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Abstract

Given a closed symplectic manifold (M2n, ω) of dimension 2n > 4, we con-

sider all Riemannian metrics on M , which are compatible with the symplectic

structure ω. For each such metric g, we look at the first eigenvalue λ1 of the

Laplacian associated with it. We show that λ1 can be made arbitrarily large,

when we vary g. This generalizes previous results of Polterovich, and of Man-

goubi.

1 Introduction and main results

The current paper addresses the discussion on rigidity versus flexibility of the first

eigenvalue of the Laplacian. The first result in this direction was proved by Her-

sch [He]:

Theorem 1.1. Let (S2, g) be the 2-sphere equipped with a Riemannian metric g.

Then,

λ1(S2, g)Area(S2, g) 6 8π,

where λ1(S2, g) is the first positive eigenvalue of the Laplacian on (S2, g).

In Theorem 1.1 the equality is known to occur if and only if (S2, g) is the standard

round sphere.

Theorem 1.1 was extended to the case of a general closed surface, by Yang and

Yau [Y-Y]:

1The author also uses the spelling “Buhovski” for his family name.
2Electronic version of an article published as Journal of Topology and Analysis, Vol. 5, No.

1 (2013), pp 13-56, DOI: 10.1142/S1793525313500040, c© copyright World Scientific Publishing

Company, [http://www.worldscientific.com/worldscinet/jta].
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Theorem 1.2. Let (Σ, g) be a closed Riemannian surface. Then

λ1(Σ, g)Area(Σ, g) 6 8π(genus(Σ) + 1).

In Theorem 1.2, however, the upper bound is not optimal.

These results reflect a rigidity phenomenon in dimension 2, stating that in this

case λ1 is bounded, when we run over all Riemannian metrics that have a given

volume. In contrast to the dimension 2 case, in higher dimensions, for the case of a

“fixed volume form category”, we have the following flexibility result of Colbois and

Dodziuk [C-D]:

Theorem 1.3. Let M be a closed manifold of dimension > 2, equipped with a volume

form Ω. Consider the class of all Riemannian metrics on M having Ω as their volume

form. Then this class admits metrics with arbitrarily large λ1.

However, if one restricts to a fixed conformal class of metrics, then we get a rigidity

for λ1, as the following result of Friedlander and Nadirashvili [F-N] shows (see also

the work of El Soufi and Ilias [E-I]):

Theorem 1.4. Let (M, g) be a closed Riemannian manifold of dimension d. Then

λ1(fg)Vol(M, fg)
2
d 6 C(g),

where f is any positive function on M and C(g) is a constant independent of f .

The latter Theorem 1.4 can be seen as a generalization of Theorem 1.1, due to

the Uniformization Theorem for the Riemann sphere.

As it turns out, Theorems 1.3 and 1.4 do not give us a full variety of ways in

which one can generalize the 2-dimensional setting of Theorems 1.1 and 1.2. In [P],

Polterovich proposes to look at a symplectic side of this story. For a given closed

symplectic manifold (M,ω), he considers the Kähler, and the quasi-Kähler categories.

In the Kähler case, Polterovich looks at the collection of all Riemannian metrics g

on M , such that g(·, ·) = ω(·, J ·), where J is a complex structure (i.e. an integrable

almost complex structure) on M . In the quasi-Kähler case, Polterovich considers the

collection of all Riemannian metrics g on M , such that g(·, ·) = ω(·, J ·), where J is

an almost (i.e. not necessarily integrable) complex structure on M . As it turns out,

these two settings exhibit an opposite type of behaviour in terms of λ1. Namely, in

the Kähler case we meet with a rigidity phenomenon, whereas in the quasi-Kähler

case we have examples of flexibility, as the following two theorems show [P]:

Theorem 1.5. Let (M,ω) be a closed symplectic manifold, such that ω is a rational

form. Let g be a Kähler metric whose Kähler form is ω. Then

λ1 6 C(ω),

where C(ω) is independent of g.
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Theorem 1.6. Let (T4, σ) be the standard symplectic 4-torus. Let (M,ω) be a closed

symplectic manifold. Then, on (T4 ×M,σ ⊕ ω) there exists a quasi-Kähler structure

with arbitrarily large λ1.

In the case of the Kähler category, it is still an open question whether Theo-

rem 1.5 is true for any closed symplectic manifold (M,ω). In the quasi-Kähler case,

Theorem 1.6 was generalized by Mangoubi [M]:

Theorem 1.7. Let (T2, σ) be the standard symplectic 2-torus. Let (M,ω) be a closed

symplectic manifold. Then, on (T2 ×M,σ ⊕ ω) there exists a quasi-Kähler structure

with arbitrarily large λ1.

The following conjecture was raised in [M]:

Conjecture 1.8. Let (M,ω) be a closed symplectic manifold of dimension > 4. Then,

there exists a quasi-Kähler structure on it with arbitrarily large λ1.

The proof of Theorem 1.6 in [P] is based on a construction of an isotropic plane

distribution on (T4 ×M,σ ⊕ ω), which satisfies Hörmander condition. After provid-

ing the construction, Polterovich fixes some Riemannian metric on T4 × M which

is compatible with σ ⊕ ω, and applies to it a “stretching the neck”-type procedure

associated with the constructed distribution, and thus provides us with a new Rie-

mannian metric on T4 ×M . Then finally the Hörmander theory [Ho] is applied in

order to show that by such a procedure one might get a desired Riemannian metric

on T4 ×M , and this finishes the proof of Theorem 1.6.

Mangoubi, in order to prove Theorem 1.7, generalizes the approach of Polterovich

by expanding it to non-regular distributions. Mangoubi proves, that on (T2×M,σ⊕ω)

there exists an isotropic singular plane distribution that satisfies the Hörmander con-

dition, by providing the needed construction. After establishing this, Mangoubi con-

structs a Riemannian metric on T2×M by the way which is similar to the “stretching

the neck”-type procedure in the approach of Polterovich, and concludes Theorem 1.7

by showing that this is a desired metric. However, the last step of the proof is tech-

nically more difficult than the one in the case of Theorem 1.6. In order to overcome

these difficulties, Mangoubi applies the theory of anisotropic Sobolev spaces as devel-

oped in [R-S], and the machinery of fractional Sobolev Spaces also known as Bessel

Potential Spaces.

The following conjecture was raised in [M]:

Conjecture 1.9. Let (M,ω) be a closed symplectic manifold of dimension > 4. Then

one can find on (M,ω) an isotropic singular distribution that satisfies the Hörmander

condition.
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A positive answer to Conjecture 1.9 will imply Conjecture 1.8 (see [M]). Inter-

estingly, a negative answer to Conjecture 1.9 would yield a new type of symplectic

rigidity.

In this paper we concentrate on the quasi-Kähler situation. We affirmatively

answer Conjecture 1.8, and prove the following

Theorem 1.10. Let (M2n, ω) be a closed symplectic manifold of dimension 2n > 4.

Then there exist Riemannian metrics g on M , compatible with the symplectic structure

ω, having arbitrarily large λ1.

The proof of Theorem 1.10 relies on the following local result (see below the section

describing the notations that we use here):

Proposition 1.11. For any R > 0 and for any ε > 0 there exists R
2
< r < R, and a

Riemannian metric g on the domain

D2n
r,R = {x ∈ R2n | r < |x| < R},

which is compatible with the standard symplectic structure ωstd on D2n
r,R, such that g

coincides with the euclidean metric on a neighborhood of the boundary of D2n
r,R, and

such that for any smooth function f : D2n
r,R → R satisfying∫

D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1,

there exists some E ∈ R, such that for any r < u < R we have∫
S2n−1
u

|f − E|2 dg2n−1
std 6 ε,

where

S2n−1
u = {x ∈ R2n | |x| = u},

and gstd is the euclidean metric on D2n
r,R.

In our approach, similarly to previous approaches [P, M], we construct the desired

Riemannian metric with the help of a “stretching the neck”-type procedure. However,

in our approach we use ideas that are different from the construction of an isotropic

distribution that satisfies the Hörmander condition, as it was done by Polterovich [P],

and later generalized to the case of singular distributions by Mangoubi [M].

The advantage of our approach over previous approaches [P, M], is that it makes it

possible to prove an analogue of the symplectic flexibility of the first eigenvalue of the

Laplacian, in the case of the open ball B = {x ∈ R2n | |x| < 1} ⊂ R2n endowed with a

symplectic structure ω, under certain weak enough assumptions on the behaviour of ω

near the boundary of B. The latter fact implies the statement of Theorem 1.10 for an

arbitrary closed symplectic manifold (M,ω), helping to avoid possible complications

with the topology of M . See section 6.1 for more details.
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Structure of the paper

In section 2 we sketch an outline of the proof of Theorem 1.10. In section 3 we prove a

number of preliminary lemmas, which are used later in the proofs of Proposition 1.11

and Theorem 1.10. The proofs of lemmas from section 3 are quite standard and

straightforward, and can be omitted by the reader. In section 4 we prove a local

result - Proposition 1.11. Proposition 1.11 is the central ingredient in the proof of

Theorem 1.10 in section 5. Finally, in section 6.1 we compare between our approach

and previous approaches [P, M], and in section 6.2 we discuss the symplectic flexibility

of the first Dirichlet and the first nonzero Neumann eigenvalues.

Notations

Looking at the euclidean space Rd, by | · | we denote the euclidean norm, and by

〈·, ·〉 we denote the scalar product on Rd. We use the notation gstd for the standard

euclidean metric on Rd: gstd(u, v) = 〈u, v〉, at each point of Rd. For r > 0, we denote

by

Sd−1
r = {x ∈ Rd | |x| = r}

the (d − 1)-dimensional sphere of radius r centered at the origin, in Rd. For r > 0

and x ∈ Rd, we denote by

Bd
r (x) = {y ∈ Rd | |y − x| < r}

the open ball of radius r centered at x, and by

B
d

r(x) = {y ∈ Rd | |y − x| 6 r}

the closed ball of radius r centered at x.

On the unit sphere S2n−1 ⊂ R2n centered at the origin, consider the spherical

Riemannian metric that is induced from the euclidean metric on R2n. For any x ∈
S2n−1 and ρ > 0 we denote by BS

ρ (x) ⊆ S2n−1 the ball of radius ρ centered at x, with

respect to the spherical Riemannian metric on S2n−1. We call BS
ρ (x) a “spherical cap”,

or a “spherical ball”. We denote by BS
ρ ⊆ S2n−1 the spherical ball of radius ρ centered

at the point (1, 0, 0, ..., 0) ∈ S2n−1. In the sequel we also consider hypersurfaces of the

form

rBS
ρ (x) = {ry | y ∈ BS

ρ (x)} ⊆ S2n−1
r ,

for r, ρ > 0, and x ∈ S2n−1. We call them spherical caps (spherical balls) as well.

In the paper, we sometimes use the polar coordinates notation (r, θ) for the point

rθ ∈ R2n (here r ∈ [0,∞), θ ∈ S2n−1).
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We denote by ωstd the standard symplectic form on R2n. For given 0 < r < R <∞,

we denote the annulus

D2n
r,R = {x ∈ R2n | r < |x| < R}.

Given a smooth manifold Xd, and a Riemannian metric g on X, we denote by

‖ · ‖g the norm on TX induced by g. For a differentiable function f : X → R, by

∇gf we denote the gradient of f with respect to the metric g, so ∇gf(x) ∈ TxX for

every x ∈ X. For 0 6 k 6 d, a k-dimensional submanifold Σ ⊆ X, and a continuous

function f : Σ → R, we denote by
∫

Σ
f dgk the integral of f over Σ with respect to

the volume density on Σ induced by g. We will use the notation Volg(Σ) for
∫

Σ
1 dgk.

For a continuous function h : Σ → R, we will say that h is almost equal to some

E ∈ R in the L2(g) sense, if
∫

Σ
|h − E|2 dgk is small; we will say that h is almost

equal to some E ∈ R in the average L2(g) sense, if 1
Volg(Σ)

∫
Σ
|h − E|2 dgk is small.

Given two k-dimensional submanifolds Σ1,Σ2 ⊆ X together with a diffeomorphism

ψ : Σ1 → Σ2, and continuous functions h1 : Σ1 → R, h2 : Σ2 → R, we will say that

h2 is close to h1 in the L2(g) sense when we identify Σ2 with Σ1 via the map ψ, if∫
Σ1
|ψ∗h2 − h1|2dgk is small.

If Σ ⊆ Rd is a k-dimensional submanifold, then by Vol(Σ) we mean Volgstd(Σ).

For a nice (e.g. open) subset Σ ⊆ S2n−1, and a continuous function f : Σ → R,

we will also use the notation
∫

Σ
f(θ) dθ for

∫
Σ
f dg2n−1

std .
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2 Outline of the proof

In this section we provide an explanation of the proof of Theorem 1.10. Recall that

one can express λ1(g) as the minimum of∫
M
‖∇gf‖2

g dg
2n∫

M
f 2 dg2n

,
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where we run over all nonzero functions f : M → R having zero mean:
∫
M
fdg2n = 0.

Hence the first eigenvalue is large if and only if, for any smooth function f : M → R
satisfying ∫

M

fdg2n = 0,

∫
M

‖∇gf‖2
g dg

2n 6 1,

we have that f is “almost zero” on M in the L2(g) sense, or in other words, that∫
M
|f |2 dg2n is small.

In the proof of Theorem 1.10, we avoid possible complications with the topology

of M , by first proving a local result (Proposition 1.11), and then by passing to any

closed symplectic manifold via a smooth triangulation. Below in section 2.3, we briefly

explain the proof of Proposition 1.11, and in section 2.2 we briefly explain how we

reduce Theorem 1.10 to Proposition 1.11. Section 2.1 explains the “compressing the

neck” procedure, that is used in the proofs of Proposition 1.11 and of Theorem 1.10.

We direct the reader to section 2.1 first.

2.1 “Compressing the neck” - explanation

We use the following idea (similar constructions were used in [P], [M]). Let (M,ω)

be a symplectic manifold (open or closed). Assume that we have fixed a Riemannian

metric g0 on M , which is compatible with the symplectic structure ω, and denote by

J0 the almost complex structure on M , associated with ω and g0. Let U ⊆M be an

open subset of M , let Y be a smooth nonzero vector field defined on U ⊆ M , and

let Σ ⊂ U be a (2n − 1)-dimensional smooth hypersurface, such that Σ is a proper

subset of M . Denote by ψt the flow of Y , and assume that for some T > 0, we have

ψt(Σ) ⊂ U for any t ∈ (0, T ). Denote Σ′ = ψT (Σ) ⊂ U . Given all this setting, we

can obtain a new Riemannian metric g on M by deforming the metric g0 as follows:

choose a smooth function b : M → R, such that b(x) > 1 on M , such that b(x) = 1

on some open set containing M \ U , and such that the function b(·) is very large on

almost all of U . Then considering the g0-orthogonal decomposition

TU = Span(Y )⊕ Span(J0Y )⊕ L,

for any x ∈ U we define

g|x = b(x)−1g0|x ⊕ b(x)g0|x ⊕ g0|x,

and for any x /∈ U we set g|x = g0|x. Clearly g is compatible with ω as well.

By choosing an appropriate function b(·), we can achieve that the hypersurface Σ

will become very close to Σ′, in metric g, since for any x ∈ Σ, the flow trajectory

{ψt(x) | t ∈ [0, T ]} becomes very short in the metric g. Then, one can easily check
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that as a consequence, we get the following: for any continuous function f : U → R
which is smooth inside U , and which satisfies∫

U

‖∇gf‖2
g dg

2n 6 1,

we have that the restriction f |Σ′ is very close to the restriction f |Σ, in the L2(g0) sense,

when we identify Σ′ with Σ with help of the map ψT . This way of passing from the

metric g0 to the metric g reminds the so-called “stretching the neck” procedure, but

as we can see, its purpose is rather to “compress” than to “stretch”. Along section 2,

we will call it “compressing the neck on U along the vector field Y ”.

2.2 From local result to global

Here we briefly describe how we reduce Theorem 1.10 to a local result (Proposi-

tion 1.11).

2.2.1 Sketch of the construction

Choose a smooth triangulation of M . Let {∆α |α ∈ I} be all the open simplices of this

triangulation. Choose a Riemannian metric g0 on M , such that for each α ∈ I, there

exists a Darboux neighborhood inside ∆α, on which g0 coincides with the euclidean

metric.

The desired metric g on M will be constructed by deforming g0 on a proper

subset of ∆α, for each α ∈ I. For a given α ∈ I, let us describe the way in which

we deform g0 inside ∆α. For the sake of convenience, we will actually work not on

∆α, but on the open unit ball B2n
1 (0) ⊂ R2n. In order to make this switch, we use

Lemma 3.1 (section 3), which implies that there exists a bi-Lipschitz homeomorphism

Ψα : ∆α → B
2n

1 (0), such that its restriction to ∆α is a diffeomorphism onto the open

unit ball Bd
1(0), and such that its restriction to ∆′α is a diffeomorphism onto the

image, where ∆′α is the union of ∆α with all of its open faces. Because of our choice

of the metric g0, WLOG we may assume that the pushforward ωα = (Ψα)∗ω of ω

from ∆α to B2n
1 (0), and the pushforward g0,α = (Ψα)∗g0 of g0 from ∆′α to Ψα(∆′α),

coincide with ωstd and gstd near the origin 0 ∈ B
2n

1 (0), respectively. Hence we can

find some R0 > 0 such that ωα = ωstd and g0,α = gstd on B2n
R0

(0), for each α ∈ I.

Take 0 < R 6 R0 small enough. By Proposition 1.11, there exists R
2
< r < R,

and a metric gloc on the domain

D2n
r,R = {x ∈ R2n | r < |x| < R},

which is compatible with ωstd, and is standard near the boundary, such that for any
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smooth function f : D2n
r,R → R with∫

D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1,

there exists some E ∈ R, such that for any r < u < R, the restriction of the

function f to S2n−1
u , is very close to the constant function E, in the L2(gstd) sense.

Denote by X(x) = − x
|x| the “minus-radial vector field” on R2n \ {0}. Now let us

explain how we deform the metric g0,α to a metric gα, inside ∆α. At a first step, we

define a preliminary metric on B2n
1 (0) by starting with the metric g0,α on B2n

1 (0), and

changing it on D2n
r,R to be equal to gloc. Then we define gα on B2n

1 (0) by starting with

this preliminary metric on B2n
1 (0), and applying the “compressing the neck on D2n

R,1

along the vector field X”.

Finally, we define the metric g on M to be equal to (Ψα)∗gα on each ∆α, and set

g = g0 on M \ (∪α∈I∆α).

2.2.2 Sketch of the proof

Let us show that the metric g will have arbitrarily large λ1, provided that R is small

enough and that the neck compression is applied.

Let f : M → R be a smooth function with∫
M

f dg2n = 0,

and ∫
M

‖∇gf‖2
g dg

2n 6 1.

Then for any α ∈ I, consider fα : B
2n

1 (0) → R defined by fα = (Ψα)∗f . Then fα is

smooth inside B2n
1 (0), and is continuous on B

2n

1 (0). We have∫
∆α

‖∇gf‖2
g dg

2n
0 =

∫
∆α

‖∇gf‖2
g dg

2n 6 1,

and hence

∫
B2n

1 (0)

‖∇gαfα‖2
gα dg

2n
0,α =

∫
B2n

1 (0)

‖∇gαfα‖2
gα dg

2n
α 6 1. (2.2.1)

Now, since gα = gloc on D2n
r,R, by Proposition 1.11 we conclude that there exists

a constant Eα ∈ R, such that for any r < u < R (and hence, by continuity, also for

u = r, R), the restriction of the function fα to S2n−1
u , is very close to the constant

function Eα, in the L2(gstd) sense. Then, since we have compressed the neck on
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D2n
R,1, we get that for any u ∈ (R, 1), the restriction of fα to S2n−1

u is very close to

the restriction of fα to S2n−1
R , in the L2(gstd) sense, when we identify S2n−1

u with

S2n−1
R via a homothety (which is part of the flow of the vector field X). Hence we

conclude that also for u ∈ (R, 1) (and hence, by continuity, for u = 1 as well), the

restriction of fα to S2n−1
u , is very close to the constant function Eα, in the L2(gstd)

sense. Therefore, integrating over the radius, we conclude that the restriction of fα to

D2n
r,1, is very close to the constant function Eα, in the L2(gstd) sense. Finally, from the

fact that the restriction of fα to S2n−1
r , is very close to the constant function Eα, in

the L2(gstd) sense, and from (2.2.1), since r is small we conclude that the restriction

of fα to B2n
r (0), is very close to the constant function Eα, in the L2(gstd) sense (at

this point we use Lemma 3.5 from section 3).

Hence we get the following:

1) The restriction of fα to S2n−1 = S2n−1
1 = ∂B

2n

1 (0), is very close to the constant

function Eα, in the L2(gstd) sense, and hence in the L2(g0,α) sense.

2) The function fα is very close to the constant function Eα, in the L2(gstd) sense,

and hence in the L2(g0,α) sense, on B2n
1 (0).

Going back to the manifold M with help of maps Ψα, α ∈ I, we get:

1’) The restriction of f to ∂∆α, is very close to the constant function Eα, in the

L2(g0) sense.

2’) The restriction of f to ∆α, is very close to the constant function Eα, in the L2(g0)

sense.

Now we use 1’) to conclude that in fact all Eα are close real numbers. Indeed,

considering any two adjacent simplices ∆α and ∆β having a common face Σ, from 1’)

we get that the restriction of f to Σ, is very close to both Eα and Eβ, in the L2(g0)

sense. Hence for any two adjacent simplices ∆α and ∆β, we have that Eα is close

to Eβ. Now, since our triangulation is fixed, and since we have a finite number of

simplices in our triangulation, we conclude that all Eα, α ∈ I, are close real numbers.

Now fix any E ∈ R which is close to all Eα, α ∈ I (we can take E to be equal to

any Eγ). Then from 2’) we get that for any α ∈ I, the restriction of f to ∆α, is very

close to E, in the L2(g0) sense. But this implies that in fact, f is very close to E on

M , in the L2(g0) sense, and hence in the L2(g) sense. Finally, since f is normalized:∫
M
f dg2n = 0, we get that E is very small, and hence we conclude the statement of

the theorem.

2.3 Local result

Proposition 1.11 tells us, that we can deform the standard euclidean metric on an

annulus D2n
r,R (for some R

2
< r < R), such that we will get again a Riemannian metric

g on D2n
r,R that is compatible with the standard symplectic structure ωstd on D2n

r,R, and
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such that any smooth function on D2n
r,R having the L2-norm of its g-gradient bounded

by 1, is almost constant on the cocentric spheres

S2n−1
u = {x ∈ R2n | |x| = u},

in the L2(gstd) sense, where u ∈ (r, R), and the constant is the same for all u ∈ (r, R).

In our construction, the volume of the annulus D2n
r,R is divided into two sub-annuli

D2n
r,r′ and D2n

r′,R (where r < r′ < R), where these sub-annuli play different roles in the

construction and in the proof. The sub-annulus D2n
r′,R is chosen to be of width ε (i.e.

R − r′ = ε), and the width r′ − r of the sub-annulus D2n
r,r′ is much smaller relative

to ε. On D2n
r′,R we choose the metric g to be equal to the standard euclidean metric

gstd, while on D2n
r,r′ we construct g by deforming the euclidean metric gstd so that the

metric g occurs to be “mixed enough” (the precise meaning of this will be clear in

the sequel). In the proof that g is the desired metric, the roles of the sub-annuli D2n
r′,R

and D2n
r,r′ are different. Let us give a rough explanation of this point. Assume that

f : D2n
r,R → R is a smooth function with

∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1. (2.3.2)

Then we use the sub-annulus D2n
r′,R and (2.3.2) to show, that on the sphere S2n−1

r′

(which is a part of its boundary), there exists a small piece of volume (which is in

fact a spherical cap) of size having rate ε, such that the restriction of f to it is almost

constant in the average L2(gstd) sense (Lemma 4.3 in section 4). Then, we use the fact

that g is “mixed enough” on D2n
r,r′ , to show that condition (2.3.2) implies that in fact,

f is almost constant on concentric spheres S2n−1
u for u ∈ (r, r′], in the L2(gstd) sense.

Then, using the fact that g is standard on D2n
r′,R and that the width R − r′ of D2n

r′,R

is small, we easily show that (2.3.2) implies that f is almost constant on concentric

spheres S2n−1
u in the L2(gstd) sense, also for u ∈ (r′, R). To be more precise, we

conclude that there exists some E ∈ R such that for each u ∈ (r, R), the restriction

of f to S2n−1
u is close to E in the L2(gstd) sense, up to Cε, where C = C(n,R). Since

ε can be arbitrary, by replacing ε by ε
C

, we conclude the proposition.

Let us go over the construction of g on D2n
r,R, and explain the role of D2n

r′,R and

D2n
r,r′ in the proof in more details.

2.3.1 Sketch of the construction

Consider the sphere S2n−1 ⊂ R2n, and denote by H̃ the Hopf vector field on S2n−1:

H̃(x) = Jx for any x ∈ S2n−1, where J is the standard complex structure on R2n.

Choose an isometry α̃ : S2n−1 → S2n−1 of the sphere, such that the pushforward

α̃∗H̃ of the Hopf vector field H̃, is transversal to the Hopf vector field H̃ at some

11



point x1 ∈ S2n−1, and hence for some spherical cap S := BS
ρ (x1) ⊂ S2n−1 around x1,

the vector field α̃∗H̃ is transversal to the Hopf vector field H̃ on the closure S. The

radius ρ of the cap S can be chosen to depend only on the dimension 2n − 1. Then

we can choose and fix a certain finite collection {BS
2ε(x) |x ∈ P} of non-intersecting

spherical caps of radius 2ε inside S, where P ⊂ S ⊂ S2n−1 is a certain finite set of

points, such that distance from each such BS
2ε(x) (for x ∈ P) to the boundary ∂S is

bounded away from 0, and such that the cardinality |P| of this collection has rate
1

ε2n−1 . We show (Lemma 4.1 in section 4) that on S2n−1 there exists a smooth time

dependent vector field Ỹ t, t ∈ [0, T ], such that Ỹ t is sufficiently C0-close to the vector

field α̃∗H̃, such that the flow ψ̃t, t ∈ [0, T ] of Ỹ t is volume preserving, and such that

for any cap in {BS
2ε(x) |x ∈ P}, there exists a collection of time moments ti ∈ (0, T ),

i = 1, 2, ..., N , so that the preimages of this cap under ψ̃ti , i = 1, 2, ..., N , cover the

sphere nearly uniformly. Observe that if Ỹ t, t ∈ [0, T ] is sufficiently C0-close to α̃∗H̃,

then Ỹ t, t ∈ [0, T ] must be transversal to the Hopf vector field H̃ on S, as well. This

observation will be used in the sequel. Now, given this time dependent vector field

Ỹ t, t ∈ [0, T ] on S2n−1, for δ > 0 small enough, we set r′ = R − ε, and r = r′ − Tδ,
and we define a (time independent) vector field Yδ on D2n

r,r′ by

Yδ(r
′ − δt, θ) = −δθ + (r′ − δt)Ỹ t(θ),

for t ∈ [0, T ] and θ ∈ S2n−1. In other words, we obtain the time independent vector

field Yδ on D2n
r,r′ by “spreading” the time dependent vector field Ỹ t, t ∈ [0, T ] through

the family of spheres S2n−1
u , u ∈ [r, r′] (and so the radius u = r′ − δt plays the

role of time), and then by adding a small component (of amount δ) in the minus-

radial direction. Note that as a consequence, if we look at the flow ψtδ of the (time

independent) vector field Yδ, applied to the sphere S2n
r′ , we get just a composition of

homotheties of R2n with the flow ψ̃t of the (time dependent) vector field Ỹ t:

ψtδ(r
′, θ) = (r′ − δt, ψ̃t(θ)).

Now we construct the metric g on D2n
r,r′ by starting with the standard euclidean metric

gstd on D2n
r,r′ , and then “compressing the neck on D2n

r,r′ along the vector field Yδ”. On

D2n
r,R \D2n

r,r′ we set g = gstd.

2.3.2 Sketch of the proof

Since the vector field Ỹ t, t ∈ [0, T ], is transversal to the Hopf vector field H̃ on S,

then for small enough δ > 0 we are able to find a certain smooth vector field Xδ

(which has a bounded euclidean norm, uniformly on δ) on [r, r′] · S ⊆ D2n
r,r′ , which is

orthogonal to Span(Yδ, JYδ) at every point of [r, r′] · S, and which radial component

equals −1, or in other words

Xδ(r
′ − δt, θ) = −θ + (r′ − δt)X̃ t

δ(θ),

12



for any t ∈ [0, T ] and θ ∈ S, where X̃ t
δ, t ∈ [0, T ], is a certain time dependent vector

field on S ⊂ S2n−1 which is tangent to the sphere S2n−1. Note that since Xδ is

orthogonal to Span(Yδ, JYδ), it follows that its g-norm coincides with its euclidean

norm at each point of [r, r′] · S, and hence is bounded, uniformly on δ. The flow σsδ
of Xδ (which of course, might be defined only partially), satisfies

σsδ(r
′, θ) = (r′ − s, σ̃sδ(θ)), s ∈ [0, δT ),

where σ̃sδ , s ∈ [0, δT ) is the flow of the time dependent vector field X̃
s
δ
δ , s ∈ [0, δT ).

Note first, that since the time range for the parameter s is small (of length δT ), and

since the euclidean norm of our vector field Xδ (and hence also of the vector field

X̃ t
δ) is bounded uniformly on δ, it follows that for δ small enough, the flow σ̃sδ(θ),

s ∈ [0, δT ) is well defined when the distance from θ ∈ S to the boundary ∂S is

bounded away from 0, and moreover the flow σ̃sδ(θ), s ∈ [0, δT ) is arbitrarily C0-close

to the identity when δ is small enough. Secondly, we show that in fact, one can choose

Xδ for small δ > 0 as above, such that in addition, the flow σ̃sδ , s ∈ [0, δT ) is “almost

volume preserving” when δ is small enough.

Now let f : D2n
r,R → R be a smooth function such that (2.3.2) holds. First, by

looking at the restriction of f to D2n
r′,R, and using (2.3.2), we show (Lemma 4.3 in

section 4) that there exists a certain spherical cap BS
2ε(x2) from our collection of caps

(i.e. x2 ∈ P), such that on r′BS
2ε(x2) ⊂ S2n

r′ , the function f is almost constant (denote

this constant by E) in the average L2(gstd) sense.

Now for some s ∈ (0, δT ), apply the map σsδ (which belongs to the flow of Xδ) to

r′BS
2ε(x2) ⊂ S2n

r′ . Since δ (and hence s) is small enough, and since the vector field Xδ

is bounded uniformly on δ, we get that the hypersurface r′BS
2ε(x2) is very close to the

hypersurface σsδ(r
′BS

2ε(x2)) ⊂ S2n
r′−s, in the metric g. Therefore we can conclude that

the restriction of f to σsδ(r
′BS

2ε(x2)) is very close to the restriction of f to r′BS
2ε(x2), in

the L2(gstd) sense, when we identify σsδ(r
′BS

2ε(x2)) with r′BS
2ε(x2) via the map σsδ (note

that here we did not use a “compressing the neck” procedure - it is not necessary

since the hypersurfaces r′BS
2ε(x2) and σsδ(r

′BS
2ε(x2)) are already close in the metric g).

Hence we conclude that the restriction of f to σsδ(r
′BS

2ε(x2)) is almost equal to E in

the average L2((σsδ)∗gstd) sense (i.e. when we consider the L2 norm with respect to the

pushforward by the map σsδ , of the standard spherical volume density dg2n−1
std |r′BS2ε(x2)

from r′BS
2ε(x2) to σsδ(r

′BS
2ε(x2))). Now, since σ̃sδ is “almost volume preserving”, we

conclude that in fact, the restriction of f to σsδ(r
′BS

2ε(x2)) is almost equal to E in the

average L2(gstd) sense. Since for small δ, the map σ̃sδ(θ) is arbitrarily C0-close to the

identity, we conclude that σsδ(r
′BS

2ε(x2)) ⊇ (r′−s)BS
ε (x2), and therefore in particular,

on (r′ − s)BS
ε (x2) the function f is almost equal to the constant E, in the average

L2(gstd) sense (see Lemma 4.4 in section 4).

We have used the flow of Xδ to show that for each s ∈ (0, δT ), the restriction

of f to (r′ − s)BS
ε (x2), is almost equal to the constant E, in the average L2(gstd)

13



sense. We can rephrase it by saying that for each t ∈ (0, T ), the restriction of f to

(r′− δt)BS
ε (x2), is almost equal to the constant E, in the average L2(gstd) sense. Now

let us use the vector field Yδ, for a similar purpose. Note that we have

ψtδ(S
2n−1
r′ ) = S2n−1

r′−δt.

Since we have compressed the neck on D2n
r,r′ along Yδ, we can conclude that the

restriction of f to S2n−1
r′−δt is very close to the restriction of f to S2n−1

r′ in the L2(gstd)

sense, when we identify S2n−1
r′−δt with S2n−1

r′ via the map ψtδ. In particular, the restriction

of f to (r′ − δt)BS
ε (x2) ⊂ S2n−1

r′−δt is very close to the restriction of f to (ψtδ)
−1((r′ −

δt)BS
ε (x2)) ⊂ S2n−1

r′ , in the L2(gstd) sense, when we identify (r′ − δt)BS
ε (x2) with

(ψtδ)
−1((r′− δt)BS

ε (x2)) via the map ψtδ. The map ψ̃t is volume preserving, and hence

the restriction of ψtδ to S2n−1
r′ is conformally volume preserving, as a map from S2n−1

r′

to S2n−1
r′−δt. Also recall that the restriction of f to (r′−δt)BS

ε (x2), is almost equal to the

constant E, in the average L2(gstd) sense. Hence we can conclude from the described

above, that the restriction of f to (ψtδ)
−1((r′− δt)BS

ε (x2)) ⊂ S2n−1
r′ , is almost equal to

the constant E, in the average L2(gstd) sense (see Lemmas 4.5, 4.6 in section 1.11).

So we finally conclude that for any t ∈ (0, T ), the restriction of f to (ψtδ)
−1((r′ −

δt)BS
ε (x2)) ⊂ S2n−1

r′ , is almost equal to the constant E, in the average L2(gstd) sense.

Now, by one of the properties of the flow ψ̃t described above, for our point x2 ∈ P ,

there exists a collection of time moments t1, t2, ..., tN ∈ (0, T ), such that the preimages

(ψ̃ti)−1(BS
ε (x2)), i = 1, 2, ..., N , cover the sphere S2n−1 nearly uniformly. Clearly this

can be rephrased by saying that the preimages (ψtiδ )−1((r′ − δti)B
S
ε (x2)) ⊂ S2n−1

r′ ,

i = 1, 2, ..., N , cover the sphere S2n−1
r′ nearly uniformly. Therefore, since the restriction

of f to each such preimage (ψtiδ )−1((r′ − δti)BS
ε (x2)), is almost equal to the constant

E, in the average L2(gstd) sense, we conclude that in fact, the restriction of f to the

whole sphere S2n−1
r′ , is almost equal to E, in the L2(gstd) sense. Having this in mind,

it is already easy to derive the statement of Proposition 1.11. Indeed, if u ∈ (r, r′),

then writing u = r′ − δt for t ∈ (0, T ), we can use the vector field Yδ once again,

identifying S2n−1
r′ with S2n−1

u with help of the map ψtδ, to conclude that the restriction

of f to the whole sphere S2n−1
u , is almost equal to E, in the L2(gstd) sense. If we

have u ∈ (r, R), then we can use the minus-radial vector field X(x) = − x
|x| on Dr′,R,

and its flow, identifying the sphere S2n−1
u with the sphere S2n−1

r′ , to conclude that the

restriction of f to the whole sphere S2n−1
u , is almost equal to E, in the L2(gstd) sense.

So finally, for any u ∈ (r, R), the restriction of f to the whole sphere S2n−1
u , is almost

equal to E, in the L2(gstd) sense. More precisely, we have shown, that by taking

sufficiently small δ, and by appropriately applying the “compressing the neck”, we

get that for any smooth function f : D2n
r,R → R satisfying (2.3.2), there exists some

E ∈ R, such that for any u ∈ (r, R), the restriction of f to S2n−1
u , is close to E in the

L2(gstd) sense, up to Cε, where C = C(n,R). Since we have freedom in the choice of

ε, we conclude Proposition 1.11.
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3 Some preliminary lemmata

Lemma 3.1. Consider an open bounded convex polytope K ⊂ Rd. Denote by K ′ the

union of K with all of its open faces. Then there exists a bi-Lipschitz homeomorphism

K → B
d

1(0), such that its restriction to K is a diffeomorphism onto the open unit ball

Bd
1(0), and such that its restriction to K ′ is a diffeomorphism onto the image of K ′.

The proof of Lemma 3.1 is completely standard, and therefore we omit it.

Lemma 3.2. Let l > 0, and consider a d-dimensional open cube (−l, l)d ⊂ Rd,

endowed with coordinates (x1, ..., xd) and with the Riemannian metric gstd that comes

from the Euclidean metric on Rd. Let ε > 0, and let f : (−l, l)d → R be a smooth

function, such that ∫
(−l,l)d

|∇f |2 dgdstd 6 ε.

Then there exists some E ∈ R such that for any −1 < x1 < 1 we have∫
{x1}×(−l,l)d−1

|f − E|2dgd−1
std 6 Cεl,

and moreover we have ∫
(−l,l)d

|f − E|2dgdstd 6 Cεl2,

where C = C(d).

Proof of Lemma 3.2. We prove the lemma by induction on the dimension d. First

consider d = 1. In this case take E = f(0). Then for any x ∈ (0, l) we have

|f(x)−E|2 = |f(x)−f(0)|2 =

∣∣∣∣∫ x

0

f ′(t) dt

∣∣∣∣2 6 x

∫ x

0

|f ′(t)|2 dt 6 l

∫ l

−l
|f ′(t)|2 dt 6 lε.

Similarly we get |f(x)− E|2 6 lε for x ∈ (−1, 0). As a consequence, we have∫ l

−l
|f(x)− E|2 dx 6 2l2ε.

This settles the case of d = 1.

Now assume that d > 2, and that the lemma is true when the dimension is d− 1,

and let us prove it for the dimension d. Let f : (−l, l)d → R be a smooth function,

such that ∫
(−l,l)d

|∇f |2 dgdstd 6 ε.

For any t ∈ (−l, l) define the function gt : (−l, l)d−1 → R as

gt(x2, ..., xn) = f(t, x2, x3, ..., xn).
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Then ∫ l

−l

(∫
(−l,l)d−1

|∇gt(x2, ..., xn)|2 dx2 ... dxd

)
dt

6
∫

(−l,l)d
|∇f |2 dgdstd 6 ε.

Hence there exists some t1 ∈ (−l, l) such that∫
(−l,l)d−1

|∇gt1(x2, ..., xn)|2 dx2 ... dxd 6
ε

2l
.

Now, by the induction hypothesis applied to gt1 , there exists E ∈ R such that∫
(−l,l)d−1

|gt1(x2, ..., xn)− E|2 dx2 ... dxd

=

∫
(−1,1)d−1

|f(t1, x2, ..., xn)− E|2 dx2 ... dxd 6 C
ε

2l
l2 =

C

2
εl.

Now let t ∈ (−l, l) be different from t1. WLOG assume that t ∈ (t1, l). Then we have∫
(−l,l)d−1

|f(t, x2, ..., xn)− f(t1, x2, ..., xn)|2 dx2 ... dxd

=

∫
(−l,l)d−1

∣∣∣∣∫ t

t1

∂

∂x1

f(x1, x2, ..., xn) dx1

∣∣∣∣2 dx2 ... dxd

6
∫

(−l,l)d−1

(t− t1)

(∫ t

t1

∣∣∣∣ ∂∂x1

f(x1, x2, ..., xn)

∣∣∣∣2 dx1

)
dx2 ... dxd

6 2l

∫
(−l,l)d−1

(∫ t

t1

∣∣∣∣ ∂∂x1

f(x1, x2, ..., xn)

∣∣∣∣2 dx1

)
dx2 ... dxd

6 2l

∫
(−l,l)d−1

(∫ t

t1

|∇f(x1, x2, ..., xn)|2 dx1

)
dx2 ... dxd

6 2l

∫
(−l,l)d

|∇f(x1, x2, ..., xn)|2 dx1 dx2 ... dxd 6 2εl.

Hence we conclude that∫
(−l,l)d−1

|f(t, x2, ..., xn)− E|2 dx2 ... dxd

6 2

(∫
(−l,l)d−1

|f(t, x2, ..., xn)− f(t1, x2, ..., xn)|2 dx2 ... dxd

+

∫
(−l,l)d−1

|f(t1, x2, ..., xn)− E|2 dx2 ... dxd

)
16



6 2

(
2εl +

C

2
εl

)
= (C + 4)εl.

Similarly, one checks that∫
(−l,l)d−1

|f(t, x2, ..., xn)− E|2 dx2 ... dxd 6 (C + 4)εl

also for t ∈ (−l, t1). Finally, integrating over t, we get∫ l

−l

∫
(−l,l)d−1

|f(t, x2, ..., xn)− E|2 dx2 ... dxd dt

=

∫
(−l,l)d

|f − E|2dgdstd

6 2(C + 4)εl2.

From Lemmas 3.1 and 3.2 we conclude the following

Corollary 3.3. Let r > 0. Consider the domain U = (−r, r)×Bd−1
r (0) ⊂ Rd, where

Bd−1
r (0) = {x ∈ Rd−1 | |x| < r} ⊂ Rd−1,

and the metric gstd on U that comes from the euclidean metric on Rd. Let ε > 0, and

let f : U → R be a smooth function, such that∫
U

|∇f |2 dgdstd 6 ε.

Then there exists some E ∈ R, such that for any −r < x1 < r we have∫
{x1}×Bd−1

r (0)

|f − E|2dgd−1
std 6 Cεr,

where C = C(d).

Remark 3.4. Lemma 3.2 and Corollary 3.3 are slight refinements of the Poincaré

lemma for the cube (−l, l)d ⊂ Rd, and for the domain U = (−r, r) × Bd−1
r (0) ⊂ Rd,

respectively. In fact, we could give a shorter proof of Corollary 3.3, by referencing to

the Poincaré lemma. However, we decided not to do so, for the sake of keeping the

exposition self-contained.

Lemma 3.5. Let r, ε > 0, and let f : B
d

r(0) → R be a continuous function which is

smooth on Bd
r (0), and such that for some E ∈ R we have∫

Sd−1
r

|f − E|2dgd−1
std 6 ε,
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∫
Bdr (0)

|∇f |2dgdstd 6 1.

Then ∫
Bdr (0)

|f − E|2dgdstd 6 C(r2 + εr),

for some constant C = C(d).

Proof of Lemma 3.5. Define the function F : B
d

1(0) → R as F (x) = r
d
2 f(rx), and

denote E ′ = r
d
2E. Then we have∫

Sd−1
1

|F − E ′|2dgd−1
std = r

∫
Sd−1
r

|f − E|2dgd−1
std 6 rε,

and ∫
Bd1 (0)

|∇F |2dgdstd = r2

∫
Bdr (0)

|∇f |2dgdstd 6 r2.

Now, by Lemma 3.1, there exists a bi-Lipschitz homeomorphism [−1, 1]d → B
d

1(0),

such that its restriction to (−1, 1)d is a diffeomorphism onto the open unit ball Bd
1(0),

and such that its restriction to the union of (−1, 1)d with all of open faces of (−1, 1)d,

is a diffeomorphism onto the image, and let C = C(d) > 1 be a bi-Lipschitz constant

of this homeomorphism. Denote by H : [−1, 1]d → R the pullback of F under this

homeomorphism. Then we obtain∫
∂[−1,1]d

|H − E ′|2dgd−1
std 6 Cd−1rε, (3.1)

and ∫
(−1,1)d

|∇H|2dgdstd 6 Cd+2r2. (3.2)

Now, due to (3.2) and Lemma 3.2, we conclude that there exists some E ′′ ∈ R,

such that for any −1 < x1 < 1 we have∫
{x1}×(−1,1)d−1

|H − E ′′|2dgd−1
std 6 C ′r2, (3.3)

and moreover we have ∫
(−1,1)d

|H − E ′′|2dgdstd 6 C ′r2, (3.4)

where C ′ = C ′(d).

Then on one hand, from (3.3) and the uniform continuity of H we get∫
{1}×(−1,1)d−1

|H − E ′′|2dgd−1
std 6 C ′r2. (3.5)
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On the other hand, from (3.1) we get∫
{1}×(−1,1)d−1

|H − E ′|2dgd−1
std 6 Cd−1rε. (3.6)

Hence from (3.5), (3.6) we conclude

2d−1|E ′ − E ′′|2 6 2

(∫
{1}×(−1,1)d−1

|H − E ′′|2dgd−1
std +

∫
{1}×(−1,1)d−1

|E ′ −H|2dgd−1
std

)
6 2C ′r2 + 2Cd−1rε.

Therefore, by (3.4) we get∫
(−1,1)d

|H − E ′|2dgdstd 6 2

(∫
(−1,1)d

|H − E ′′|2dgdstd + 2d|E ′′ − E ′|2
)

6 2(C ′r2 + 4C ′r2 + 4Cd−1rε) = 10C ′r2 + 8Cd−1rε.

Now, going back to the function F , we conclude∫
Bd1 (0)

|F − E ′|2dgdstd 6 Cd(10C ′r2 + 8Cd−1rε) 6 C ′′(r2 + rε),

for C ′′ = max(10CdC ′, 8C2d−1). Therefore we finally get∫
Bdr (0)

|f − E|2dgdstd 6 C ′′(r2 + εr).

4 Proof of Proposition 1.11

First of all, WLOG, in the proof of this proposition, we may assume that ε is small

enough.

Restricting to S2n−1 ⊂ R2n, we denote the Hopf vector field by H̃(x) = Jx. We

can find an isometry α̃ : S2n−1 → S2n−1 of the sphere, such that the pushforward

α̃∗H̃ of the Hopf vector field H̃, is transversal to the Hopf vector field H̃ at some

point x1 ∈ S2n−1, and hence for some spherical cap S = BS
ρ (x1) ⊂ S2n−1 around x1,

the vector field α̃∗H̃ is transversal to the Hopf vector field H̃ on the closure S. Note

that the radius ρ of the cap can be chosen to depend only on the dimension 2n− 1.

Consider the spherical cap BS
ρ
3
(x1) ⊂ S2n−1, and choose a maximal set of points

P ⊂ BS
ρ
3
(x1) with the property that the spherical distance between any 2 distinct
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points of P is greater or equal to 4ε. Since the spherical balls of radius 4ε centered

at the points of P , cover BS
ρ
3
(x1), we conclude that the cardinality of P satisfies

|P| >
Vol(BS

ρ
3
(x1))

Vol(BS
4ε)

>
c(n)

ε2n−1
,

where Vol(·) is evaluated with respect to the volume density g2n−1
std .

Lemma 4.1. There exists some T > 0 and a smooth volume preserving flow ψ̃t,

t ∈ [0, T ] on S2n−1, generated by a time dependent vector field Ỹ t, t ∈ [0, T ] on S2n−1,

such that Ỹ t is sufficiently C0-close to the pushforward α̃∗H̃ of the Hopf vector field

on S2n−1, and such that the flow ψ̃t satisfies the following:

Take any x ∈ P, and denote by χ : S2n−1 → R the characteristic function of BS
ε (x).

Then there exist some t1, t2, ..., tN ∈ (0, T ) such that

1

N

N∑
k=1

(ψ̃tk)∗χ > c′(n)
Vol(BS

ε (x))

Vol(S2n−1)

on S2n−1, where Vol(·) is evaluated with respect to the volume density g2n−1
std , and

c′(n) > 0 is some positive constant that depends only on n.

Proof of Lemma 4.1. Along the proof we will use the notation χz for the characteristic

function χz : S2n−1 → R of BS
ε (z) ⊆ S2n−1, where z ∈ S2n−1.

Let Q be a maximal set of points of S2n−1 with the property that the spherical

distance between any two points of Q is at least ε. Then first of all, spherical balls

of radius ε centered at points of Q cover S2n−1. Secondly, spherical balls of radius ε
2

centered at the points of Q, do not intersect pairwise, which means that

|Q| 6 Vol(S2n−1)

Vol(BS
ε
2
)
.

Therefore we have

1

|Q|
∑
y∈Q

χy >
1

|Q|
>

Vol(BS
ε
2
)

Vol(S2n−1)
> c′(n)

Vol(BS
ε )

Vol(S2n−1)

on S2n−1, where c′(n) depends only on n.

Now let x ∈ P and y ∈ Q be any two points. Then there clearly exists a smooth

flow φ̃tx,y : S2n−1 → S2n−1, t ∈ [0, 1], consisting of isometries of S2n−1, such that φ̃tx,y
is the identity map when t is sufficiently close to 0 or 1, and such that

(φ̃
1
2
x,y)
∗χx = χy.
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Denote by ξ̃t : S2n−1 → S2n−1 the flow of α̃∗H̃ - this is also a flow of isometries of

S2n−1, and we have that ξ̃2π is the identity diffeomorphism of S2n−1. Now take Mx,y ∈
N to be sufficiently large, and define the flow ψ̃tx,y : S2n−1 → S2n−1, t ∈ [0, 4Mx,yπ],

as

ψ̃tx,y = ξ̃t ◦ φ̃
t

4Mx,yπ

x,y .

If we take Mx,y to be sufficiently large, then the vector field that generates the flow

ψ̃tx,y will be sufficiently C0-close to α̃∗H̃. In addition, we have that ψ̃tx,y equals to ξ̃t

when t is close to the endpoints 0 and 4Mx,yπ, so that in particular ψ̃
4Mx,yπ
x,y is the

identity diffeomorphism of S2n−1, and also we have that

(ψ̃2Mx,yπ
x,y )∗χx = χy.

Now define the flow ψ̃t, t ∈ [0, T ] to be the concatenation of flows ψ̃tx,y, when we run

over all x ∈ P and y ∈ Q. We claim that ψ̃t is a desired flow. Indeed, first of all it is

smooth since ψ̃tx,y equals to ξ̃t when t is close to the endpoints 0 and 4Mx,yπ, for every

x ∈ P and y ∈ Q. Secondly, the vector field that generates ψ̃t, is sufficiently C0-close

to α̃∗H̃. Fixing any x ∈ P , we have that for any y ∈ Q there exists ty ∈ (0, T ) such

that (ψ̃ty)∗χx = χy. Therefore we have

1

|Q|
∑
y∈Q

(ψ̃ty)∗χx =
1

|Q|
∑
y∈Q

χy > c′(n)
Vol(BS

ε )

Vol(S2n−1)
= c′(n)

Vol(BS
ε (x))

Vol(S2n−1)

on S2n−1. Finally, the flow ψ̃t consists of isometries of S2n−1, and hence is volume

preserving.

Consider the time dependent vector field Ỹ t and its flow ψ̃t on S2n−1, guaranteed

by Lemma 4.1. Since the vector field Ỹ t is sufficiently C0-close to α̃∗H̃, then Ỹ t is

also transversal to the Hopf vector field H̃ on the closure S. Choose a sufficiently

small δ > 0, and denote

r′ = R− ε,

r = r′ − Tδ = R− ε− Tδ.

Clearly, if ε and δ are small enough, then r > R
2

. Define the (time independent)

vector field Yδ on D2n
r,r′ , which has the form

Yδ(r
′ − δt, θ) = −δθ + (r′ − δt)Ỹ t(θ),

where t ∈ [0, T ] and θ ∈ S2n−1. Consider a smooth function a : R → R, such that

a(t) > 1 for any t ∈ R, such that a(t) = 1 for any t /∈ ( δ
2

2
, T − δ2

2
), and such that a(t)

is large enough on [δ2, T − δ2]. Now define b : D2n
r,r′ → R as

b(x) = a

(
r′ − |x|

δ

)
.
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Let us give the definition of the metric g on D2n
r,R. On D2n

r,R \ D2n
r,r′ we set g = gstd.

Now consider D2n
r,r′ . Looking at the gstd-orthogonal decomposition

TD2n
r,r′ = Span(Yδ)⊕ Span(JYδ)⊕ L,

we define

g|x = b(x)−1gstd|x ⊕ b(x)gstd|x ⊕ gstd|x
for any x ∈ D2n

r,r′ .

Our main statement is the following:

Claim 4.2. If we pick sufficiently small δ, and then choose the function a(·) to be

large enough on [δ2, T − δ2], then the constructed metric g will satisfy the following:

For any smooth function f : D2n
r,R → R with∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1,

there exists some E ∈ R, such that for any r < u < R we have∫
S2n−1
u

|f − E|2 dg2n−1
std 6 Cε,

where C = C(n,R) depends only on n and R.

The rest of the proof of Proposition 1.11 will be devoted for proving Claim 4.2. In

the sequel we will assume that we have chosen δ to be small enough, and the function

a(·) to be sufficiently large on [δ2, T − δ2].

We denote by ψtδ the flow of the vector field Yδ. In polar coordinates we have

ψtδ(r
′, θ) = (r′ − δt, ψ̃t(θ)),

for t ∈ [0, T ].

Based on Corollary 3.3 (section 3), we are able to prove the following

Lemma 4.3. Let f : D2n
r,R → R be a smooth function, satisfying∫

D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1.

Then there exists a point x2 ∈ P such that for some E ∈ R we have

1

Vol(r′BS
2ε(x2))

∫
r′BS2ε(x2)

|f − E|2 dg2n−1
std 6 Cε,

where C = C(n,R).
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Proof of Lemma 4.3. For x ∈ S2n−1 denote Ux,ε = (r′, R) ·BS
2ε(x) ⊆ D2n

r′,R. Note that

in polar coordinates Ux,ε is

Ux,ε = (R− ε, R)×BS
2ε(x) ⊂ (0,∞)× S2n−1.

Define the following domain in R2n:

Uε = (−ε, ε)×B2n−1
ε (0) = (−ε, ε)× {y ∈ R2n−1 | |y| < ε} ⊂ R2n.

It is easy to see that for small enough ε, for any x ∈ S2n−1 there exists a diffeomor-

phism Ψx : Ux,ε → Uε, such that we have

1

C2
gstd 6 Ψ∗xgstd 6 C2gstd,

where C = C(n,R), and such that in polar coordinates the map Ψx has the form

Ψx(u, θ) =
(

2
(
R− ε

2
− u
)
, Ψ̃x(θ)

)
,

for some diffeomorphism Ψ̃x : BS
2ε(x)→ B2n−1

ε (0).

Now, since the distance between any two distinct points of P is greater or equal to

4ε, it follows that all Ux,ε, for x ∈ P , do not intersect pairwise. Therefore we conclude

that∑
x∈P

∫
Ux,ε

|∇f |2 dg2n
std 6

∫
D2n
r′,R

|∇f |2 dg2n
std =

∫
D2n
r′,R

‖∇gf‖2
g dg

2n
std 6

∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1.

Keeping in mind that |P| > c(n)
ε2n−1 , we conclude that there exists some x2 ∈ P such

that ∫
Ux2,ε

|∇f |2 dg2n
std 6

1

|P|
6 C ′ε2n−1,

where C ′ = C ′(n). Now look at Ψ := Ψx2 : Ux2,ε → Uε. Define the function h : Uε → R
as h = f ◦Ψ−1. Then we have∫

Uε

|∇h|2 dg2n
std 6 C2n+2C ′ε2n−1.

Now, applying Corollary 3.3, we conclude that there exists E ∈ R such that∫
{x1}×B2n−1

ε (0)

|h− E|2dg2n−1
std 6 C ′′ε2n

for any x1 ∈ (−ε, ε), where C ′′ = C ′′(n,R). Going back to f = h ◦Ψ, we get that for

any u ∈ (r′, R) we have∫
uBS2ε(x2)

|f − E|2 dg2n−1
std 6 C2n−1C ′′ε2n.
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Hence by continuity we have∫
r′BS2ε(x2)

|f − E|2 dg2n−1
std 6 C2n−1C ′′ε2n.

Finally, keeping in mind that Vol(r′BS
2ε(x2)) > c′ε2n−1 for c′ = c′(n,R), we conclude

the statement of the lemma.

Lemma 4.4. Let f and x2 ∈ P be as in Lemma 4.3. Denote Bt
ε = (r′ − δt)BS

ε (x2),

for t ∈ (0, T ). Then provided that δ is small enough, we will have

1

Vol(Bt
ε)

∫
Btε

|f − E|2 dg2n−1
std 6 Cε,

for all t ∈ (0, T ). (In this lemma the constant C = C(n,R) might be different from

the one in Lemma 4.3).

Proof of Lemma 4.4. For some x ∈ R2n \ {0} and a nonzero tangent vector Y ∈
Tx(R2n) \ {0}, denote by Z = ι(x;Y ) ∈ Tx(R2n) the vector that satisfies

〈Z, Y 〉 = 〈Z, JY 〉 = 0,

〈Z,X〉 = 1,

and that minimizes the Euclidean distance |Z−X|, where X = − x
|x| ∈ R2n ∼= Tx(R2n).

It is easy to see that ι(x;Y ) is well defined when x /∈ Span(Y, JY ), which is equivalent

to Y /∈ Span(x, Jx), and we will apply ι only on that case. Clearly, ι(x;Y ) depends

on x and Y in a smooth way, on its domain of definition.

Define the vector field

Xδ(x) = ι(x;Yδ(x)),

on x ∈ [r, r′] · S = [r, r′] · BS
ρ (x1) (for small δ, ι(x;Yδ(x)) is well defined on x ∈

[r, r′] · S = [r, r′] · BS
ρ (x1)). Note that since Xδ is orthogonal to Span(Yδ, JYδ) on

(r, r′] · S = (r, r′] ·BS
ρ (x1), it follows that

‖Xδ‖g = |Xδ|

on (r, r′] · S = (r, r′] ·BS
ρ (x1).

Denote by σsδ the flow of the vector field Xδ. We have

Xδ(r
′ − δt, θ) = −θ + (r′ − δt)X̃ t

δ(θ),

for t ∈ [0, T ], where X̃ t
δ(θ) is a time-dependent vector field which is tangent to the

unit sphere S2n−1. Note that X̃ t
δ(θ) is well defined for θ ∈ S = BS

ρ (x1) and t ∈ [0, T ],

when δ is small enough. For the flow σsδ of Xδ we have

σsδ(r
′, θ) = (r′ − s, σ̃sδ(θ)),
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for s ∈ [0, δT ], where σ̃sδ(θ) is a flow on S = BS
ρ (x1) ⊆ S2n−1 (probably, only partially

defined), which is generated by the vector field X̃
s
δ
δ (θ), s ∈ [0, δT ].

Since ε is small and P ⊂ BS
ρ
3
(x1), then for any x ∈ P we have BS

2ε(x) ⊆ BS
ρ
2
(x1),

and in particular, BS
2ε(x2) ⊆ BS

ρ
2
(x1). Look at the vector field

Xδ(r
′ − δt, θ) = −θ + (r′ − δt)X̃ t

δ(θ).

The flow of Xδ satisfies

σsδ(r
′, θ) = (r′ − s, σ̃sδ(θ)),

for s ∈ [0, δT ]. The flow σ̃sδ is generated by the vector field X̃
s
δ
δ , when s ∈ [0, δT ].

Let us make a time rescaling, concentrating on the time parameter t = s
δ
. Define the

flow ς̃ tδ on S = BS
ρ (x1) ⊆ S2n−1 (which could be well defined only on a part of S), as

ς̃ tδ(θ) = σ̃δtδ (θ), when t ∈ [0, T ]. Then the flow ς̃ tδ is generated by the vector field δX̃ t
δ.

Up till now we had a family of vector fields δ → X̃ t
δ on S ⊆ S2n−1, defined for small

δ > 0. However, it is quite easy to see that we can extend this family also to δ = 0

in a natural way. Indeed, we have that

X̃ t
δ(θ) = θ + ι((r′ − δt, θ);Yδ(r′ − δt, θ)) = θ + ι((r′ − δt)θ;−δθ + (r′ − δt)Ỹ t(θ)).

Hence if we define

X̃ t
0(θ) = θ + ι(r′θ; r′Ỹ t(θ)),

then X̃ t
δ(θ) is well defined for small δ > 0, for t ∈ [0, T ] and for θ ∈ S, and depends

on δ, t, and θ, in a smooth way.

So we get that the flow ς̃ tδ is generated by the vector field δX̃ t
δ, and that the family

of vector fields X̃ t
δ(θ) on S, depends on small δ > 0, on θ ∈ S, and on t ∈ [0, T ], in a

smooth way. From here we can conclude the following:

1) For δ small enough, the flow ς̃ tδ(θ) is well defined for θ ∈ BS
ρ
2
(x1) and t ∈ [0, T ],

and we have ς̃ tδ(θ) ∈ S = BS
ρ (x1) for any θ ∈ BS

ρ
2
(x1) and t ∈ [0, T ].

2) Moreover, if δ is small enough, then for any x ∈ BS
ρ
3
(x1) we will have ς̃ tδ(B

S
2ε(x)) ⊇

BS
ε (x) for all t ∈ [0, T ].

3) Finally, if we choose sufficiently small δ, then for any t ∈ [0, T ], the Jacobian of

the map BS
ρ
2
(x1)→ S2n−1 given by θ 7→ ς̃ tδ(θ), will be arbitrarily close to 1, uniformly

on θ ∈ BS
ρ
2
(x1) and t ∈ [0, T ]. In particular, if δ is small enough, then the Jacobian of

ς̃ tδ lies between 1
2

and 2, at any point θ ∈ BS
ρ
2
(x1), for any t ∈ [0, T ].

Now assume that δ is small enough so that 1), 2), 3) above are satisfied. Then,

translating these properties to the flow of σ̃sδ(θ), we get:

1’) The flow σ̃sδ(θ) is well defined for θ ∈ BS
ρ
2
(x1) and s ∈ [0, δT ], and we have

σ̃sδ(θ) ∈ S = BS
ρ (x1) for any θ ∈ BS

ρ
2
(x1) and s ∈ [0, δT ].

2’) For any x ∈ BS
ρ
3
(x1) we have σ̃sδ(B

S
2ε(x)) ⊇ BS

ε (x) for all s ∈ [0, δT ].
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3’) For any s ∈ [0, δT ], the Jacobian of the map BS
ρ
2
(x1)→ S2n−1 given by θ 7→ σ̃sδ(θ),

lies between 1
2

and 2, at any θ ∈ BS
ρ
2
(x1).

We are now ready to prove our lemma. Define the function F : [0, δT )×BS
2ε(x2)→

R as

F (s, θ) = f(σsδ(r
′, θ)) = f(r′ − s, σ̃sδ(θ)).

For any 0 < s1 < δT we have∫
BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− f(r′, θ)|2 dθ =

∫
BS2ε(x2)

|F (s1, θ)− F (0, θ)|2 dθ

=

∫
BS2ε(x2)

∣∣∣∣∫ s1

0

∂

∂s
F (s, θ) ds

∣∣∣∣2 dθ 6 ∫
BS2ε(x2)

s1

∫ s1

0

∣∣∣∣ ∂∂sF (s, θ)

∣∣∣∣2 ds dθ
= s1

∫
BS2ε(x2)

∫ s1

0

|LXδf(σsδ(r
′, θ))|2 ds dθ

6 δT

∫
BS2ε(x2)

∫ s1

0

‖∇gf(σsδ(r
′, θ))‖2

g · ‖Xδ(σ
s
δ(r
′, θ))‖2

g ds dθ

= δT

∫
BS2ε(x2)

∫ s1

0

‖∇gf(σsδ(r
′, θ))‖2

g · |Xδ(σ
s
δ(r
′, θ))|2 ds dθ.

We have

Xδ(u, θ) = ι((u, θ);Yδ(u, θ)) = ι(uθ;−δθ + uỸ
r′−u
δ (θ)),

for u ∈ [r, r′] and θ ∈ S = BS
ρ (x1). Therefore, if Ỹ t is sufficiently C0-close to

α̃∗H̃, and if ε, δ are small enough, then because of continuous dependence of ι(· ; ·)
on its arguments, we can conclude that Xδ(u, θ) is C0-close to ι(Rθ;Rα̃∗H̃(θ)) =

ι(θ; α̃∗H̃(θ)), and hence in this case we have |Xδ(u, θ)|2 6 C for any u ∈ [r, r′] and

θ ∈ S = BS
ρ (x1), where C = C(n). Hence returning to our chain of estimates, we get∫

BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− f(r′, θ)|2 dθ 6 δTC

∫
BS2ε(x2)

∫ s1

0

‖∇gf(σsδ(r
′, θ))‖2

g ds dθ.

Now, because of 3’), the Jacobian of the map Φ : (0, δT )× BS
2ε(x2)→ Dr,r′ given by

(s, θ) 7→ σsδ(r
′, θ) = (r′ − s, σ̃sδ(θ)), is greater or equal to (r′−s)2n−1

2
, which is greater

than r2n−1

2
, which in turn, is greater than

(R2 )
2n−1

2
= R2n−1

22n
, for small ε and δ. Hence

returning to our chain of estimates, we get

∫
BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− f(r′, θ)|2 dθ

6 δ
22nTC

R2n−1

∫
Φ((0,δT )×BS2ε(x2))

‖∇gf‖2
g dg

2n
std

6 δ
22nTC

R2n−1

∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6 δ

22nTC

R2n−1
.

(4.1)
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Now, by Lemma 4.3 we have

1

Vol(r′BS
2ε(x2))

∫
r′BS2ε(x2)

|f − E|2 dg2n−1
std 6 C ′ε,

where C ′ = C ′(n,R), and hence

1

Vol(BS
2ε(x2))

∫
BS2ε(x2)

|f(r′, θ)− E|2 dθ 6 C ′ε. (4.2)

Therefore from (4.1) and (4.2) we conclude that

1

Vol(BS
2ε(x2))

∫
BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− E|2 dθ

6 2

(
1

Vol(BS
2ε(x2))

∫
BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− f(r′, θ)|2 dθ

+
1

Vol(BS
2ε(x2))

∫
BS2ε(x2)

|f(r′, θ)− E|2 dθ
)

6 2

(
δ

22nTC

R2n−1Vol(BS
2ε(x2))

+ C ′ε

)
6 3C ′ε,

where the latter inequality is true if δ is small enough. Now, from 3’) we know that

the Jacobian of the map σ̃s1δ (θ) : BS
ρ
2
(x1) → S2n−1 is not greater than 2, hence we

conclude
1

Vol(BS
2ε(x2))

∫
σ̃
s1
δ (BS2ε(x2))

|f(r′ − s1, θ)− E|2 dθ

6
2

Vol(BS
2ε(x2))

∫
BS2ε(x2)

|f(r′ − s1, σ̃
s1
δ (θ))− E|2 dθ 6 6C ′ε.

Because of 2’) we have σ̃s1δ (BS
2ε(x2)) ⊇ BS

ε (x2), so we get

1

Vol(BS
2ε(x2))

∫
BSε (x2)

|f(r′ − s1, θ)− E|2 dθ

6
1

Vol(BS
2ε(x2))

∫
σ̃
s1
δ (BS2ε(x2))

|f(r′ − s1, θ)− E|2 dθ 6 6C ′ε.

Therefore we finally obtain

1

Vol(BS
ε (x2))

∫
BSε (x2)

|f(r′ − s1, θ)− E|2 dθ

=
Vol(BS

2ε(x2))

Vol(BS
ε (x2))

· 1

Vol(BS
2ε(x2))

·
∫
BSε (x2)

|f(r′ − s1, θ)− E|2 dθ

6 6C ′
Vol(BS

2ε(x2))

Vol(BS
ε (x2))

ε 6 C ′′ε,
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for C ′′ = C ′′(n,R). The latter means that for any t ∈ (0, T ), for Bt
ε = (r′− δt)BS

ε (x2)

we have
1

Vol(Bt
ε)

∫
Btε

|f − E|2 dg2n−1
std 6 C ′′ε,

Lemma 4.5. Let f : D2n
r,R → R be a smooth function satisfying∫

D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1.

Then for any 0 6 t1 < t2 < T we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 Cδ.

(In this lemma the constant C = C(n,R) might be different from those in lem-

mas 4.3, 4.4).

Proof of Lemma 4.5. This Lemma is true since we compressed the neck along Yδ.

Define the function F : [0, T )× S2n−1 → R as

F (t, θ) = f(ψtδ(r
′, θ)) = f(r′ − δt, ψ̃t(θ)).

Then for any 0 6 t1 < t2 < T we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ

6
∫
S2n−1

(t2 − t1)

∫ t2

t1

∣∣∣∣ ∂∂tF (t, θ)

∣∣∣∣2 dt dθ
= (t2 − t1)

∫
S2n−1

∫ t2

t1

∣∣LYδf(ψtδ(r
′, θ))

∣∣2 dt dθ
6 (t2 − t1)

∫
S2n−1

∫ t2

t1

‖∇gf(ψtδ(r
′, θ))‖2

g · ‖Yδ(ψtδ(r′, θ))‖2
g dt dθ

= (t2 − t1)

∫
S2n−1

∫ t2

t1

‖∇gf(ψtδ(r
′, θ))‖2

g · |Yδ(ψtδ(r′, θ))|2 · b(ψtδ(r′, θ))−2 dt dθ

= (t2 − t1)

∫
S2n−1

∫ t2

t1

‖∇gf(ψtδ(r
′, θ))‖2

g · |Yδ(ψtδ(r′, θ))|2 · a(t)−2 dt dθ

6
t2 − t1(

mint∈[t1,t2] a(t)
)2

∫
S2n−1

∫ t2

t1

‖∇gf(ψtδ(r
′, θ))‖2

g · |Yδ(ψtδ(r′, θ))|2 dt dθ .
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We have

|Yδ(u, θ)|2 = | − δθ + uỸ
r′−u
δ (θ)|2 = δ2 + u2|Ỹ

r′−u
δ (θ)|2,

for u ∈ [r, r′] and θ ∈ S2n−1. According to the property that Ỹ t is sufficiently C0-close

to α̃∗H̃ (Lemma 4.1), the norm |Ỹ t(θ)| is sufficiently close to 1, so we may assume

that |Ỹ t(θ)| 6 2 for all t ∈ [0, T ] and θ ∈ S2n−1. Hence we have

|Yδ(u, θ)|2 = δ2 + u2|Ỹ
r′−u
δ (θ)|2 6 δ2 + 4u2 6 δ2 + 4r′2,

for u ∈ [r, r′] and θ ∈ S2n−1. Therefore, returning to our chain of estimates, we get∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ

6
(t2 − t1)(δ2 + 4r′2)(

mint∈[t1,t2] a(t)
)2

∫
S2n−1

∫ t2

t1

‖∇gf(ψtδ(r
′, θ))‖2

g dt dθ .

The Jacobian of the map (0, T )× S2n−1 → D2n
r,r′ given by

(t, θ) 7→ ψtδ(r
′, θ) = (r′ − δt, ψ̃t(θ)),

equals to δ(r′ − δt)2n−1, since the flow ψ̃t on S2n−1 is volume preserving. Hence this

Jacobian is greater than δ(r′ − δT )2n−1 = δr2n−1 at every point of (0, T )× S2n−1. So

returning again to our chain of estimates, we conclude that∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ

6
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2 ·
δ2 + 4r′2

r2n−1
·
∫
D2n
r,r′

‖∇gf‖2
g dg

2n
std

6
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2 ·
δ2 + 4r′2

r2n−1
·
∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6

t2 − t1
δ
(
mint∈[t1,t2] a(t)

)2 ·
δ2 + 4r′2

r2n−1
.

Now, provided that ε, δ are small enough, we have

δ2 + 4r′2

r2n−1
<

5R2

(1
2
R)2n−1

=: C.

So we conclude that∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 C
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2 ,

for any 0 6 t1 < t2 < T . In particular, for 0 6 t1 < t2 6 δ2 we get∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 C
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2
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6 C
δ2

δ
= Cδ.

Analogously, for any T − δ2 6 t1 < t2 < T we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 C
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2

6 C
δ2

δ
= Cδ.

Finally, for δ2 6 t1 < t2 6 T − δ2 we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 C
t2 − t1

δ
(
mint∈[t1,t2] a(t)

)2

6 C
T

δ
(
mint∈[t1,t2] a(t)

)2 .

If we choose the function a(·) to be sufficiently large on [δ2, T − δ2] (it is enough to

require a(t) >
√
T
δ

for t ∈ [δ2, T − δ2]), then we will get∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ

6 C
T

δ
(
mint∈[t1,t2] a(t)

)2 6 Cδ.

These three cases, combined together, imply that for any 0 6 t1 < t2 < T we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 9Cδ.

Lemma 4.6. Let f , x2 and Bt
ε be as in Lemma 4.4. Then for any t ∈ (0, T ), looking

at the preimage (ψtδ)
−1(Bt

ε) ⊂ S2n−1
r′ , we have

1

Vol((ψtδ)
−1(Bt

ε))

∫
(ψtδ)

−1(Btε)

|f − E|2 dg2n−1
std 6 Cε.

(In this lemma the constant C = C(n,R) might be different from those in lem-

mas 4.3, 4.4, 4.5).

Proof of Lemma 4.6. By Lemma 4.4, we have

1

Vol(Bt
ε)

∫
Btε

|f − E|2 dg2n−1
std 6 Cε,
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which means
1

Vol(BS
ε (x2))

∫
BSε (x2)

|f(r′ − δt, θ)− E|2 dθ 6 Cε, (4.3)

for all t ∈ (0, T ). By Lemma 4.5, for any 0 6 t1 < t2 < T we have∫
S2n−1

|f(r′ − δt2, ψ̃t2(θ))− f(r′ − δt1, ψ̃t1(θ))|2 dθ 6 C ′δ,

so in particular taking some t ∈ (0, T ) and considering t1 = 0, t2 = t, we get∫
S2n−1

|f(r′ − δt, ψ̃t(θ))− f(r′, θ)|2 dθ 6 C ′δ,

which implies that

1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′ − δt, ψ̃t(θ))− f(r′, θ)|2 dθ 6 C ′δ

Vol(BS
ε (x2))

.

Also, since the flow ψ̃t : S2n−1 → S2n−1 is volume preserving, it follows from (4.3)

that
1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′ − δt, ψ̃t(θ))− E|2 dθ

=
1

Vol(BS
ε (x2))

∫
BSε (x2)

|f(r′ − δt, θ)− E|2 dθ 6 Cε.

Hence we conclude

1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′, θ)− E|2 dθ

6 2

(
1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′ − δt, ψ̃t(θ))− E|2 dθ

+
1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′ − δt, ψ̃t(θ))− f(r′, θ)|2 dθ
)

6 2

(
Cε+

C ′δ

Vol(BS
ε (x2))

)
.

If δ is small enough, then we will have

2

(
Cε+

C ′δ

Vol(BS
ε (x2))

)
6 3Cε.

Therefore we conclude that

1

Vol(BS
ε (x2))

∫
(ψ̃t)−1(BSε (x2))

|f(r′, θ)− E|2 dθ 6 3Cε,

or in other words,

1

Vol((ψtδ)
−1(Bt

ε))

∫
(ψtδ)

−1(Btε)

|f − E|2 dg2n−1
std 6 3Cε.
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Proof of proposition

Let us finally conclude Claim 4.2 stated above. Let g be the metric on D2n
r,R defined as

above, and assume that δ is small enough and that the function a(·) is large enough

on [δ2, T − δ2]. Let f : D2n
r,R → R be a smooth function satisfying∫

D2n
r,R

‖∇gf‖2
g dg

2n
std 6 1.

By Lemma 4.3, there exists a point x2 ∈ P and some E ∈ R such that

1

Vol(r′BS
2ε(x2))

∫
r′BS2ε(x2)

|f − E|2 dg2n−1
std 6 Cε.

Then, by Lemma 4.6, for any t ∈ (0, T ), looking at the preimage (ψtδ)
−1(Bt

ε) ⊆ S2n−1
r′

of Bt
ε = (r′ − δt)BS

ε (x2), we have

1

Vol((ψtδ)
−1(Bt

ε))

∫
(ψtδ)

−1(Btε)

|f − E|2 dg2n−1
std 6 C ′ε,

where C ′ = C ′(n,R). But since ψ̃t is a volume preserving flow, we have

1

Vol((ψtδ)
−1(Bt

ε))

∫
(ψtδ)

−1(Btε)

|f − E|2 dg2n−1
std

=
1

Vol((ψ̃t)−1(BS
ε (x2)))

∫
(ψ̃t)−1(BSε (x2))

|f(r′, θ)− E|2 dθ

=
1

Vol(BS
ε )

∫
(ψ̃t)−1(BSε (x2))

|f(r′, θ)− E|2 dθ

=

∫
S2n−1

(
1

Vol(BS
ε )

(ψ̃t)∗χ(θ)

)
|f(r′, θ)− E|2 dθ,

and so ∫
S2n−1

(
1

Vol(BS
ε )

(ψ̃t)∗χ(θ)

)
|f(r′, θ)− E|2 dθ 6 C ′ε, (4.4)

where χ : S2n−1 → R is the characteristic function of BS
ε (x2). Now, by Lemma 4.1,

there exist some t1, t2, ..., tN ∈ (0, T ) such that

1

N

N∑
k=1

(ψ̃tk)∗χ > c
Vol(BS

ε (x2))

Vol(S2n−1)
(4.5)

on S2n−1. Averaging (4.4) over t = t1, ..., tN , and using (4.5), we get

c

Vol(S2n−1)

∫
S2n−1

|f(r′, θ)− E|2 dθ
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=

∫
S2n−1

1

Vol(BS
ε )

c · Vol(BS
ε (x2))

Vol(S2n−1)
|f(r′, θ)− E|2 dθ

6
∫
S2n−1

(
1

Vol(BS
ε )

1

N

N∑
k=1

(ψ̃tk)∗χ(θ)

)
|f(r′, θ)− E|2 dθ 6 C ′ε,

and hence ∫
S2n−1

|f(r′, θ)− E|2 dθ 6 C ′′ε, (4.6)

where

C ′′ =
C ′Vol(S2n−1)

c
.

Now, fixing any t ∈ (0, T ), and applying Lemma 4.5 for t1 = 0, t2 = t, we get∫
S2n−1

|f(r′ − δt, ψ̃t(θ))− f(r′, θ)|2 dθ 6 C ′′′δ,

which together with (4.6) gives us∫
S2n−1

|f(r′ − δt, θ)− E|2 dθ =

∫
S2n−1

|f(r′ − δt, ψ̃t(θ))− E|2 dθ

6 2

(∫
S2n−1

|f(r′ − δt, ψ̃t(θ))− f(r′, θ)|2 dθ +

∫
S2n−1

|f(r′, θ)− E|2 dθ
)

6 2(C ′′′δ + C ′′ε) 6 3C ′′ε,

since ψ̃t is volume preserving, and δ is small enough. Thus we have proved that∫
S2n−1

|f(u, θ)− E|2 dθ 6 3C ′′ε, (4.7)

for any u ∈ (r, r′). Now consider the case when u ∈ (r′, R). Define the vector field X

on R2n \ {0}, as X(x) = − x
|x| for x ∈ R2n \ {0}. Then keeping in mind that g = gstd

on D2n
r′,R, we obtain ∫

S2n−1

|f(u, θ)− f(r′, θ)|2 dθ

=

∫
S2n−1

∣∣∣∣∫ u

r′

∂

∂s
f(s, θ) ds

∣∣∣∣2 dθ 6 ∫
S2n−1

(u− r′)
∫ u

r′

∣∣∣∣ ∂∂sf(s, θ)

∣∣∣∣2 ds dθ
= (u− r′)

∫
S2n−1

∫ u

r′
|LXf(s, θ)|2 ds dθ

6 (u− r′)
∫
S2n−1

∫ u

r′
‖∇gf(s, θ)‖2

g · ‖X(s, θ)‖2
g ds dθ

= (u− r′)
∫
S2n−1

∫ u

r′
‖∇gf(s, θ)‖2

g ds dθ.
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The Jacobian of the map (r′, R)× S2n−1 → D2n
r′,R given by

(s, θ) 7→ sθ,

equals to s2n−1, and hence is greater than r′2n−1 at every point of (r′, R)× S2n−1. So

returning again to our chain of estimates, we conclude that∫
S2n−1

|f(u, θ)− f(r′, θ)|2 dθ 6 (u− r′)
∫
S2n−1

∫ u

r′
‖∇gf(s, θ)‖2

g ds dθ

6
u− r′

r′2n−1

∫
D2n
r′,u

‖∇gf‖2
g dg

2n
std 6

u− r′

r′2n−1

∫
D2n
r,R

‖∇gf‖2
g dg

2n
std 6

u− r′

r′2n−1
.

But we have u− r′ < R − r′ = ε, and for small ε, δ we have r′2n−1 >
(
R
2

)2n−1
, hence

we get ∫
S2n−1

|f(u, θ)− f(r′, θ)|2 dθ 6
(

2

R

)2n−1

ε. (4.8)

Therefore, from (4.6) and (4.8) we get ∫
S2n−1

|f(u, θ)− E|2 dθ

6 2

(∫
S2n−1

|f(r′, θ)− E|2 dθ +

∫
S2n−1

|f(u, θ)− f(r′, θ)|2 dθ
)

6 2

(
C ′′ε+

(
2

R

)2n−1

ε

)
=

(
2C ′′ +

22n

R2n−1

)
ε,

(4.9)

for any u ∈ (r′, R). Combining (4.6), (4.7), and (4.9), we conclude that for any

u ∈ (r, R) we have ∫
S2n−1

|f(u, θ)− E|2 dθ 6
(

3C ′′ +
22n

R2n−1

)
ε.

Hence for any u ∈ (r, R) we have∫
S2n−1
u

|f − E|2 dg2n−1
std = u2n−1

∫
S2n−1

|f(u, θ)− E|2 dθ

6 R2n−1

(
3C ′′ +

22n

R2n−1

)
ε = (3C ′′R2n−1 + 22n)ε.

This finishes the proof of Claim 4.2, and hence of the proposition.
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5 Proof of Theorem 1.10

Choose a smooth triangulation of M , and let ∆α ⊆M , α ∈ I, be the open simplices

of this triangulation. Choose a Riemannian metric g0 on M , such that for each

α ∈ I there exists a Darboux neighborhood inside ∆α, on which g0 coincides with the

euclidean metric.

For α ∈ I, denote by ∆′α the union of ∆α with all of its open faces. Then for

each α ∈ I, by Lemma 3.1 (section 3), there exists a bi-Lipschitz homeomorphism

Ψα : ∆α → B
2n

1 (0), such that Ψα is a diffeomorphism from ∆α onto B2n
1 (0), and

also is a diffeomorphism from ∆′α onto the image. Due to our choice of g0, WLOG

we may assume that the pushforward ωα of the symplectic structure ω from ∆α to

B2n
1 (0) by the map Ψα, equals ωstd (i.e. is standard) near the origin, and that the

pushforward g0,α of the metric g0 from ∆′α to its image Ψα(∆′α) ⊂ B
2n

1 (0) by the map

Ψα, coincides with the standard euclidean metric gstd near the origin. Hence we can

find some 0 < R0 < 1, such that ωα = ωstd and g0,α = gstd on B2n
R0

(0), for all α ∈ I.

Let C > 1 be a bi-Lipschitz constant for all Ψα, α ∈ I, when we consider the metric

g0 on ∆α, and the metric gstd on B
2n

1 (0). Then we get

1

C2
gstd 6 g0,α 6 C2gstd

on Ψα(∆′α), for each α ∈ I.

Now pick any 0 < R 6 R0. After choosing R, pick a small enough ε > 0. Then

by Proposition 1.11, there exists R
2
< r < R, and a metric gloc on the domain

D2n
r,R = {x ∈ R2n | r < |x| < R},

having all the desired properties. Consider the “minus-radial vector field” X(x) =

− x
|x| onD2n

R,1. Pick a sufficiently small δ′ > 0, and choose a smooth function â : R→ R,

such that â(u) = 1 for u /∈ (R+ δ′

2
, 1− δ′

2
), such that â(u) > 1 for all u ∈ R, and such

that â(u) is sufficiently large on [R+δ′, 1−δ′]. Define b̂ : B2n
1 (0)→ R as b̂(x) = â(|x|).

Denote by J0,α the almost complex structure that relates ωα and g0,α. Now we define

the metric gα on B2n
1 (0) as follows: on D2n

r,R we set gα = gloc; on D2n
R,1, looking at the

g0,α-orthogonal decomposition

TD2n
R,1 = Span(X)⊕ Span(J0,αX)⊕ L,

we define

gα|x = b̂(x)−1g0,α|x ⊕ b̂(x)g0,α|x ⊕ g0,α|x
at each x ∈ D2n

R,1; finally, on B2n
1 (0) \ (D2n

r,R ∪D2n
R,1) we set gα = g0,α = gstd. Clearly,

gα is a smooth Riemannian metric on B2n
1 (0), is compatible with ωα, and coincides

with g0,α near the boundary of B2n
1 (0). Also, exactly as in the case of Lemma 4.5

(section 4), but now using the flow of the vector field X, one can prove the following
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Claim 5.1. If the function â(·) is sufficiently large on [R + δ′, 1 − δ′], then for any

smooth function h : D2n
R,1 → R satisfying∫

D2n
R,1

‖∇gαh‖2
gα dg

2n
std 6 1,

we have the following: for any R < u1 < u2 < 1,∫
S2n−1

|h(u2, θ)− h(u1, θ)|2 dθ 6 C2C ′δ′,

where C ′ = C ′(n,R).

Finally, we define the metric g on M as follows: for any α ∈ I, on ∆α we set

g = Ψ∗αgα; on M \ (∪α∈I∆α) we set g = g0. Clearly g is a smooth Riemannian metric

on M , compatible with ω. We claim that the metric g will have arbitrarily large λ1,

once we take R to be small enough, and then pick ε, δ′ to be sufficiently small, and

â(·) to be sufficiently large on [R + δ′, 1− δ′]. Let us show this.

Let f : M → R be a smooth function with∫
M

f dg2n = 0,

and ∫
M

‖∇gf‖2
g dg

2n 6 1.

Then, for any α ∈ I, define fα : B
2n

1 (0) → R as fα = (Ψα)∗f - the pushforward of

f by Ψα. Then keeping in mind that ωα = ωstd on B2n
R (0), and that gα = gstd on

B2n
r (0), we get that

∫
B2n
r (0)

|∇fα|2 dg2n
std =

∫
B2n
r (0)

‖∇gαfα‖2
gα dg

2n
α

6
∫
B2n

1 (0)

‖∇gαfα‖2
gα dg

2n
α =

∫
∆α

‖∇gf‖2
g dg

2n 6
∫
M

‖∇gf‖2
g dg

2n 6 1,

(5.1)

that

∫
D2n
r,R

‖∇glocfα‖2
gloc

dg2n
std =

∫
D2n
r,R

‖∇gαfα‖2
gα dg

2n
α

6
∫
B2n

1 (0)

‖∇gαfα‖2
gα dg

2n
α =

∫
∆α

‖∇gf‖2
g dg

2n 6
∫
M

‖∇gf‖2
g dg

2n 6 1,

(5.2)
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and that

∫
D2n
R,1

‖∇gαfα‖2
gα dg

2n
std 6 C2n

∫
D2n
R,1

‖∇gαfα‖2
gα dg

2n
0,α = C2n

∫
D2n
R,1

‖∇gαfα‖2
gα dg

2n
α

6 C2n

∫
B2n

1 (0)

‖∇gαfα‖2
gα dg

2n
α = C2n

∫
∆α

‖∇gf‖2
g dg

2n

6 C2n

∫
M

‖∇gf‖2
g dg

2n 6 C2n.

(5.3)

Applying Proposition 1.11 to (5.2), we conclude that there exists some Eα ∈ R,

such that for any u ∈ (r, R) we have

∫
S2n−1
u

|fα − Eα|2 dg2n−1
std 6 ε, (5.4)

which implies that

∫
S2n−1

|fα(u, θ)− Eα|2 dθ =
1

u2n−1

∫
S2n−1
u

|fα − Eα|2 dg2n−1
std

6
ε

u2n−1
6

ε

r2n−1
6

22n−1ε

R2n−1
,

(5.5)

for any u ∈ (r, R). Note that by a continuity reason, (5.4) and (5.5) hold also for

u = r, R.

Applying our Claim 5.1 above to (5.3), we conclude that for any R < u1 < u2 < 1

we have ∫
S2n−1

|fα(u2, θ)− fα(u1, θ)|2 dθ 6 C2n+2C ′δ′. (5.6)

By a continuity reason, (5.6) holds for any R 6 u1 6 u2 6 1.

We have that (5.5) is valid for u = R, and (5.6) holds when u1 = R and

R 6 u2 6 1. Hence for any u ∈ [R, 1] we have

∫
S2n−1

|fα(u, θ)− Eα|2 dθ

6 2

(∫
S2n−1

|fα(u, θ)− fα(R, θ)|2 dθ +

∫
S2n−1

|fα(R, θ)− Eα|2 dθ
)

6 2C2n+2C ′δ′ +
22n

R2n−1
ε.

(5.7)
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Therefore from (5.5) and (5.7) we conclude that∫
S2n−1

|fα(u, θ)− Eα|2 dθ 6 2C2n+2C ′δ′ +
22n

R2n−1
ε, (5.8)

for any u ∈ [r, 1]. This, in turn, implies that

∫
S2n−1
u

|fα − Eα|2 dg2n−1
std = u2n−1

∫
S2n−1

|fα(u, θ)− Eα|2 dθ

6 u2n−1

(
2C2n+2C ′δ′ +

22n

R2n−1
ε

)
6 2C2n+2C ′δ′ +

22n

R2n−1
ε,

(5.9)

for any u ∈ [r, 1]. Hence on one hand, from (5.9) we get

∫
D2n
r,1

|fα − Eα|2 dg2n
std =

∫ 1

r

∫
S2n−1
u

|fα − Eα|2 dg2n−1
std du

6 (1− r)
(

2C2n+2C ′δ′ +
22n

R2n−1
ε

)
6 2C2n+2C ′δ′ +

22n

R2n−1
ε.

(5.10)

On the other hand, since (5.4) is true for u = r, and since we have (5.1), from

Lemma 3.5 (section 3) we get∫
B2n
r (0)

|fα − Eα|2dg2n
std 6 C ′′(r2 + εr) 6 C ′′(R2 + εR), (5.11)

where C ′′ = C ′′(n).

Adding (5.10) and (5.11), we obtain∫
B2n

1 (0)

|fα − Eα|2dg2n
std =

∫
B2n
r (0)

|fα − Eα|2dg2n
std +

∫
D2n
r,1

|fα − Eα|2 dg2n
std

6 C ′′(R2 + εR) + 2C2n+2C ′δ′ +
22n

R2n−1
ε

= C ′′R2 + C ′′εR + 2C2n+2C ′δ′ +
22n

R2n−1
ε.

(5.12)

Look now at (5.7) and (5.12). We can choose ε and δ′ to be small enough, so that

we will have

C ′′εR + 2C2n+2C ′δ′ +
22n

R2n−1
ε 6 C ′′R2.

Hence if we choose ε and δ′ small, then (5.7) for the case of u = 1, and (5.12), will

give us
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∫
S2n−1

|fα − Eα|2 dg2n−1
std =

∫
S2n−1

|fα(1, θ)− Eα|2 dθ 6 C ′′R2, (5.13)

and ∫
B2n

1 (0)

|fα − Eα|2dg2n
std 6 2C ′′R2. (5.14)

Returning to the manifold M , from (5.13) and (5.14) we get

∫
∂∆α

|f − Eα|2dg2n−1
0 =

∫
S2n−1

|fα − Eα|2dg2n−1
0,α

6 C2n−1

∫
S2n−1

|fα − Eα|2dg2n−1
std 6 C2n−1C ′′R2,

(5.15)

and

∫
∆α

|f − Eα|2dg2n
0 =

∫
B2n

1 (0)

|fα − Eα|2dg2n
0,α

6 C2n

∫
B2n

1 (0)

|fα − Eα|2dg2n
std 6 2C2nC ′′R2.

(5.16)

Now consider two adjacent simplices ∆α and ∆β, having a common face which we

denote by Σ ⊂M . Then (5.15) implies∫
Σ

|f − Eα|2dg2n−1
0 6

∫
∂∆α

|f − Eα|2dg2n−1
0 6 C2n−1C ′′R2,

and

∫
Σ

|f − Eβ|2dg2n−1
0 6

∫
∂∆β

|f − Eβ|2dg2n−1
0 6 C2n−1C ′′R2.

Therefore,

Volg0(Σ)|Eα − Eβ|2 =

∫
Σ

|Eα − Eβ|2dg2n−1
0

6 2

(∫
Σ

|f − Eα|2dg2n−1
0 +

∫
Σ

|f − Eβ|2dg2n−1
0

)
6 4C2n−1C ′′R2,
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Since we have only finite number of faces of simplices of our triangulation, it

follows that the minimum of a g0-volume of such a face, is a positive real number.

Denote it by c > 0. Hence we get the following: if ∆α and ∆β, where α, β ∈ I, are

adjacent simplices from our triangulation, then

|Eα − Eβ|2 6
4C2n−1C ′′

c
R2.

Now, if we consider any two simplices ∆α and ∆β (not necessarily adjacent), then

we can connect ∆α with ∆β via a sequence of distinct simplices from our triangulation,

where any two consequent simplices in this sequence are adjacent, and hence by the

triangle inequality we get

|Eα − Eβ|2 6
4|I|2C2n−1C ′′

c
R2,

for any α, β ∈ I. Therefore there exists some E ∈ R such that

|Eα − E|2 6
4|I|2C2n−1C ′′

c
R2, (5.17)

for any α ∈ I (we can just take E = Eγ for any γ ∈ I).

Therefore, from (5.16) and (5.17) we get

∫
∆α

|f − E|2dg2n
0 6 2

(∫
∆α

|f − Eα|2dg2n
0 + |Eα − E|2Volg0(∆α)

)
6 4C2nC ′′R2 +

8|I|2C2n−1C ′′Volg0(∆α)

c
R2

(5.18)

Summing (5.18) over all α ∈ I, we get

∫
M

|f − E|2dg2n
0 =

∑
α∈I

∫
∆α

|f − E|2dg2n
0

6 4|I|C2nC ′′R2 +
8|I|2C2n−1C ′′Volg0(M)

c
R2

=

(
4|I|C2nC ′′ +

8|I|2C2n−1C ′′Volg0(M)

c

)
R2

Note that
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∫
M

|f |2dg2n 6
∫
M

|f |2dg2n + E2 =

∫
M

|f − E|2dg2n =

∫
M

|f − E|2dg2n
0 .

Therefore

∫
M

|f |2dg2n 6 C ′′′R2,

where

C ′′′ = 4|I|C2nC ′′ +
8|I|2C2n−1C ′′Volg0(M)

c
.

Hence we have finally proved the following:

If f : M → R is a smooth function with∫
M

f dg2n = 0,

and ∫
M

‖∇gf‖2
g dg

2n 6 1,

then ∫
M

|f |2dg2n 6 C ′′′R2.

Therefore we immediately get a lower bound for the first eigenvalue:

λ1(g) >
1

C ′′′R2
.

Note that the constant C ′′′ depends only on M , on the metric g0 on M , on our

triangulation of M to simplices ∆α, and on the collection of maps Ψα : ∆α → B
2n

1 (0).

Therefore, since we have freedom to choose R > 0 to be arbitrarily small, this means

that λ1 associated with the metric g, can be arbitrarily large.

6 Further discussion

6.1 Comparison between approaches

In this section we would like to compare our approach with previous approaches [P,

M]. At first, let us comment on our proof of the main result (Theorem 1.10). Section 5

explains how we deduce Theorem 1.10 from Proposition 1.11. In the beginning we

make a triangulation of the symplectic manifold (M,ω), thus dividing it into a union of
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simplexes. Then we choose a Riemannian metric g0 on M , such that g0 is compatible

with ω, and such that inside each open simplex of the triangulation there exists

a Darboux chart in which the metric g0 is standard euclidean. Then finally, we

define the desired metric on M by starting with g0, then inserting the special metric

constructed in Proposition 1.11 into each one of the mentioned Darboux charts in

each simplex, and then doing “compressing the neck” along a certain “radially look

like” vector field in each simplex. However, we claim that in fact, instead of using

a triangulation on several simplexes, we could use only one simplex. More precisely,

choose a Riemannian metric g0 on M , such that g0 is compatible with ω. It is not

very difficult to find a smooth embedding Φ : B →M of the open unit ball

B = B2n
1 (0) = {x ∈ R2n | |x| < 1} ⊂ R2n

into M , such that the complement M \ Φ(B) is a null set (in the sense that it has

measure 0), and such that Φ is a bi-Lipschitz map from B onto Φ(B), when we

consider the standard euclidean metric on B, and the metric g0 on Φ(B) ⊂ M (cf.

Lemma 3.1). Theorem 1.10 is then a consequence of the following result (which can

be proved based on Proposition 1.11, and by following the same ideas as in section 5):

Theorem 6.1. Let ω be a symplectic structure on the open ball B = B2n
1 (0) ⊂ R2n,

let g0 be a Riemannian metric on B which is compatible with ω, and assume that g0

is equivalent to the euclidean metric gstd, i.e. there exist constants 0 < c < C such

that c2gstd 6 g0 6 C2gstd. Then for any ε > 0 there exists a Riemannian metric g on

B, such that g coincides with g0 near the boundary of B, such that g is compatible

with ω, and such that for any smooth function f : B → R with zero mean (relative to

the volume density induced by g, or equivalently, relative to the volume form ωn), we

have ∫
B

|f |2 dg2n
std 6 ε

∫
B

‖∇gf‖2
g dg

2n
std.

In other words, we are able to prove an analogue of the symplectic flexibility

of the first eigenvalue of the Laplacian, in the case of an open ball (provided that

the symplectic structure has good enough behaviour near the boundary of the ball).

This is the advantage of our approach over previous approaches [P, M]. It would

be interesting to understand if it is still possible to improve approaches in [P, M], in

order to prove a statement in the spirit of Theorem 6.1 and thus to provide a different

proof of Theorem 1.10.

6.2 Symplectic flexibility of the first Dirichlet and first nonzero

Neumann eigenvalues

Let us remark that our approach allows us to prove the symplectic flexibility of the

first Dirichlet and the first nonzero Neumann eigenvalues on a compact symplectic
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manifold with boundary, provided that the symplectic form behaves nicely enough

near the boundary.

Theorem 6.2. Let U ⊂ R2n be a bounded domain with smooth boundary, let ω be a

symplectic structure on U , such that there exists a Riemannian metric g0 on U which

is compatible with ω and which is equivalent to the euclidean metric gstd (i.e. for

some constants 0 < c < C we have c2gstd 6 g0 6 C2gstd). Then

1. There exists a Riemannian metric g on U , which is compatible with ω, and

which has arbitrarily large first nonzero Neumann eigenvalue.

2. There exists a Riemannian metric g on U , which is compatible with ω, and

which has arbitrarily large first Dirichlet eigenvalue.

In both cases 1 and 2, the metric g can be chosen to coincide with g0 near the boundary

of U .

It turns out that in Theorem 6.2, the case of the first nonzero Neumann eigenvalue

is easier and basically follows from Theorem 6.1, while the case of the first Dirichlet

eigenvalue requires Proposition 1.11 and we are currently not aware of a simpler

approach. Below we discuss possible ways of proving each of the cases of Theorem 6.2.

As it can be easily seen, Theorem 6.2 can also be extended to the case of a compact

symplectic manifold with boundary, in which the symplectic form behaves nicely

enough near the boundary.

6.2.1 The first nonzero Neumann eigenvalue

Recall that by the well-known variational characterisation, the first nonzero (i.e. the

second) Neumann eigenvalue equals to the infimum of the Rayleigh quotient∫
U
‖∇gf‖2

g dg
2n∫

U
|f |2 dg2n

,

when we run over all smooth functions f : U → R which are L2-orthogonal to the

first Neumann eigenfunction (which equals to 1 identically), or in other words, when

we run over all smooth functions f : U → R having zero mean. Hence we can argue

similarly as in section 6.1. Namely, first we can find a smooth embedding Φ : B → U

of the open unit ball B = B2n
1 (0) ⊂ R2n into U , such that the complement M \Φ(B)

is a null set (in the sense that it has measure 0), and such that Φ is a bi-Lipschitz map

from B onto Φ(B), when we consider the standard euclidean metric both on B and

on Φ(B) ⊆ U . Then having such a map Φ, we can apply Theorem 6.1 to conclude

that on U there exists a Riemannian metric g, which is compatible with ω, and which

has arbitrarily large first nonzero Neumann eigenvalue.
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6.2.2 The first Dirichlet eigenvalue

In this case, the variation characterisation is as follows: the first Dirichlet eigenvalue

equals to the infimum of the Rayleigh quotient∫
U
‖∇gf‖2

g dg
2n∫

U
|f |2 dg2n

,

when we run over all smooth functions f : U → R which are compactly supported in

U (or in other words, which vanish near the boundary of U). To show the result, we

first find a smooth embedding Φ : B → U of the open unit ball B = B2n
1 (0) ⊂ R2n

into U , having the following properties:

1. The complement M \ Φ(B) is a null set (in the sense that it has measure 0).

2. Φ is a bi-Lipschitz map from B onto Φ(B), when we consider the standard

euclidean metric both on B and on Φ(B) ⊆ U .

3. Φ extends to a continuous map Φ : B → U , such that for some relatively open

subset Σ ⊆ ∂B, we have Φ(Σ) ⊆ ∂U .

Then consider the pullbacks Φ∗ω and Φ∗g0, of the symplectic form ω and the Rie-

mannian metric g0 on U , to B, and denote them, by abuse of notation, by ω and

g0 as well. Now, Proposition 1.11 implies (similarly as in the case of the proof of

Theorem 1.10 in section 5) the following refinement of Theorem 6.1:

For any ε > 0 there exists a Riemannian metric g on B, such that g coincides with

g0 near the boundary of B, such that g is compatible with ω, and such that for any

smooth function h : B → R satisfying∫
B

‖∇gh‖2
g dg

2n
std 6 1,

there exists some E ∈ R, such that∫
B

|h− E|2 dg2n
std 6 ε,

and moreover for any u ∈ (0, 1) sufficiently close to 1, we have∫
S2n−1
u

|h− E|2 dg2n−1
std 6 ε.

Take such a metric g on B, consider the push-forward Φ∗g of g from B to Φ(B)

via the map Φ, and extend it to U by setting it to be equal to g0 on U \Φ(B). Denote,

by abuse of notation, the resulting metric on U again by g. Then we claim that the
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first Dirichlet eigenvalue for the metric g on U is arbitrarily large, provided that ε

is small enough. Indeed, if f : U → R is a smooth function with compact support,

which satisfies ∫
U

‖∇gf‖2
g dg

2n
std 6 1,

then denoting h = Φ∗f , we get ∫
B

‖∇gh‖2
g dg

2n
std 6 C ′,

(where C ′ depends only on the map Φ). Then, by the properties of the metric g,

there exists some E ∈ R, such that∫
B

|h− E|2 dg2n
std 6 C ′ε, (6.2.1)

and moreover for any u ∈ (0, 1) sufficiently close to 1, we have∫
S2n−1
u

|h− E|2 dg2n−1
std 6 C ′ε. (6.2.2)

But for our relatively open subset Σ ⊆ ∂B we have Φ(Σ) ⊆ ∂U , and since the

function f is compactly supported in U , this means that for u ∈ (0, 1) sufficiently

close to 1, we have that h equals to 0 on uΣ = {ux |x ∈ Σ}, and together with

(6.2.2), this implies that E is small, which in turn, together with (6.2.1), implies that∫
B
|h|2 dg2n

std is small, and as a consequence,
∫
U
|f |2 dg2n

std is small, provided that we

took ε to be small enough. This shows that the first Dirichlet eigenvalue of g on U

can be arbitrarily large.

Remark. It is also possible to prove both of the cases (of the first nonzero Neumann

eigenvalue and of the first Dirichlet eigenvalue) of Theorem 6.2, using smooth trian-

gulation of the domain U as in the proof of Theorem 1.10 in section 5, instead of

using a filling of the whole volume of U with help of a smooth embedding of an open

ball as it was described above. However in such proofs, Proposition 1.11 will be needed

in both cases.
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