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Abstract. On any closed symplectic manifold of dimension greater than 2, we

construct a pair of smooth functions, such that on the one hand, the uniform norm

of their Poisson bracket equals to 1, but on the other hand, this pair cannot be

reasonably approximated (in the uniform norm) by a pair of Poisson commuting

smooth functions. This comes in contrast with the dimension 2 case, where by a

partial case of a result of Zapolsky [Z-2], an opposite statement holds.

1. Introduction and results

During the last ten years, function theory on symplectic manifolds has attracted a

great deal of attention [B, BEP, CV, EP-1, EP-2, EP-3, EPR, EPZ, P, Z-1, Z-2]. The

C0-rigidity of the Poisson bracket [EP-2] (cf. [B]) is one of the achievements of this

theory, and it states that on a closed symplectic manifold (M,ω), the uniform norm

of the Poisson bracket of a pair of smooth functions on M is a lower semi-continuous

functional, when we consider the uniform (or the C0) topology on C∞(M)×C∞(M).

Informally speaking, this means that one cannot significantly reduce the C0 norm of

the Poisson bracket of two smooth functions by an arbitrarily small C0 perturbation.

The C0-rigidity of the Poisson bracket holds also when the symplectic manifold (M,ω)

is open, if we restrict to smooth compactly supported functions. In this context it

is natural to ask, how strongly one should perturb a given pair of smooth functions

in order to significantly reduce the C0 norm of their Poisson bracket. The following

question was asked privately by Polterovich in 2009 (later it also appeared in [Z-2]):

Question 1.1. Let (M,ω) be a closed symplectic manifold. Does there exist a constant

C > 0, such that for any pair of smooth functions f, g : M → R satisfying ‖{f, g}‖ =
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1, there exists a pair of smooth functions F,G : M → R, such that ‖F−f‖, ‖G−g‖ 6
C and such that {F,G} = 0 on M?

The 2-dimensional case of this question was answered affirmatively by Zapolsky,

and in fact, it appeared as a particular case of a more general statement which applies

to functions on a manifold with a volume form [Z-2].

The main result of this note is

Theorem 1.2. Let (M,ω) be a symplectic manifold of dimension 2n > 2. Then for

any 0 < p < q there exists a pair of smooth compactly supported functions f, g : M →
R, such that ‖f‖ = ‖g‖ = 1, ‖{f, g}‖ = q, and such that for any s ∈ [0, q] we have

(1.1)
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Here ρf,g(s) is the profile function [BEP], which is defined as

ρf,g(s) = inf{‖F − f‖+ ‖G− g‖ | F,G ∈ C∞c (M) and ‖{F,G}‖ 6 s}.

Now let (M,ω) be a symplectic manifold of dimension 2n > 2. Note that for a pair

f, g : M → R of smooth compactly supported functions, the value ρf,g(0) is precisely

the uniform distance from the pair f, g of functions to the set of pairs F,G : M → R
of smooth compactly supported Poisson commuting functions. Hence, if we take any

C > 0, and set q = 1/(64C2), then Theorem 1.2 implies the existence of a pair f, g :

M → R of smooth compactly supported functions, such that ‖{f, g}‖ = q = 1/(64C2)

and ρf,g(0) = 1/2, and hence for the functions f1 = 8Cf , g1 = 8Cg we first of all get

‖{f1, g1}‖ = 1, and moreover we get ρf1,g1(0) = 4C, which implies that there does

not exist a pair F,G : M → R of smooth compactly supported Poisson commuting

functions, such that ‖F − f1‖, ‖G− g1‖ 6 C. Thus, we obtain

Corollary 1.3. The answer to Question 1.1 is negative in dimension > 2.

The proof of Theorem 1.2 relies on a certain computation of the pb4 invariant, which

is carried out similarly as an analogous computation in the proof of Proposition 1.21

in [BEP]. Some part of the proof of Theorem 1.2 is reminiscent of the proof of

Theorem 1.4 (ii) in [BEP].

Remark 1.4. Question 1.1 has an analogue in the setting of Hermitian matrices

equipped with a commutator (see [PeS, H]).

2. Proofs

Let us first remind the definition of the pb4 invariant which was initially introduced

in [BEP] and which participates in the proof of Theorem 1.2.
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Definition 2.1. Let (M,ω) be a symplectic manifold. Let X0, X1, Y0, Y1 ⊂ M be a

quadruple of compact sets. Then we define

pb4(X0, X1, Y0, Y1) = inf ‖{F,G}‖,

where the infimum is taken over the set of all pairs of smooth compactly supported

functions F,G : M → R such that F 6 0 on X0, F > 1 on X1, G 6 0 on Y0,

and G > 1 on Y1. Note that such set of pairs of functions is non-empty whenever

X0 ∩X1 = Y0 ∩ Y1 = ∅. If the latter condition is violated, we put

pb4(X0, X1, Y0, Y1) = +∞.

The following result was proved in [BEP] (in [BEP] this is Proposition 1.21):

Proposition 2.2. Let (M,ω) be a symplectic surface of area B > 0. Consider a

curvilinear quadrilateral Π ⊂M of area A > 0 with sides denoted in the cyclic order

by a1, a2, a3, a4 - that is Π is a topological disc bounded by the union of four smooth

embedded curves a1, a2, a3, a4 connecting four distinct points in M in the cyclic order

as listed here and (transversally) intersecting each other only at their common end-

points. Let L be an exact section of T ∗S1. Assume that M 6= S2 and that 2A 6 B.

Then in the symplectic manifold M × T ∗S1 (with the split symplectic form) we have

pb4(a1 × L, a3 × L, a2 × L, a4 × L) = 1/A > 0.

The proof of Proposition 2.2, which is presented in [BEP], is divided into two

parts. The first part proves the inequality pb4(a1 × L, a3 × L, a2 × L, a4 × L) 6 1/A

by providing a concrete example of a pair of functions F,G as in Definition 2.1. The

second part proves the inequality pb4(a1 × L, a3 × L, a2 × L, a4 × L) > 1/A, and it

uses the Gromov’s theory of pseudo-holomorphic curves.

Now we turn to the proofs of our results.

Lemma 2.3. Consider R2n endowed with the standard symplectic structure ωstd.

Then given any open set U ⊆ R2n and any A > 0, there exists a smooth symplectic

embedding (B2(A), σstd)→ (U, ωstd), where B2(A) ⊂ R2 is the disc of area A centred

at the origin, and σstd is the standard area form on R2 (and on B2(A)).

Proof. It is enough to construct a smooth embedding of B2(π) into B2n(2π) (where

B2n(2π) is the 2n-dimensional ball of capacity 2π, or equivalently, radius
√

2, centred

at the origin), such that its image is a symplectic curve having arbitrarily large

symplectic area. An example of such an embedding is the map u : B2(π)→ Cn given

by u(z) = (zk, z, 0, 0, ..., 0), where k ∈ N is large enough. �

Lemma 2.4. Assume that we have a curvilinear quadrilateral of area A > 0 on the

plane R2, with sides a1, a2, a3, a4 (written in the cyclic order), and let L ⊂ T ∗Tn−1
be an exact section. Then in the symplectic manifold R2 × T ∗Tn−1 (with the split

symplectic form) we have

pb4(a1 × L, a3 × L, a2 × L, a4 × L) = 1/A > 0.
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Proof. The proof goes similarly as the proof of Proposition 2.2 (which is Proposition

1.21 in [BEP]). �

Proof of Theorem 1.2. Consider a Darboux neighborhood U ⊂M . Denote l = 1/
√
q,

ε = 1/p−1/q. Then q = 1/l2, p = 1/(l2+ε). By Lemma 2.3, there exists a symplectic

embedding u : (B2(2l2+3ε), σstd)→ (U, ω). By the symplectic neighborhood theorem,

a neighborhood of u(B2(2l2+3ε)) contains an open subset which is symplectomorphic

to the product B2(2l2+2ε)×B2(ε′)×(n−1) of a disc of area 2l2+2ε and n−1 copies of a

disc of area ε′, for some ε′ > 0. Let φ : (W = B2(2l2+2ε)×B2(ε′)×(n−1), ωstd)→ (M,ω)

be a symplectic embedding whose image is this open subset. Choose a curvilinear

quadrilateral inside B2(2l2 + 2ε) with sides a1, a2, a3, a4 (which are given in cyclic

order), and area l2 + ε.

Claim 2.5. There exist smooth compactly supported functions f̃1, g̃1 : B2(2l2 + 2ε)→
R, such that ‖{f̃1, g̃1}‖ = 1/l2 = q, such that f̃1 = 0 on a1, f̃1 = 1 on a3, g̃1 = 0 on

a2, g̃1 = 1 on a4, such that f̃1, g̃1 > 0 on B2(2l2 + 2ε) and such that ‖f̃1‖ = ‖g̃1‖ = 1.

Proof. Denote ε1 = ε/l > 0, and consider ε2 > 0 such that (2l + ε1 + 3ε2)(l + 3ε2) =

2l2 + 2ε. Denote ε3 = min(ε1, ε2)/2. It is enough to find smooth compactly supported

functions f̂1, ĝ1 : (−ε2, 2l+ ε1 + 2ε2)× (−ε2, l+ 2ε2)→ R, such that ‖{f̂1, ĝ1}‖ = 1/l2,

such that f̂1 = 0 on {0} × [0, l], f̂1 = 1 on {l + ε1} × [0, l], ĝ1 = 0 on [0, l + ε1]× {0},
ĝ1 = 1 on [0, l+ε1]×{l}, such that f̂1, ĝ1 > 0 on (−ε2, 2l+ε1+2ε2)×(−ε2, l+2ε2) and

such that ‖f̂1‖ = ‖ĝ1‖ = 1. We give an explicit construction. First, choose smooth

functions u1, v1, u2, v2 : R→ [0, 1] with the following properties:

(a) supp(u1) ⊂ (0, 2l + ε1 + ε2), u1(l + ε1) = 1, ‖u′1‖ = 1/(l + ε3).

(b) supp(v1) ⊂ (−ε2, l + ε2), v1(y) = 1 on [0, l].

(c) supp(u2) ⊂ (−ε2, 2l + ε1 + 2ε2), u2(x) = 1 on [0, 2l + ε1 + ε2].

(d) supp(v2) ⊂ (0, l + 2ε2), v2(l) = 1,

max[0,l] |v′2(y)| = max[0,l+ε2] |v′2(y)| = (l + ε3)/l
2.

Now define f̂1, ĝ1 : (−ε2, 2l+ ε1 +2ε2)× (−ε2, l+2ε2)→ R by f̂1(x, y) = u1(x)v1(y),

ĝ1(x, y) = u2(x)v2(y). Then

{f̂1, ĝ1}(x, y) = v1(y)u2(x)u′1(x)v′2(y)− u1(x)v2(y)u′2(x)v′1(y)

= v1(y)u2(x)u′1(x)v′2(y) = u′1(x)v′2(y)v1(y).

We have ‖u′1‖ = 1/(l + ε3), and

‖v′2v1‖ = max |v′2(y)v1(y)| = max
[0,l+ε2]

|v′2(y)v1(y)| = (l + ε3)/l
2,

and hence ‖{f̂1, ĝ1}‖ = ‖u′1‖ · ‖v′2v1‖ = 1/l2. The rest of the claimed properties of

f̂1, ĝ1 follow immediately. �

Consider functions f̃1, g̃1, as in Claim 2.5. Choose 0 < ρ1 < ρ < ρ2 such that πρ22 <

ε′, and choose a smooth function h̃1 : B2(ε′)→ R such that its support lies inside the
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annulus D2
ρ1,ρ2

= {z ∈ B2(ε′) | ρ1 < |z| < ρ2}, such that 0 6 h̃1 6 1 on B2(ε′), and

such that h̃1 = 1 on S1
ρ = {z ∈ B2(ε′) | |z| = ρ}. Now define f1, g1 : W → R by

f1(z, w1, ..., wn−1) = f̃1(z)h̃1(w1)...h̃1(wn−1),

g1(z, w1, ..., wn−1) = g̃1(z)h̃1(w1)...h̃1(wn−1),

for (z, w1, ..., wn−1) ∈ W , and then define f, g : M → R by setting f = g = 0 on

M \ φ(W ) and setting f(φ(x)) = f1(x), g(φ(x)) = g1(x), for any x ∈ W . First note

that f1 = 0 on a1 × (S1
ρ)
n−1, f1 = 1 on a3 × (S1

ρ)
n−1, g1 = 0 on a2 × (S1

ρ)
n−1, and

g1 = 1 on a4 × (S1
ρ)
n−1. Secondly, we have

{f, g}(φ(z, w1, ..., wn−1)) = {f̃1, g̃1}(z)h̃21(w1)...h̃
2
1(wn−1)

for any (z, w1, ..., wn−1) ∈ W , and hence ‖{f, g}‖ = q. Also we have that f, g > 0 on

M , and that ‖f‖ = ‖g‖ = 1. Let us show that the constructed functions f, g satisfy

(1.1). For showing the upper bound, choose a smooth compactly supported function

h : M → [0, 1] such that h = 1 on the union of supports supp(f)∪supp(g), and define

functions F,G : M → R by F = (1
2
− s

2q
+ s

q
f)h, G = g (the upper bound in (1.1) is

essentially the statement of Theorem 1.4 (ii), inequality (8) in [BEP]). Let us show

the lower bound, for a given value of s. Since the profile function ρf,g is non-negative

and non-increasing, it is sufficient to prove the lower bound for s ∈ (0, p). Take

s ∈ (0, p) and denote t = 1
2
− 1

2p
s > 0. Now assume that we have a pair of smooth

compactly supported functions F,G ∈ C∞c (M), such that ‖F − f‖ + ‖G − g‖ 6 t.

Denote α = ‖F − f‖, β = ‖G− g‖. Then α, β > 0 and α+ β 6 t. Now choose δ > 0

small, and pick smooth functions u, v : R → R, such that the function u satisfies

u(x) = 0 for x ∈ [−α, α], |u(x)− x| 6 (1 + δ)α for x ∈ R, and |u′(x)| 6 1 for x ∈ R,

and such that the function v satisfies v(x) = 0 for x ∈ [−β, β], |v(x)− x| 6 (1 + δ)β

for x ∈ R, and |v′(x)| 6 1 for x ∈ R. Then the functions F ′ = u ◦ F , G′ = v ◦ G
satisfy ‖{F ′, G′}‖ 6 ‖{F,G}‖. But moreover, we have that F ′(x) = 0 whenever

f(x) = 0, F ′(x) > 1 − (2 + δ)α whenever f(x) = 1, G′(x) = 0 whenever g(x) = 0,

and G′(x) > 1 − (2 + δ)β whenever g(x) = 1, for any x ∈ M . Hence if we denote

W ′ = B2(2l2 + 2ε)× (D2
ρ1,ρ2

)×(n−1) ⊂ W , then the supports of F ′, G′ lie inside φ(W ′),

so in particular the supports of φ∗F ′, φ∗G′ lie inside W ′, and moreover we have that

φ∗F ′ = 0 on a1×(S1
ρ)
n−1, φ∗F ′ > 1−(2+δ)α on a3×(S1

ρ)
n−1, φ∗G′ = 0 on a2×(S1

ρ)
n−1,

and φ∗G′ > 1 − (2 + δ)β on a4 × (S1
ρ)
n−1. Consider a symplectic embedding ψ of

W ′ = B2(2l2 + 2ε) × (D2
ρ1,ρ2

)×(n−1) into R2 × (T ∗S1)×(n−1) = R2 × T ∗Tn−1 (where

Tn−1 = (S1)n−1 is the (n − 1)-dimensional torus), given as a product of maps, such

that at the factor B2(2l2 + 2ε) we have the standard embedding into R2 (given by

the identity map), and such that at each factor D2
ρ1,ρ2

, the circle S1
ρ is mapped onto

the zero section of T ∗S1. Denote the push-forwards F2 = ψ∗φ
∗F ′ = F ′ ◦ φ ◦ ψ−1,

G2 = ψ∗φ
∗G′ = G′ ◦ φ ◦ ψ−1, which are a priori defined on ψ(W ′), and extend them

by 0 to obtain functions on the whole R2 × T ∗Tn−1. We have F2 = 0 on a1 × L0,

F2 > 1− (2 + δ)α on a3 × L0, G2 = 0 on a2 × L0, and G2 > 1− (2 + δ)β on a4 × L0,
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where L0 ⊂ T ∗Tn−1 is the zero section. Therefore in view of Lemma 2.4, we get

‖{F,G}‖ > ‖{F ′, G′}‖ = ‖{F2, G2}‖

> (1− (2 + δ)α)(1− (2 + δ)β) · pb4(a1 × L0, a3 × L0, a2 × L0, a4 × L0)

=
(1− (2 + δ)α)(1− (2 + δ)β)

l2 + ε
>

1− (2 + δ)(α + β)

l2 + ε
>

1− (2 + δ)t

l2 + ε
= (1−(2+δ)t)p.

Since we can choose δ > 0 to be arbitrarily small, we in fact get

‖{F,G}‖ > (1− 2t)p = s.

Thus we have shown that for any F,G ∈ C∞c (M) with ‖F − f‖ + ‖G − g‖ 6 t we

have ‖{F,G}‖ > s. This immediately implies

ρf,g(s) > t =
1

2
− 1

2p
s.

�
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