Full Length Article

Interpolatory estimates in monotone piecewise polynomial approximation

D. Leviatan ${ }^{\text {a, },}{ }^{\text {, }}$, I.L. Petrova ${ }^{\text {b }}$
${ }^{\text {a }}$ Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
${ }^{\mathrm{b}}$ Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

Received 24 October 2018; accepted 24 October 2018
Available online xxxx
Communicated by Paul Nevai

Abstract

Given a monotone function $f \in C^{r}[-1,1], r \geq 1$, we obtain pointwise estimates for its monotone approximation by piecewise polynomials involving the second order modulus of smoothness of $f^{(r)}$. These estimates are interpolatory estimates, namely, the piecewise polynomials interpolate the function at the endpoints of the interval. However, they are valid only for $n \geq N(f, r)$. We also show that such estimates are in general invalid with N independent of f.

(C) 2018 Elsevier Inc. All rights reserved.

MSC: 41A10; 41A25; 41A29; 41A30
Keywords: Monotone approximation by piecewise polynomials; Degree of pointwise approximation; Jackson-type interpolatory estimates

1. Introduction and the main result

For $r \in \mathbb{N}$, let $C^{r}[a, b],-1 \leq a<b \leq 1$, denote the space of r times continuously differentiable functions on $[a, b]$, and let $C^{0}[a, b]=C[a, b]$ denote the space of continuous functions on $[a, b]$, equipped with the uniform norm $\|\cdot\|_{[a, b]}$. When dealing with $[-1,1]$, we

[^0]omit the reference to the interval, that is, we denote $\|\cdot\|:=\|\cdot\|_{[-1,1]}$. Let \mathbb{P}_{n} be the space of algebraic polynomials of degree $\leq n$.

For $f \in C[a, b]$ and any $k \in \mathbb{N}$, set

$$
\Delta_{u}^{k}(f, x ;[a, b]):= \begin{cases}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} f(x+(k / 2-i) u), & x \pm(k / 2) u \in[a, b] \\ 0, & \text { otherwise },\end{cases}
$$

and denote by

$$
\omega_{k}(f, t ;[a, b]):=\sup _{0<u \leq t}\left\|\Delta_{u}^{k}(f, \cdot ;[a, b])\right\|_{[a, b]}
$$

its k th modulus of smoothness. For $[a, b]=[-1,1]$, write $\omega_{k}(f, t):=\omega_{k}(f, t ;[-1,1])$.
Let $X_{n}:=\left\{x_{j, n}\right\}_{j=0}^{n}, x_{j, n}=-\cos j \pi / n, 0 \leq j \leq n$, be the Chebyshev partition of $[-1,1]$ (see, e.g., [6]), and set $x_{n+1, n}:=1, x_{-1, n}:=-1$.

Finally, let

$$
\begin{equation*}
\varphi(x)=\sqrt{1-x^{2}} \quad \text { and } \quad \rho_{n}(x):=\frac{\varphi(x)}{n}+\frac{1}{n^{2}} \tag{1.1}
\end{equation*}
$$

Pointwise estimates have mostly been investigated for polynomial approximation of continuous functions in $[-1,1]$ and involved usually the quantity $\rho_{n}(x)$. The first to deal with such estimates was Nikolskii, and he was followed by Timan, Dzjadyk, Freud and Brudnyi. Detailed discussion may be found in the survey paper [5], where an extensive list of references is given. Discussion and references to estimates on pointwise monotone polynomial approximation involving $\rho_{n}(x)$ also may be found there. Pointwise estimates of polynomial approximation involving $\varphi(x)$ are due originally to Teljakovskií and Gopengauz, see [4] for extensions and many references. Finally, for some results on pointwise rational approximation, see [1].

The main result of this paper is the following.
Theorem 1.1. Given $r \in \mathbb{N}$, there is a constant $c=c(r)$ with the property that if a function $f \in C^{r}[-1,1]$, is monotone, then there is a number $N=N(f, r)$, depending on f and r, such that for $n \geq N$, there are monotone continuous piecewise polynomials s of degree $r+1$ with knots at the Chebyshev partition, satisfying

$$
\begin{equation*}
|f(x)-s(x)| \leq c(r)\left(\frac{\varphi(x)}{n}\right)^{r} \omega_{2}\left(f^{(r)}, \frac{\varphi(x)}{n}\right), \quad x \in[-1,1] \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)-s(x)| \leq c(r) \varphi^{2 r}(x) \omega_{2}\left(f^{(r)}, \frac{\varphi(x)}{n}\right), \quad x \in\left[-1, x_{1, n}\right] \cup\left[x_{n-1, n}, 1\right] \tag{1.3}
\end{equation*}
$$

Remark 1.2. Theorem 1.1 is well known for $r=0$, in fact, with $N=1$. Indeed, the polygonal line, that is, the continuous piecewise linear s, interpolating f at the Chebyshev nodes, is nondecreasing and yields (1.2) with $r=0$ (see, e.g., a similar construction in [2]). It may be worth mentioning that if f is convex, then the same polygonal line is convex, thus we have the estimate (1.2) with $r=0$ also for convex approximation. This was shown in [7].

In the sequel all constant c will depend on r, but may otherwise be different in each occurrence.

2. Monotone approximation by piecewise polynomials on a general partition

Given $[a, b]$, let $X=\left\{x_{j}\right\}_{j=0}^{n}$ be a partition of the interval, such that

$$
a=: x_{0}<x_{1}<\cdots<x_{n}:=b .
$$

Denote by $S(X, r+1)$ the set of continuous piecewise polynomials of order $r+1$ on the partition X, that is, $s \in S(X, r+1)$ if $s \in C[a, b]$ and s is a piecewise polynomial of degree $r \in \mathbb{N}$ with knots x_{j}, i.e., on each interval $\left[x_{j-1}, x_{j}\right], 1 \leq j \leq n$, the function s is an algebraic polynomial of degree $\leq r$.

We begin with a negative result, which is proved in a similar way to the proof of [4, Theorem 4].

Theorem 2.1. For each $X=\left\{x_{j}\right\}_{j=0}^{n}$ and number $r \in \mathbb{N}$, there is a nondecreasing function $f \in C^{\infty}[a, b]$ such that, for any nondecreasing piecewise polynomial $s \in S(X, r+1)$, satisfying $s(a)=f(a)$ and $s(b)=f(b)$, we have

$$
s^{\prime}(a) \neq f^{\prime}(a)
$$

Proof. Without loss of generality assume that $a=0$ and $x_{1}=1<b$. Let $g \in C^{\infty}[0, \infty)$ be a nondecreasing function such that

$$
g(0)=0, \quad g(x)=1, \quad x \geq 1,
$$

and

$$
g^{\prime}(0)=: d>0 .
$$

We will show that a desired function f may be taken to be

$$
f(x)=g\left(\frac{x}{\alpha}\right), \quad x \in[0, b],
$$

with a suitable number $\alpha>0$, sufficiently small, say, $\alpha<\frac{d}{2 r^{2}}$.
Assume, to the contrary, that there is piecewise polynomial $s \in S(X, r+1)$, such that

$$
s(0)=f(0), \quad s(b)=f(b) \quad \text { and } \quad s^{\prime}(0)=f^{\prime}(0)
$$

The polynomial

$$
p(x):=s(x), \quad x \in[0,1],
$$

is of degree $\leq r$. Since $p^{\prime}(0)=s^{\prime}(0)=f^{\prime}(0)$ and p is nondecreasing, we get by Markov's inequality

$$
\frac{d}{\alpha}=p^{\prime}(0) \leq 2 r^{2} p(1)
$$

so that

$$
p(1) \geq \frac{d}{2 r^{2} \alpha}>1
$$

Hence,

$$
s(b) \geq s(1)=p(1)>1=f(b),
$$

that contradicts our assumption that $s(b)=f(b)$.

The following is an immediate consequence.
Corollary 2.2. For each collection $X=\left\{x_{j}\right\}_{j=0}^{n}$ and number $r \in \mathbb{N}$, there is a nondecreasing function $f \in C^{\infty}[a, b]$ such that, for any nondecreasing piecewise polynomial $s \in S(X, r+1)$, satisfying

$$
|s(x)-f(x)|=o(x-a), \quad x \rightarrow a+
$$

we have

$$
s(b) \neq f(b)
$$

Since $\omega_{k}(g, t ;[a, b])=O\left(t^{k}\right)$, for every $k \geq 1$ and any $g \in C^{\infty}[a, b]$, we may conclude that (compare with Theorem 2.4)

Corollary 2.3. For each collection $X=\left\{x_{j}\right\}_{j=0}^{n}$ and numbers $r \in \mathbb{N}$ and $k \in \mathbb{N}$, such that $r+k>2$, there is a monotone function $f \in C^{\infty}[a, b]$, such that for any monotone piecewise polynomial $s \in S(X, r+1)$, satisfying

$$
|s(x)-f(x)|=O\left((x-a)^{r / 2} \omega_{k}\left(f^{(r)}, \sqrt{x-a} ;[a, b]\right)\right), \quad x \rightarrow a+
$$

we have

$$
s(b) \neq f(b)
$$

One may salvage the interpolation of derivatives at the endpoints as we have also a positive result.

Theorem 2.4. For each nondecreasing function $f \in C^{r}[a, b], r \in \mathbb{N}$, there is a number $H=H(f)>0$, such that for every collection X, satisfying

$$
x_{1}-H<a \quad \text { and } \quad b<x_{n-1}+H,
$$

there are a constant $c=c(r)$ and a nondecreasing piecewise polynomial $s \in S(X, r+2)$, that yields,

$$
\begin{align*}
& |s(x)-f(x)| \leq c(x-a)^{r} \omega_{2}\left(f^{(r)}, \sqrt{(x-a)\left(x_{1}-a\right)} ;\left[a, x_{1}\right]\right) \tag{2.1}\\
& \quad x \in\left[a, x_{1}\right], \\
& |s(x)-f(x)| \leq c(b-x)^{r} \omega_{2}\left(f^{(r)}, \sqrt{(b-x)\left(b-x_{n-1}\right)} ;\left[x_{n-1}, b\right]\right) \\
& x \in\left[x_{n-1}, b\right],
\end{align*}
$$

and

$$
\begin{gather*}
|s(x)-f(x)| \leq c\left(x_{j}-x_{j-1}\right)^{r} \omega_{2}\left(f^{(r)}, x_{j}-x_{j-1} ;\left[x_{j-1}, x_{j}\right]\right), \tag{2.2}\\
x \in\left[x_{j-1}, x_{j}\right], \quad 2 \leq j \leq n-1 .
\end{gather*}
$$

3. Auxiliary lemmas and proof of the theorems

We begin with some results for the interval $[0,1]$. For $f \in C^{r}[0,1]$ and $h \in(0,1)$ denote by

$$
L_{r, h}(x):=L_{r, h}(f, x):=f(0)+\frac{f^{\prime}(0)}{1!} x+\cdots+\frac{f^{(r)}(0)}{r!} x^{r}+a_{r}(h ; f) x^{r+1}
$$

the Lagrange-Hermite polynomial of degree $r+1$ such that

$$
L_{r, h}^{(j)}(f, 0)=f^{(j)}(0), \quad j=0, \ldots, r
$$

ARTICLE IN PRESS

and

$$
L_{r, h}(f, h)=f(h)
$$

The term $a_{r}(h ; f)$ is equal to the generalized divided difference of f, i.e.,

$$
\begin{aligned}
a_{r}(h ; f) & =[\underbrace{0, \ldots, 0}_{r+1}, h ; f] \\
& =\frac{1}{h^{r+1}}\left(f(h)-f(0)-\frac{f^{\prime}(0)}{1!} h-\cdots-\frac{f^{(r)}(0)}{r!} h^{r}\right) \\
& =\frac{1}{(r-1)!h^{r+1}} \int_{0}^{h}(h-t)^{r-1}\left(f^{(r)}(t)-f^{(r)}(0)\right) d t .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|a_{r}(h ; f)\right| \leq \frac{1}{r!h} \omega_{1}\left(f^{(r)}, h ;[0, h]\right) \tag{3.1}
\end{equation*}
$$

Our first result is the following.
Lemma 3.1. Let $f \in C^{r}[0,1]$, be monotone nondecreasing on $[0,1]$. Then there is a number $H>0$, such that for all $h \in(0, H)$ the polynomials $L_{r, h}(f, \cdot)$ are monotone nondecreasing on [0,h].

Proof. Without loss of generality we may assume that $f(0)=0$. If $f^{\prime}(0)=\cdots=f^{(r)}(0)=0$, then $a_{r}(h ; f)=h^{-(r+1)} f(h)$, whence $L_{r, h}(x)=(x / h)^{r+1} f(h)$, that yields monotonicity of $L_{r, h}$ in $[0,1]$.

Otherwise there is a number $0<k \leq r$, such that $f^{(j)}(0)=0$ for all $j=0, \ldots, k-1$ and $f^{(k)}(0)>0$. Put $\omega_{1}(t):=\omega_{1}\left(f^{(r)}, t ;[0,1]\right)$, and take $H>0$ so small that,

$$
\sum_{i=k+1}^{r} \frac{\left|f^{(i)}(0)\right|}{(i-1)!} H^{i-k}+\frac{(r+1) \omega_{1}(H)}{r!} H^{r-k}<\frac{f^{(k)}(0)}{(k-1)!}
$$

where we use the usual convention that an empty sum is zero.
Then, by (3.1), for $0<x \leq h \leq H$,

$$
\begin{aligned}
L_{r, h}^{\prime}(x) & =\sum_{i=k}^{r} \frac{f^{(i)}(0)}{(i-1)!} x^{i-1}+a_{r}(h ; f)(r+1) x^{r} \\
& =x^{k-1}\left(\sum_{i=k}^{r} \frac{f^{(i)}(0)}{(i-1)!} x^{i-k}+a_{r}(h ; f)(r+1) x^{r-k+1}\right) \\
& \geq x^{k-1}\left(\frac{f^{(k)}(0)}{(k-1)!}-\sum_{i=k+1}^{r} \frac{\left|f^{(i)}(0)\right|}{(i-1)!} H^{i-k}-\frac{(r+1) \omega_{1}(H)}{r!} H^{r-k}\right) \\
& >0
\end{aligned}
$$

and the proof is complete.
Remark 3.2. Clearly, an analogous statement is valid if f is nonincreasing.
Next, we need an estimate on the distance between f and the polynomial $L_{r, 1}(f, \cdot)$.

ARTICLE IN PRESS

Lemma 3.3. Given $r \geq 1$ and $f \in C^{r}[0,1]$, we have

$$
\begin{equation*}
\left|f(x)-L_{r, 1}(f, x)\right| \leq c x^{r+1} \int_{x / 2}^{1} u^{-2} \omega_{2}\left(f^{(r)}, u ;[0,1]\right) d u, \quad x \in[0,1] \tag{3.2}
\end{equation*}
$$

where c is an absolute constant.
Proof. Set $\omega(t):=\omega_{2}\left(f^{(r)}, t ;[0,1]\right), 0 \leq t \leq 2$, and $m:=r+2$. Recall (see [4, Section 2] or [3, Chapter 3, section 6]) that for $0 \leq x_{0} \leq x_{1} \leq \cdots \leq x_{m}$, such that $x_{i}<x_{i+r+1}, i=0$ and 1, we may define the generalized divided difference $\left[x_{0}, x_{1}, \ldots, x_{m} ; f\right]$ of $f \in C^{r}[0,1]$. Also, by [4, Lemma 1, (2.1) and (2.2)] or [3, Chapter 3, (8.27) and (6.36)], we have

$$
\begin{equation*}
\left|\left[x_{0}, x_{1}, \ldots, x_{m} ; f\right]\right| \leq c(r) \Lambda_{r}\left(x_{0}, x_{1}, \ldots, x_{m} ; \omega\right) \tag{3.3}
\end{equation*}
$$

where (see [3, Chapter 3, (6.32) and (6.31)])

$$
\Lambda_{r}\left(x_{0}, x_{1}, \ldots, x_{m} ; \omega\right):=\max _{0 \leq p \leq 1} \max _{p+r+1 \leq q \leq m} \Lambda_{p, q, r}\left(x_{0}, x_{1}, \ldots, x_{m} ; \omega\right)
$$

and, with $d(p, q):=\min \left\{x_{q+1}-x_{p}, x_{q}-x_{p-1}\right\}, x_{-1}:=-1, x_{m+1}:=2$,

$$
\Lambda_{p, q, r}\left(x_{0}, x_{1}, \ldots, x_{m} ; \omega\right):=\frac{\int_{x_{q}-x_{p}}^{d(p, q)} u^{r+p-q-1} \omega(u) d u}{\prod_{i=0}^{p-1}\left(x_{q}-x_{i}\right) \prod_{j=q+1}^{m}\left(x_{j}-x_{p}\right)} .
$$

For $x \in(0,1)$, put $x_{0}=x_{1}=\cdots=x_{r}:=0, x_{r+1}:=x$ and $x_{r+2}:=1$, and $p=0$ or 1 and $p+r+1 \leq q \leq m$. Then, for $p=0, q=r+1$ or $r+2$, and for $p=1, q=r+2$. Hence,

$$
\prod_{i=0}^{p-1}\left(x_{q}-x_{i}\right)=1 \quad \text { and } \quad \prod_{j=q+1}^{m}\left(x_{j}-x_{p}\right)=1
$$

and

$$
d(0, r+1)=1, \quad d(0, r+2)=2 \quad \text { and } \quad d(1, r+2)=1 .
$$

Therefore

$$
\begin{align*}
\Lambda_{0, r+1, r}\left(x_{0}, \ldots, x_{m} ; \omega\right) & =\int_{x}^{1} u^{-2} \omega(u) d u \\
\Lambda_{1, r+2, r}\left(x_{0}, \ldots, x_{m} ; \omega\right) & =0, \quad \text { and } \tag{3.4}\\
\Lambda_{0, r+2, r}\left(x_{0}, \ldots, x_{m} ; \omega\right) & =\int_{1}^{2} u^{-3} \omega(u) d u=\frac{3}{8} \omega(1) \\
& \leq c \int_{1 / 2}^{1} u^{-2} \omega(u) d u \\
& \leq c \int_{x / 2}^{1} u^{-2} \omega(u) d u
\end{align*}
$$

where in the second inequality we used the fact that $\omega(t)=\omega(1), 1 \leq t \leq 2$, and $\omega(1) \leq$ $c u^{-2} \omega(u), 1 / 2 \leq u \leq 1$, and c, here and in the sequel, if it appears by itself, is an absolute constant.

Combining (3.3) and (3.4), we conclude that

$$
\left|\left[x_{0}, \ldots, x_{m} ; f\right]\right| \leq c \int_{x / 2}^{1} u^{-2} \omega(u) d u
$$

ARTICLE IN PRESS

which, in turn, implies

$$
\begin{aligned}
\left|f(x)-L_{r, 1}(f, x)\right| & =f(x)-f(0)-\frac{f^{\prime}(0)}{1!} x-\cdots-\frac{f^{(r)}(0)}{r!} x^{r}-a_{r}(1 ; f) x^{r+1} \\
& =\left(\left[x_{0}, \ldots, x_{r}, x ; f\right]-\left[x_{0}, \ldots, x_{r}, 1 ; f\right]\right) x^{r+1} \\
& =x^{r+1}(1-x)\left|\left[x_{0}, \ldots, x_{m} ; f\right]\right| \leq c x^{r+1} \int_{x / 2}^{1} u^{-2} \omega(u) d u
\end{aligned}
$$

This completes the proof.
Corollary 3.4. Given $r \geq 1$ and $f \in C^{r}[0,1]$, we have

$$
\begin{equation*}
\left|f(x)-L_{r, 1}(f, x)\right| \leq c x^{r} \omega_{2}\left(f^{(r)}, \sqrt{x},[0,1]\right), \quad x \in[0,1] . \tag{3.5}
\end{equation*}
$$

Proof. Recall that $\omega(t)=\omega_{2}\left(f^{(r)}, t,[0,1]\right)$. We need the following estimate.

$$
\begin{aligned}
x \int_{x / 2}^{1} u^{-2} \omega(u) d u= & x \int_{x / 2}^{\sqrt{x}} u^{-2} \omega(u) d u+x \int_{\sqrt{x}}^{1} u^{-2} \omega(u) d u \\
& \leq x \omega(\sqrt{x}) \int_{x / 2}^{\sqrt{x}} u^{-2} d u+4 \omega(\sqrt{x}) \int_{\sqrt{x}}^{1} d u \\
& \leq x \omega(\sqrt{x}) \int_{x / 2}^{\infty} u^{-2} d u+4 \omega(\sqrt{x}) \\
& =6 \omega(\sqrt{x}) .
\end{aligned}
$$

In view of (3.2), this proves (3.5).
Applying the linear substitution $x=y h$, we obtain
Corollary 3.5. Let $r \geq 1$ and $h>0$. If $f \in C^{r}[0, h]$, then

$$
\left|f(x)-L_{r, h}(f, x)\right| \leq c x^{r} \omega_{2}\left(f^{(r)}, \sqrt{x h} ;[0, h]\right), \quad x \in[0, h] .
$$

It readily follows from Corollary 3.5 that
Corollary 3.6. Let $r \geq 1$ and $h>0$. If $f \in C^{r}[1-h, 1]$ and $g(x):=f(1-x)$, then

$$
\left|f(x)-L_{r, h}(g, 1-x)\right| \leq c(1-x)^{r} \omega_{2}\left(f^{(r)}, \sqrt{(1-x) h} ;[1-h, 1]\right), \quad x \in[1-h, 1] .
$$

We also need a result that follows immediately from [8, Lemma 2, p. 58].
Lemma 3.7. Let $r \geq 1, x^{*}<y^{*}$. If $f \in C^{r}\left[x^{*}, y^{*}\right]$, is nondecreasing in $\left[x^{*}, y^{*}\right]$, then there exists a polynomial $p \in \mathbb{P}_{r+1}$, nondecreasing in $\left[x^{*}, y^{*}\right]$, interpolating f at both x^{*} and y^{*}, and such that

$$
\begin{align*}
\|f-p\|_{\left[x^{*}, y^{*}\right]} & \leq c(r)\left(y^{*}-x^{*}\right) \omega_{r+1}\left(f^{\prime}, y^{*}-x^{*} ;\left[x^{*}, y^{*}\right]\right) \tag{3.6}\\
& \leq c(r)\left(y^{*}-x^{*}\right)^{r} \omega_{2}\left(f^{(r)}, y^{*}-x^{*} ;\left[x^{*}, y^{*}\right]\right) .
\end{align*}
$$

Proof of Theorem 2.4. Since without loss of generality we may assume that $[a, b]=[0,1]$, and we let $h<H$, with H from Lemma 3.1, then the polynomials obtained in Corollaries 3.5 and 3.6 are nondecreasing. Thus, combining Corollaries 3.5 and 3.6 with (3.6) completes the proof of Theorem 2.4.

ARTICLE IN PRESS

Proof of Theorem 1.1. Recall the Chebyshev partition $X_{n}:=\left\{x_{j, n}\right\}_{j=0}^{n},-1=x_{0, n}<$ $x_{1, n}<\cdots<x_{n-1, n}<x_{n, n}=1$, and denote $I_{j, n}:=\left[x_{j, n}, x_{j+1, n}\right], j=-1, \ldots, n$, and set $h_{j ; n}:=x_{j+1, n}-x_{j, n}$, the length of $I_{j, n}$. Then we have (see, e.g., [8, (1.2) and (1.3)])

$$
\begin{aligned}
\frac{\varphi(x)}{n}<\rho_{n}(x) & <h_{j, n}<5 \rho_{n}(x), \quad x \in I_{j, n}, \quad 0 \leq j \leq n-1, \\
h_{j, n} & <8 \frac{\varphi(x)}{n}, \quad x \in I_{j, n}, \quad 1 \leq j \leq n-2, \quad \text { and } \\
h_{j \pm 1, n} & <3 h_{j, n}, \quad 0 \leq j \leq n-1 .
\end{aligned}
$$

Given a nondecreasing $f \in C^{r}[-1,1]$, let H be obtained by Lemma 3.1. Then for $n \geq N(f, r)$, we have $\max _{j=0, n-1} h_{j, n}<H$. Therefore, by Theorem 2.4, there exists a nondecreasing piecewise polynomial $S \in S\left(X_{n}, r+2\right)$ yielding (1.2) and (1.3). This completes the proof of Theorem 1.1.

References

[1] B. Della Vecchia, G. Mastroianni, Pointwise simultaneous approximation by rational operators, J. Approx. Theory 65 (1991) 140-150.
[2] Ronald A. DeVore, Xiang Ming Yu, Pointwise estimates for monotone polynomial approximation, Constr. Approx. 1 (1985) 323-331.
[3] V.K. Dzyadyk, I.A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials, Walter de Gruyter, Berlin, 2008, p. xv+480.
[4] H.H. Gonska, D. Leviatan, I.A. Shevchuk, H.-J. Wenz, Interpolatory pointwise estimates for polynomial approximations, Constr. Approx. 16 (2000) 603-629.
[5] K. Kopotun, D. Leviatan, A. Prymak, I.A. Shevchuk, Uniform and pointwise shape preserving approximation by algebraic polynomials, Surv. Approx. Theory 6 (2011) 24-74.
[6] K. Kopotun, D. Leviatan, I.A. Shevchuk, The degree of coconvex polynomial approximation, Proc. Amer. Math. Soc. 127 (1999) 409-415.
[7] D. Leviatan, Pointwise estimates for convex polynomial approximation, Proc. Amer. Math. Soc. 98 (1986) 471-474.
[8] D. Leviatan, I.A. Shevchuk, Nearly comonotone approximation, J. Approx. Theory 95 (1998) 53-81.

[^0]: ش This manuscript was scheduled to be published in this ICMA2016 special volume but, inadvertently, it ended up in a regular volume of JAT (see http://dx.doi.org/10.1016/j.jat.2017.07.006 and https://doi.org/10.1016/j.jat.2017.12.003), so it is reprinted here.

 * Corresponding author.

 E-mail addresses: leviatan@tauex.tau.ac.il (D. Leviatan), irynapetrova1411@gmail.com (I.L. Petrova).
 ${ }^{1}$ Part of this work was done while the author was visiting Taras Shevchenko National University of Kyiv.

