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Given a nondecreasing function f on [—1,1], we investigate how well it can be
approximated by nondecreasing algebraic polynomials that interpolate it at +1.
We establish pointwise estimates of the approximation error by such polynomials
that yield interpolation at the endpoints (i.e., the estimates become zero at +1).
We call such estimates “interpolatory estimates”. In 1985, DeVore and Yu were the
first to obtain this kind of results for monotone polynomial approximation. Their
estimates involved the second modulus of smoothness wa(f,:) of f evaluated at
V1 —22/n and were valid for all n > 1. The current paper is devoted to proving
that if f € C"[—1,1], » > 1, then the interpolatory estimates are valid for the
second modulus of smoothness of f("), however, only for n > N with N = N(f,r),
since it is known that such estimates are in general invalid with N independent
of f. Given a number o > 0, we write & = r + 8 where r is a nonnegative integer
and 0 < 8 < 1, and denote by Lip* « the class of all functions f on [—1,1] such
that wa(f(7),t) = O(t?). Then, one important corollary of the main theorem in this
paper is the following result that has been an open problem for o > 2 since 1985:

If a > 0, then a function f is nondecreasing and in Lip* a, if and only if, there
exists a constant C such that, for all sufficiently large n, there are nondecreasing
polynomials P, of degree n, such that

|f($)*P.,L(£E)‘ <C<1;x2> 5 T € [*1,1].
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1. Introduction and main results

Given a nondecreasing function f on [—1,1] and a set E := {&}2, C [-1,1] (& # & if @ # j), is
there a nondecreasing algebraic polynomial that not only approximates f well but also interpolates f at the
points in =7 For a general set =, the answer is clearly “no”. If m > 3, then the nondecreasing interpolating
polynomial may not exist at all (consider f which is constant on [¢1, 2] and such that f(&3) > f(&2)).

If m = 1, then the case for interpolation at either —1 or 1 (but not both) was considered in [4], and we
leave the discussion of the case when —1 < &; < 1 for another time.

Finally, if m = 2, then the nondecreasing polynomial interpolating f at & and & exists, but it does
not approximate f well at all if [£1,&] # [—1,1] (again, consider f which is constant on [£1,&] and is
strictly increasing outside this interval). Hence, for m = 2, the only non-trivial case that remains is when
the nondecreasing polynomial interpolates f at the endpoints of [—1,1]. We call the pointwise estimates of
the degree of approximation of f by such polynomials that yield interpolation at the endpoints (i.e., the
estimates become zero at £1) “interpolatory estimates in monotone polynomial approximation”.

We also note that the situation with strictly increasing functions is rather different (see e.g. [5,13] and the
references therein), since for any strictly increasing function f and any collection of points =, there exists a
strictly increasing polynomial of a sufficiently large degree that interpolates f at all points in Z. How well
this polynomial approximates f is an interesting problem but we do not consider it in this manuscript.

More discussions of various related results on monotone approximation can be found in our survey

paper [8].

For r € N, let C"[a,b], —1 < a < b < 1, denote the space of r times continuously differentiable functions
on [a,b], and let C°[a,b] = Cla,b] denote the space of continuous functions on [a,b], equipped with the
uniform norm || - |q,4]-

For f € C[a,b] and any k € N, set

k
0 () s 2=, ok /e o
=0

AL (S lab]) = 1 4
, otherwise,
and denote by
wi(f,t;a,b]) := sup [ AR(f 5 [a, ) [ljan)
O<u<t
its kth modulus of smoothness. When dealing with [a,b] = [—1, 1], we suppress referring to the interval,
that is, we denote || - || := || - [|[=1,1) and wi(f,t) := wi(f, t; [-1,1]).

Finally, let

o) :=vV1—22 and p,(x):= ¢lz) + %, (1.1)

n n

and denote by A the class of all nondecreasing functions on [-1,1], and by II,, the space of algebraic
polynomials of degree < n.

In 1985, DeVore and Yu [1, Theorem 1] proved that, for f € C[—1,1]N A®M and any n € N, there exists
a polynomial P, € IT,, N AM such that

@)= Patoll < e (1,22 e 11 (1)

where ¢ is an absolute constant.
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In 1998, it was proved in [11, Theorem 4] that there exists f € C[—1,1]N A™M) such that

—-p,
lim sup inf max 1) = Po(@)] = 00, (1.3)
n—oo Pnell,nAM ze(-1,1] w3(f, pn(x))

which implies that wy in (1.2) cannot be replaced by ws even if the constant ¢ and how large n is are allowed
to depend on the function f.
If the function f is smoother, then the following is valid (see [14]):

For any k,r € Nand f € C"[-1,1] N AWM | there exists a sequence of polynomials P, € II,, N A®M such
that, for every n > k +r — 1 and each z € [—1, 1], we have

|/ (@) = Pu(2)| < ek, r)py, () (ST, pu(@).

A natural question now is whether (1.2) may be strengthened for functions having higher smoothness.
More precisely, the following problem needs to be resolved: find all values of k € N and r € Ny such that the
following statement is true, and investigate whether or not the number N in this statement has to depend

on f.

Statement 1.1. For every f € C"[—1,1]N AWM r > 1, there exist a number N € N and a sequence { Py}
of polynomials P, € T, " AW such that, for every n >N and each x € [—1,1], we have

T
@) = Patoll < eor) (2w (0, 250, (1.4
In view of (1.2) and (1.3), Statement 1.1 is true if k¥ + r < 2 (with N = 1) and is not true for » = 0 and
k> 3.
Using the same method as was used to prove [4, Theorem 4] one can show that, for any r € N and each
n € N, there is a function f € C"[~1,1] N AM, such that for every polynomial P, € I, N A®M) and any
function 1, positive on (—1,1), such that lim,_, 11 9(x) = 0, either

|[f(x) = Pa(2)]

- P,
limsup ——————= =00 or limsup U(?—(x)'

a1 P(2)Y(z) z—1 ©2(z)(x) = (1.5)

In particular, this implies that Statement 1.1 is not valid with N independent of f if k + r > 3. However,
in this paper, we show that this statement is valid for K = 2 and any r € N provided that N depends on f.
Namely, the following theorem is the main result in this manuscript.

Theorem 1.2. Given r € N, there is a constant ¢ = c(r) with the property that if f € C"[-1,1] N AWM then
there exists a number N = N(f,r), depending on f and r, such that for everyn > N, there is P, € T, NA™M)
satisfying

) - o) < et) (B2) wn (50, 22) | we o, (19

n

Moreover, for x € [—1, -1+ n*Q] U [1 —n~2 1] the following stronger estimate is valid:

() — Pa(a)] < e(r)g? (@) (f("), M) . (L7)

n
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Given a number a > 0, we write & = r + 8 where r is a nonnegative integer and 0 < 8 < 1. Denote by
Lip* o the class of all functions f on [—1,1] such that wy(f(),t) = O(t?).

An immediate corollary of Theorem 1.2 and the classical (Dzyadyk) converse theorems for approximation
by algebraic polynomials is the following result on characterization of Lip* a.

Corollary 1.3. If o > 0, then a function f is nondecreasing and in Lip* «, if and only if, there exists a
constant C' such that, for sufficiently large n, there are nondecreasing polynomials P,, of degree n such that

17932) , x€[-1,1].

n

|f(z) = Pu(z)| < C <

Note that, for 0 < o < 2, Corollary 1.3 follows from (1.2) (and was stated in [1]).

In order to state another corollary of Theorem 1.2 we recall that W" denotes the space of (r — 1) times
continuously differentiable functions on [—1,1] such that f("~1) is absolutely continuous in (—1,1) and
Hf(T)HOO < 00, where ||-|| , denotes the essential supremum on [—1,1].

Corollary 1.4. For any f € W"NAW  r € N, there exists a number N = N(f,r), such that for every n > N,

f*Pn
SDT

inf

mn <
P,ell,nAM)

o0

c(r) Hf(r)
nr

L

Note that, for r < 2, Corollary 1.4 follows from (1.2) with N = 1.

The paper is organized as follows. In Section 2, we introduce various notations that are used throughout
the paper. Several inequalities for the Chebyshev partition are discussed in Section 3, and Section 4 is devoted
to a discussion of polynomial approximation of indicator functions. In Section 5, we prove several auxiliary
results on various properties of piecewise polynomials. We need those since our proof of Theorem 1.2 will
be based on approximating f by certain monotone piecewise polynomial functions, and then approximating
these functions by monotone polynomials. In Section 6, we discuss approximation of monotone piecewise
polynomials with “small” first derivatives by monotone polynomials. Section 7 is devoted to constructing
a certain partition of unity. Simultaneous polynomial approximation of piecewise polynomials and their
derivatives is discussed in Section 8 and, in Section 9, we construct one particular polynomial with controlled
first derivative. Finally, in Section 10, we use all these auxiliary results to prove a lemma on monotone
polynomial approximation of piecewise polynomials that is then used in Section 11 to prove Theorem 1.2.

We conclude this section by stating the following open problem.

Open Problem 1.5. Find all pairs (r, k) with r € N and k£ > 3 for which Statement 1.1 is valid (with N
dependent on f).

2. Notations

Recall that the Chebyshev partition of [—1,1] is the ordered set X, := (z7)_o, where
xj =z, =cos(jm/n), 0<j<n.

We refer to z;’s as “Chebyshev knots” and note that z;’s are the extremum points of the Chebyshev
polynomial of the first kind of degree n. It is also convenient to denote z; := z;, := 1 for j < 0 and
xj =z, = —1 for j >n. Also, let I; := [z;,x;_1], hj := |I;| := ;-1 — z;, and

1, if z; <x <1,
X, xr) = XI’» xTr) =
]( ) [x; 1]< ) {0’ otherwise.
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Denote by X := X, the set of all right continuous piecewise polynomials of degree < k — 1 with knots
at z;, 1 < j <n—1. That is,

S €3y if and only if S|[Ij) y €1, 2< 5 < m, and S|[w1,1] elly_q.

Tj—1

Throughout this paper, for S € ¥, we denote the polynomial piece of S inside the interval I; by p;, i.e.,

p; = pi(8) = Sie;2,_1), 2=<j<mn, and p1:=pi(S) =9 1

For k € N, let ®" be the class of all “k-majorants”, i.e., continuous nondecreasing functions 1 on [0, c0)
such that (0) = 0 and ¢~ (¢) is nonincreasing on [0, c0). In other words,

oF = {4 € C[0,00) | ¥ 1, ¥(0) =0, and t; *(ta) < t7Fp(ty) for 0 <ty < to}.

Note that, given f € C7[~1,1], while the function ¢(t) := t"wi(f("),t) does not have to be in &+ it is
equivalent to a function from ®**". Namely, ¢(t) < ¢*(t) < 2¥¢(t), where ¢*(t) := sup, -, t*T"u=*""¢(u) €
PFT (see, e.g., [2, p. 202]).

For 1 <i,5 <mn, let

max{%,j}
I ;= U Iy = [xmax{i,j%mmin{i,j}fl]
k=min{4,j}
and
max{i,j}
hij =11 ;| = Z hk = Tminfij}—1 — Tmax{i,j}-
k=min{s,5}

In other words, I; ; is the smallest interval that contains both I; and I}, and h; ; is its length.
For ¢ € ®*, which is not identically zero (otherwise everything is either trivial or of no value), and
S € ¥, denote

lpi — i1, <hj )k .
bi ;i (S, ¢) i= ———— , 1<4,75<n. 2.1
(Note that bi)j(S, ¢) = ai,j(5>/¢(h]‘) with Qj, 5 defined in [12, (61)})

Also, for S € ¥, and an interval A C [—1, 1] containing at least one interval I,,, denote

bk(5,¢,A) = ma><< {b@j(S,(ﬁ) ’ I, C A and IjCA},

1<d,j

and

bk(S, ¢) = bk(sa ?, [_17 1]) = max bi,j(S’ d))
1<4,5<n
Throughout this paper, we reserve the notation “c” for positive constants that are either absolute or may
only depend on the parameter k (and eventually will depend on r). We use the notation “C” and “C;” (the
latter only in Section 10) for all other positive constants and indicate in each section the parameters that
they may depend on. All constants ¢ and C' may be different on different occurrences (even if they appear
in the same line), but the indexed constants C; are fixed throughout Section 10.
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3. Inequalities for the Chebyshev partition
In this section, we collect all the facts and inequalities for the Chebyshev partition that we need through-

out this paper.
It is rather well known (see, e.g., [2, pp. 382-383, 408]) and not too difficult to verify that

@ < pnlx) < hj <bpp(z), xze€l;, 1<j<n, (3.1)
hjt1 <3h;, 1<j<n,
and
Pn(y) < Apn(z)(|z =yl + pu(x)) and (3:2)

(|7 =yl +pn(2))/2 < |z =yl + pu(y) < 2(Jz =yl + pu(2)), =,y €[-1,1].

(We remark that the inequalities on the second line in (3.2) immediately follow from the estimate on the
first line.)
Also, we observe that

pn(z) < |z —xj], forany 0<j<n and ¢ [zj41,z;-1] (3.3)

Indeed, (3.3) holds for x = x4+, (excluding _; and x,41) by (3.1), and for all other = ¢ [z;11,2;_1], it
follows from the inequalities z + p,(z) < zj41 + pp(zjy1) if © < xj41, and z — py(x) > xj-1 — po(T-1)
if > xj_1, that can be verified directly or using the fact that « + p,(x) increases on [fl,n/\/n2 + 1] D
[—1,21] and x — p,,(x) increases on [—n/vn? +1,1] D [z,-1,1].

Now, denote
|

= Tz 1] and 0n(x) := min{l,np(x)}, =€ [-1,1],
J j

¥y = 1hj() :
and note that
() =1 if x€[rp_1,71]
and

() <np(x) <o, (z) if ze[-1,zp-1]Ux1,1].

Tt follows from (3.1) and (3.2) that

) < Apu(ey) (12 = 2y] + () < 8hy (12 = 3] + () (3.4)
and thus
e N 8
<Pn(:1:) + |z xj|) < pn(z) + |7 — 2] < cpj(z). (3.5)

Similarly, (3.1) and (3.2) imply (see, e.g., [7, (26)]) that
cw?(x)pn(ac) < pnlz;) < cwjfl(x)pn(m), 1<j<n and =ze€[-1,1], (3.6)

where ¢ are some absolute constants.
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Tt is not difficult to see that, for all 1 < j <mn and z € [-1,1],
pn(x) +dist(z, I;) < pn(z) + |z — ;| < 16 (pp(z) + dist(z, I;)) . (3.7)
Indeed, the first inequality in (3.7) is obvious, and the second follows from
|z — x;| < 4dist(z, I;) + 15p, (),
which is verified using (3.1) and separately considering the cases x € I; 1 UI; Ul and o ¢ I; 1 UI; Ulj
(in the latter case, there is at least one interval I;, i # j, between z and I}, so that |z —x;| < h;+dist(z, ;) <

4dist(x, I;)).
Also, it is straightforward to check that

wa-(x) <ec, zel[-1,1], (3.8)

and so, by virtue of (3.7) and (3.5),

2": < )+ dls)t(x 7, ))4 se (3.9)

j=1

In order to quote several results from [7] in the form used in this paper we need the following observation.
First, it is known (see, e.g., [7, Proposition 4]) that

2

l—x
<27%(x), 1<j<n and —-1<z<l.
U e i—ay = 20 0 1= =

Now, since

N >1 -2 > 2
1r<n]1£1n{(1—|—xj 1)(1 - ])}—1 Ty > 2/n7,

we have

1—a? n?p?(x)

Ato, )i-z) > 2

i

and hence, for all 1 < j <n and z € [—1,1],
1—22

T =) = 2min{1,n?(2)}o; % (x) = 207 (¢)¢;(x). (3.10)

Conversely, by (3.6)

2

1—xz cp?(x) >cz/12»(x)
= CY;

- n’e*(x) 2052
(+o;, ) —a) = 202 (z) s 2 v (@)0) (2), (3.11)

where the first inequality is valid since

(42 0)(1—xy) = 1—aF + hi(1 —x5) < n’p)(x;) + pu(z;) < 20°pl (25).
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4. Auxiliary results on polynomial approximation of indicator functions

All constants C' in this section depend on « and f.

Lemma 4.1. Given o, > 1, there exist polynomials 7;, 1 < j < n —1, of degree < Cn satisfying, for all
HS [717 1]:

7i(x) > C|I;| 708 ()" (x), (4.1)
70(@)| < Cll @ @), 1<a<a, (4.2)

and
;@) = 75(2)] < O82(@)4) (). (4.3)

Proof. First, estimates (4.2) and (4.3) immediately follow from [7, Lemma 6] taking into account (3.10) and

setting p := [10a + 108] and £ := [3a] in that lemma. Estimate (4.1) was not proved in [7], and so, even

though its proof is very similar to that of (4.2) and (4.3), we adduce it here for the sake of completeness.
Recall the definition of polynomials 7;:

7j(x) = ;‘L/kl-—yQY%ﬁ(y)dy7 (4.4)

where

2 2
COS 2n arccos T sin 2n arccos x
tj(x) = <(J> + <) : (4.5)

I—SL’J— T — T,

Zj = cos((j — 1/2)m/n) for 1 < j < n, x} := cos((j — 1/4)m/n) for 1 < j < n/2, 23 := cos((j — 3/4)m/n)

for n/2 < j <n, and the normalizing constants d; are chosen so that 7;(1) = 1.
Tt is known (see, e.g., [7, (22), Proposition 5]) and is not difficult to prove that

tj(@) ~ (|2 — x|+ hy)~%, zel[-1,1] and 1<j<n, (4.6)
and
dj ~ (L4 a;-0) (L= 2) hy i p> €+ 1

Here and later, by X ~ Y we mean that there exists a positive constant ¢ (independent of the important
parameters) such that cTlIX <Y <eX.
Hence, using (3.11), we have

() = dj_l(l - Z‘Q)Et?(x)
Rt

>C !
Tt )ty

1526 2u+2¢
> Ch; o (x)djj'u (2)

B (1 —a?)*(|lz —a;| + hy) 2

Z Ch;léia($)¢?o(a+6)($) 0

Please cite this article in press as: K.A. Kopotun et al., Interpolatory pointwise estimates for monotone polynomial
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Lemma 4.2. Given o, > 0, there exist polynomials 7;, 1 < j <n —1, of degree < Cn satisfying

Fi(x) <0, for x€[~1,2;]U[z;_1,1], (4.7)
and, for all x € [—1,1],
|7 (@)| < Ol 7165 (@)v] () (4.8)
and
X () = 75(2)] < O83 ()0l (x). (4.9)

Proof. We let

x

%) = &1 / (0 — ) (@51 — w)(1 — P?)5H4(y) dy

-1

with t; defined in (4.5) and g] is so chosen that 7;(1) = 1, and where § and p are sufficiently large and will
be prescribed later. Clearly, (4.7) is satisfied.

It is possible to show (see, e.g., [6, Proposition 4] with m = k = £+ 1, a1 = -+ = ap_1 = —1,
by =---=bg_1 =1, aym = xj, by = x;_1) that

dj ~ (14 25-1)5 (1 —ay)h; 2 if 5> 10€ + 15.
Hence, using (4.6) we have

1— 22

1+ l’jfl)(l — T

3
F@)| = 41— ) = gl — allt (o 1 )
7 ()] = d (1 — 2l — oyl |tj<>|sc<( )) B2 a)

We note (cf. [7, (25)]) that, for all z € [-1,1],

1—|—.13 1 11—z —1
— " < d
4o, s cp; (z) an

Now, if £ < z;, then

X3() - 75(2)| = ()] = / 7 (y)dy

y £ 2p—E—2
1 h;
<o { (wa5) (w=srem) o
ALz ly — x| + h;

f xT

1+ e _

C<1+x- 1) h?” 6 3/(xj_y+hj) 2”+5+2dy
-

IN

— 00

IA

1-a? ¢ e
C<(1+%’1)(1—%‘)> vi '

Similarly, for > x;, we write
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1

() =Bl = 1= Bl = | [ Fwdy

x

1
1— 3 i 2p—E—2
<o [(1=2) (maiem) @
1—x; ly — ;] + h;

13
1—2x e _
SC(l—:@) ht 3/(y*$j+hj) A2y

x

1-— 1’2 ¢ A—E—

<C nEd,

- ((1 +aj)(1 - %‘)) v
Finally, using (3.10), we conclude that

7(@)] < Coxthy 2 )
and
i (@) = 75(2)] < Cohy T ),

and it is enough to set £ := [a/2] and p := [S + 5] + 25 in order to complete the proof. O

5. Auxiliary results on properties of piecewise polynomials

All constants ¢ in this section depend only on k.
The following lemma is valid (compare with [3, Lemma 1.4]).

Lemma 5.1. Let k €N, ¢ € %, f € C[-1,1] and S € Sy . If
wi(f,t) < é(1)
and
[f(z) = S(@)| < d(pn(x), =z e€[-1,1], (5.1)
then
b (S, ¢) < ec.

Proof. Recall that ¢ is not identically zero, so that ¢(x) > 0, x > 0. For 1 <4, j < n, we have

Ipi — fll (2 N 1 =pilln ( B\
bis(5:9) = é(h;) (hzjj> * ¢(hjj) <hzjg> oo

Now, we note that, for any 1 < v < n, inequalities (5.1) and (3.1) imply

Dy = fllz, < l¢Con)lly, < ¢(hu).

Hence, 01 < 1, where we used the fact that if h; < h;, then ¢(h;) < ¢(h;), and if h; > hj, then ¢(h;)/od(h;) <
hf/h;?.
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In order to estimate o9, we first recall the following estimate (see [2, (6.17), p. 235]). For any g € C[-1,1],
keN, ae[-1,1 and h > 0 such that a + (k — 1)h € [-1,1],

k
r—a
@) < e (1+ 5 (o) + ol s eoam) € 11

Setting g := f —p;, a := xj and h := h;/ max{1,k — 1}, and observing that wi(g,h) = wi(f — p;,h) =
wk(fa h) < ¢(h)7 we get

|z — x|

k
@) =i < e (14 ) (o) + 1 i) e ol

and so

hig\"
17wl < (2) o)

J

Hence, o3 < ¢, and the proof is complete. O

The next lemma, although claims a different inequality than [3, Lemma 2.1], is proved along the same
lines. We bring its proof for the sake of completeness.

Lemma 5.2. Let k € N, ¢ € ®F and S € Sy, N C[—1,1]. Then

pnS’
é(pn)

be(S,¢) < ¢ (5.2)

oo

Proof. We note that in the case k = 1, the statement of the lemma is trivial since ¥, , N C[—1,1] = I,
and so both sides of (5.2) are identically zero. Hence, we assume that k& > 2, and we may also assume that

an/ ‘
=1. 5.3

Since

pi(z) =5(-1)+ /S’(u)du—k/p;(u)du 1<j<n,

—1 T

it follows that

pj(x) —pi(x) = /Sl(u)duqt/p;(u)duf/p;(u)du,
and hence,

I =il < | [ 15" ldu| + [ Wjldu+ [ iw)ldu < 2o, + bl s, = o0+ 0.
z; I ; I;

We first estimate oo. If v € I;, then it follows by (5.3) that
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/ — 19 (v ¢(pn(v)) C(b(hj)

and since p; is a polynomial of degree < k — 1, this, in turn, implies that

hi) (i "2 hii\"
L < Chi,j%j) <h_j> < co(hy) (h_j> : (5.4)

o2 = hi ;]

We now estimate ;. First, note that it follows from (3.2) (with y := z; and any u € I; ;) that h? <
chijpn(u). If pp(u) < hj, this implies

P(pn(u)) _  o(hj) P(hs) ) k1
< i < o1 I ;.
o (1) <c h? hi; <c hf hl’j uecl;
If p,,(u) > h;, then
¢(pn(u)) o(hj) w1 o(hy) , k-1
< < &%) I ;
patw) = P (WS T el
and so using (5.3) again we have
0'1:2hij||Sl||Iix S2hz] ¢(P ) S (rb( k]) i@]
’ »J ’ p [1.,] h] )

Combining this with (5.4), we obtain

hii\"
Ip; = pillr, < colhy) < g’?) :
j
and the proof is complete. 0O

6. Monotone polynomial approximation of piecewise polynomials with “small” derivatives

All constants C' in this section may depend on k and a.

Lemma 6.1. Let a > 0, k € N and ¢ € ®F, be given. If S € Tp,, N AW s such that

') < 22D o\ (o), (6.1)
0 < S(z+) — S(r;-) < Blpuley), 1 <n—1, (62)

and
S'(z) =0, ze€[-1,zp-1)U(z1,1], (6.3)

then there is a polynomial P € AD NI, such that
|S(z) — P(2)| < Coy(z) ¢ (pu(2)), z€[-1,1]. (6.4)

Note that, clearly, condition (6.2) is automatically satisfied at all knots x; where S is continuous.
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Proof. Let

[S(x) = S1(2)] < c(pn(2)), x€[-1,1], (6.5)

and (6.3) yields (recall that S is right continuous)

Si(z) = S(z), z €l UI,. (6.6)
We may write,
Si(x) = ; S(a;) (x;(2) = xj-1(@)) + S(z1)x1(2)
= S(-1) + §(s<xj) — S(zj41)x;(2), xe€[-1,1]
Let
wa=ﬂ—n+§jwu»—swﬁmn@x re[-1,1],

where 7; are the polynomials from Lemma 4.1 with the same o and 8 = k + 2.
Then, P is a nondecreasing polynomial of degree < Cn and, in view of (6.5) and (6.6), we only need to
estimate |S1(x) — P(z)|. First, note that (3.6) implies, for all 1 < j <n and z € [-1, 1],
6(hj) < ¢ (cvj ! (@)pa(®)) < C 7" (2)¢ (pa(2)).
Now, since (6.1) and (6.2) imply that
1S(z;) = S(xj41)| < Cop(hy), 1<j<n-—1,
using (4.3), we conclude that, for all 1 < j <n—1and z € [-1,1],
|S(a5) = S(aj)llx (@) = 75(2)| < Chhy)dy (@) T2 () < Co (pu()) 85y ()97 ().

Therefore, by (3.8), we have
n—1
|S1(z) = P(a)] < Y [8(x5) = S(aj1)lx; (@) — 75(2)]
j=1

n—1
< 00 (pu(a)) 63(2) 3 03 (a)
< O (pn(x)) 07 ().

Combined with (6.5) and (6.6), our proof is complete. O
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7. On one partition of unity

Lemma 7.1. Let a1,37 > 0, and let n,ny € N, ny > n, be such that ny is divisible by n. Then, there is a
collection {Tjn, }j—1 of polynomials Tj,, € Ug(a,,p,)n,, Such that the following relations hold:

NE

Tj7"1 ($) =1, ze€ [_17 1}7 (71)
j=1
T, (®)>0 and T,, (z)<0, z€l[-1,1], (7.2)
B1
T o Pny (x)
Tin < ! , .
(o) < C0%2 o) (2t ) &
for all
[—1,.’111], Zf j = 17
x € Dj = [.’En,h 1]7 Zf .7 =n,
[—1,1], if 2<j<n-1,
and
s N pgll (.’ﬂ) Pny ((E) + diSt(:E, IJ) 7 .

1<g<o and z€[-1,1],
where all constants C' depend only on «y, 81 and are independent of the ratio ny/n.
Proof. Let 7; »,, 1 <9 < mn; — 1, be the polynomials from Lemma 4.1 with o and 3 to be prescribed, and
denote 79, =0 and 7, n, = 1.
Set

Tin, = Tin, — Ti—1,n,» 1 <1< my,

and note that
ny
> Tim =1 (7.5)
i=1

Let d := ny/n and define
dj
Timy= Y. Timy= Y. Tin, 1<j<n. (7.6)
i=d(j—1)+1 Lim, CI;

Then (7.1) readily follows by (7.5), and (7.2) is evident.
We now note that, for all z € [-1,1],

¢i:t1,n1 (x) < 41!}7;,7’1,1 (ZC), ]- S 7’ S n17

(recall that 1o p, (x) = 0 and ¥, 110, (x) =0) and
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Xi,ny (.13) — Xi—1,n (J)) = X[xi,nl’mi—l,nl)(x) = 5?:1 (z)X[mi,nlymifl,nl)(’T) < 052 ( Wz nl( )

for 2 <i<ng—1.
Hence, by (4.3),

T (2)] < [Tiny () = Xigna (2)] + [Xiin (2) = Xi—1,0 (@) + [Xi—1,0 (2) = Tim1,, ()]
<00 (e, (x), 2<i<mi—1, ze[-1,1].

If i = 1, then, for x € [-1,21,n,) D [—1,21.4],

(T, (2)] = 710, (2)] = 700 (@) = X100 (@)] < O (@), (),

and similarly, for ¢ =nq and € [Tp,—1.ny51] D [Tny—1,n, 1],

|Tn17n1 (.T)| = |1 — Tni—1,nq (SU)| = |Xn1—1,n1 (SL’) — Tni—1,nq (SU)| < Cdgl (x)quﬁ,nl (iL')

Hence, for x € D,

| Tjons (@) S CO () Y Wi, (2 (7.7)

Iin, CI;

Similarly, it follows from (4.2) that, for all z € [—1, 1],

79 (@) < Cog (@) S bWl (@), 1<q<a. (7.8)
IL7LICIJ

Therefore, we may treat (7.7) as a particular case of (7.8) for ¢ = 0, keeping in mind that x is assumed to
be in D; in that case.
We are now ready to prove (7.3) and (7.4). First, we note that (3.1) and (3.2) imply that

. 2 n
Z.2’711 (l‘) — . T ' <c ,0 1(33) )
| — iy | + hing |2 = Zin, | + oy (2)

Hence,

N ) hi g+1 N (B—q—1)/2
\Tj(q?jl (@) <Co5 (x) > Rl ( 1 ) ( P (2) >
! M\ [ = Ty |+ pny () | = @i, [+ (@)

Iin, CI;
=Cdy (z )P q_l)/2(:r) Z Ring
ny — : . _
iy CI (|z = @iy | + pn, (x))BratD)/
o0
< CéY q—1)/2 du
- )pnl @ (u+ pp, (x))Btat1)/2
dist(z,Ij)
_ 0531 (z) ( P, (2) >(,3—q—1)/2-
pnl(SC) dist(z, Ij) + pn, (@)

It remains to set « := [a1] and 8 := 261 + a1 + 1, and the proof is complete. O

In the proof below, we need estimates (7.3) and (7.4) for z € D; with 4, (z) replaced by d, (x) which is
smaller near the endpoints of [—1,1].
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Corollary 7.2. Let as, 82 > 0, and let n,n, € N, ny > n, be such that ny is divisible by n. Then, there is a
collection {Tjn, }j—1 of polynomials Tjn, € Uc(ay,pa)n,» sSuch that (7.1) and (7.2) are valid, and

23 B2
7(a) < 5n (:C) Prny (ZC) <g<
TN O o rase ) o 0= (7:9)

for all x € D, where all constants C' depend only on ag, B2 and are independent of the ratio ny/n.

Proof. Since

by () _ | i p(e) < 1/m,
On () 1, if p(z)>1/n,

we only need to prove (7.9) for z € @j :=D;N{z | ¢(x) <1/n} (for all other z € D; it is an immediate
corollary of (7.3) and (7.4) with a1 = @ and 1 = f2). Note that for all 1 < j <n and z € D,

dist(x, I;) > dist(@j, I;) > dist(w1,V/1 —n=2) >n"2

Hence, it follows from (7.3) and (7.4), that forall 0 < ¢ < 7,1 <j<nandz € @j, we have

q 391 (x) g\ n, (2) o
T @< o () (pm<x>p+ dist(a:,m)
32 (x) [y w(@) O\ o, () iz
SO (F) (pnlfx>+n2> <pn1<x>p+dist<x,fj>)
3 () o, () iz
SO <pm <x>p+ dist (z, m) ’

since

mpn(e)  __gl@)+ 1/
npn, () +1/n = ne(x)/ny +1/n — 7

for ny > n and p(z) < 1/n. It remains to set a; := ag and f; ;== as + F2. O
8. Simultaneous polynomial approximation of piecewise polynomials and their derivatives

All constants C' in this section depend on k and ~.
We need the following result which is similar to [12, Lemma 18] and which is proved in a similar way.

Lemma 8.1. Let v > 0, k € N, ¢ € ®, and let n,n, € N be such that ny is divisible by n. If S € Ykn, then
there exists a polynomial D, (+,S) of degree < Cny such that

1S(x) = Dn, (2, 5)] < C6;(2)¢(pn(2))br (S, §). (8.1)

Moreover, if S € C™=[—1,1] for somer € N, r < k, and A := [z,-,7,,], 0 < p. < p* < n, then for all
x € A\{xj};?;ll and 0 < g <r, we have

y+1
59(0) - Dw.5)| < o0 2D (nso )+ s () ) 62

The constants C above are independent of the ratio ny /n.
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Proof. We denote

D, (z,5) ij Ty ( (8.3)

where T},nl are polynomials of degree < C(aq, f2)n; from the statement of Corollary 7.2. Note that D, (-, S)
is a polynomial of degree < k + C(ag, B2)n1. The parameters as and B2 depend on v and k are chosen to
be sufficiently large. For example, ag = v and B2 = v + 4k + 5 will do.

For the sake of brevity, we will use the notation p := p,(x), 6 := §,(z), p1 := pn, (z) and fj = Tjnl
Recall that I; ; is the smallest interval containing both I; and I;, and h; ; := |I; j|. Suppose now that z is
fixed and let 1 < v < n be the smallest number such that « € I, (i.e., if z = z,), then x belongs to both I,
and 1,41, and we pick v = 7).

We now observe that (3.4) and (3.7) imply

v — 4y i 71' .
hy 50 _gplrzmlre prdist@l) L (8.4)
hj — hy P p
Also,
h}:)j < CM’ 1<j<n. (8.5)
v p

Indeed, if |j — v| < 1, then it is enough to note that (3.1) implies that h, ; ~ h,. If |j — v| > 2, then we use
the fact that there is at least one interval I; between I, and I}, and so (3.1) implies

hyj = hy + h; + dist(I,,, I;) < h, +4dist(I,, I;) < h, + 4dist(z, I;),

and (8.5) follows.
Since S(z) = p,(x), (7.1) implies

S(x) = Dy, (2,8) = S(x) Y _Tj(x) = > _pi@)Ti(x) = Y (pu(x) —p;(@)T;(),
j=1 j=1 1<j<n,j#v
and so

$9@) - DO = Y (o)~ py@) T@) "

1<j<n,j#v

= > Z(q) (p (@) = 2" (@)) T (@),

1<j<n,j#v i=0

with the assumption that z ¢ {xj};:ll if ¢ > 1, since S may not exist at those points. Note also that

zeDj;foralll <j<n,j#v,andso (7.9) can be used for all polynomials Tj appearing in the above sum.
Now, since

othy) < o) < ot (222 ) < cat) ()

v

it follows from (2.1), (8.4) and (8.5) that, for all ¢ > 0 (of course, the inequality is trivial if i > k),
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(i) (1) —i o(hy) (I, ;
lps” =5l < el llpy = pilln, < ebuj(S,0) =7 » (8.6)
v J
o) (25 )" Blp) ( p-+distla, 1)\
SCbza’ Sv¢ i . SCbl/,‘ Sa¢ i < — > .
5.0% (hvh) (5.0 :
Observing that
il < P (8.7)

p1 +dist(x, I;) = p+dist(z, I;)

and using (7.9) we now conclude that, forall 0 <i<gand 1 <j<n,j#v,

B2—3k
() () _ (D ~(g—1) 4 as P(P) p1
‘(p” (@) —pj (x)) T (z)‘ < Obyy(5,9)0 pip?~" \ p1 +dist(z, 1) '

If i = ¢, this becomes

(96~ @1) T < s g 20 (e ) 9)

and, in particular, if ¢ = ¢ = 0, then

p B2—3k
0u0) = N 0] < Chsts.00000) (5 gy ) (89)

Now, with an additional assumption that j # v £ 1 (which implies that dist(z,I;) > p/3), and using
p1/p < mn/ny, we have

(b0 @) = 2" (@) T (@) (8.10)
q—i+1 Ba—3k—q+i—1
T SR ey S
’ p? p \ p1+dist(z,I;) p1 + dist(x, I;)
0 @(p) 1 p1 famdhmat
< - 2 2 ,
= va,] (Sv ¢)5 pq n o T dlst(x7 Ij)

It remains to consider the case ¢ > 1,7 < ¢—1 and j = v £ 1. We only consider the case j = v + 1, the
case j = v — 1 being completely analogous.

We now have to use the fact that S is assumed to be sufficiently smooth. Indeed, if S € C7971[—1,1], we
have pi(z,) = p'} 1 (2,), 0 < 1 < g — 1, and so by (8.6),

x

i i 1 i
Pl(/)(f) - P,(/L(ﬂc) = m /(3? — )t (pffn(u) - Pl(,%(u)) du
<o —a, | P = |
» é(p) (p+|xx,,)3k
Scxfxl/q Zbu,u Svd) .
2= @l b1 (5,6) G ;

Therefore,
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(i) 0 ~(g—1) o O(P)| — 2, |97 p1 Paok
(P @) = P @) T @) < Cbua (5,6)0 :

plpt™ p1+ |z —
B2—3k—q+i
o(p) < P1 )
< Cbypi1(S, 9)o2 .
= f +1( ¢) 4 p1+|$—$y‘
In summary, the estimate
B2—3k—q

@) () ) Fa—) ‘ <Ch g 502 2P) p1 811
(@) = P @) T @) < Oan (8, 0)% 05 e SNCREY

is valid for all 0 < i < ¢ provided that S € C?~1[—1,1] (for i = ¢ it follows from (8.8)).
Using (8.9), (8.7), (3.9) and the estimate b, ;(.S, ¢) < b (S, ¢), we have

B2—3k
S(x) — Dn, (2, 8)] < Cby(S, $)6°2 #) 8.12
S(@) ~ Doy (2.9 “¢>¢@&§mﬁwmm¢> (812

< Cbi(S,¢)07¢(p),

and (8.1) is proved.
We will now prove (8.2). Suppose that S € C"~![—1,1] and 0 < g < r. We write

S9@) - DW= Y (o) - p@) Do)

1<j<n,j#v

S DIEDIEDIED B N (RO EAIL )

j€d1 JjE€J2 jE€Is3 jE€da

=:01(x) + o2(x) + o3(x) + 04(x),
where

Ji={j | 1<j<nI;CAj#vv+l},
do={j | 1<j<nI;¢Aj#vvEl},
Js={j | 1<j<nj=v+1},
Ja={j [ 1<j<nj=v-1}.

Note that some of the sets J; may be empty (making the corresponding functions o; = 0). For example, if
v=1,thenJs=0and oy =0;if AC I, UL, UI, 1, then J; =0 and oy = 0, etc.

In order to estimate o1, using (8.10), (8.7), (3.9) and the estimate b, ;(S,¢) < bp(S, ¢, A), j € J1, we
have

s @) 1 ( p1 )ﬁr‘%_q_l o(p)
L )57 A
lo1(2)] < Cbi(S, ¢, 4)0 p? ng o\ + dist(z, I;) < Cbi(S, ¢, A4)0 A

To estimate o2, we use (8.10), (8.7), (3.7), (3.4) and b, ;(S,¢) < bi(S, d), j € J2, and write

4p) p S
< Cbh goe M 7 =
[o2(2)] < Cbi (S, 6)6%2 =5 J;gz <,o1 +dist(x’1j))
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DRSSy >ﬂ’“
< Cbp(S, 9o 22N~ (P
< Cbi(S, ) 4 anQp p+ |z —

y+2
< Cb (S, 2O 15 T (”) ’

o g, o APl
¢(p) n 1 h;
< Chy(S, ¢)67T = — prF J
e T DY ey e

Jj€J2
o(p) n 1 Ji du

< Cb Sy 2L v+ -

= OO (o)

dist(z,[—1,1]\ A)

P(p) n

p "

Finally, we will estimate o3 (the proof for o4 is completely analogous). First, if I, 41 C A, then b, ,41(S, ¢) <
bi(S, ¢, A) and so (8.11) yields

)| < Otu(5.0, 4157 2.

IfI,41 ¢ A, then v = p* (and so dist(z, [-1,1]\ 4) < |z — .| = dist(z, I,41)), buv+1(S, @) < bi(S, ¢), and

again using (8.11), we have

o(p) P1 WH
los(x)] < Cbg (S, )7 1 <p1 4 dist(x,fu-i-l))
o(p) p1 P .
S Cbk(S7 ¢)6’Y pq ; (,01 +dISt(SU, [7171] \A)>

L (p) P "
< Cbi(S9)07 = (dist(m—l,l]\A)) .

The proof is now complete. O

9. One particular polynomial with controlled first derivative

All constants C' in this section depend on « and £.
The following lemma is a modification of [12, Lemma 10].

Lemma 9.1. Let o, 3 > 0, k € N and ¢ € ®F. Also, let E C [~1,1] be a closed interval which is the union of
mpg > 100 of the intervals I, and let a set J C E consist of my intervals I;, where 1 <my < mp/4. Then

there exists a polynomial Qn(x) = Qn(x, E,J) of degree < Cn, satisfying

() > OTE ga (g 2(n()) pu() Rl
@l )Zchan (z) pn(T) (max{pn(x),dist(x,E)}> ’ (9-1)
ze JU([-1,1]\B),
Q' (z) > —o2(@) 2@ g, (9.2)

pn(x)

and
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h;

|Qn(2)] < Cm’g+35ﬁ(w)pn(a:) ¢(pn(2)) Z (Iz — 2] + pu(x))?’

j:I;CE

xz € [-1,1).

Proof. First, it will be shown that we may assume that I,, ¢ E provided that the condition m; < mg/4 is
replaced by a slightly weaker m; < mpg/4.

Suppose that the lemma is proved for all E; such that I, ¢ Fi, let E be such that I,, C F, set
By = (E\ L))" and Q,(z, B, J) := Qu(z, By, J;) (with J; to be prescribed), and consider the following
three cases noting that, if the inequality in (9.1) holds for a particular z, then the inequality in (9.2) holds
for that x as well, and that max{p, (x),dist(x, E1)} ~ max{p,(x),dist(z, E)}.

Case (i): If I, C J and m; > 2, then we define J; := (J \ I,,), and note that E; \ J; = E \ J (and so
JU([-L1\E) =JU([-1L,1\E), 1 <my, <mpg, /4, and mg, /my, <2mg/mj.

Case (ii): If m; = 1 and J = I, then we define J; := I,,_1, and note that F; \ J; C E\ J (and so
JLU([L1\E) DJU([-L 1\ E)), 1l =my, <mg, /4, and mg, /mys, < mg/mj.

Case (iii): If I, ¢ J, then J C E; and we define J; := J. Then, E1 \J1 C E\J, 1 <my <mg,/4 (since
4dmy < mg implies that dm; < mp — 1 =mg,), and mg, /mj;, < mg/m;.

Hence, in the rest of the proof, we assume that I,, ¢ F and m; < mpg/4.
It is convenient to use the notation p := p,(x), 6 := d,(x) and ¥, := ¢;(x). It is also convenient to
denote

e={1<j<n | LcE}, §:={1<j<n| I;cJ},
jer=min{j | je&}, j:=max{j | je&},
A:=3dU{j.,j*} and B:=E\ A

Note that j* = j. + mp — 1, E = [xj+,2j, 1], #E = mp, mj = #J ~ #A, and #B ~ mp.
Note that (3.6) implies cw]zp <h; < czp;lp, and so

¢(h;) < max{1,hfp "} (p) < c; "o (p). (9-4)
Similarly,
¢(h;) > min{1,h5p~"}o(p) > cv?¥o(p). (9.5)
Let
Qn(z) == Z—fj S ri@)o(hy) = A F(@)ehy) |
jeA JjEB

where 7; and 7; are polynomials of degree < C'n from Lemmas 4.1 and 4.2, respectively, A is chosen so that
meg
Qn(1) === " ¢(h;) = 2> é(hy) =0, (9.6)
my < :
JEA j€B

and k is to be prescribed.
We will now show that A is bounded by a constant independent of mg/m ;.
Let £ C E be the subinterval of F such that
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(i) E is a union of |mg/3] intervals I}, and

(ii) F is centered at 0 as much as E allows it, i.e., among all subintervals of E consisting of |mpg/3]
intervals I;, the center of E is closest to 0.

Then, using the fact that the lengths of |I;] in the Chebyshev partition are increasing toward the middle
of [-1,1] and are decreasing toward the endpoints, we conclude that every interval I; inside E is not smaller
than any interval I; in F'\ E, i.e.,

if I;CE and I, C E\E, then |[;|>|L]. (9.7)
Moreover, we will now show that all intervals I; inside E have about the same lengths.

We use the following result (see [12, Lemma 5] which, unfortunately, contains an inadvertent omission in
the conditions for [12, (4.6)]):

If 0 <j; <i<jo <n, then

j2 _jl Lj; — Ljy . - \2
< < (g2 —7J1)° 9.8
5 p— (J2 = j1) (9.8)

Moreover, if, in addition, either 2i + 1 < jo + j1 and jo < 3j1, or 20 + 1 > jo + 71 and n — j; < 3(n — ja),
then

Je—J1 _ Tj —xj, o
< < 2(ja — 51). 9.9
S < T <o ) (9.9
In particular, if both inequalities
jg S 3]1 and n _jl S 3(n — ]2) (910)

are satisfied, then (9.9) holds.

Suppose that E = [z4,;,]. Then i* — i, = |mg/3]. Now, if 0 € E, then i, < n/2 < i*, and so
3i.—1* =2i*=3|mg/3] >n—3|mg/3] > 0and 3(n—i*)— (n—1i.) = 2n—3|mg/3| —2i, > 0. Therefore,
conditions (9.10) are satisfied.

Ifo ¢ E, then either E C (0,1] or E C [-1,0) and so, in particular, mg < |n/2]. Suppose that
E C (0,1] (the other case can be dealt with by symmetry). Then i* = j* < n/2 and i, = j* — |mg/3] =
Jjx« +mg —1—|mg/3] > mg — |mg/3] > 2mg/3. Hence, 3i, —i* = 2i, — |[mg/3] > mg/3 > 0 and
3(n—i*) — (n— i) =2n — 3i* + ix > n/2 > 0. Hence, conditions (9.10) are satisfied in this case as well.

Using (9.9) we now conclude that

E ~
|Ij|~u, forall I; C E.
meg

Now, denote & := {1 <j<n | I; C E} Since #& = |mg/3], for B:=BNE= E\A, we have

#B > H#E — #A > |mp/3] —my—2>mp/3 —mp/i—3 > mg/20.

Therefore,

> olhy) = 3 ohy) ~ #B -6 (1El/me ) ~mip - 6 (|E|/me)

JEB jeB
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and since by (9.7),

> 6(hy) < c#A - (Bl /me) ~my -6 (|E|/m),

jeEA

we conclude that

my - ¢ (|E|/mg
0<A<cE. )

(
ms g - (|l fms)

~

i.e., A is bounded by a constant independent of mg/m .
Now, for any z € J U ([-1,1] \ E) (as well as for any = € [;, U I;+), taking into account that 7j(z) <0
for all j € B, and using Lemma 4.1, (9.5) and (3.5) we have

Qu(@) > nE 3 7)o (hy)

7 jeA
Sa mE 50(04+5)
> Cké Z o(h
jGA
> Cm;sa( )mE ¢ Zwso(aw V+2k+1
my p
JeEA
60(a+p)+4k+2
Z Cm&sa(x)@¢(p) Z ( 14 )
my o 2 \or e
s, 2 O(p) p SOlar vk
> Crd™(x)— _ ,
my p \max{p,dist(z, )}

since, for z ¢ E, max{p, dist(z, E)
and so p/(|z — x| + p) ~ 1 for that j.
Ifx € E\Jand x ¢ I;, UlIj, then there exists jo € B such that « € I;,. Hence,

—xj, |} + p, and, for z € J, x € I; for some j € A,

Q(x) > —kAT) (2)p(hjy) > —Crh; 60°YS d(hj,) > —0/-;@5& > —@5“,

for sufficiently small .
We now estimate |@Q,(x)|. Let

L(z) ZX] hy) =AY x;(@)d(hy)

JEA JjEB

Then, by virtue of (4.3), (4.9), (9.4) and 97 < ep(|lz — x;] 4 p)~', we have

Qn(z) — L(z)| =k Z—f > (@) — x5 (@) d(hy) =AY (Fi(w) — x;(x)) b(hy)
JeEA JEB
< Cmpd® Y ¢yl < Cmps®e(p) > v~

jEE jEE
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< Cmps(p) 3 Ly

jee P
b p (B—k—2)/2
oo D ()
S P \le—zil+p
hip
<Ompd*d(p) ), "3
jezg (lz = ;| + p)?

provided (8 — k —2)/2 > 2.

Hence, it remains to estimate |L(z)|. First assume that « ¢ E. If < xj«, then x;(z) =0, j € AUB, and
L(z) = 0. If, on the other hand, > x;,, then x;(z) =1, j € AU B, so that (9.6) implies that L(x) = 0.
Hence, in particular, L(x) = 0 for z € I U I,,.

Suppose now that x € E \ I (recall that we already assumed that E does not contain I,,). Then, (9.8)
implies that, for all j € &, h; < ¢|E|/mg < cpmp (since, again by (9.8), it follows that |E| < cpm%), and
s0 6(hy) < em ().

Hence, since 6 =1 on [2,,—1,21],
m
@) < C | 223 6hy) + A Y 6(hy) | < Ol 5°6(0).
J jEA JEB

It remains to note that

h.
E < ¢|E <em2S P
= IEIL g < PIY ey E e E M 2 oo T

jee

and the proof is complete. 0O
10. Monotone polynomial approximation of piecewise polynomials

All constants C' and C; in this section depend only on &k and «.
First, we need the following auxiliary result, the proof of which is similar to that of [12, Lemma 12].

Lemma 10.1. Let k €N, ¢ € ®* and S € Yk be such that

bp(S, ¢) < 1. (10.1)

If 1 < p,v < n are such that the interval I, ,, contains at least 2k — 3 intervals I; and points x} € (x;, x;—1)
so that

(@)™ (pn(@))IS" (7)) < 1, (10.2)

then, for every 1 < j < mn, we have

lpnd™ (0n)S" ||, _ 1,y < k) [(G = )™ + (G = )] (10.3)

Proof. Clearly, it is enough to prove the lemma for k£ > 2 since (10.3) is trivial if £ = 1. Fix 1 < j < n.
Since every polynomial piece of S has degree < k — 1, it follows from (10.1) that, for every 1 <i <mn,

_ _ hij\"
It =il < e = sl < o) (522
J
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Thus, using h]2- < chih; j, that follows from (3.2), and ¢(h;) < ¢(h;) (hm-/hj)k, we have, for zf € (z;,x;-1)
for which (10.2) holds,

()] < chi ' o(hy) (hh—) T o @) p(onla)

< ch;t <¢(hj) (’ZJ;)IC +¢>(hi)> < ch; ' p(hy) <%>k

Since (9.8) implies that

we conclude that

X _ . 2k+2

[ (@7)| < chy o (hy) (li — 41+ 1)
We now use the fact that there are kK — 1 points (x;‘l)f;f with any two of them separated by at least one
interval I; C I, ..

For any z € (x;,7;-1), we represent p; (which is a polynomial of degree < k —2) as

k-t xr —xr
/ _ /% im
pj(x) = ij('ril) H >
=1 1<m<k—1,m#l =4 im

estimate

*

im

*k
i L,

<k <e(lj—iml +1)° < e (G- + G- 0)?),

im

r—x

T

and obtain

(@)™ (pu (@))IS" ()] < chyd™ ()P ()|
k—1

<cy (li—ul+ D)™ (G- + G —-v))
=1

k—2

<e(G-n2+G-v?)™ T,

which implies (10.3). O
Theorem 10.2. Let k,r € N, k > r + 1, and let ¢ € ®* be of the form ¢(t) = t™(t), v € ®*~". Also,
let dy >0, d_ >0 and a > 0 be given. Then there is a number N = N(k,r,¢,ds,d_,a) satisfying the

following assertion. If n >N and S € Yg,, N C[—1,1] N AW 4s such that

br(S,¢) <1, (10.4)

and, additionally,
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Zf d+ > 0, then d+|]2|r_l < Hél]l’l S,(J)), (105)
xcilz
ifdy =0, then SW(1)=0, forall 1<i<k—2, (10.6)
ifd_ >0, then d_|I, 1|""' < min S'(z), (10.7)
r€ln 1
ifd_ =0, then SW(=1)=0, forall 1<i<k—2, (10.8)

then there exists a polynomial P € A N1, satisfying, for all x € [—1,1],

|S(x) — P(x)] < Cop(x)p(pn(x)), ifdy >0 andd_ >0, (10.9)
1S(x) — P(z)| < € 6™M2k=2} (Yo (p,, (), if min{d,,d_} = 0. (10.10)

Proof. Throughout the proof, we fix 8 := k46 and v := 60(a+ ) + 4k + 1. Hence, the constants C1, ..., Cs
(defined below) as well as the constants C, may depend only on k and a. Note that S does not have to be
differentiable at the Chebyshev knots z;. Hence, when we write S'(x) (or S;(z), 1 < ¢ < 4) everywhere in
this proof, we implicitly assume that = # x;, 1 < j < n — 1. Also, recall that p := p,(z) and 6 := 6, (z).

Let Cy := C, where the constant C is taken from (9.1) (without loss of generality we assume that C; < 1),
and let Cy := C with C taken from (8.2) with ¢ = 1. We also fix an integer C5 such that

Cs > 8k/Ch. (10.11)

Without loss of generality, we may assume that n is divisible by Cj5, and put ng :=n/Cs.
We divide [—1,1] into ng intervals

Eq = 2404, T(q-1)0s] = Tqcs U+ Ul(g—1)cs41, 1 < ¢ <o,

consisting of C3 intervals I; each (i.e., mp, = C3, for all 1 < g < ng).
We write “j € UC” (where “UC” stands for “Under Control)” if there is 2} € (x;,7;-1) such that

5Cad(pa (@)

= )

j (10.12)

We say that ¢ € G (for “Good), if the interval E, contains at least 2k — 3 intervals I; with j € UC. Then,
(10.12) and Lemma 10.1 imply that,

Sy < 200 e E, q€G. (10.13)

p

Set
FE = Uqchq,

and decompose S into a “small” part and a “big” one, by setting

0, otherwise,

on(a) = {S’(a:), if z¢kE,

and
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0, it x¢FE,

S'(x), otherwise,

sa(x) = S (x) — s1(x) = {

and putting

x

Si(z) = S(—1)+/31(u)du and Sp(z) := /SQ(U)du.

21
(Note that s and s, are well defined for « # x;, 1 < j < n—1, so that S; and S, are well defined everywhere

and possess derivatives for x # x;, 1 <j<n-—1.)
Evidently,

SlaSQ S Ek,na
and
Si(z) >0 and Si(z) >0, =ze[-1,1].

Now, (10.13) implies that

()< 9% e,
P
which, in turn, yields by Lemma 5.2,
bi(S1,0) < C
Together with (10.4), we obtain
bk<52,¢) < bk(51,¢) + b}g<S, p)<C+1< |—C + 1-| =: Cy. (10.14)

The set E is a union of disjoint intervals F}, = [a,, by], between any two of which, all intervals E, are with
g € G. We may assume that n > C3Cy, and write p € AG (for “Almost Good”), if F), consists of no more
than Cj intervals Eq, that is, it consists of no more than C5Cy intervals I;. Hence, by Lemma 10.1 (with p
and v chosen so that I, , is the union of such an interval F},, p € AG, and one of the adjacent intervals F,
with ¢ € G),

Sh(z) < C¢(p), z € Iy, p € AG. (10.15)

P

One may think of intervals F,,, p ¢ AG, as “long” intervals where S’ is “large” on many subintervals I;
and rarely dips down to 0. Intervals F},, p € AG, as well as all intervals £, which are not contained in any
Fy’s (i.e., all “good” intervals E,) are where S’ is “small” in the sense that the inequality S'(z) < Cé(p)/p
is valid there.

Set

F = UpQAGva

note that £ = UpcagFp U F, and decompose S again by setting
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{S’(m), if zeF,
Sq4 =

0, otherwise,

and

0, if zekF,

S'(x), otherwise,

s3(x) == S'(z) — s4(x) = {

and putting

Sy(z) = S(—1) + / ss(w)du and  Su(z) = / sa(u)du. (10.16)
1 -1
Then, evidently,
S3,54 € X, S3+S1=15, (10.17)
and
Si(z) >0 and Sj(z) >0, xe€[-1,1]. (10.18)

We remark that, if © ¢ UpcagF)p, then s1(z) = s3(z) and so(z) = s4(z). If © € UpcacF)p, then s1(z) =
s4(z) = 0 and s3(z) = s3(z) = S'(x).
For x € UpcagFp, (10.15) implies that

Si(x) = Sy(a) < S0
p
For all other x’s,
Si(x) = Si(a) < £20)
p
We conclude that
g2 < & i@), ze[-1,1], (10.19)

which by virtue of Lemma 5.2, yields that by (S3,¢) < C. As above, we obtain
bk(S4,¢) S bk(S3,¢) + bk(S, ¢) S C +1 S |_C + ].-l = 06' (1020)

We will approximate S3 and Sy by nondecreasing polynomials that achieve the required degree of point-
wise approximation.

Approximation of Ss:

If dy > 0, then there exists N* € N, N* = N*(d, %), such that, for n > N*,

M :pr—lw(p) < d+‘12|r_1

<oty I
P 05 = V5 (.Z‘), T € 12,
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where the first inequality follows since ¥(p) < ¥(2/n) — 0 as n — oo, and the second inequality follows
by (10.5). Hence, by (10.19), if n > N*, then s3(z) # S’(x) for & € I5. Therefore, since s3(x) = S'(z), for
all z ¢ F, we conclude that I C F', and so Fy C F, and s3(z) = 0, € E;. In particular, s3(z) =0, z € I3.
Similarly, if d— > 0, then using (10.7) we conclude that there exists N** € N, N** = N**(d_, ), such
that, if n > N**, then s3(z) =0 for all « € I,,.
Thus, when both d4 and d_ are strictly positive, we conclude that for n > max{N*, N**}  we have

sg(z) =0, forall x €l UI,. (10.21)

Therefore, in view of (10.17) and (10.18), it follows by Lemma 6.1 combined with (10.19) that, in the
case d4 > 0 and d_ > 0, there exists a nondecreasing polynomial r, € Il such that

|S5(z) — ro(x)] < C6%(p), z€[-1,1]. (10.22)

Suppose now that d; = 0 and d_ > 0. First, proceeding as above, we conclude that s3 = 0 on I,,.
Additionally, if F4 C F, then, as above, s3 = 0 on I; as well. Hence, (10.21) holds which, in turn, implies
(10.22).

If By ¢ F, then s3(z) = S'(z), x € I, and so it follows from (10.6) that, for some constant ¢, > 0,

s3(x) = S'(x) = cu(1 —2)*2, zel.
By (10.19) we conclude that

< o Hne1)

= (1 —21)F2p, (1) ~ n2k72¢(n72)'

Hence, for =z € I,

Sh(x) = s3(x) < C (np(x))* *n2p(n=?) < 0521@_4@

and
1
0 < S3(1) — Ss3(x) = /s;;(u) du < ¢(1 - x)k*1n2k72¢(n*2) < 052k*2¢(p).

We now define

~ | Sa(x), ifx<a,
Sale) = {53(1), if € [x1, 1].

Then S3 € £y, N AWM, Sh(z) < Cp~Lo(p), « ¢ {z;}7=], and S4 =0 on I UI,. Note also that S5 may

be discontinuous at zy but the jump is bounded by ¢(p,(x1)) there. Hence, Lemma 6.1 implies that there
exists a nondecreasing polynomial r,, € Ils, such that

|S3(2) = ra()] < C8*(p), @ € [-1,1].
Now, since

Ss(x) — Ss(x)| < C6*2¢(p), =€ [-1,1],
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we conclude that
|S3(x) — rn(z)| < Co™nte2k=2b gy e [—1,1]. (10.23)

Finally, if d_ = 0 and d4 > 0, then the considerations are completely analogous and, if d_ = 0 and
d4 = 0, then S5 can be modified further on I, using (10.8) and the above argument.

Hence, we’ve constructed a nondecreasing polynomial r,, € I1¢,, such that, in the case when both d and
d_ are strictly positive, (10.22) holds, and (10.23) is valid if at least one of these numbers is 0.

Approximation of Sj:
Given a set A C [—1,1], denote

A€ = UIjnA;é@Ij and A% .= (Ae)e,

where Iy = @) and I,, 11 = 0. For example, [z7,x3]¢ = [vs,x2|, If = I U I, etc.

Also, given subinterval I C [—1, 1] with its endpoints at the Chebyshev knots, we refer to the right-most
and the left-most intervals I; contained in I as EP,(I) and EP_(I), respectively (for the “End Point”
intervals). More precisely, if 1 < u < v <n and

then EP(I) :=1,, EP_(I) =1, and EP(I) := EP_(I)UEP_(I) = I,Ul,. For example, EP;[—1,1] := I,
EP_[-1,1] :=I,, EPy|x7, 23] = [x4,x3) = L4, EP_|x7, 23] = [x7,26] = I7, EP[x7, 23] = Iy U I, etc. Here,
we simplified the notation by using EP4[a,b] := EP4([a,b]) and EP|a,b] :== EP([a,b]).

In order to approximate Sy, we observe that for p ¢ AG,

Si(w) = S3(x), =€ FF,
so that by virtue of (10.14), we conclude that
b (S, ¢, F2°) = bi(S2, 0, F2¢) < bi(S2,9) < Cu. (10.24)

(Note that, for p € AG, Sy is constant in Fge and so b (S4, ¢, Fge) =0.)

We will approximate Sy using the polynomial D, (+,Ss) € gy, defined in Lemma 8.1 (with ny := Cgn),
and then we construct two “correcting” polynomials Q,,, M,, € ¢, (using Lemma 9.1) in order to make
sure that the resulting approximating polynomial is nondecreasing.

We begin with @,,. For each ¢ for which E, C F, let J, be the union of all intervals I; C E, with j € UC
with the union of both intervals I; C E, at the endpoints of E,. In other words,

Jq ::U{Ij | j€eUC and IjCEq} U EP(E(I)
J

Since E4 C F, then ¢ ¢ G and so the number of intervals I; C E, with j € UC is at most 2k — 4. Hence,
by (10.11),

ciC; _C
my <2k—2<2k< L2 <23
e 4 4
Recalling that the total number m g, of intervals [; in E,; is C3 we conclude that Lemma 9.1 can be used
with E := E, and J := J;. Thus, set
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Gn:: Z Qn (s Eg, Jg)s

q: E,CF

where @),, are polynomials from Lemma 9.1, and denote

J = U Jq-

q: E,CF

Then, (9.1) through (9.3) imply that Q,, satisfies

(a) Q. (r) >0, ze€[-1,1]\F,

x € F\J, (10.25)

)  Q,(z)> 4@58@: zeJ

Note that the inequalities in (10.25) are valid since, for any given x, all relevant Q/,(z, Eq, Jq), except
perhaps one, are nonnegative, and

c, meg, > C1C5

> 4.
my, - 2k —

Also, it follows from (9.3) that, for any = € [—1, 1],

Q. (2)] < C6%po(p Z Z m (10.26)

q: E,CF j:1;CE,

- h;
<C8%h(p) Y s
JZZ; (lz = x| + p)?
T du
<copolp) [ s
_|_
) (u+p)

= C5%(p).
Next, we define the polynomial M,,. For each F, with p ¢ AG, let J, denote the union of the two
intervals on the left side of F (or just the interval I,, if —1 € F,), and let J,/ denote the union of the two
intervals on the right side of Fy; (or just one interval Iy if 1 € F}), i.e.,

Jy = EP_(FS)UEP_(F,) and Jf = EP,(FS)UEP(F).

Also, let F,” and F;r be the closed intervals each consisting of Mps = C3Cy intervals I; and such that
J, CF,; C Fyand Jf C F;f C Fy, and put

Jy=J, U J; and  J* 1= Upgacd,-
Now, we set

M, = Z (Qn( FJ?‘IJ)"‘Qn( P’ P_))

pEAG

Please cite this article in press as: K.A. Kopotun et al., Interpolatory pointwise estimates for monotone polynomial
approximation, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2017.11.038




Doctopic: Real Analysis YJMAA:21837

32 K.A. Kopotun et al. / J. Math. Anal. Appl. sss (seee) ese—ses

Since mps = mp- = C3Cy and m ;1 m ;— < 2, it follows from (10.11) that

Mp+ Mp- C,C5C.
min{ Fp Fp}> 123 42204.

myg my |
Then Lemma 9.1 implies
M, ()] < C6°6(p) (10.27)
(this follows from (9.3) using the same sequence of inequalities that was used to prove (10.26) above), and
@ Mz 222 aeryr

(b) M/ (z)>2C, 586*‘;5;), r e Jr (10.28)

y+1
() M (z)> 20458a¢(p”> (dist (’; F)) , € [-1,1]\ F°,

where in the last inequality we used the fact that
max{p, dist (z, F*)} < dist (z, F), z€[-1,1]\ F¢,
which follows from (3.3).
The third auxiliary polynomial is D,,, := D,, (-, S4) with ny = Cgn constructed in Lemma 8.1. By
(10.20), (8.1) yields
|S4(z) — Dy, (z)] < C87¢(p) < C6%P(p), z=€]-1,1], (10.29)

since v > «, and (8.2) implies that, for any interval A C [—1,1] having Chebyshev knots as endpoints,

o(p)

$(p) n p IS

Y e

+ 2060 p ny \dist(z,[-1,1]\ A) , zed
We now define

By virtue of (10.26), (10.27), and (10.29) we obtain
1S4(2) = Rn(z)] < C6%0(p), x<[-1,1],
which combined with (10.22) and (10.23), proves (10.9) and (10.10) for P := R,, + ry,.
Thus, in order to conclude the proof of Theorem 10.2, we should prove that P is nondecreasing. We recall
that r,, is nondecreasing, so it is sufficient to show that R,, is nondecreasing as well.

Note that (10.31) implies

R)(x) > 2@, () + Co M, () — |S)(x) — D}, (@)| + Si(x), = € [-1,1],
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(this inequality is extensively used in the three cases below), and that (10.30) holds for any interval A with
Chebyshev knots as the endpoints, and so we can use different intervals A for different points = € [—1, 1].
We consider three cases depending on whether (i) x € F'\ J*, or (ii) = € J*, or (iii) x € [-1,1] \ F*.

Case (i): If € '\ J*, then, for some p ¢ AG, z € F,,\ J;, and so we take A := F},. Then, the quotient
inside the parentheses in (10.30) is bounded above by 1 (this follows from (3.3)). Also, since s4(z) = S'(z),
x € F, it follows that by (S4, ¢, F),) = bi(S, ¢, F},) < 1. Hence,

|S:1(l’) — D;Ll ($)| S CQ gﬁ(pp)bk(s%d),Fp) + 6206 d)(pp): S 202 (Z)(pp), xr € F \ J* (1032)
1

Note that = ¢ I; U I, (since F'\ J* does not contain any intervals in EP(F,), p ¢ AG), and so 6 = 1.
It now follows by (10.25)(c), (10.28)(a), (10.32) and (10.18), that

R’n(x)ZC’Qd)(pp)(ZIQZ)—O, xzeJ\J"

If x € F\ (JUJ*), then (10.12) is violated and so

Si(z) =S (z) > 5027?(/))

Hence, by virtue of (10.25)(b), (10.28)(a) and (10.32), we get
R (z) zczd’(p”)(122+5)_o, zeF\(JUJr).

Case (ii): If = € J*, then, « € J}, for some p ¢ AG, and we take A := F2. Then, (10.24) and (10.30)
imply (again, (3.3) is used to estimate the quotient inside the parentheses in (10.30)),

S4(0) = D4, (0) < Co 67X (51,0, 720 + oo AL 1 (1033

pm
3020457@, x e J".

Now, we note that EP(F,) C J, for all p ¢ AG, and so F'N J* C J. Hence, using (10.25)(a,c), (10.28)(b),
(10.33) and (10.18), we obtain

R, (z) = 2C2C4 58“@ — 20504 57%’0) >0,

since v > 8a, and so 7 < 58,

Case (iii): If « € [—1,1] \ F'¢, then we take A to be the connected component of [—1, 1]\ F' that contains
x. Then by (10.30),

/ / 4 9(p) L9(p) n p vl
1S3(z) = Dy, (2)| < C20 Tbk(S4,¢,A)+Czcﬁé = (dist(x’ [_171]\A)> (10.34)

_ o(p) p i .
Con (e

where we used the fact that Sy is constant in A, and so by (Sg, ¢, A) = 0.
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Now, (10.25)(a), (10.28)(c), (10.34) and (10.18) imply,

41

since Cy > 1 and v > 8a.
Thus, R/, (z) > 0 for all z € [-1, 1], and so we have constructed a nondecreasing polynomial P, satisfying
(10.9) and (10.10), for each n > N. This completes the proof. O

11. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first approximate f by appropriate piecewise polynomials. To this
end we make use, among other things, of the following result on pointwise monotone piecewise polynomial
approximation (see [9]).

Theorem 11.1. Given r € N, there is a constant ¢ = c(r) with the property that if f € C"[—1,1] N AW,
then there is a number N = N(f,r), depending on f and r, such that for n > N, there are nondecreasing
continuous piecewise polynomials S € X2 satisfying

n n

50) - sl <) (2] wa (50, 22), weor, (11.1)

Moreover,

) = $(@) < ) (@ (£, 550) e [ty U 1L (1.2)

As was shown in [9], near £1, polynomial pieces of the spline S from the statement of Theorem 11.1 can
be taken to be Lagrange—Hermite polynomials of degree < r + 1. Namely,

! (r)
S}[Iz,l](‘r) =f)+ %(f -+t ! r!(l) (z—1)" +ag(n; f)(z— 1)
and
'(— (r)(—
S @ =0+ T @iy e E ey a1y,

where constants ay(n, f) and a_(n, f) depend only on n and f, and are chosen so that S(z2) = f(x2) and
S(xn—2) = f(xn—2). It was shown in [9, (3.1)] that

1

— i (fM L+ | L), L UT
T"(|Il|+‘.[2|)W1(f 7‘ 1|+‘ 2|a 1 2)

laq(n, f)] <

and

1

(r) Lo_1| +|In), In_1 U L,).
7"(|In71|+|[n|)UJ1(f 7| 1| | |? 1 )

la_(n, f)] <
On I;’s with j # 1,2,n — 1, n, polynomial pieces p; of S were constructed using [10, Lemma 2, p. 58].
For f € C"[—1,1], let i, > 1, be the smallest integer 1 < i < r, if it exists, such that f(*(1) # 0, and
denote
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(2r) 7Y O (1], if iy exists,

0, otherwise.

D+ (T7 f) = {
Similarly, let i_ > 1, be the smallest integer 1 <14 < r, if it exists, such that f(i)(—l) # 0, and denote

D,(’m f) . {(2T')1|f(7')(1)|7 if i_ exists7

0, otherwise.

Using the above as well as the observation that |I;| + |I2] — 0 and |I,—1| + |I,| = 0 as n — oo, we can
strengthen Theorem 11.1 as follows.

Lemma 11.2. Given r € N, there is a constant ¢ = c(r) with the property that if a function f €
C"[-1,1]n AWM | then there is an integer N = N(f,7) depending on f and v, such that for n > N, there are
nondecreasing continuous piecewise polynomials S € L, yo ., satisfying (11.1), (11.2),

SO(—1) = fO(=1) and SDA)=fD1), foralll<i<r, (11.3)
S'(x) > Dy(r, )1 — )"tz € (29,1], (11.4)

and
S'(x)>D_(r,f)lx+1)"" xe€[-1,2, 2). (11.5)

Proof of Theorem 1.2. Given » € N and a nondecreasing f € C([-1,1], let ¢» € ®2 be such that
wa(fM) 1) ~ 1h(t), denote ¢(t) := t"4(t), and note that ¢ € &"+2.
For each n > N, we take the piecewise polynomial S € ¥, 5, of Lemma 11.2 and we observe that

wrpa(frt) < trwa(f, 1) ~ B(2),

so that by Lemma 5.1 with k = r + 2, we conclude that

br12(S,¢) < c:=q.
Now, it follows from (11.4) and (3.1) that

min §'(a) = Do (r, HILI 237 Do |1
xT 2

and, similarly, (11.5) yields

min S'(z) > 37" D_(r, f)|L—1|""
z€ln 1

Hence, using Theorem 10.2 with k = r+2,dy =< 137" D (r, f),d_ := ¢ 137"FD_(r, f) and o = 2k —
2 = 27 +2, and observing that b, 12(s~15, ¢) < 1, we conclude that there exists a polynomial P € ., NA®M
such that

|S(2) = P(x)] < cb3" 2 (@)}, (@) (pn(2)), = € [-1,1]. (11.6)

In particular, for x € I; U I,, * # —1,1, using the fact that p,(z) ~ n~2 for these x, and t~21(t) is
nonincreasing we have
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1S(x) — P(x)| < c(np(x))* 2 py, (x)¢(pn(2)) (11.7)
2 2r42 npn(z) 2 o(z)
<t ()« (27
< e (ohen (10, 22)).

In turn, this implies for x € I U I,,, that

which combined with (11.6) implies

1S(z) — P(z)| < ¢ (@)7@ <f(’°), M) . xe[-1,1]. (11.8)

n

Finally, (11.8) together with (11.1) yield (1.6), and (11.7) together with (11.2) yield (1.7). The proof of
Theorem 1.2 is complete. O
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