ensure that the perturbations made in the previous paragraph
satisfy the following properties. In the case where [ € {K; : 0 < i < m — 1},
we require the C° distance between l(g141) and ¥y o afj_q ) to be less than
e. The fact that this can be achieved follows from Claim [37) and by taking
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the perturbations from the previous paragraph to be sufficiently small. Next
consider the case where [ ¢ {K; : 0 <i < m—1}. In the previous paragraph,
we obtained « from «; by making a C° small perturbation of a; in the
interior of a small closed interval which contains the point ¢t = [ + %; let
I} C [I,1 + 1] denote this interval. Since the intervals I; can be taken to be
arbitrarily small and the action-adjusting perturbations from the previous
step can be taken to have arbitrarily small support, we can pick contractible
neighborhoods V; of a|j, such that these neighborhoods are pairwise disjoint
and the image of 91 o a;,_, is contained in V; for each [. Furthermore, we
require that ¢1, (V) NV, = 0 and that «(t) € V; only if t € (I,1 + 1). For
I = K; we of course can assume that 91 o afy_; and af; ;1) are contained
in U;. We remark that by taking Vi and Ij to be sufficiently small we can
ensure that the formula for « from the third property of the statement of
the theorem continues to hold.

Lastly, we point out that since o ([2, k+1]) is contained in UUC(y((0, 1)))
(see Remark , by picking the sets V; to be small enough, we may assume
that each V; is contained in U U C(y((0,1))).

Step 5. Turning « into an invariant curve. In this final step of the
proof, we will perturb ; to a Hamiltonian diffeomorphism % such that
Yoaly_yy = algiy1)- Recall that in Step 4 we arranged that the two curves
(RS a|[l_17l] and O‘|[l7l+1] have the same action.

First assume that [ ¢ {K; : 0 <i < m — 1}. Then, we can find a Hamil-
tonian diffeomorphism 7;, generated by a Hamiltonian which is compactly
supported in Vj, such that n; 091 o a|r,_, = a|r,. Now, let 1 be the compo-
sition of the n;’s for I ¢ {K; : 0 < i < m — 1} and write ¥ = n o, and
observe that

Yoo alp_1y = gy 9)

Since the supports of 7;’s are disjoint and can be taken to be as small as
one wishes, we obtain the following inequalities

deo (2, ¢p7) = deo(n o1, o) < doo(n, Id) + deo (Y1, ¢p7) < 6 < €.

We remark that we can assume that 7 is the time-1 map of a Hamiltonian,
say G2, whose norm ||G2||o can be made as small as one wishes. Existence
of such Hamiltonian G5 follows from Lemma

We will now deal with the case [ € {K; : 0 < i < m —1}. Fix i and to
simplify our notation denote o(t) := 12 0 @ik, —1,x;)(t) = 2 0 a(K; — 1 +1)
and 71(t) := ik, k,4+1](t) = a(K; +t). The curves 7,71 coincide for ¢ €
[0,x] U [l — k,1]: by Remark |35 this was true for oy, and « differs from oy
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only for ¢ near K; + % Recall from Step 4 that the C° distance between 7
and ~; is less than € and that both of these curves are contained in U;.

Claim 38. There exists a homotopy Fi(s,t) : [0,1] X [k,1 — K] — U; rel. end
points from Yo|(e1—x] 10 V1l[k,1—x) Such that under this homotopy the trajec-
tory of any point of ’yo|[,{71_,ﬂ has diameter less than Ce for some constant
C > 0 that only depends on U, the diffeomorphism ® introduced before Step
1 and the Riemannian metric.

Proof. The existence of the homotopy F; follows from the fact that the dif-
feomorphism ® picked at the beginning of the proof identifies U; with the
box (£ —a, ™t 4+ a) x (—¢,1+¢) x (—¢,¢) x ... X (—¢,¢). We can take
F; to be the straight-line homotopy in these coordinates. The statement
about diameter of trajectories of points on Yo|(.,1—x follows from the fact
that the C° distance between 7o and ; is less than €. The constant C' is
given by the ratio of the pull back, via ®, of the Riemannian metric d to
(—e,1+¢) X (—¢,1 +¢) X (—¢,¢) X ... X (—¢,c) and the usual Euclidean
metric. 0

The dimension of M is at least 4 and thus we can perturb the homotopy
F;, provided to us by the above claim, to ensure that its image intersects
the image of a only for ¢ € (K;, K; + 1) and the image of 9 o a only
for t € (K; — 1,K;). Let W; C U; be a small neighborhood of the image
of the homotopy F; which intersects the images of a and 9 o o only for
te (K, K;+1)and t € (K; — 1, K;), respectively. Lastly, recall that we
picked the sets U; in Step 1 such that U; can only intersect U;_1 and U;1.
Hence, W; can only intersect W;_; and W, ;.

Now, we apply the h-principle of Proposition [9] to obtain a Hamiltonian,
say G, generating a Hamiltonian isotopy ¢!, ¢ € [0, 1], such that

1. G is supported in W; and ||G}||« is as small as one wishes,

2. Qoil (7/12 o O"[Ki*LKi}) - a‘[Ki,KiJrl]v

3. deo(Id, p}) < 2Ce.

Let ¢oqq denote the composition of the diffeomorphisms gpzl for odd 1.
Note that ¢oqq is the time-1 map of the Hamiltonian G,4qq which is the sum
of all G} for odd i. Define @even and Geven similarly. Let ¢ := PevenPoddtV2-

We remark that Wi, is disjoint from ¢} o a([k, k + 1]). As pointed out
in Remark [34] this ensures that the third property from the statement of the
theorem holds.
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We will now check that it is indeed true that ¢ o a(t) = a(t + 1) for
te[0,k]. Il ¢ {K;:0<i<m—1}, thenyoalj_q;=120alp_iy: thisis
because we picked the sets W;, whose union contains the supports of ¢even
and ¢oqd, such that they do not intersect the image of 92 0 a1 ;. We have
already checked, in Equation (9), that ¢s0a(t) = a(t+1) for ¢t € [[—1,1]. We
must next check that ¢ oaly_; = | forl € {K; : 0 <i <m—1}. Fix
i and let | = K;. Then, ¢even@oad2 0 al[x,—1,k,] = ;120 0|Kx,—1 K, because
we picked the sets W; such that the image of ¥ o o[k, _1 k,) only intersects
W;. Now, ¢} was picked such that ¢} (1 o i, —1,5:)) = g K41

The rest of the proof is dedicated to verifying the fourth and the fifth
properties from the statement of the theorem. We will first check that
deo(1, ¢r) < (4C + 1)e. First, note that deo(doad, Id) < 2Ce because
Podd 1s the composition of the diffeomorphisms go%, for odd 4, which have
disjoint supports and each of which satisfies deo(p}, Id) < 2Ce. Similarly,
dco(Peven, 1d) < 2Ce. It follows that dgo(¥,0k) =
dCO (¢even¢odd¢27¢}{) < dCO (¢even¢oddald) + dCO (¢2, gbjlq) < 4Ce + &5 re-
call that we proved earlier that dco(v2, ¢1;) < . By going back to Step 1
and replacing € with ;7 we obtain d¢o (¢, gb}{) < €.

It is fairly easy to see that we obtained ¢ from qb}{ by composing it, on
the left, with the Hamiltonian diffeomorphism 6 := ¢eyen © Gogq © 1 © T; We
denote by F' the generating Hamiltonian of 8. Now, the supports of the
diffeomorphisms 7,1, @odd, Peven are all contained in the union of U and the
open sets Vi, 1 ¢ {K; : 0 < ¢ < m — 1}. Recall that, as was mentioned at
the end of Step 4, each of the sets V} is contained in U U C(y((0,1))). This
proves the claim about the support of F.

As was remarked throughout the proof, the generating Hamiltonians of
T, 1y Podds Peven, Which we denoted by G1, Ga, Godd, Geven, respectively, were
picked to have norms as small as one wishes. This proves the claim about
|F||so; we have established the fourth property in the statement of the the-
orem.

To finish the proof of the theorem, it remains to show that v has the same
set of fixed points as ¢11LI. Now, ¢ = Hoqﬁ}q and 0 is supported in the union of
U and the open sets V;. Since U and the V’s do not contain any of the fixed
points of qb}{ we conclude that the fixed points of gb}q are all fixed points of
1 as well. Now, to show that ¢ has no additional fixed points we will check
that any point z in the support of § cannot be a fixed point of . First,
suppose that x € U. Since U is a small neighborhood of the compact set
I'([0,1] x [0, 1]), which contains no fixed points of ¢};, there exists a positive
number, say o, such that d(z, ¢} (x)) > ¢ for all z € U. Since deo(1d,0) < e,
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picking € to be smaller than p guarantees that 0(;5}{(33) # x. Next, suppose
that = ¢ U. Hence, it must be the case that z is contained in one of the
Vi’s. We leave it to the reader to check, using the condition ¢}I(VZ) NV, =0,
that  can not be a fixed point of . This completes the proof of Theorem
32 O

3.3.4 Proof of Theorem 25|

In this section, we prove Theorem [25| with the help of Theorems [26] and

Let H be a Morse function as described in Lemma and let € > 0. Let
P, q be critical points of H, at least one of the two being non-extremal and
let v : [0,1] — M be a curve as in the statement of Theorem [25] We will
give the proof under the assumption that ¢ is not a minimum. The proof in
the case where ¢ is a minimum (hence p is not a maximum), can be easily
adapted from this case.

Let €,p > 0, let V,, be either the empty set if p is a maximum or an open
set containing {¢';(v(0)) : —oo <t < 1} is p is not a maximum, and let V,
be an open set containing {¢%(y(1)) : —1 <t < +o0}.

Our construction will be carried out in three steps: first in the neighbor-
hood of p, then from the neighborhood of p to that of ¢, and finally in the
neighborhood of ¢. Figure [7] below might help to grasp the construction.

Step 1. Construction in the neighborhood of p. We need to consider
two cases.

The simpler case is where p is not a maximum. In this case, we set
z =7(0) and ay(t) = ¢4 (z) for all t € (—oo,1]. At this point there is no
need for a perturbation of gi)}{, thus we set 67 = Id. It is clear that, a; and
0, satisfy the requirements of Theorem [25| for o and 6.

Now consider the case when p is a maximum. In this case, v(0) = p and
it is our assumption that in some Darboux coordinates around p, H is of the
form ¢>°%  (2? 4+ y?) where c is a small negative constant. We denote by
| - || the standard euclidean norm in these coordinates, and by B(0,r) the
euclidean ball centered at 0 and of radius r. Let z be a point on the image
of v, distinct from p, but close enough to p so that we may apply Theorem
to the Hamiltonian H' = —H and to the point z = ¢*(2) = ¢2.(2).
Given a ball B centered at p and containing z, and given € > 0, Theorem
provides us with a curve o/ : [—-1,4+00) — B\ {p} and a Hamiltonian
homeomorphism #’ satisfying :

o o/(t) = ¢l (x) for t € [—1,0] and o/(t) = p as t = +o0,

o 0ol (a/(t)=a/(t+1) for all t € [-1,00),
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e 0'(p) = p and 0 o ¢k, has the same fixed points as ¢L,,,

e The support of & is contained in the union of the open ball B(0, ||z||)
and the e-neighborhood of {¢%,, (z) : t € [1,2]},

e dco(Id,0') < & and || F'|| o < p, where F’ denotes a continuous Hamil-
tonian such that ¢k, = ¢’,

e For any neighborhood of p, there exists a compactly supported Hamil-
tonian diffeomorphism of B which coincides with 6" in the complement
of that neighborhood.

Now define s (t) = 8/ (a/(~1)) for all t € (~00,1] and 6 = 0", We
deduce the following from the above properties:

L. ai(t) = ¢.7%(2) for t € [0,1] and ay(t) — p as t — —oo,
2. 010 qﬁllq(al(t)) =ai(t+1) for all t € (—o0,0],
3. 610 qﬁ}{ has the same fixed points as cb}{,

4. o takes values in the closed punctured ball centered at p and having
z on its boundary, which is contained in C(v((0,1))).

5. The support of 6; is contained in the union of the open ball B(0, ||z||)
and the e-neighborhood of {¢%;(z) : t € [-2, —1]},

6. doo(Id,01) < € and ||Fi||oc < p, where F denotes a continuous Hamil-
tonian such that qﬁ};l =04,

7. For any neighborhood of p, there exists a compactly supported Hamil-
tonian diffeomorphism of B which coincides with 61 in the complement
of that neighborhood.

We see that «; and 61 are compatible with the requirements of Theorem

Step 2. From a neighborhood of p to a neighborhood of ¢. In
both cases above we have set z = 7y(a) with 0 < a < 1 (a > 0if p is
a maximum, a = 0 otherwise), and let us now set w = (1) and F(t) =
v(a+ (1 —a)t) for t € [0,1]. The curve ¥ satisfies 4(0) = z and F(1) = w.
It also satisfies that %H o #(t) < 0, which implies in particular that if H is
C?%-small enough then the map I : (s,t) — ¢4 (7(s)) is a smooth embedding
of the set ({0} x [-2,1])U((0,1) x[0,1])U({1} x [—1,2]). In the case where p
is a maximum, note that since the flow of H preserves level sets, the compact
set I'([0, 1] x [0, 1]) does not intersect the open ball B(0, ||z||) = B(O0, ||z||).
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Moreover, if € and ¢ are small enough, I'(]0, 1] x [0, 1]) does not intersect the
e-neighborhood of {¢t;(z) : t € [-2,—1]} either. Hence, I'([0,1] x [0,1])
does not intersect the support of 6;.

We are now in the situation to apply Theorem[32} Let U D I'([0, 1] x [0, 1])
be an open set chosen so small that:

e If p is not a maximum,

UU C(7((0,1))) =U U C(((0,1))) € V, UC(Y((0, 1)) UV, (10)

e [f p is a maximum, U does not intersect the support of #; and

Uu C(7((0,1))) =U U C(v((a, 1)) cC(v((0, 1)) UV, (1)

e U does not intersect the piece of orbit {¢%; (w) : t € [1 + %, +00)}.

Then, for every €,p > 0, we can find a curve &y : [0,k + 1] — M, with
a2(0) = = = ¢,(2) and as(k) = w, and a Hamiltonian diffeomorphism v
which is C?-close to gi)}{ and satisfies a certain list of properties. We set
Oy =o gb;ll. The properties of az and 1) = 65 o ¢}; listed in Theorem
have the following consequences:

1.

2.

az(t) = a1 (t) = ¢t %(z) for all t € [0, 1],
02 0 pi(az(t)) = az(t + 1) for all ¢ € [0, k],
05 o (b}{ has the same set of fixed points as QS}{,

There exists tg € (1,2) such that as(t) = ¢4 (z) for all ¢ € [0,]
and ao([to,k + 1]) € U U C(5((0,1))). If p is not a maximum then
{4 (x) : t €0,t0]} C V, by definition of V,; if p is a maximum, then
{¢Y(x) : t €0,%0]} is contained in the boundary of the ball B(0, ||z||),
hence in C(7((0,1))). Using the inclusions and (1I), we thus get
that g takes values in V, UC(v((0,1))) U V.

0, is generated by a Hamiltonian F5 which is supported in the open
set U U C(5((0,1))), which does not intersect the support of 6y,

dco(02,1d) < € and || F2||0 < p,

02 is a smooth Hamiltonian diffeomorphism.
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All the points above follow immediately from Theorem [32] Note that it

1
also follows from Theorem a that for any neighborhood V' of ¢, (w), the
curve ap can be chosen so that for some b > 0, and all ¢ € [k, k + 1],

(m@{=¢2qm,tewx+;—muw+;+ak+u )

ev, tek+3-bk+1+0.

------ W = Yp,q

Figure 7: The case “p not a maximum” is on the left, and the case “p a
maximum” is on the right. The curves aj, as and a3 are respectively in
green, blue and red. The supports of the successive perturbations on ¢}{ are
included in the grey regions.

Step 3. Construction in the neighborhood of ¢q. By assumption,
¢ (w) = ¢4 (v(1)) — ¢ when t — +oo. Let ag : [k, +00) — M be the
smooth curve defined by

- as(t), telkk+1)
as(t) =9k
o (w), telk+1,+00).
It has the following properties:

e a3(t) — g when t — 400,

e For some small x > 0, the image of 543“k+1+,€7+00) does not intersect
the supports of 1 nor 65,
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o Forall t € [k,+00) \ (k+ bk +14b),
02 0 01 0 o (a3(t)) = ¢ (as(t)) = as(t + 1),

e According to (I2), for t € [k+3—b, k+ 3+b], 62061 0 p};(d3(t)) belongs
to ¢} (V) which is an arbitrarily small neighborhood of és(k + 1+ 3).

For every integer [ € {k+1,k+2,...}, we let B; be a small ball centered
at as(l + %) and included in the open set V;,. We may assume V' is small
enough so that V C U and ¢} (V) C Bgi1. We also assume that the balls
By are all disjoint, and that they do not intersect the supports of 61 nor
6. Similarly as in Step 4 of the proof of Theorem [32] we successively make
C-small perturbations of asli 41 in By, for I € {k+1,k+2,...}, to obtain
an embedded curve ag, such that the curves gzﬁ}{(ag“l,l’l]) and as|(; ;41 have
the same action for all . We can choose those perturbations so that, for
each [, these two curves coincide in the complement of a very small interval
J; centered at [ + %, and they both send J; into B;. Using Lemma (as
in Step 5 in the proof of Theorem , this property implies that we can
find Hamiltonian diffeomorphisms 1;, generated by Hamiltonians which are
compactly supported in the B;’s, such that n,(¢k (as(t))) = as(t+ 1) for all
t € [[—1,1]. Moreover, Lemmatells us that these generating Hamiltonians
can be chosen with arbitrary small || - ||oc norm.

Let 635 be the composition of all the n;’s for | € {k + 1,k +2,...}. By
construction, 03 is generated by a Hamiltonian F3 whose support does not
intersect the support of 81 nor that of 6.

Moreover, the 7;’s can be chosen C°-close to Id by shrinking the balls
Byy1, By, . ... If we shrink each ball B; so that diamB; < inf.¢p, d(z, ¢}I(z)),
then 03 o gb}{ has no fixed point in B;. Indeed, the triangle inequality yields
for all z € By :

d(0s 0 $11(2), 2) > d(z, 611(2)) — d(5 0 ¢y (), 1(2)) > 0.
Therefore, the following list of properties is satisfied:
1. a3(t) = q when t — 400,
2. O30 ¢l (as(t)) = as(t+1) for all t € [k, +00),
3. O30 qb}q has the same set of fixed points as qbllq,
4. For all t € [k, +00), a3(t) € V,

5. supp(F3) C V, U {q},
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6. deo(Id,03) < € and || F3]|00 < p-

7. For any neighborhood of ¢, 63 coincides with a Hamiltonian diffeomor-

phism in the complement of that neighborhood.

End of the proof. Let 6§ be the Hamiltonian homeomorphism 6 = 6; 065003
and let a be the smooth curve which coincides with a1 on (—o0, 1], with g
on [0,k + 1], and with a3 on [k,+00). The respective properties 1 to 7
established for each 01, 2 and 63 in the previous steps, together with the
fact that their supports are all disjoint, imply the corresponding properties
1 to 7 in Theorem [25| whose proof in now achieved. [
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