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Abstract

We study non-trivial translation-invariant probability measures on the space of entire functions

of one complex variable. The existence (and even an abundance) of such measures was proven

by Benjamin Weiss. Answering Weiss’ question, we find a relatively sharp lower bound for the

growth of entire functions in the support of such measures. The proof of this result consists

of two independent parts: the proof of the lower bound and the construction, which yields its

sharpness. Each of these parts combines various tools (both classical and new) from the theory

of entire and subharmonic functions and from the ergodic theory.

We also prove several companion results, which concern the decay of the tails of non-trivial

translation-invariant probability measures on the space of entire functions and the growth of

locally uniformly recurrent entire and meromorphic functions.

1 Introduction and main results

Our starting point is Benjamin Weiss’ work [9] where he showed that there exist non-

trivial translation-invariant probability measures on the space of entire functions of one

complex variable (a formal definition of such measures will be given several lines below).

Actually, Weiss showed that there is an abundance of such measures. Another approach

to the construction of such measures was suggested by Tsirelson [8]. Tsirelson worked
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1 Introduction and main results 2

in a somewhat different and simpler context. The works of Weiss and Tsirelson raise a

number of intriguing questions which lie at the crossroads of complex analysis and ergodic

theory. Here, we address some of these questions.

1.1

Let E denote the space of entire functions with the topology generated by the semi-norms

‖F‖K = max
K
|F |

where K runs over all compact subsets of C, and let B be the Borel sigma-algebra gen-

erated by this topology. Then C acts on (E , B) by translations:

(τwF )(z) = F (z + w), w ∈ C .

A probability measure λ on (E , B) is called translation-invariant if it is invariant with

respect to this action. A translation-invariant measure λ is called non-trivial if the set

of all constant functions in E has measure zero (the constant functions are fixed points

of the action τ). Due to [9], we know that non-trivial translation invariant probability

measures on (E , B) exist. In what follows, we retain the notation λ for such measures.

After some reflection it becomes plausible that entire functions from the Borel support

of λ must grow sufficiently fast and that λ must have heavy tails. The goal of this work

is to justify these statements.

1.2

For an entire function F we put

MF (R) = max
RD
|F | ,

where RD = {z : |z| 6 R}.

Theorem 1.

(A) Let λ be a non-trivial translation-invariant probability measure on the space of entire

functions. Then, for λ-a.e. function F and for every ε > 0,

lim
R→∞

log logMF (R)

log2−εR
= +∞ .
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(B) There exists a non-trivial translation-invariant probability measure on the space of

entire functions such that, for λ-a.e. function F and for every ε > 0,

lim
R→∞

log logMF (R)

log2+εR
= 0 .

1.2.1

The proof of the first part of Theorem 1 relies on a growth estimate of subharmonic

functions, which might be of independent interest (which will be applied to the function

log+ |F |). To bring this estimate we introduce some notation.

• Until the end of Section 1.2.1, we assume that all squares denoted by Q and S have

all four vertices with integer-valued coordinates and sides parallel to the coordinate

axes.

Let u be a non-negative subharmonic function on a neighbourhood of the square Q ⊂ C

with side-length L(Q). Let Mu(Q) = maxQ̄ u and Zu = {u = 0}. We denote by A the

area measure and by |X| the cardinality of a finite set X.

Given γ ∈ (0, 1), we say that a unit square S (i.e., the square with L(S) = 1) is γ-good

if (i) A(S ∩ Zu) > γ and (ii) Mu(S) > 1. For any square Q, we put

β(Q) = βu,γ(Q) =

∣∣{S ⊂ Q : S is γ−good unit square}
∣∣

A(Q)
.

Lemma 1. Given γ, β ∈ (0, 1) there exists c = c(γ, β) > 0 such that for any square Q

with L(Q) = L > 10 and any non-negative subharmonic function u on a neighbourhood

of Q with β = β(Q),

Mu(Q) > ec(
logL

log logL)
2

.

It is instructive to juxtapose this estimate with a less restrictive one (which also will

be used below), where we require that almost every unit square S ⊂ Q contains a non-

negligible piece of the set Zu and get a much faster growth of u.

Lemma 2. Let u be a non-negative subharmonic function on a neighbourhood of the

square Q with L = L(Q) and let α > 0 be a positive parameter. Suppose that for some

γ ∈ (0, 1) and for all, except of at most αL unit squares S ⊂ Q, we have A(S ∩ Zu) > γ.

Then,

Mu(Q) > ecLMu

(
[−1

2
, 1

2
]2
)



1 Introduction and main results 4

with some c = c(γ, α) > 0, provided that the size L of the square Q is sufficiently large.

Note that our reduction of the first part of Theorem 1 to Lemma 1 is based on the

pointwise ergodic theorem, and that the proof of Lemma 1 makes use of Lemma 2.

1.2.2

A natural idea to construct a non-trivial translation-invariant probability measure on E

(and, in particular, for the proof of the second part of Theorem 1) is to use the classical

Krylov-Bogolyubov construction. We take a function F ∈ E , denote by δF the point mass

on F (viewed as a probability measure on E) and average it along the orbit of τ defining

λR =
1

πR2

∫
RD

δτwF dA(w) , R > 1 .

In other words, for any Borel set B ⊂ E ,

λR(B) =
1

πR2

∫
RD

1lB(τwF ) dA(w) .

Then, we let R→∞, and consider the limiting measure. The problem with this idea

is that the space E is not compact; therefore, we need to ensure tightness of the family

(λR)R>1. In addition, we must ensure that (at least a part of) the limiting measure is not

supported by the constant functions. Thus, the entire function F , which we start with,

should be carefully chosen.

First, we construct a particular subharmonic function u which can be thought as a

certain approximation to log |F |. We define a special unbounded closed set E ⊂ C which

can be thought as a two-dimensional fat Cantor-type set viewed from the inside-out and

a subharmonic function u of a nearly minimal growth outside E (Lemma 6). Then, using

Hörmander’s classical estimates of solutions to ∂̄-equations, we build an entire function

G of a nearly minimal growth outside E with the needed properties (Lemma 5). The

functions u and G enjoy an interesting dynamical behaviour, and their construction is

likely of independent interest.

1.3

We say that an entire function F is locally uniformly recurrent if for every ε > 0 and

every compact set K ⊂ C the set
{
w ∈ C : maxK |τwF − F | < ε

}
is relatively dense in
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C (that is, any disk of sufficiently large radius contains at least one point of this set).

This is a locally uniform counterpart of Bohr’s classical definition of almost-periodicity.

In [9], Weiss gave a simple construction of functions of this class based on the Runge

approximation theorem.

Locally uniformly recurrent entire functions can serve as a starting point for the

Krylov-Bogolyubov-type construction described above. However, as the following the-

orem shows their growth is rather far from the minimal one.

Theorem 2.

(A) For any non-constant locally uniformly recurrent entire function F ,

lim inf
R→∞

log logMF (R)

R
> 0 .

(B) There exists a non-constant locally uniformly recurrent functions F such that

lim sup
R→∞

log logMF (R)

R
<∞ .

Note that the difference in the growth of entire functions in Theorems 1 and 2 and

that of the corresponding subharmonic functions in Lemmas 1 and 2 are closely related.

1.4

As we have already mentioned, translation-invariant probability measures on the space of

entire functions must have heavy tails.

Theorem 3.

(A) Let λ be a non-trivial translation-invariant probability measure on the space of entire

functions. Then, for every ε > 0,

E
[
(log log |F (0)|)1+ε

]
= +∞ .

(B) There exists a non-trivial translation-invariant probability measure λ on the space of

entire functions such that, for every t > 1,

λ
{
F : log log |F (0)| > t

}
.

1

t
.

Here and elsewhere, the notation X . Y means that there exists a positive numerical

constant C such that X 6 CY .



1 Introduction and main results 6

1.5

It is natural to look at the counterparts of Theorems 1 and 2 for meromorphic functions.

We treat meromorphic functions as maps of the complex plane into the Riemann sphere

endowed with the spherical metric ρ, and denote byM the space of meromorphic functions

endowed with the topology of the locally uniform convergence in the spherical metric (as

usual, we treat∞ as a constant meromorphic function). By B we denote the Borel sigma-

algebra generated by this topology. Since E ⊂ M, it is worthwhile to note that these

definitions are consistent with the ones we have used above.

To measure the growth of a meromorphic function F we will use Nevanlinna’s charac-

teristics TF (R). It will be convenient to use it in the Ahlfors-Shimizu geometric form:

TF (R) =

∫ R

0

( 1

π

∫
rD
F#(z)2 dA(w)

) dr

r
,

where

F#(z) =
|F ′(w)|

1 + |F (w)|2

is the spherical derivative of F . Then the inner integral in the definition of characteristics

TF is the spherical area of the image of the disk F (rD) considered with multiplicities

of covering. The basic properties of the Nevanlinna’s characteristics can be found, for

instance, in [6, Chapter 1]. Here, we will mention that if F is an entire function then the

growth of its Nevanlinna characteristics and of the logarithm of its maximum modulus

are equivalent in the following sense:

TF (R) < logMF (R) +O(1) ,

and, for every R1 > R,

logMF (R) <
R1 +R

R1 −R
TF (R1) +O(1) .

We also point out that it is easy to see that if F is a non-constant doubly periodic mero-

morphic function, then the spherical area of the image F (rD) counted with multiplicities

has quadratic grows with r, and therefore, TF (R) has quadratic growth as well.

As above, C acts onM by translations. We call the probability measure λ on (M, B)

translation-invariant if it is invariant with respect to this action. As above, we call a

translation-invariant measure λ non-trivial if the set of all non-constant functions has
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measure zero. Examples of non-trivial translation-invariant probability measures can be

easily constructed by averaging the translations of a doubly periodic function. In these

examples, for λ-a.e. function F ∈M, TF (R) = O(R2) as R→∞. The following theorem

shows that one cannot do better:

Theorem 4. Let λ be a non-trivial translation-invariant probability measure on mero-

morphic functions. Then, for λ-a.e. function F ∈M,

lim inf
R→∞

TF (R)

R2
> 0 .

We call a meromorphic function F locally uniformly recurrent if for every ε > 0 and

every compact set K ⊂ C, the set
{
w ∈ C : maxK ρ(τwf, f) < ε

}
is relatively dense in

C. Here, as above, ρ is the spherical distance. It is easy to see that doubly periodic

meromorphic functions are locally uniformly recurrent. I.e., there are plenty of locally

uniformly recurrent meromorphic functions F with TF (R) = O(R2) as R→∞. As in the

previous case, this estimate cannot be improved:

Theorem 5. Let F be a non-constant locally uniformly recurrent meromorphic function.

Then

lim inf
R→∞

TF (R)

R2
> 0 .
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2 Proof of Lemmas 1 and 2

In this section the squares denoted by Q, Qj, Q, and S have vertices with integer-valued

coordinates and sides parallel to the coordinate axes, Q is a square with large side-length

L = L(Q), and u is a subharmonic function on a neighbourhood of Q. By Zu = {u = 0}

we denote the zero set of u.
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2.1 Proof of Lemma 2

Assuming that for all but αL unit squares S ⊂ Q we have A(S ∩ Zu) > γ, we need to

show that

max
Q

u > ec(α,γ)L max
[−1/2,1/2]2

u .

First, we observe that if the disk Dz ⊂ Q centered at z contains a portion of the zero

set Zu of area at least γ (with γ < A(Dz)), then

u(z) 6
1

A(Dz)

∫
Dz

u dA =
1

A(Dz)

∫
Dz\Zu

u dA 6
(
1− γ

A(Dz)

)
max
D̄z

u ,

whence,

max
D̄z

u >
(

1− γ

A(Dz)

)−1

u(z) .

Let N be the integer part of 1
2
L. Put Mu(r)

def
= max

{
u(z) : |z| 6 r

}
, take the points

z0 = 0, z1, . . . , zN , with |zj| = j, so that u(zj) = Mu(j), j = 1, . . . , N , and consider the

disks Dj = D(zj, p) with sufficiently large integer p > 2. We call the index j 6 N − p

normal if the disk Dj contains at least one non-exceptional unit square S. For normal

indices j, we have

Mu(j + p) > max
D̄j

u >
(

1− γ

πp2

)−1

u(zj) =
(

1− γ

πp2

)−1

Mu(j) . (1)

If the disks Dj1 , . . . , Dj` are not normal, then the number of different exceptional

squares contained in their union Dj1

⋃
. . .
⋃
Dj` is & `p. Since the total number of

exceptional unit squares does not exceed αL, we conclude that the number of not normal

disks is . αp−1L < 1
5
L provided that p was chosen much larger than α. We conclude

that there are at least 1
4
L indices 1 6 j 6 N − p, for which estimate (1) holds. Hence,

the lemma follows. 2

2.2 Proof of Lemma 1

Recall that we say that a unit square S ⊂ Q is γ-good if A(S ∩Zu) > γ and maxS u > 1,

and that for any square Q, we put

β(Q) =

∣∣{S ⊂ Q : S is γ−good unit square}
∣∣

A(Q)
.
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Our aim is to show that

log max
Q

u > c(β, γ)
( logL

log logL

)2

, β = β(Q) .

With no loss of generality we assume that L = kk for an integer k (then, k ' logL
log logL

).

We construct a sequence of squares Q0 = Q, . . . , Qk, with L(Qj) = kk−j. First, we split

the square Qj−1 into k2 squares Q with L(Q) = kk−j. For these squares Q we write

Q ≺ Qj−1, and note that

β(Qj−1) =
1

k2

∑
Q≺Qj−1

β(Q) . (2)

Then, according to certain rules described below, we choose one of the squares Q, and

call it Qj.

Suppose that the squares Q0, . . . , Qj−1 have already been chosen. We will fix the

parameters B > 1 and 0 < θ < 1 to be chosen later, and consider three cases.

Case 1: there exist at least Bk squares Q ≺ Qj−1 such that β(Q) < 1
2
β(Qj−1).

We claim that in this case there exists at least one square Q ≺ Qj−1 with

β(Q) >
(

1 +
B

2k

)
β(Qj−1) . (3)

Indeed, otherwise, (2) gives us

1 6
1

k2

(
Bk · 1

2
+ (k2 −Bk) ·

(
1 +

B

2k

))
=

1

k2

(
k2 − 1

2
B2
)
< 1 ,

arriving at a contradiction.

Then, we let Qj be one of the squares Q ≺ Qj−1 such that (3) holds.

Case 2: for all squares Q ≺ Qj−1 contained in the square (1− θ)Qj−1,

β(Q) <
(
1− 1

k

)
β(Qj−1) .

Here, (1− θ)Qj−1 denotes the square with the same center as Qj−1 and L((1− θ)Qj−1) =

(1− θ)L(Qj−1).

We claim that if θ is chosen sufficiently small, then (3) holds for at least one of the

remaining squares. Otherwise,

1 <
1

k2

(
(1− θ)2k2 ·

(
1− 1

k

)
+
(
1− (1− θ)2

)
k2 ·

(
1 +

B

2k

))
=

1

k2

(
k2 − k

(
(1− θ)2 − 1

2
B(1− (1− θ)2

))
< 1− 1

k

(
(1− θ)2 −Bθ

)
< 1 ,
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provided that Bθ < 1
2
.

As in the first case, we let Qj be one of the squares Q ≺ Qj−1 such that (3) holds.

We now consider the remaining case, which is complementary to the cases 1 and 2:

Case 3: there exists at least one square Q ≺ Qj−1 contained in (1 − θ)Qj−1 such that

β(Q) >
(
1− 1

k

)
β(Qj−1) (with θ = θ(B) chosen above). At the same time, the number of

squares Q ≺ Qj−1 with β(Q) > 1
2
β(Qj−1) is not less than k2 −Bk.

Then we call one one these squares Qj. We also know that for at most Bk squares

Q ≺ Qj−1, we have β(Q) 6 1
2
β(Qj−1).

Now, we are ready to prove Lemma 1. First, we note that on each step the value

β(Qj) either increases (cases 1 and 2), or decreases by a factor of at most 1 − 1
k
. Since

the total number of steps is k > 2, we conclude that for each j, β(Qj) > 1
3
β(Q0) = 1

3
β.

Next, we observe that if on the jth step one of the cases 1 or 2 occurs, then by (3),

β(Qj) will increase by a factor of at least 1+(2k)−1B. Since on other steps β(Qj) decreases

not more than a factor of 1− 1
k
, choosing B = B(β) sufficiently large, ensures us that out

of the k steps at least k/2 steps result in case 3. Assume that on the jth step the 3rd

case happens. Then, applying Lemma 2 (with an appropriate scaling) to the square Q′

with L(Q′) = θL(Qj−1) centered at the same point as Qj (see Figure 1), and therefore,

contained in Qj−1, we obtain

Mu(Qj−1) >Mu(Q
′) > eckMu(Qj)

with some c = c(γ, β). Since this happens for at least k/2 indices j, we conclude that

Mu(Q0) > eck
2

Mu(Qk) .

It remains to recall that k ' logL
log logL

and that, since Q was a good square, Mu(Qk) > 1. 2

3 Proof of Theorems 1A and 2A

In this section, Sρ(z) denotes the square of side-length ρ centered at z, and we let Sρ =

Sρ(0).
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Fig. 1:

The squares Qj−1 and Qj in the 3rd case.

3.1 An integral-geometric lemma

We will be using a simple and known fact from the integral geometry:

Lemma 3. For any measurable set X ⊂ C and any 0 < ρ < R,∣∣∣ A(SR ∩X)

A(SR)
− 1

A(SR)

∫
SR

A(Sρ(z) ∩X)

A(Sρ)
dA(z)

∣∣∣ . ρ

R
.

3.2 Proof of Theorem 1A

3.2.1

Applying the ergodic decomposition theorem (see, for instance, [5, Sections 6.1 and 8.6]),

we can find a Borel probabity space (Ω,F , ν) and a measurable map ω 7→ λω for which

(i) for ν-a.e. ω, λω is a probability measure on (E , B), which is invariant and ergodic with

respect to the action of C on (E , B) by translations τ ;

(ii) for every Borel set X ∈ B,

λ(X ) =

∫
Ω

λω(X ) dν(ω) .
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It is not difficult to see that the set of entire functions F such that, for every ε > 0,

lim
R→0

log logMF (R)

log2−εR
= +∞

is a Borel set. Hence, proving Theorem 1A, it suffices to assume that the measure λ is

ergodic with respect to translations τ .

3.2.2

Put X(F ) = {z ∈ C : |F (z)| 6 1}. Given ρ > 1, consider the Borel sets

E1(ρ) = {F ∈ E : A(Sρ ∩X(F )) > 1} , E2(ρ) = {F ∈ E : max
S̄ρ
|F | > e} .

For ρ < ρ′, we have Ei(ρ) ⊂ Ei(ρ′), i = 1, 2. We denote by Ei(∞), i = 1, 2, the corre-

sponding limiting sets as ρ → ∞. Since the complement E \ E2(∞) consists of constant

functions and the measure λ does not charge constants, λ(E2(∞)) = 1.

3.2.3

We claim that λ(E1(∞)) = 1 as well. Otherwise, by translation-invariance of the set E1(∞)

and by ergodicity of λ, we have λ(E1(∞)) = 0, and therefore, for every ρ, λ(E1(ρ)) = 0.

Consider the product measure space C × E with the σ-algebra generated by the

products of Borel sets in C and E , equip it with the product measure A × λ, and put

Y =
{

(z, F ) ∈ C×E : |F (z)| 6 1
}

. This set is measurable since the σ-algebra we consider

coincides with the Borel σ-algebra on C× E , and the map (z, F ) 7→ F (z) is continuous.

Fix ρ > 0. We know that, for λ-a.e. F ∈ E , we have∫
Sρ

1lY (z, F ) dA(z) = A
(
Sρ ∩X(F )

)
6 1.

Therefore, ∫
E

dλ(F )

∫
Sρ

1lY (z, F ) dA(z) 6 1.

By Fubini’s theorem, the integral on the LHS equals∫
Sρ

dA(z)

∫
E

1lY (z, F ) dλ(F ),

and by the translation-invariance of the measure λ, the inner integral does not depend on

z. Hence, for any z ∈ C and any ρ, as large as we want, ρ2λ
{
|F (z)| 6 1

}
6 1, whence
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λ
{
|F (z)| 6 1

}
= 0. Taking z in a dense countable subset of C and using the continuity

of F , we see that |F | > 1 everywhere in C for λ-a.e. F ∈ E . Since F is an entire function,

we conclude that F a constant function, which is a contradiction.

3.2.4

Now, we fix ρ > 1 so that λ
(
E1(ρ) ∩ E2(ρ)

)
> 9

10
, and let

X(F, ρ) = {z ∈ C : A(Sρ(z) ∩X(F )) > 1, max
Sρ(z)
|F | > e} .

We claim that for λ-a.e. F ∈ E, the limit

lim
R→∞

A(SR ∩X(F, ρ))

A(SR)

exists and is > 9
10

. Indeed, for any F ∈ E and any r > 1, by Lemma 3, we have

A(SR ∩X(F, ρ))

A(SR)
=

1

A(SR)

∫
SR

A(Sr(z) ∩X(F, ρ))

A(Sr)
dA(z) +O

( r
R

)
,

and by the pointwise ergodic theorem, for λ-a.e. F , the R → ∞ limit of the RHS exists

and equals ∫
E

A(Sr ∩X(F, ρ))

A(Sr)
dλ(F ) .

Applying Fubini’s theorem and then using the translation-invariance of the measure λ,

we can rewrite this expression as

1

A(Sr)

∫
Sr

[ ∫
E

1lX(F,ρ)(z) dλ(F )
]

dA(z)

=
1

A(Sr)

∫
Sr

[ ∫
E

1lX(τzF,ρ)(0) dλ(F )
]

dA(z)

= λ
{
F ∈ E : 0 ∈ X(F, ρ)

}

= λ
(
E1(ρ) ∩ E2(ρ)

)
>

9

10
,

proving the claim.
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3.2.5

It remains to show that if F is a non-constant entire function such that for some ρ > 1,

lim inf
R→∞

A(SR ∩X(F, ρ))

A(SR)
>

9

10
,

then, for every ε > 0,

lim
R→∞

log logMF (R)

log2−εR
= +∞ . (4)

First, we note that it suffices to show that (4) holds for the sequence Rn = (2ρ)n; then

the general case follows.

Then, we take R = (2ρ)n with sufficiently large n, split the square SR into R2/(2ρ)2

squares S squares S with side-length 2ρ, and consider the subharmonic function u =

log+ |F |. By the last claim, for at least half of the squares S, A(S ∩ Zu) > 1 and

maxS̄ u > 1. Applying Lemma 1, we complete the proof. 2

3.2.6 Remark

Note that with a little effort one can extract from Lemma 1 slightly more than Theorem 1A

asserts, namely, that for λ-a.e. F ∈ E ,

lim inf
R→∞

log logMF (R) ·
( log logR

logR

)2

> 0 .

Likely, this estimate can be somewhat improved.

3.3 Proof of Theorem 2A

The proof is straightforward. Let F be a non-constant locally uniformly recurrent func-

tion, and let M = max[0,1]2 |F |. Applying the definition of locally uniform recurrency with

K = [0, 1]2 and ε = 1, we see that there exists L = L(M) such that for every square Q

with the side-length L, A
(
Q ∩ {|F | 6M + 1}

)
> 1. Then, Lemma 2 does the job. 2

4 Proof of Theorem 3A

4.1 A loglog-lemma that yields Theorem 3A

We will use a version of the classical Carleman-Levinson-Sjöberg loglog-theorem, cf. [2,

3, 4]. Likely, this lemma can be deduced from at least one of many known versions of
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the loglog-theorem. Since its proof is quite simple, for the reader’s convenience, we will

supply it.

Lemma 4. Suppose u is a non-constant subharmonic function in C. Then, for every

ε > 0,

lim
R→∞

1

A(RD)

∫
RD

(
log+ u

)1+ε
dA =∞ .

This lemma immediately yields Theorem 3A: by the translation-invariance, for every

positive R, we have

E
[
(log+ log+ |F (0)|)1+ε

]
=

1

A(RD)

∫
RD

E
[(

log+ log+ |F (z)|
)1+ε]

dA(z) .

By Fubini’s theorem, we can take the expectation out of the integral. We get the expec-

tation of the positive random variable

1

A(RD)

∫
RD

(
log+ log+ |F (z)|

)1+ε
dA(z).

By Lemma 4, this random variable converges to ∞ λ-a.e. on E , as R → ∞, hence the

expectation must converge to ∞ as well.

4.2 Proof of Lemma 4

We let Mu(R) = maxR D̄ u and choose N so that bN < Mu(R) 6 bN+1, with some b > 1

to be chosen. For 1 6 j 6 N , we take zj, |zj| = Rj, so that

u(zj) = Mu(Rj) = bj, j ∈ N ,

and let RN+1 = R. Then, we put ρj = Rj+1−Rj, 1 6 j 6 N , let Dj be the disks centered

at zj of radius 1
2
ρj, and let D+

j = Dj

⋂
{Rj 6 |z| 6 Rj+1}. Note that the sets D+

j are

disjoint and that A(D+
j ) > 1

2
A(Dj). We claim that

If b is chosen sufficiently close to 1 and c is sufficiently small, then for every

1 6 j 6 N , u(z) > cu(zj) on a subset D′j ⊂ D+
j with A(D′j) >

1
4
A(Dj).
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Indeed, let D∗j = {z ∈ Dj : u(z) > cu(zj)}. Then,

bj = u(zj) 6
1

A(Dj)

∫
Dj

u dA

6
1

A(Dj)

(
cbj(A(Dj)− A(D∗j )) + bj+1A(D∗j )

)

= (bj+1 − cbj)
A(D∗j )

A(Dj)
+ cbj ,

whence
A(D∗j )

A(Dj)
>

1− c
b− c

>
3

4

provided that b > c and 3b+ c < 4. It remains to put D′j = D∗j
⋂
D+
j .

Now, ∫
RD

(log+ u)1+ε dA >
N∑
j=1

∫
D′j

(log+ u)1+ε dA

&
N∑
j=1

j1+εA(D′j)

&
N∑
j=1

j1+ερ2
j .

Let N0 � 1. Then, for N � N0,( N∑
j=N0

ρj

)2

<
∑
j>N0

1

j1+ε
·

N∑
j=N0

j1+ερ2
j

. N−ε0

N∑
j=N0

j1+ερ2
j .

Letting N →∞, we get

lim inf
R→∞

1

A(RD)

∫
RD

(log+ u)1+ε dA & N ε
0 .

Then, letting N0 →∞, we conclude the proof. 2
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5 Proof of Theorems 4 and 5

Both proofs are quite straightforward.

5.1 Proof of Theorem 4

As in the previous proofs we may assume that the measure λ is ergodic. Then, by the

pointwise ergodic theorem, for λ-a.e. meromorphic function F ,

lim
R→∞

1

A(RD)

∫
RD
F#(z)2 dA(z) = E

[
F#(0)2

]
.

Since λ-a.s., the function F is not a constant (and the distribution of λ is translation

invariant), the RHS is positive (may be infinite). Thus, for sufficiently large Rs,∫
RD
F#(z)2 dA(z) & R2 ,

and therefore, TF (R) & R2. 2

5.2 Proof of Theorem 5

Let F be a non-constant locally uniformly recurrent meromorphic function. We fix a

disk D such that F is analytic on D̄, take the closed spherical disk D̄ ⊂ F (D) such that

D̄∩F (∂D) = ∅, and denote by δ the spherical distance between D̄ and the curve F (∂D).

By the definition of local uniform recurrency, each square Q with sufficiently large

length-side L(Q) contains a point w such that maxD̄ ρ(F, τwF ) < 1
2
δ, where ρ is the

spherical metric. Denote by Dw the disk centered at w of the same radius as D. We

claim that D ⊂ F (Dw). To show this, fix a point ζ ∈ D ⊂ F (D). Then, by the

argument principle, the index of the curve F (∂D) with respect to the point ζ is positive.

Furthermore, when the point z traverses the circumference ∂D, F (z) traverses the curve

F (∂D), F (z + w) traverses the curve F (∂Dw), and the spherical distance between F (z)

and F (z+w) remains less than 1
2
δ, while ρ(ζ, F (∂D)) > δ. Hence, the index of the curve

F (∂Dw) with respect to ζ coincides with that of F (∂D), and therefore, is positive as well.

Thus, ζ ∈ F (Dw) proving the claim.

Denote by Q∗ the square having the same center as Q and with the length-side L(Q∗) =

L(Q) + radius(D). Since Dw ⊂ Q∗, we conclude that D ⊂ F (Q∗). Hence, the spherical
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area of F (Q∗) is not less than that of D. Packing the disk RD = {|z| < R} with sufficiently

large R by about cR2 disjoint translations of the square Q∗, we see that the spherical area

of F (RD) is & R2, which yields the theorem. 2

6 Entire functions of almost minimal growth outside a ternary

system of squares

6.1 Ternary system of squares

We will construct the closed set E ⊂ C which we will call the ternary systems of squares.

It will be defined as the limit of the increasing sequence (En) of compact sets such that

En consists of En−1 and eight disjoint translations of it. One can think about the limiting

set E as a two-dimensional ternary Cantor-type set viewed from the inside-out.

6.1.1 Notation

For X ⊂ C and η > 0, we put

X+η =
{
z ∈ C : d∞(z,X) 6 η

}
, X−η =

{
z ∈ C : d∞(z,Xc) > η

}
.

Here and elsewhere, d∞ denotes the `∞-distance on R2.

For X ⊂ C, we put τwX =
{
z − w : z ∈ X

}
. That is, if the function f is defined on

X, then τwf is defined on τwX.

6.1.2 Squares and corridors

We fix a sequence (εn) ↓ 0 and define:

• the increasing sequence (an) by a0 = 1, an = 3an−1(1 + εn);

• the squares Sn = [−an, an]2;

• the translates wj(n) = an−1(2 + 3εn)ωj, where {ωj}06j68 = {0,±1,±i,±1± i};

see Figure 2. Then, E0 = S0, En =
⋃8
j=0 τwj(n)En−1, and finally, E =

⋃
nEn.
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Fig. 2:

The square Sn with 9 copies of the square Sn−1.

For every k < n, the set En consists of 9n−k disjoint copies of Ek. We denote by

wj(k, n), 0 6 j 6 9n−k − 1, the centers of these copies. That is, there exist indices

j1, . . . , jn−k ∈ {0, 1, . . . , 8} such that

wj(k, n) = wj1(k + 1) + . . .+ wjn−k(n)

(in particular, wj(n− 1, n) = wj(n)), and

En =
8⋃

jn=0

. . .

8⋃
j1=0

τwjn (n)+...+wj1 (1)E0 =
9n−k−1⋃
j=0

τwj(k,n)Ek .

Next, we denote by Kn the union of the corridors left on the nth step of the construction

and the outer perimeter corridor that goes along the boundary ∂Sn (see Figure 3). The

width of these corridors is 3dn, where dn = an−1εn. That is,

Kn = S+3dn
n \

8⋃
j=0

τwj(n)Sn−1 .

To simplify computations, in what follows, we always assume that ε1 < 1 and that

εn > εn+1 > 1
3
εn. Since

dn+1

dn
=

3(1 + εn)εn+1

εn
,
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Fig. 3:

The corridors Kn.

these assumptions yield that

1 <
dn+1

dn
< 6 .

In particular, the sequence (dn) is increasing.

6.1.3 Fat systems of squares

We will call the set E fat if
∑

n>1 εn <∞. In this case,

an = 3n
n∏
j=1

(1 + εj) = (a+ o(1))3n

with a > 0.

Note that since En consists of 9n disjoint translations of the square S0, A(En) = 4 ·9n.

If the set E is fat then A(Sn) = (a2 + o(1))9n, and A(En)/A(Sn) = b + o(1) with some

b > 0. In particular, fat sets E (and only they) have positive relative area.
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6.1.4 Concordance and δ-concordane

Given a ternary system of squares E, we call the function Φ: C→ C concordant with E

if for every n > k > 1 and 0 6 j 6 9n−k − 1,

τwj(k,n)Φ = Φ everywhere on Sk.

Given a sequence δ = (δk) ↓ 0, we say that the function Φ is δ-concordant with E if for

every n > k > 1 and 0 6 j 6 9n−k − 1,

max
Sk

∣∣τwj(k,n)Φ− Φ
∣∣ < δk .

6.2 Main Lemma

For a continuous function Φ and a compact set K, we put

MΦ(K) = max
K
|Φ|, mΦ(K) = min

K
|Φ| .

Define the majorant

MB(n) = exp
(
Bn+ π

n∑
j=1

1
εj

)
, n > 1

with sufficiently large positive B and put MB(0) = 1. Then, define the sequence ∆ by

∆n = exp
(
− 1

10
MB(n− 1)

)
, n > 1 .

Lemma 5. For any sufficiently large positive B, there exists a non-constant entire func-

tion G which is ∆-concordant with E, satisfies

logMG

(
Sn
)
. e−BMB(n) ,

and

max
S0

|G(z)− z| 6 1

3
.

We start with the subharmonic counterpart of this lemma.
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6.3 Subharmonic construction

Lemma 6. For any B > 20, there exists a sequence of non-negative subharmonic func-

tions un in C with the following properties:

(i) for each j ∈ {0, 1, . . . , 8},

τwj(n−1,n)un−1 = un on Sn−1;

(ii) Mun(S+dn+1
n ) < e−B+10MB(n);

(iii) mun(K
− 1

2
dn

n ) > 1
2
MB(n− 1).

Note that by property (i), for every m > n, um = un everywhere on the square Sn.

Hence, the sequence (un) converges to the limiting subharmonic function u. By property

(i), the limiting function is concordant with E. By (ii), we have Mu(Sn) 6 e−B+10MB(n),

n > 0, and by (iii), mu(K
− 1

2
dn

n

⋂
Sn) 6 1

2
MB(n− 1), n > 1.

Proof of Lemma 6: Take the subharmonic function

h(z) =

coshx cos y |y| < π
2
,

0 otherwise ,

scale it

hn(z) = h
( π

3dn
z
)
,

ξn = an−1 +
3

2
dn = an−1

(
1 +

3

2
εn

)
,

and take the upper envelope of 8 shifted and rotated copies of hn:

vn(z) = max
{
hn(z + iξn), hn(z − iξn), hn(i(z + ξn)), hn(i(z − ξn)),

hn(z + 3iξn), hn(z − 3iξn), hn(i(z + 3ξn)), hn(i(z − 3ξn))
}
. (5)

We will need two estimates:

mvn

(
K
− 1

2
dn

n

)
= cos

( π

3dn
· dn
)

=
1

2
, (6)

and

Mvn

(
S+dn+1
n

)
6 exp

( π

3dn

(
an + dn+1

)) dn+1<6dn
< exp

( π
εn

an
3an−1

+ 2π
)

= exp
( π
εn

(1 + εn) + 2π
)

= exp
( π
εn

+ 3π
)
. (7)
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Fig. 4:

Scaling, shifting and rotating the function h.

We put u0 = 1
3
. Assuming that the subharmonic functions u0, . . . , un−1 have been

already defined, we glue together the functions τwj(n−1,n)un−1, putting

un =

max
{
MB(n− 1)vn, τwj(n−1,n)un−1

}
on τwj(n−1,n)S

+ 1
2
dn

n−1 , 0 6 j 6 8 ,

MB(n− 1)vn otherwise ,

where vn is the subharmonic function defined in (5). Note that this definition ensures

property (i) in the statement of the lemma, as

vn = 0 on
8⋃
j=0

τwj(n−1,n)Sn−1 .

We claim that, for B > 20 and n > 1,

max
∂(S

+1
2 dn

n−1 )

un−1 <MB(n− 1) min
∂(S

+1
2 dn

n−1 )

vn

(with MB(0) = 1). This claim yields that

τwj(n−1,n)un−1 <MB(n− 1)vn on ∂
(
τwj(n−1,n)S

+ 1
2
dn

n−1

)
,
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and therefore, the functions un, n > 1, are subharmonic in C.

The case n = 1 of our claim follows from the lower bound v1 > 1
2

on ∂(S
+ 1

2
d1

0 ). Now,

let n > 2. We know that un−1 =MB(n− 2)vn−1 outside the set
⋃8
j=0 τwj(n−2,n−1)S

+ 1
2
dn−1

n−2 .

Note that

8⋃
j=0

τwj(n−2,n−1)S
+ 1

2
dn−1

n−2 ⊂ S
+ 1

2
dn−1

n−1

dn−1<dn
⊂ interior

(
S

+ 1
2
dn

n−1

)
.

Hence, un−1 =MB(n−2)vn−1 on ∂
(
S

+ 1
2
dn

n−1

)
. Furthermore, by the bound (7), on ∂

(
S

+ 1
2
dn

n−1

)
we have MB(n − 2)vn−1 <MB(n − 2) · eπ/εn−1+3π = e−B+3πMB(n − 1). For B > 20 >

3π + log 2, we have e−B+3π < 1
2
, whence un−1 <

1
2
MB(n− 1) on ∂

(
S

+ 1
2
dn

n−1

)
. On the other

hand, ∂
(
S

+ 1
2
dn

n−1

)
⊂ K

− 1
2
dn

n , so applying the lower bound (6) for vn, we get the claim.

Note that un =MB(n− 1)vn on ∂
(
S+dn+1
n

)
, and by (7),

MB(n− 1)vn < e−B+3πMB(n)

therein. This proves (ii). At last, on K
− 1

2
dn

n , we have

un =MB(n− 1)vn >
1
2
MB(n− 1) ,

proving (iii). 2

6.4 Proof of Lemma 5

6.4.1 Beginning the proof

We put G1(z) = z and construct a sequence (Gn) of entire functions with the following

properties:

(i) for n > 2 and j ∈ {0, 1, . . . , 8},

max
Sn−1

∣∣Gn−1 − τwj(n−1,n)Gn

∣∣ < 1

10
∆n ,

(ii) for n > 2,

logMGn

(
S

+ 9
10
dn+1

n

)
< e−B+10MB(n) .

Then, the existence of the function G will follow from the following claim.
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Claim 1. For every 1 6 k < n,

max
Sk

∣∣Gk − τwj(k,n)Gn

∣∣ < 1

10

n∑
i=k+1

∆i .

First, assuming that estimates (i) and (ii) and the claim hold, we complete the proof

of Lemma 5. On the second step, we prove the claim assuming that the property (i) holds.

On the last step, we construct the sequence (Gn) having properties (i) and (ii).

We put

G = G1 +
∑
i>2

(Gi −Gi−1) .

By (i), the series converges locally uniformly in C. Moreover,

max
Sk
|Gk −G| 6

1

10

∑
i=k+1

∆i

and then, for n > k,

max
Sk
|Gn −G| 6 max

Sn
|Gn −G| 6

1

10

∑
i=n+1

∆i .

Combining these inequalities with the claim, we conclude that, for every n > k > 1,

max
Sk
|G− τwj(k,n)G| 6

( 1

10

∑
i=k+1

∆i

)
+
( 1

10

∑
i=n+1

∆i

)
+
( 1

10

∑
i=k+1

∆i

)
<
∑
j=k+1

∆i < ∆k

provided that the parameter B is large enough. That is, the limiting entire function G is

∆-concordant with E.

Furthermore, by properties (i) and (ii), the functionG satisfies logMG(Sn) . e−BMB(n)

and

max
S0

|G(z)− z| 6 max
S1

|G(z)−G1(z)| 6 1

10

∑
i>2

∆i <
1

3
,

provided that B is sufficiently large.

6.4.2 Proof of Claim 1

We use induction on n− k. The base of induction n− k = 1 is exactly property (i).
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Now, assuming that the claim holds for the pair (k, n− 1), we will prove it for (k, n).

For every 0 6 j 6 9n−k, we write

j =
n−k∑
`=1

j` 9`−1 ,

and put

j′ =
n−k−1∑
`=1

j` 9`−1 = j − jn−k 9n−k−1 .

Then we have

max
Sk
|Gk − τwj′ (k,n−1)Gn−1| 6

1

10

n−1∑
i=k+1

∆i (induction hypothesis) (a)

and

max
Sn−1

|Gn−1 − τwjn−k (n−1,n)Gn| 6
1

10
∆n (property (i)) (b)

Then, taking into account that τ−wj′ (k,n−1)Sk ⊂ Sn−1 and using (b), we get

max
Sk
|τwj′ (k,n−1)Gn−1 − τwj(k,n)Gn| = max

τ−wj′ (k,n−1)Sk
|Gn−1 − τwjn−k (n−1,n)Gn|

6 max
Sn−1

|Gn−1 − τwjn−k (n−1,n)Gn| 6
1

10
∆n . (c)

Now, adding (a) and (c), we conclude proof of the claim. 2

Thus, it remains to construct a sequence of entire functions (Gn) satisfying conditions

(i) and (ii).

6.4.3 Constructing the sequence (Gn)

We fix a sequence of smooth cut-off functions χn, 0 6 χn 6 1, so that

χn =

1 on S
+ 3

5
dn

n−1

0 on C \ S+ 4
5
dn

n−1 .

and supn ‖∇χn‖∞ <∞ (such a sequence exists since dn > d1 > 0).

We put G1(z) = z and suppose that the functions G1, . . . , Gn−1 have already been

constructed. We put

gn =
8∑
j=0

τwj(n−1,n)

(
χnGn−1

)
,
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and note that

∂̄gn =
8∑
j=0

τwj(n−1,n)βn ,

with βn = Gn−1∂̄χn (here and elsewhere below, we use the customary notation ∂̄ =

1
2

(
∂
∂x

+ i ∂
∂y

)
). Then, we define the function Gn by Gn = gn−αn, where αn is Hörmander’s

solution [7, Theorem 4.2.1] to the ∂̄-equation ∂̄αn = ∂̄gn satisfying∫
C
|αn|2e−un

dA

(1 + |z|2)2
<

1

2

∫
C
|∂̄gn|2e−un dA , (8)

where un are the subharmonic functions constructed in Lemma 6.

6.4.4 Estimating the integral on the RHS of (8)

Denoting by spt( . ) the closed support, we note that

spt(∂̄gn) =
8⋃
j=0

τwj(n−1,n) spt(∂̄χn)

⊂
8⋃
j=0

τwj(n−1,n)

(
S

+ 4
5
dn

n−1 \ interior(S
+ 3

5
dn

n−1 )
)
⊂ K

− 1
2
dn

n ,

and therefore, un >
1
2
MB(n− 1) on spt(∂̄gn). Furthermore, since spt(∂̄χn) ⊂ S

+ 4
5
dn

n−1 , we

have

|∂̄gn| 6 CχMGn−1(S
+ 9

10
dn

n−1 ) < Cχ exp
(
e−B+10MB(n− 1)

)
with Cχ = supn ‖∇χn‖∞ (in the second inequality we have used the inductive assumption).

Taking into account that the area of spt(∂̄gn) is less than (an + dn)2 < (6n + 6n)2 and

recalling that un > 1
2
MB(n − 1) on K−

1
2
dn , we conclude that the integral on the RHS

of (8) does not exceed

4 · 62nC2
χ exp

((
2e−B+10 − 1

2

)
MB(n− 1)

)
< exp

(
−2

5
MB(n− 1)

)
,

provided that the constant B is sufficiently large.

Therefore, by Hörmander’s theorem,∫
C
|αn|2e−un

dA

(1 + |z|2)2
<

1

2
exp
(
−2

5
MB(n− 1)

)
. (9)
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6.4.5 Proving property (ii) for the sequence Gn

Here, we aim to show that

logMGn

(
S

+ 9
10
dn+1

n

)
< e−B+10MB(n) .

Let c0 <
1
10
d1 be a positive constant. Then, for z ∈ S+ 9

10
dn+1

n , we have

|Gn(z)|2 6 1

πc2
0

∫
τz(c0D)

|Gn|2 6
2

πc2
0

∫
τz(c0D)

(|gn|2 + |αn|2) .

To estimate the first integral, we observe that

‖gn‖∞ 6 max
S
+4

5 dn
n−1

|Gn−1| < exp
(
e−B+10MB(n− 1)

)
(in the second inequality we have used the induction assumption). Thus,

2

πc2
0

∫
τz(c0D)

|gn|2 <
1

2
exp
(

2e−B+10MB(n)
)
,

provided that the constant B is sufficiently large.

To estimate the second integral, using the fact that z ∈ S+ 9
10
dn+1

n , we write∫
τz(c0D)

|αn|2 <
∫
C
|αn|2e−un

dA

(1 + |z|2)2
· C(an + dn+1)4 exp

(
max
S
+dn+1
n

un

)

< C164n exp
(
−2

5
MB(n− 1) + e−B+20MB(n)

)
,

whence,
2

πc2
0

∫
τz(c0D)

|αn|2 <
1

2
exp
(

2e−B+10MB(n)
)
,

again, provided that the constant B is large enough. Thus,

|Gn| < exp
(
e−B+10MB(n)

)
everywhere on S

+ 9
10
dn+1

n , as we have claimed.

6.4.6 Proving property (i) for the sequence Gn

First, we note that

max
Sn−1

|Gn−1 − τ−wj(n−1,n)Gn| = max
τwj(n−1,n)Sn−1

|αn| ,
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and that αn is analytic in the c0-neighbourhood of each of the sets τwj(n−1,n)Sn−1. Then,

for every j ∈ {0, 1, . . . , 8} and every z ∈ τwj(n−1,n)Sn−1, we have

|αn(z)|2 6 1

πc2
0

∫
τz(c0D)

|αn|2

<

∫
C
|αn|2e−un

dA

(1 + |z|2)2
· C(an + c0)4 exp

(
max

τwj(n−1,n)S
+c0
n−1

un

)

(9)
< C ′(an + c0)4 exp

(
max

τwj(n−1,n)S
+c0
n−1

un −
2

5
MB(n− 1)

)
.

Recall that un = τwj(n−1,n)un−1 on each square τwj(n−1,n)Sn−1. Then, recalling that dn > 1

and choosing c0 < 1, we see that

max
τwj(n−1,n)S

+c0
n−1

un = max
S
+c0
n−1

un−1 6 max
S+dn
n−1

un−1 < e−B+10MB(n− 1) .

Therefore,

|αn(z)|2 6 C164n exp
(
−2

5
MB(n− 1) + e−B+10MB(n− 1)

)
<

1

100
e−

1
5
MB(n−1) ,

provided that B is sufficiently large, and finally,

max
τwj(n−1,n)Sn−1

|αn| <
1

10
e−

1
10
MB(n−1) =

1

10
∆n ,

again, provided that B is sufficiently large. This completes the (somewhat long) proof of

Lemma 5. 2

7 A version of the Krylov-Bogolyubov construction

7.1 Some notation

In this section, we denote by (Sn) any increasing sequence of squares centered at the

origin with the side-lengths tending to infinity.

If S ⊂ C is a square and X ⊂ C is a Borel set, then we denote the relative area of X

in S by

AS(X) =
A(X

⋂
S)

A(S)
.
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For an entire function G ∈ E , let OG = {τwG}w∈C denote its orbit and ŌG denote the

closure of OG in E .

For a compact set K ⊂ C and a continuous function f : K → R, we denote by

oscK f = maxK f −minK f , the oscillation of f on K.

7.2 The Lemma

Lemma 7. Let G ∈ E.

(i) Suppose that there exists an increasing sequence (Mk) ↑ +∞ such that

lim
k→∞

lim inf
n→∞

ASn
{
w : max

τwSk
|G| 6Mk

}
= 1 , (10)

and there exists a square S and a constant c > 0 such that

lim sup
n→∞

ASn
{
w : oscτwS |G| > c

}
> 0 . (11)

Then there exists a translation-invariant probability measure λ supported by ŌG which

does not charge the constant functions.

(ii) Furthermore, suppose that condition (10) is replaced by a stronger one:∑
k>1

(
1− lim inf

n→∞
ASn

{
w : max

τwSk
|G| 6Mk

})
<∞ (12)

and that condition (11) continues to hold. Then, for λ-a.e. F ∈ E,

lim sup
k→∞

(
max
Sk
|F | −Mk

)
6 0 .

It is worth mentioning that condition (i) already yields the upper bound though only

on a subsequence of the squares Sk: for λ-a.e. F ∈ E ,

lim inf
k→∞

(
max
Sk
|F | −Mk

)
6 0 .

7.3 Proof of part (i) of Lemma 7

Consider the sequence of probability measures on E :

λn =
1

A(Sn)

∫
Sn

δτwG dA(w) .

In other words, for any Borel set X ⊂ E ,

λn(X ) =
1

A(Sn)

∫
Sn

1lX (τwG) dA(w) = ASn
{
w : τwG ∈ X

}
.
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7.3.1 Tightness of the sequence (λn)

We claim that (λn) is a tight sequence of probability measures, that is, for every δ > 0,

there exists a compact set K ⊂ E such that, for every n > 1, λn(K) > 1− δ.

To see this, given k > 2, we choose nk > k so that for n > nk,

ASn
{
w : max

τwSk
|G| > Mnk

}
<

1

k2
,

and let

µk = max
2Snk−1

|G|+Mnk ,

where 2Snk−1 is the square concentric with Snk−1 and having double the side-length. The

sets

K` =
{
F ∈ E : max

Sk
|F | 6 µk for k > `

}
are compact subsets of E . We will show that for any n > 1 and any ` > 2,

λn(K`) > 1− 1

`− 1
,

which yields the tightness of (λn). Indeed,

E \ K` =
⋃
k>`

Xk ,

where Xk =
{
F ∈ E : maxSk |F | > µk

}
, and λn(Xk) = ASn

{
w : maxτ−wSk |G| > µk

}
. For

1 6 n 6 nk − 1 and w ∈ Sn, we have

max
τwSk
|G| 6 max

Sn+Sk
|G| 6 max

2Snk−1

|G| < µk

(recall that k 6 nk − 1), whence, for these ns,
{
w : maxτwSk |G| > µk

}⋂
Sn = ∅. On the

other hand, for n > nk, we have

λn(Xk) = ASn
{
w : max

τwSk
|G| > µk

}
6 ASn

{
w : max

τwSk
|G| > Mnk

}
<

1

k2
.

Thus,

λn(E \ Kl) 6
∑
k>`

λn(X`) <
∑
k>`

1

k2
<

1

`− 1
,

proving the tightness of (λn).
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7.3.2 Translation-invariance of the limiting measure

Now, let λ be any limiting probability measure for the sequence (λn). Since each measure

λn is supported by the orbit OG, clearly, λ is supported by the closure of the orbit ŌG.

The measure λ is translation-invariant. This follows from the fact that for any n > 1,

any ζ ∈ C, and any Borel set X ⊂ E ,

∣∣λn(τζX )− λn(X )
∣∣ 6 A(Sn4τζSn)

A(Sn)
6
O(|ζ|)
L(Sn)

,

where 4 denotes the symmetric difference of sets, and L(Sn) is the side-length of Sn.

7.3.3 A modification of the limiting measure does not charge the constant

functions

At last, we can specify the measure λ such that it will not charge the set {const} of

constant functions. Indeed, following our assumption (11) and passing if necessary to

some subsequence, we may assume that a positive limit exists

lim
n→∞

ASn
{
w : oscτwS |G| > c

}
= α > 0 .

This yields that λ(E \ {const}) > α > 0. To see this, let U = {F ∈ E : oscS |F | < 1
2
c}.

Then U is an open set and U ⊃ {const}. Hence, it is enough to show that, for each n,

λn(U) 6 1− α. This holds since

λn(U) = ASn
({
w : τwG ∈ U

})
= ASn

({
w : oscS τwG <

c

2

})
= ASn

({
w : oscτwS G <

c

2

})
6 1− α .

Then, if needed, we replace λ by its restriction on E \ {const} and normalize it to make

λ the probability measure. This completes the proof of part (i). 2

7.4 Proof of part (ii) of Lemma 7

Now, we suppose that condition (12) holds, and assume that the probability measures

(λn) and λ are the same as in the proof of part (i). Consider the open set

Xk =
{
F ∈ E : max

Sk
|F | > Mk

}
.
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We have

λn(Xk) = ASn
({
w : max

τwSk
|G| > Mk

})
,

whence, by (12), ∑
k>1

(
lim sup
n→∞

λn(Xk)
)
<∞ .

Furthermore, since the sets Xk are open,

λ(Xk) 6 lim sup
n→∞

λn(Xk) ,

so ∑
k>1

λ(Xk) <∞ .

Hence, applying the Borel-Cantelli lemma, we conclude that

λ
(⋂
`>1

⋃
k>`

Xk
)

= 0 ,

which means that λ-a.e. F ∈ E does not belong to any Xk with k > k0(F ), i.e.,

lim sup
k→∞

(
max
Sk
|F | −Mk

)
6 0 .

This proves part (ii) and finishes off the proof of Lemma 7. 2

8 Proof of Theorems 1B, 2B, and 3B

After the work we have done in Lemmas 5 and 7, the proofs of these theorems is rather

straightforward.

8.1 Proof of Theorem 1B

We take the sequence

εj =
1

(j + 10) log3(j + 10)
, j > 1 ,

put a0 = 1 and an = 3(1 + εj)an−1 for n > 1, and (with some conflict of notation used

in Lemma 6) S ′n = [−an, an]2. By G we denote the corresponding entire function with

properties as in Lemma 5. We fix a sufficiently large value of the parameter B as in

Lemma 5 and then will drop dependence on B from our notation. We claim that

• conditions (12) and (11) of Lemma 7 (part (ii)) are hold for the sequences Sn = S ′2n

and Mn = expM(2n+1) + 1.
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8.1.1

First, we verify convergence of the series∑
k>1

(
lim sup
n→∞

ASn
{
w : max

τwSk
|G| > Mk

})
<∞ .

For this, we need to bound the relative area

AS′2n
({
w : max

τwS′
2k

|G| > expM(2k+1) + 1
})
.

We note that for ζ ∈ [−a2k+1 + a2k , a2k+1 − a2k ]
2, the translations τζS

′
2k

belong to S ′
2k+1 .

Thus, for w = wj(2
k+1, 2n) + ζ, 0 6 j 6 92n−2k+1 − 1, we have

max
τwS′

2k

|G| = max
τζS
′
2k

|τ−wj(2k+1,2n)G|

6 max
S′
2k+1

|τ−wj(2k+1,2n)G|

< max
S′
2k+1

|G|+ ∆2k+1

< Mk .

The relative area of the set of these ws in S ′2n is

92n−2k+1
(a2k+1 − a2k)

2

a2
2n

=
92n−2k+1

(a2k+1 − a2k)
2

92n−2k+1a2
2k+1

∏2n

j=2k+1(1 + εj)2
(since an = 3an−1(1 + εn))

=
(

1− a2k

a2k+1

)2

·
(

1− (2 + o(1))
2n∑

j=2k+1

εj

)

> 1− 2
a2k

a2k+1

− (2 + o(1))
∑
j>2k+1

εj , k →∞ .

Hence,

lim sup
n→∞

ASn
{
w : max

τwSk
|G| > Mk

}
6 2

a2k

a2k+1

+ (2 + o(1))
∑
j>2k+1

εj . (13)

At last, for `→∞, a` = (a+ o(1))3` with some a > 0, and∑
j>`

εj =
1 + o(1)

2 log2 `
( since εj =

1

(j + 10) log3(j + 10)
) .
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Therefore, the RHS of (13) is

. 3−2k +
1

k2
,

which is what we need for condition (12).

8.1.2

To verify condition (11), we take S = [−a1, a1]2, δ < a1 − 1, and note that for w =

wj(1, 2
n) + ζ with 0 6 j 6 92n−1 − 1, |ζ| < δ, we have τwS ⊃ τwj(1,2n)[−1, 1]2. Therefore,

oscτwS |G| > oscτwj(1,2n)[−1,1]2 |G|

> osc[−1,1]2 |G| −∆1

> osc[−1,1]2 |z| −
1

3
−∆1

> c > 0

since 1
3

+ ∆1 <
1
3

+ 1 <
√

2 = osc[−1,1]2 |z|. Thus, the set
{
w : oscτwS |G| > c

}
contains

the δ-neighbourhood of the set
{
wj(1, 2

n) : 0 6 j 6 92n−1 − 1
}

. Hence, the relative area

of this set in Sn = S ′2n is bounded from below by

92nπδ2

a2
2n

& δ2 > 0 ,

which yields condition (11).

8.1.3

At last, applying Lemma 7, we see that for λ-a.e. F ∈ E ,

lim sup
[−a2n ,a2n ]2

(
|F | − expM(2n+1)

)
6 1 .

In our case M(m) . exp(Cm2 log3m), whence M(2n+1) 6 exp(C22nn3). Then, given

R > 10, we choose n such that a2n−1 < R 6 a2n and get

logMF (R) = max
RD

log |F | 6 max
[−a2n ,a2n ]2

log |F | 6 exp(C22nn3) .

Furthermore, recalling that am = (a+o(1))3m, we see that 2n . log a2n−1 , whence 22nn3 .

(logR)2(log logR)3, proving Theorem 1B. 2
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8.2 Proof of Theorem 2B

Here, we take εj = 3−j, and let G be the entire function constructed by using Lemma 5.

Note that in this case

M(n) 6 exp
(
C3n

)
6 exp

(
Can

)
.

Given R > 10 we choose n so that an−1 < R 6 an and get

logMG(R) 6 eCR .

Furthermore, given a square Sk, for any n > k and any j ∈
{

0, 1, . . . , 9n−k − 1
}

, we have

max
Sk

∣∣τwj(k,n)G−G
∣∣ < ∆k .

Given ε > 0 and a compact set K ⊂ C, we choose k so large that K ⊂ Sk and

max
Sk

∣∣τwj(k,n)G−G
∣∣ < ε for any n > k .

Observing that each square S ⊂ C with the side length C3k+1 contains at least one point

of the set {
wj(k, n) : 0 6 j 6 9n−k − 1, n > k + 1

}
,

we complete the proof of Theorem 2B. 2

8.3 Proof of Theorem 3B

As in the proof of Theorem 2B, we take εj = 3−j. We denote by (Sn) the corresponding

ternary system of squares and let G be the entire function as in Lemma 5. We fix B so

large that

max
Sk
|G|+

∑
j>1

∆j < eMB(k) ,

and drop the parameter B in our notation. As in the proof of Theorem 1B, a straight-

forward verification, which we skip, shows that conditions (10) and (11) of Lemma 7 are

satisfied.

As before, we put

λn =
1

A(Sn)

∫
Sn

δτwG dA(w) ,

denote by λ any limiting measure and by (ni) the sequence of indices such that λni → λ

weakly.
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We fix t sufficiently large and choose k so that eM(k−1) < t 6 eM(k). Then for all t’s

(except maybe a countable set of values which we may neglect),

λ
{
F ∈ E : |F (0)| > t

}
= lim

i→∞
λni
{
F ∈ E : |F (0)| > t

}

= lim
i→∞

ASni
{
w : |G(w)| > t

}
.

Since t > eM(k−1), we have |G| < t on Sk−1, as well as on all translations τwj(k−1,n)Sk−1.

Thus,

ASn
{
w : |G(w)| > t

}
6 ASn

((9n−k−1⋃
j=0

τwj(k−1,n)Sk−1

)c)

= 1− 9n−k(2ak−1)2

(2an)2

= 1−
n∏
j=k

(1 + 2εj)
−2

= (2 + o(1))
n∑
j=k

εj

. 3−k .

On the other hand, we have

log t 6M(k) 6 eC3k ,

whence

3−k .
1

log log t
,

completing the proof of Theorem 3B. 2

References

[1] M. E. Becker, Multiparameter groups of measure-preserving tranformations: a sim-

ple proof of Wiener’s ergodic theorem. Ann. Prob. 9 (1981), 504–509.



8 Proof of Theorems 1B, 2B, and 3B 38
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