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Abstract

A set A in a finite dimensional Euclidean space is monovex if for
every two points x, y ∈ A there is a continuous path within the set that
connects x and y and is monotone (nonincreasing or nondecreasing)
in each coordinate. We prove that every open monovex set as well as
every closed monovex set is contractible, and provide an example of
a nonopen and nonclosed monovex set that is not contractible. Our
proofs reveal additional properties of monovex sets.

1 Introduction

A set A in a finite dimensional Euclidean space is monovex if for every two
points x, y ∈ A there is a continuous path within the set that connects x and
y and is monotone (nonincreasing or nondecreasing) in each coordinate. In
particular, whether or not a set is monovex depends on the choice of basis
for the space.

Monovex sets arise in the study of stochastic games (Solan, 2017), where
an extension of the Kakutani’s fixed-point theorem (Kakutani, 1941) for
set-valued functions with a closed graph and nonempty monovex values
is needed.1 By Eilenberg-Montgomery fixed-point theorem (Eilenberg and
Montgomery, 1946) any set-valued functions from a convex compact subset
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1Kakutani’s fixed-point theorem states that any set-valued function F from a convex
and compact subset of Rn to itself with a closed graph and nonempty convex values has
a fixed point.
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of Rn to itself with a closed graph and nonempty contractible values has a
fixed point. Consequently, our goal is to study contractibility of monovex
sets.

In this paper we prove that every open monovex set, as well as every closed
monovex set, is contractible. We also provide an example of a nonopen and
nonclosed monovex set that is not contractible.

2 Definition and Main Results

The concept that this paper studies is monovex subsets of a finite dimensional
Euclidean space.

Definition 2.1. A set A ⊆ Rn is monovex if for every x, y ∈ A there is a
continuous path γ : [0, 1]→ A that satisfies the following properties:

(M1) γ(0) = x and γ(1) = y.

(M2) γi : [0, 1]→ R is a monotone function (nondecreasing or nonincreasing)
for every i ∈ {1, 2, . . . , n}.

A path γ that satisfies Condition (M2) is called monotone.

The image of a monovex set under a diagonal affine transformation is
monovex, yet a rotation of a monovex set need not be monovex. Every
convex set is in particular monovex. If A is a monovex set, then so is the
projection of A onto any “coordinate subspace”, that is, a subspace spanned
by a collection of elements of the standard basis of Rn. Every monovex subset
of R is convex, yet there are monovex subsets of R2 that are not convex (see
Figure 1).

Part A Part B

Figure 1: A monovex set (Part A) and a nonmonovex set (Part B) in the plane.

As the following example shows, monovex sets may be complex objects.
In particular, they need not be CW-complexes.
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Example 2.2. Let A ⊂ [0, 1]2 be the following set (see Figure 2):

A = {(0, 0)} ∪
(
∪∞k=0[

1
2k+1 ,

1
2k

]2
)
.

It is evident that the set A is monovex, yet it is not a CW-complex.

Figure 2: The monovex set A in Example 2.2.

The Minkowski sum of two convex sets is a convex set. This property
is not shared by monovex sets. In fact, as the following example shows, the
Minkowski sum of a monovex set and a convex set need not be a monovex
set. In Lemma 3.4 below we will prove that the Minkowski sum of a monovex
set in Rn and an n-dimensional box whose faces are parallel to the axes is a
monovex set.

Example 2.3. Let A be the union of the two line segments [(0, 0, 0), (0, 1, 1)]
and [(0, 1, 1), (1, 1, 2)], which is monovex. LetB be the line segment [(0, 0, 0), (−1,−1, 2)].
The intersection of the set A + B := {a + b : a ∈ A, b ∈ B} and the line
{x ∈ R3 : x1 = x2 = 0} is the two points (0, 0, 0) and (0, 0, 4). Indeed,
all points b ∈ B satisfy b1 = b2, while the only points a ∈ A that satisfy
a1 = a2 are (0, 0, 0) and (1, 1, 2). Hence a point a+ b ∈ A+B is on the line
{x ∈ R3 : x1 = x2 = 0} if and only if a = b = (0, 0, 0), or a = (1, 1, 2) and
b = (−1,−1, 2).

Since the intersection of A + B and the line {x ∈ R3 : x1 = x2 = 0}
contains two points, there is no monotone path that connects these points
and lies in A+B, and therefore the set A+B is not monovex.

The Minkowski sum of the sets in Example 2.3 is contractible. As the
following example shows, the Minkowski sum of a monovex set and a convex
set can be homotopy equivalent to the circle S1.
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Example 2.4. LetA be the union of the three line segments [(0, 0, 0), (1, 0, 0)],
[(1, 0, 0), (1, 1, 0)], and [(1, 1, 0), (1, 1, 1)], which is monovex. LetB = {(x, x, x) : x ∈
R}, which is convex. Denote by C the triangle in R3 whose vertices are
(0, 0, 0), (2

3
,−1

3
,−1

3
), and (1

3
, 1
3
,−2

3
). The Minkowski sum of A and B is

A+B = C +B, which is homotopy equivalent to the circle S1.

As mentioned in the introduction, our goal is to study whether monovex-
ity implies contractibility. It is a little technical but not difficult to show that
every monovex subset of R2 is contractible. As the following example shows,
not every three-dimensional monovex set is contractible.

Example 2.5. Let A ⊂ [−1, 1]3 be the set of all points that have at least
one negative coordinate and at least one nonnegative coordinate. The reader
can verify that the set A is monovex. The set A is disjoint of the line
{(x, x, x) : x ∈ R}, and it contains the loop γ that is depicted in Figure 3
and is not contractible in R3 \ {(x, x, x) : x ∈ R}. In particular, the set A is
not contractible. In fact, one can show that the set A is homotopy equivalent
to the circle S1.

(1, 1, 1)

(−1,−1,−1) (1,−1,−1)

(1, 1,−1)

(−1,−1, 1)

(−1, 1, 1)

Figure 3: The path γ in Example 2.5 (the dark curve).

We next observe that every open monovex set is contractible.

Theorem 2.6. Every open monovex subset of Rn is contractible.

Proof. The proof is by induction on n. For n = 1, an open monovex set is an
open interval, hence contractible. Assume now that A is an open monovex
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subset of Rn with n > 1. Let B be the projection of A onto its first n − 1
coordinates, and let F : B ⇒ R be the set-valued function whose graph is A;
that is

F (x) := {t ∈ R : (x, t) ∈ A}, ∀x ∈ B.
Note that F (x) is an open interval for every x ∈ B. The set B is open and
monovex, and by the induction hypothesis it is contractible. The set-valued
function F satisfies the conditions of Michael’s selection theorem (Michael,
1956, Theorem 3.1’’’),2 hence there is a continuous function f : B → R such
that f(x) ∈ F (x) for every x ∈ B. This implies that A is contractible; indeed
first contract A to graph(f), and then contract graph(f) to a point.

The main result of the paper is the following.

Theorem 2.7. Every closed monovex subset of Rn is contractible.

We provide two proofs to Theorem 2.7, each one uses different properties
of monovex sets, which may have their own interest. The first proof, provided
in Section 3.1, relies on the property that one can assign, in a continuous way,
to every pair of points in a monovex set a (not necessarily monotone) path
that connects these points and lies in the set. The second proof, provided
in Section 3.2, relies on the stronger property that the complement of a
monovex set can be continuously projected onto the set. In the first proof we
will provide a direct argument that shows the existence of a continuous map
from pairs of points in the monovex set to paths that connect the points and
lie in the set.

Several open problems regarding contractibility of monovex sets still re-
main. We prove that every closed monovex set is contractible. We do not
know whether for every such set there is a Lipschitz continuous contraction.
Another issue that remains open is whether our results hold for infinite di-
mensional spaces.

3 Proof of Theorem 2.7

Throughout the paper we use the maximum metric in Rn, that is, d∞(x, y) :=
max1≤i≤n |xi − yi| for every x, y ∈ Rn. The distance between a point x ∈ Rn

2Michael’s selection theorem implies in particular that for every subset X ⊆ Rn and
every set-valued function F : X ⇒ Rm with an open graph and nonempty convex values
there exists a continuous function f : X → Rn such that f(x) ∈ F (x) for every x ∈ X.
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and a set A ∈ Rn is d∞(x,A) := infy∈A d∞(x, y), and the distance between
two setsA,B ⊂ Rn is the Hausdorff distance d∞(A,B) := max{supx∈A d∞(x,B), supy∈B d∞(y, A)}.

For every x ∈ Rn and every r > 0 we denote by B(x, r) := {y ∈
Rn : d∞(x, y) < r} the open ball around x with radius r, and by B(x, r) :=
{y ∈ Rn : d∞(x, y) ≤ r} the closed ball around x with radius r. We denote
by ~0 the vector (0, 0, . . . , 0) in Rn.

A (closed) box in Rn is a set of the form ×ni=1[ai, bi], where ai ≤ bi for each
i ∈ {1, 2, . . . , n}. A box is l-dimensional if the number of indices i such that
ai < bi is l. The set of vertices of a box R is denoted vert(R). The smallest
box that contains a set A is called the b-hull of A and denoted b-hull(A).

A b-lattice is a set of the form Γ = {(a1k1, . . . , ankn) : k1, k2, . . . , kn ∈ Z},
where a1, a2, . . . , an > 0. Denote by Pl(Γ) the set of l-dimensional elementary
boxes having vertices in the lattice, that is, the collection of all sets ×ni=1Ji
such that for each i either Ji = {aiki} or Ji = [aiki, ai(ki + 1)] for some
ki ∈ Z, and moreover the second condition happens for exactly l values of
i. Denote P (Γ) := Pn(Γ) the set of full-dimensional elementary boxes with
vertices in the lattice Γ.

3.1 First Proof

The following proposition states that any function f from an m-dimensional
grid to a monovex set A can be extended to a continuous function from the
m-dimensional space to A with the property that the image under f of any
elementary l-dimensional box whose vertices are points in the grid is a subset
of the b-hull of the image under f of the vertices of the box.

Proposition 3.1. Let A ⊂ Rn be a closed monovex set and let Γ ⊂ Rm be
a b-lattice. Let X ⊂ Rm be a (finite or infinite) union of boxes in P (Γ),
and let S := X ∩ Γ be the set of all vertices of these boxes. Let f : S → A.
Then f can be extended to a continuous function f : X → A that satisfies
the following property:

(P) For every l, 1 ≤ l ≤ m, and every box R ∈ Pl(Γ) that is a subset of X,
the image f(R) is a subset of the b-hull of f(vert(R)).

Proof. Assume w.l.o.g. that Γ = Zm. To prove the result, we will define the
function f iteratively on the sets X ∩

(
( 1
2k+1 Γ) \ ( 1

2k
Γ)
)
, k = 0, 1, 2, . . ., and

show that this definition can be extended to a continuous function over X.
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For every natural number r ∈ N and every integer i, 1 ≤ i ≤ n, define a
function ϕr,i : Ar → A as follows. Let (q(1), q(2), . . . , q(r)) ∈ Ar, let jmin be an

index in which min1≤j≤r q
(j)
i is attained, and let jmax be an index in which

max1≤j≤r q
(j)
i is attained. Choose a continuous monotone curve γ : [0, 1]→ A

connecting q(jmin) and q(jmax) (if jmin = jmax, the curve is constant). By

continuity there exists t0 ∈ [0, 1] such that γi(t0) =
q
(jmin)
i +q

(jmax)
i

2
. Set

ϕr,i(q
(1), q(2), . . . , q(r)) := γ(t0).

We now extend the function f from X ∩ 1
2k

Γ to X ∩ 1
2k+1 Γ, for k =

0, 1, 2, . . .. Suppose then that f : X ∩ 1
2k

Γ → A is given, and set i :=
k + 1 (mod n). Every q ∈ X ∩

(
( 1
2k+1 Γ) \ ( 1

2k
Γ)
)

is the center of a unique
l-dimensional box R ∈ Pl(

1
2k

Γ) that is contained in X (where 1 ≤ l ≤ n).
Define

f(q) := ϕ2l,i(q
(1), q(2), . . . , q(2

l)),

where q(1), q(2), . . . , q(2
l) are the f -images of the vertices of R.

We have extended f to a function f : X ∩
(
∪∞k=0

1
2k

Γ
)
→ A. Note

that a property reminiscent to (P) is satisfied: for any integers k ≥ 0 and
1 ≤ l ≤ m, and for any box R ∈ Pl(2

−kΓ) that is a subset of X, we have
f(R ∩

(
∪∞k=0

1
2k

Γ
)
) ⊆ b-hull(f(vert(R))). We moreover claim that the func-

tion f is locally uniformly continuous, 3 and in fact, locally 1
n
-Hölder. In-

deed, for k ∈ N and a box R ∈ P ( 1
2k

Γ) denote Mi(R) := max{|fi(q(j)) −
fi(q

(m))| : q(j), q(m) ∈ vert(R)}. LetNi(R) := max{Mi(S) : S ∈ P ( 1
2k+1 Γ), S ⊂

R} be the maximum of the corresponding quantity over all sub-boxes of S
that belong to P ( 1

2k+1 Γ). If i = k+ 1 (mod n) then Ni(R) ≤Mi(R)/2, while
if i 6= k+ 1 (mod n) then Ni(R) ≤Mi(R). Since i = k+ 1 (mod n) infinitely
often with step n as k increases, it follows that f is indeed locally 1

n
-Hölder

continuous.
The set X ∩

⋃∞
k=0 2−kΓ, where f is now defined, is dense in X, hence f

can be extended by continuity to a continuous function from X to A. The
extended function f is locally 1/n-Hölder as well, and it satisfies (P).

We would like to prove that there is a continuous function f : A × A ×
[0, 1] → A that satisfies f(x, y, 0) = x and f(x, y, 1) = y for every x, y ∈ A.

3A function is locally uniformly continuous if it is uniformly continuous on every
bounded subset.
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In the next lemma we prove an approximate version of this result. We will
use it in Proposition 3.3 below to prove the stronger version of the claim.

Lemma 3.2. Let A ⊂ Rn be a closed monovex set. For every δ > 0 there
exists a continuous function gδ : A × A × [0, 1] → A such that for every
x, y ∈ A we have:

1. d∞(x, gδ(x, y, 0)) ≤ δ and d∞(y, gδ(x, y, 1)) ≤ δ.

2. d∞(gδ(x, y, t), b-hull({x, y})) ≤ δ for every t ∈ [0, 1].

Proof. Fix δ > 0. Consider the lattice Γ := δ
2
Zn, and denote by X the union

of all boxes R ∈ P (Γ) that satisfy R∩A 6= ∅. Denote X̃ := X ×X × [0, 1] ⊆
R2n+1, Γ̃ := Γ× Γ× Z, and S̃ := X̃ ∩ Γ̃.

Let f : S̃ → A be any function that satisfies the following property: for
every x, y ∈ X ∩ Γ we have d∞(x, f(x, y, 0)) ≤ δ

2
and d∞(y, f(x, y, 1)) ≤ δ

2
.

Such a function exists since every x ∈ X ∩ Γ is a vertex of a box R ∈ P (Γ)
whose sidelength is δ

2
with R ∩ A 6= ∅.

By Proposition 3.1, the function f can be extended to a continuous func-
tion f : X̃ → A that satisfies Property (P). In particular, for every two boxes
Q,R ∈ P (Γ) lying in X, we have:

• f(Q×R×{0}) is contained in the b-hull of f(vert(Q)×vert(R)×{0});

• f(Q×R×{1}) is contained in the b-hull of f(vert(Q)×vert(R)×{1}).

Moreover, for every x ∈ Q, every y ∈ R, every q ∈ vert(Q), and every
r ∈ vert(R) we have d∞(x, q) ≤ δ

2
, d∞(y, r) ≤ δ

2
, d∞(q, f(q, r, 0)) ≤ δ

2
, and

d∞(r, f(q, r, 1)) ≤ δ
2
. By the triangle inequality it follows that d∞(x, f(q, r, 0)) ≤

δ and d∞(y, f(q, r, 1)) ≤ δ. We conclude that given x ∈ Q and y ∈ R,
for every q ∈ vert(Q) and r ∈ vert(R) we have d∞(x, f(q, r, 0)) ≤ δ and
d∞(y, f(q, r, 1)) ≤ δ. Therefore, since f(x, y, 0) ∈ b-hull(f(vert(Q)×vert(R)×
{0})) and f(x, y, 1) ∈ b-hull(f(vert(Q)×vert(R)×{1})), we have d∞(x, f(x, y, 0)) ≤
δ and d∞(y, f(x, y, 1)) ≤ δ.

In addition, since f satisfies Property (P), the image f(Q×R× [0, 1]) is
contained in the b-hull of f(vert(Q) × vert(R) × {0, 1}), and hence we also
conclude that d∞(f(x, y, t), b-hull({x, y})) ≤ δ for every t ∈ [0, 1].

To summarize, for every x, y ∈ X and every t ∈ [0, 1] we have

• d∞(x, f(x, y, 0)) ≤ δ,
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• d∞(y, f(x, y, 1)) ≤ δ, and

• d∞(f(x, y, t), b-hull({x, y})) ≤ δ.

To end the proof of the lemma, define gδ to be the restriction of f to A ×
A× [0, 1].

Proposition 3.3. There exists a continuous function ϕ : A×A× [0, 1]→ A
such that ϕ(x, y, 0) = x and ϕ(x, y, 1) = y for every x, y ∈ A.

We note that Proposition 3.3 implies Theorem 2.7. Indeed, choose an
arbitrary x0 ∈ A. The function G : A × [0, 1] → A defined by G(x, t) :=
ϕ(x, x0, t) for every x ∈ A and t ∈ [0, 1] is a homotopy between A and {x0}.

Proof of Proposition 3.3. Let (δk)
∞
k=1 be a sequence of positive reals such

that
∑∞

k=1 δk < ∞. We define the function ϕ in steps by a Cantor set
construction. Define C0 := {0, 1}, C1 := {[1

3
, 2
3
]}, and for every k ≥ 2 let

Ck be the collection of all closed intervals [s, s′] where s = 1
3k

+
∑k−1

j=1
αj

3j
and

s′ = 2
3k

+
∑k−1

j=1
αj

3j
, for some αj ∈ {0, 2}, j = 1, 2, . . . , k − 1 (see Figure 4).

C0

C1

C2

C3

0 11
3

2
3

1
9

2
9

7
9

8
9

Figure 4: The sets Ck for k = 0, 1, 2, 3.

For k = 0, 1, . . ., in step k we define ϕ on A × A ×
(
∪[s,s′]∈Ck

[s, s′]
)
. For

k = 0 set
ϕ(x, y, 0) := x, ϕ(x, y, 1) := y, ∀x, y ∈ A.

For k ≥ 1, consider an interval [s, s′] ∈ Ck and set t := s− 1
3k

and t′ := s′+ 1
3k

.
Each of the points t and t′ is an endpoint of an interval in Cj for some j < k.
Hence ϕ(·, ·, t) and ϕ(·, ·, t′) were already defined.

Set

ϕ(x, y, (1− λ)s+ λs′) := gδk(ϕ(x, y, t), ϕ(x, y, t′), λ), ∀x, y ∈ A,∀λ ∈ [0, 1],
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where gδk satisfies the statement of Lemma 3.2. The procedure described
above defines ϕ onA×A×

(
∪∞k=0 ∪[s,s′]∈Ck

[s, s′]
)
. The set ∪∞k=0

(
∪[s,s′]∈Ck

[s, s′]
)

is dense on [0, 1], hence ϕ is defined in a dense subset of A×A× [0, 1]. Since∑∞
k=1 δk < ∞, the function ϕ is in fact locally uniformly continuous, hence

it can be extended to a continuous function ϕ : A × A × [0, 1] → A, as
desired.

3.2 Second Proof

We first argue that if A is a monovex set and R is an open box whose faces
are parallel to the axes, then A + R is monovex. We note that the proof is
valid also when the box R is closed.

Lemma 3.4. If the set A ⊂ Rn is monovex and R ⊂ Rn is an open box
whose faces are parallel to the axes, then the set A+R is monovex.

Proof. Let x, y ∈ A + R. Then x = x′ + a′ and y = y′ + b′, where x′, y′ ∈ A
and a′, b′ ∈ R. Assume w.l.o.g. that x′i ≤ y′i for every i ∈ {1, 2, . . . , n}, and
let γ′ : [0, 1]→ A be a continuous monotone path that connects x′ to y′. Let
J := {i : 1 ≤ i ≤ n, x′i < y′i}. There are a diagonal matrix D ∈ Mn,n(R)
and a vector v ∈ Rn such that (Dx′ + v)i = a′i and (Dy′ + v)i = b′i for every
coordinate i ∈ J . Define for every coordinate i ∈ {1, 2, . . . , n} a continuous
function δi : [0, 1]→ R as follows:

• If i ∈ J then δi(t) := (Dγ′(t) + v)i.

• If i 6∈ J then δi is any continuous monotone function that satisfies
δi(0) = a′i and δi(1) = b′i.

Since δi is monotone for every coordinate i and since δ(0) = a′ and δ(1) = b′,
we have δ(t) ∈ R for every t ∈ [0, 1].

The path γ := γ′ + δ satisfies the following properties, which imply that
γ is a continuous monotone path in A+R from x to y.

• γ(0) = x′ + a′ = x and γ(1) = y′ + b′ = y.

• γ(t) ∈ A+R for every t ∈ [0, 1].

• For every coordinate i ∈ J we have γi = ((I +D)γ′ + v)i. Since I +D
is a diagonal matrix, the function γi is monotone.
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• For every coordinate i 6∈ J we have γi = x′i + δi, and therefore in this
case γi is monotone as well.

Since x and y are arbitrary, the result follows.

We will use the following extension of Michael’s selection theorem to
monovex-valued functions.

Lemma 3.5. Let X ⊆ Rn and let F : X ⇒ Rm be a set-valued function
with open graph and nonempty monovex values. Then F has a continuous
selection: there is a continuous function f : X → Rm that satisfies f(x) ∈
F (x) for every x ∈ X.

Proof. We prove the result by induction on m. If m = 1 then the values
of F are convex, hence by Michael’s selection theorem F has a continuous
selection f .

Assume now that m > 1. Let F1 : X ⇒ R be the projection of F to its
first coordinate:

F1(x) = {y1 ∈ R : (y1, y2, . . . , ym) ∈ F (x) for some (y2, . . . , ym) ∈ Rm−1}.

Let F2 : graph(F1) ⇒ Rm−1 be the set-valued function defined by

F2(x, y1) := {(y2, . . . , ym) ∈ Rm−1 : (y1, y2, . . . , ym) ∈ F (x)}.

The set-valued functions F1 and F2 have open graphs and monovex values,
hence by the induction hypothesis applied to both of them there are contin-
uous selections f1 of F1 and f2 of F2. The function g : X → Rm defined by
g(x) := (f1(x), f2(x, f1(x))) is a continuous selection of F .

Definition 3.6. Let U ⊆ Rn be an open set, let ε : U → (0, 1] be a con-
tinuous function, and let F : U ⇒ Rm be a set-valued function. The ε-
neighborhood of F is the set

Nε(F ) :=
⋃

(x,y)∈graph(F )

B((x, y), ε(x)) ⊆ Rn+m.

The following result states that every set-valued function with a relatively
closed graph and compact monovex values can be approximated by a set-
valued function with an open graph and monovex values.
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Lemma 3.7. Let U ⊆ Rn be an open set, let ε : U → (0, 1] be a continuous
function, and let F : U ⇒ Rm be a set-valued function with a relatively
closed graph and compact monovex values. There exists a set-valued function
G : U ⇒ Rm with an open graph and monovex values satisfying graph(F ) ⊆
graph(G) ⊆ Nε(F ).

Proof. Step 1: Definitions.
Define a function η : U → { 1

2k
: k ∈ N} by

η(x) := max
{

1
2k

: k ∈ N, 1
2k
≤ ε(x)

10

}
.

This function is upper-semi-continuous function: for every sequence (xk)k∈N ⊂
U that converges to a limit x ∈ U we have lim supk→∞ η(xk) ≤ η(x). Given
δ > 0, let Gδ := P (δZm) be the collection of elementary m-dimensional boxes
in the lattice δZm. Let F1(x) be the union of all boxes in Gη(x) that have
nonempty intersection with F (x):

F1(x) :=
⋃
{R ∈ Gη(x) : R ∩ F (x) 6= ∅}.

The set F1(x) contains F (x), it is a union of closed boxes, hence closed, and

it approximates F (x): d∞(F1(x), F (x)) ≤ η(x) ≤ ε(x)
10

for every x ∈ U .
Step 2: The set F1(x) is monovex for every x ∈ U .

Let x ∈ U and let y, z ∈ F1(x). By the definition of F1, there are
y′, z′ ∈ F (x) and two boxes R, S ∈ Gη(x) such that y, y′ ∈ R and z, z′ ∈ S.
Since F (x) is monovex, there is a continuous monotone path γ′ that connects
y′ to z′ within F (x). Assume w.l.o.g. that y′i ≤ z′i for every i = 1, 2, . . . , n.

We now define a path γ.

(B1) If there is ai ∈ Z such that aiη(x) ≤ zi ≤ (ai + 1)η(x) and aiη(x) ≤
yi ≤ (ai + 1)η(x), set γi(t) := (1− t)yi + tzi.

(B2) Otherwise there is ai ∈ Z such that yi ≤ aiη(x) ≤ zi. We let γi(t) be
the projection of γ′i(t) to the line segment [yi, zi]:

γi(t) := min{max{γ′i(t), yi}, zi}.

The reader can verify that γ is contained in F1(x). However, γ(0) need
not be y and γ(1) need not be z. Indeed, for every i for which Condition
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(B2) holds we have γi(0) = max{yi, y′i} and γi(1) = min{zi, z′i}. Define then
two points ỹ, z̃ ∈ F1(x) by

ỹi :=

{
yi Condition (B1) holds,
max{yi, y′i} Condition (B2) holds.

(3.1)

z̃i :=

{
zi Condition (B1) holds,
min{zi, z′i} Condition (B2) holds.

(3.2)

A monotone path in F1(x) that connects y and z is the concatenation of (a)
a monotone path that connects y and ỹ, (b) the path γ, and (c) a monotone
path that connects z̃ to z.
Step 3: For every x ∈ U there is δx ∈ (0, ε(x)

10
) such that F1(y) ⊆ F1(x) and

η(y) ≤ η(x) for every y ∈ B(x, δx).
Since the function η is upper-semi-continuous and its image is discrete, for

every x ∈ U there is δx > 0 such that η(y) ≤ η(x), for every y ∈ B(x, δx). We
turn to prove the analogous property for F1. If the property does not hold,4

then for every k ∈ N there exists yk ∈ B(x, 1
k
) such that F1(yk) 6⊆ F1(x). That

is, there is zk ∈ F1(yk)\F1(x). Since zk ∈ F1(yk), the point zk belongs to some
box Rk of the lattice Gη(yk), and in particular there is a point wk ∈ Rk∩F (yk).
Since (i) F has a relatively closed graph and compact values, (ii) the image
of η is discrete, and (iii) η is locally bounded from below, it follows that the
number of boxes Rk that satisfy these properties is finite, hence by taking
a subsequence we can assume that (a) Rk = R for every k ∈ N and (b) the
sequence (wk)k∈N converges to some point w ∈ Rn. In particular, w ∈ R.
Since the graph of F is relatively closed, w ∈ F (x) ∩ R. In particular,
F (x)∩R 6= ∅, and hence R ⊆ F1(x), which implies that zk ∈ F1(x) for every
k ∈ N, a contradiction.
Step 4: Definition of the set-valued function G.

For every x ∈ U define a set Q(x) by

Q(x) := {y ∈ U : x ∈ B(y, δy
2

)}.

Thus, y ∈ Q(x) if the two points x and y are close, when the distance is
measured by δy. Note that x ∈ Q(x) for every x ∈ U , and therefore Q has
nonempty values. Define

G(x) :=
⋃

y∈Q(x)

(
F1(y) +B(~0, η(y))

)
, ∀x ∈ U.

4The index k always refers to an element of a sequence. Thus, yk is the k’th element
of a sequence, and not the k’th coordinate of y.
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We will prove that the set-valued function G satisfies the desired conditions.
Note that G(x) is a union of open sets, and hence it is open. In addition,

since x ∈ Q(x), we have G(x) ⊇ F1(x) ⊇ F (x), hence graph(G) ⊇ graph(F ).
Step 5: If y1, y2 ∈ Q(x) then either (a) F1(y1) ⊆ F1(y2) and η(y1) ≤ η(y2),
or (b) F1(y1) ⊇ F1(y2) and η(y1) ≥ η(y2).

Let y1, y2 ∈ Q(x) and assume w.l.o.g. that δy1 ≥ δy2 . Since x ∈ B(y1,
δy1
2

)∩
B(y2,

δy2
2

) we deduce that B(y1,
δy1
2

) ∩B(y2,
δy2
2

) 6= ∅. In particular

d∞(y1, y2) <
δy1
2

+
δy2
2
≤ δy1 ,

which implies that y2 ∈ B(y1, δy1). By Step 3 this implies that F1(y1) ⊇
F1(y2) and η(y1) ≥ η(y2).
Step 6: The set G(x) is monovex for every x ∈ U .

Let z1, z2 ∈ G(x). Then there are y1, y2 ∈ Q(x) such that z1 ∈ F1(y1) +
B(~0, η(y1)) and z2 ∈ F1(y2)+B(~0, η(y2)). By Step 5 we can assume w.l.o.g. that
z2 ∈ F1(y1) + B(~0, η(y1)). By Step 2 and Lemma 3.4 the set F1(y1) +
B(~0, η(y1)) is monovex.
Step 7: The graph of G is an open subset of the 3

10
ε-neighborhood of F .

By the definition of G,

graph(G) =

(⋃
y∈U

B(y, δy
2

)× (F1(y) +B(~0, η(y)))

)
∩ (U × Rm).

It follows that graph(G) is a union of open sets, hence open. Moreover,
graph(G) is a subset of the ( δy

2
+ 2η(y))-neighborhood of F . The claim

follows since ( δy
2

+ 2η(y)) ≤ 3
10
ε.

The following result implies Theorem 2.7.

Proposition 3.8. Every closed monovex set A ⊆ Rn is a retract: there is a
continuous function h : Rn → A which is the identity on A.

We now show that Proposition 3.8 implies Theorem 2.7. Indeed, fix
x0 ∈ Rn, and let h be the retract of Proposition 3.8. The function h∗ : A→
[0, 1]→ A defined by

h∗(x, t) := h((1− t)x+ tx0)

is a homotopy between A and {h(x0)}, and therefore A is contractible, as
claimed.
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Proof of Proposition 3.8. Step 1: Definitions.
The real-valued function x 7→ d∞(x,A) is continuous and positive for

x ∈ Rn \ A. Let F : Rn \ A⇒ A be the set-valued function defined by

F (x) := A ∩B(x, d∞(x,A)).

The set F (x) contains all points in A that are closest to x. Since A is a
closed monovex set, and since the intersection of a monovex set and a ball in
the maximum norm is monovex, the set-valued function F has a relatively
closed graph and compact monovex values.

Set ε(x) := d∞(x,A)
10

and apply Lemma 3.7 to F and ε. It follows that there
exists a set-valued function G : Rn \A→ Rn with open graph and monovex
values such that graph(G) lies in the ε-neighborhood of F .
Step 2: For every x ∈ Rn \ A we have G(x) ⊆ B(x, 4

3
d∞(x,A)).

Let (x, z) ∈ graph(G). Since graph(G) is contained in an ε-neighborhood
of F , there is (x′, z′) ∈ graph(F ) such that d∞(x′, x) < ε(x′) and d∞(z′, z) <
ε(x′). Since z′ ∈ F (x′) = A ∩ B(x′, d∞(x′, A)), it follows that d∞(z′, x′) =
d∞(x′, A). By the triangle inequality

d∞(x,A) ≥ d∞(x′, A)− d∞(x, x′) > d∞(x′, A)− ε(x′) (3.3)

= d∞(x′, A)− d∞(x′,A)
10

= 9
10
d∞(x′, A).

By the triangle inequality once again and (3.3) we obtain that

d∞(z, x) ≤ d∞(z, z′) + d∞(z′, x′) + d∞(x′, x) (3.4)

< 2ε(x′) + d∞(x′, A) = 12
10
d∞(x′, A) ≤ 12

9
d∞(x,A), (3.5)

as claimed.
Step 3: Definition of a function g.

By Michael’s selection theorem (Lemma 3.5), there is a continuous selec-
tion g of G. Step 2 implies that

d∞(g(x), x) ≤ 4
3
d∞(x,A), ∀x ∈ Rn \ A. (3.6)

As a consequence we obtain that for every sequence (xk)k∈N that converges
to a limit x that lies in A we have limk→∞ d∞(g(xk), xk) = 0. In particular,
the function g can be extended to a continuous function from Rn to Rn that
is the identity on A.

Since (x, g(x)) ∈ graph(G) and since G lies in an ε-neighborhood of F ,
it follows that there is (x′, y′) ∈ graph(F ) such that d∞(x, x′) < ε(x′) and
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d∞(g(x), y′) < ε(x′). Since (x′, y′) ∈ graph(F ) we in particular deduce that
y′ ∈ A, so that

d∞(g(x), A) < ε(x′) = d∞(x′,A)
10

≤ d∞(x,A)
9

,

where the last inequality follows from Eq. (3.3).
Step 4: Definition of the function h.

For every k ∈ N let gk be the composition of g on itself k times; that is,
g1 := g and gk := g ◦ gk−1. For every k ∈ N the function gk is the identity
on A and satisfies d∞(gk(x), A) ≤ d∞(x,A)

9k
for every x ∈ Rn \ A. Together

with (3.6) we deduce that the functions (gk)k∈N converge locally uniformly
to some continuous function h, which is the desirable retract.
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