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1 Introduction

Our main interest in this paper is approximation of a continuous function, on a finite
interval, which changes convexity finitely many times by algebraic polynomials which are
coconvex with it. This topic has received much attention in recent years, and the purpose
of this paper is to give final answers to open questions concerning the validity of Jackson
type estimates involving the weighted Ditzian-Totik (D-T) moduli of smoothness.

Let C[a, b] denote the space of continuous functions f on [a, b], equipped with the
uniform norm ‖f‖[a,b] := maxx∈[a,b] |f(x)|. When dealing with the generic interval [−1, 1],
we omit the special reference to the interval, namely, we write ‖f‖ := ‖f‖[−1,1].

To make the notion of coconvexity more precise we first denote by Ys, s ≥ 1, the set
of all collections Ys := {yi}s

i=1, such that ys+1 := −1 < ys < . . . < y1 < 1 =: y0, and
Y0 := {∅}. Let ∆2(Ys) denote the collection of all functions f ∈ C[−1, 1] that change
convexity at the points of the set Ys, and are convex in [y1, 1]. In particular, ∆2 := ∆2(Y0)
is the set of all convex functions f ∈ C[−1, 1]. Also with Π(x) :=

∏s
i=1(x − yi), if

f ∈ C2(−1, 1) ∩ C[−1, 1], then f ∈ ∆2(Ys) if and only if

f ′′(x)Π(x) ≥ 0, x ∈ (−1, 1).(1.1)

In fact, in this paper we will be able to use (1.1), as the results for functions that are
not in C2(−1, 1), are already known.

We say that functions f and g are coconvex if both of them belong to the same class
∆2(Ys) (note that it is possible for a function to belong to more than one class ∆2(Ys),
for example, f ≡ 0 is in ∆2(Ys) for all sets Ys).
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Let Pn be the space of all algebraic polynomials of degree ≤ n − 1, and denote by

En(f) := inf
pn∈Pn

‖f − pn‖ and E(2)
n (f, Ys) := inf

pn∈Pn∩∆2(Ys)
‖f − pn‖

the degrees of best uniform polynomial approximation and best uniform coconvex poly-
nomial approximation of f , respectively. In particular,

E(2)
n (f) := E(2)

n (f, Y0) = inf
pn∈Pn∩∆2

‖f − pn‖

is the degree of best uniform convex polynomial approximation of f ∈ ∆2.
It is now known that the following equivalence relation is valid.

Theorem 1.1 For f ∈ ∆2 and any α > 0, we have

En(f) = O
(

n−α
)

, n → ∞ ⇐⇒ E(2)
n (f) = O

(

n−α
)

, n → ∞.

Despite the simplicity of its statement Theorem 1.1 remained unresolved for quite some
time, and while its particular cases have been known from as early as 1986, in its final
form it appeared only very recently in [6] where the case for α = 4 (which surprisingly
turned out to be the most evasive case of all) has been proved (see [6] for more details).

One of the consequences of the results of this paper is an analog of Theorem 1.1 for
coconvex polynomial approximation.

Theorem 1.2 For any s ≥ 0, Ys ∈ Ys, f ∈ ∆2(Ys), and any α > 0, we have

En(f) = O
(

n−α
)

, n → ∞ ⇐⇒ E(2)
n (f, Ys) = O

(

n−α
)

, n → ∞.

Theorem 1.2 follows from the Jackson type estimates involving the weighted D-T
moduli of smoothness (see, e.g., [12]), which we now introduce together with some
related function spaces.

Throughout this paper we will have parameters k, l, m, r, s all of which will denote
nonnegative integers, with k + r > 0.

With ϕ(x) :=
√

1 − x2, we denote by Br, r ≥ 1, the space of all functions f ∈ C[−1, 1]
with locally absolutely continuous (r−1)st derivative in (−1, 1) such that

∥

∥ϕrf (r)
∥

∥ < ∞,
where for g ∈ L∞[−1, 1], we write

‖g‖ = ess supx∈[−1,1]|g(x)|.

This obviously conforms with our previous notation of the norm for g ∈ C[−1, 1].
Let

ϕδ(x) :=
√

(1 − x − δϕ(x)/2) (1 + x − δϕ(x)/2) =

√

(1 − δϕ(x)/2)2 − x2 .

The weighted D-T modulus of smoothness of a function f ∈ C(−1, 1), is defined by

ωϕ
k,r(f, t) := sup

0<h≤t

∥

∥ϕr
kh(·)∆k

hϕ(·)(f, ·)
∥

∥ ,
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where

∆k
h(f, x) :=











k
∑

i=0

(

k
i

)

(−1)k−if(x − kh/2 + ih), if |x ± kh/2| < 1,

0, otherwise,

is the kth symmetric difference.
If r = 0 and f ∈ C[−1, 1], then

ωϕ
k (f, t) := ωϕ

k,0(f, t) = sup
0<h≤t

‖∆k
hϕ(·)(f, ·)‖,

is the (usual) D-T modulus. Also, if ϕ(·) in the above definition is replaced by 1, then
we get the ordinary kth modulus of smoothness:

ωk(f, t) := sup
0<h≤t

‖∆k
h(f, ·)‖.

Since ϕδ(x) ≤ ϕ(x) ≤ 1, it is clear from the above definitions that, if f ∈ C[−1, 1],
then

ωϕ
k,r(f, t) ≤ ωϕ

k (f, t) ≤ ωk(f, t).(1.2)

Also, for f ∈ C(−1, 1) and k ≥ 1 we have

ωϕ
k+1,r(f, t) ≤ cωϕ

k,r(f, t),(1.3)

and

ωϕ
k,r(f, t) ≤ c‖ϕrf‖.(1.4)

Here and in the sequel, we write c for positive constants which may depend only on
k, r, and s, while the constants C may depend on other parameters.

Finally, we need ωk(f, t, [a, b]), the ordinary kth modulus of smoothness on [a, b] ⊆
[−1, 1], i.e.,

ωk(f, t, [a, b]) := sup
0<h≤t

‖∆k
h(f, ·)‖[a+kh/2,b−kh/2].

The modulus ωϕ
k,r has many of the properties of the usual and D-T moduli of smooth-

ness. In particular, for any k ≥ 1, r ≥ 0, and f ∈ C(−1, 1),

ωϕ
k,r(f, λt) ≤ c(λ + 1)kωϕ

k,r(f, t), λ > 0.

This, in turn, implies that if a function f is not a polynomial of degree ≤ k − 1, then,
for some C = C(f) > 0,

ωϕ
k,r(f, t) ≥ Ctk, for all 0 < t ≤ 1.(1.5)

For arbitrary f ∈ C(−1, 1), the function ωϕ
k,r(f, t) may be unbounded. However, it

was shown in [8,12] that a necessary and sufficient condition for ωϕ
k,r(f, t) to be bounded
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for all t > 0 is that ϕrf ∈ L∞[−1, 1]. Moreover, if r ≥ 1, then ωϕ
k,r(f, t) → 0, as t → 0, if

and only if limx→±1 ϕr(x)f(x) = 0. Therefore, we denote C0
ϕ := C[−1, 1] and, for r ≥ 1,

Cr
ϕ := {f ∈ Cr(−1, 1) ∩ C[−1, 1] | lim

x→±1
ϕr(x)f (r)(x) = 0}.

Clearly

Cr
ϕ ⊂ Br,(1.6)

while if f ∈ Br, then f ∈ Cl
ϕ for all 0 ≤ l < r, and

ωϕ
r−l,l(f

(l), t) ≤ ctr−l
∥

∥ϕrf (r)
∥

∥ , t > 0.(1.7)

Note that for f ∈ Cr
ϕ, and any 0 ≤ l ≤ r and k ≥ 1, the following inequalities hold (see

[12]).

ωϕ
k+r−l,l(f

(l), t) ≤ c tr−lωϕ
k,r(f

(r), t), t > 0,(1.8)

in particular, if l = 0, then

ωϕ
k+r(f, t) ≤ ctrωϕ

k,r(f
(r), t), t > 0.(1.9)

Finally for 0 ≤ l < r/2,

Br ⊂ Cl[−1, 1].(1.10)

In this paper, we are interested in determining for which values of the parameters k,
r, and s, the statement

if f ∈ Cr
ϕ ∩ ∆2(Ys), then

E(2)
n (f, Ys) ≤ Cn−rωϕ

k,r

(

f (r), 1/n
)

, n ≥ N,(1.11)

where C = const > 0 and N = const > 0,

is valid, and for which it is invalid. Here and later in this paper, for clarity of exposition,
we denote ω0,r(f, t) := ‖ϕrf‖. Hence, in the case k = 0, (1.11) becomes:

E(2)
n (f, Ys) ≤ Cn−r‖ϕrf (r)‖, n ≥ N,

for f ∈ Br ∩ ∆2(Ys).
The structure of our paper is as follows. In Section 2, our main results are stated.

After collecting some auxiliary results in Section 3, we prove the positive results in
Section 4 and the negative results in Section 5.
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2 Main Results

In this section we state our main results devoted to investigating for which values of
parameters k, r and s, the estimate (1.11) is valid, and for which it is invalid.

In particular, we wish to know the range of parameters k, r and s, for which (1.11)
holds and, if it does hold, whether or not it is necessary for the constants C and N to
essentially depend on Ys (or even f), or whether it is true with C and N dependent only
on the parameters k, r, and s.

For reader’s convenience we describe our results using arrays in Figures 1 and 2
below. There, the symbols “−”, “ª”, “⊕”, and “+”, have the following meaning.

• The symbol “−” in the position (k, r) means that, for each Ys ∈ Ys there is a
function f ∈ Cr

ϕ ∩ ∆2(Ys), such that

lim sup
n→∞

nrE
(2)
n (f, Ys)

ωϕ
k,r(f

(r), 1/n)
= ∞.

This means that the estimate (1.11) is invalid even if we allow both constants C
and N to depend on the function f .

• The symbol “ª” in the position (k, r) means that (1.11) is valid with an absolute
constant C, and N depending on the function f and, for any Ys ∈ Ys, there are
no constants C and N , both of which are independent of f , such that (1.11) holds
for every function f ∈ Cr

ϕ ∩ ∆2(Ys).

• The symbol “⊕” in the position (k, r) means that (1.11) is valid with C depending
only on k, r, and s, and N depending only k, r, and the set Ys and, there are no
constants C and N , both of which are independent of Ys, such that (1.11) holds
for all Ys ∈ Ys and f ∈ ∆2(Ys) ∩ Cr

ϕ.

• The symbol “+” in the position (k, r) means that (1.11) is valid with C depending
only on k, r, and s, and N = k + r.

Remark Evidently, in the “cases ª”, we also have (1.11) with C(f) and N = 1.
Taking into account the estimates by Pleshakov and Shatalina [11] for n = k + r, in the
“cases ⊕”, our results imply that (1.11) is valid also for C = C(k, r, Ys) and N = k + r.
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Fig. 1. s = 1
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Fig. 2. s ≥ 2
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Remark It follows from the inequalities (1.3), (1.4), and (1.8) that a positive result
for a specific pair (k0, r0) implies positive results of the same type for all (k, r) with
r0 ≤ r ≤ k0 + r0 − k. Similarly, a negative result for (k0, r0), k0 > 0, implies negative
results of the same type for all (k, r) with k0 + r0 − k ≤ r ≤ r0, and a negative result for
(0, r0), implies negative results of the same type for all (k, r) with r0 − k ≤ r < r0.

This, in particular, implies the following:

(i) If the symbol “−” appears in the position (k0, r0), then “−” should appear in all
positions (k, r) with k0 + r0 − k ≤ r ≤ r0.

(ii) If the symbol “ª” appears in the position (k0, r0), then, in all positions (k, r) with
r0 ≤ r ≤ k0 + r0 − k, we can have anything but “−”, and, in all positions (k, r)
with k0 + r0 − k ≤ r ≤ r0 we can have only “ª” or “−”.

(iii) If the symbol “⊕” appears in the position (k0, r0), then in all positions (k, r) with
r0 ≤ r ≤ k0 + r0 − k, we can have only “+” or “⊕” and, if k0 = 0, then in
all positions (k, r) with r0 − k ≤ r < r0, we can have anything but “+”. The
latter leaves entries (k, 6), k ≥ 1, open. However, our counterexample can easily
be modified to belong in the smaller space C6

ϕ ( B6, hence we have the negative
result also for r = 6 and k ≥ 1.

(iv) If the symbol “+” appears in the position (k0, r0), then “+” should appear in all
positions (k, r) with r0 ≤ r ≤ k0 + r0 − k.

The results described by Figures 1 and 2 are obtained in or can be derived from our
theorems and the papers listed in the table below.
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Positive results: “+” in position (k, r)
2002 (2, 0) for s = 1; ∴ {(k, r) | k + r ≤ 2} for s = 1 Leviatan and Shevchuk [9]
— {(k, 7) | k ≥ 0} for s = 1; ∴ {(k, r) | k ≥ 0, r ≥ 7} for

s = 1
Theorem 2.3 (k = 0) and Theo-
rem 2.11 (k ≥ 1)

Positive results: “⊕” in position (k, r)
1999 (3, 0) for s ≥ 1; ∴ {(k, r) | k + r ≤ 3} for s ≥ 2, and

{(k, r) | k + r = 3} for s = 1
Kopotun, Leviatan and Shevchuk [5]

— {(k, 5) | k ≥ 0} for s ≥ 1; ∴ {(k, r) | k ≥ 0, r ≥ 5} for
s ≥ 2, and {(k, r) | k ≥ 0, 5 ≤ r ≤ 6} for s = 1

Theorem 2.1 (k = 0) and Theo-
rem 2.5 (k ≥ 1)

— (3, 2) for s ≥ 2; ∴ {(k, r) | 2 ≤ r ≤ 5 − k} for s ≥ 2 Theorem 2.7
— (2, 2) for s = 1; ∴ {(k, r) | 3 ≤ k + r ≤ 4, r ≥ 2} for

s = 1
Theorem 2.8

Positive results: “ª” in position (k, r)
— (3, 2) for s = 1; ∴ {(k, r) | k = 5 − r, 2 ≤ r ≤ 4} for

s = 1
Theorem 2.8

Negative results: “−” in position (k, r)
1993 (3, 1) for s ≥ 1; ∴ {(k, r) | 4 − k ≤ r ≤ 1} for s ≥ 1 Zhou[13]
2003 (4, 2) for s ≥ 1; ∴ {(k, 2) | 6 − k ≤ r ≤ 2} for s ≥ 1 Gilewicz and Yushchenko[3]
— (2, 4) for s ≥ 1; ∴ {(k, r) | 6 − k ≤ r ≤ 4} for s ≥ 1 Theorem 2.13

Negative results: “ª” in position (k, r)
— (1, 4) for s = 1; ∴ (2, 3) and (3, 2) for s = 1 Theorem 2.15

Negative results: “+” CANNOT be in position (k, r)
2000 (2, 1) for s ≥ 1; ∴ {(k, r) | 3 − k ≤ r ≤ 1} for s ≥ 1 Pleshakov and Shatalina [11]
2002 {(0, r) | 1 ≤ r ≤ 3} for s ≥ 2; ∴ {(k, r) | k ≥ 0, 1 − k ≤

r ≤ 2} for s ≥ 2
Leviatan and Shevchuk [9]

— {(0, r) | r ≥ 1} for s ≥ 2; ∴ {(k, r) | k+r ≥ 1} for s ≥ 2 Theorem 2.2
— {(0, r) | 3 ≤ r ≤ 6} for s = 1; ∴ {(k, r) | 3 − k ≤ r ≤ 6}

for s = 1
Theorem 2.4

We now give precise statements of the theorems yielding results summarized in the
above arrays.

We begin with estimates for functions f ∈ Br ∩ ∆2(Ys). Recall that we denote by c
positive constants that may depend only on all or some of the parameters k, r, and s.
We first have

Theorem 2.1 Let r ≥ 1, s ≥ 1, and Ys ∈ Ys, be given. If f ∈ Br ∩ ∆2(Ys), then

E(2)
n (f, Ys) ≤ cn−r‖ϕrf (r)‖, n ≥ N(r, Ys),(2.1)

where N(r, Ys) is a constant which may depend only on r and Ys.

For r ≤ 3, Theorem 2.1 follows from [5], thus we only have to prove it for r ≥ 4.

Remark It is interesting to note that, in the case s = 0, the following result holds (see
[4, 7, 10]):

For any f ∈ ∆2 and r 6= 4,

E(2)
n (f) ≤ cn−r‖ϕrf (r)‖, n ≥ r.(2.2)

Moreover, the above statement is invalid for r = 4, however, it is valid, if the
inequality n ≥ 4 is replaced by n ≥ N(f).

7



Unlike in the situation with (2.2), inequality (2.1) holds for all r ≥ 1, that is, including
the case r = 4.

Next, we show that for s ≥ 2, the constant N(r, Ys) in (2.1) cannot be replaced by a
constant independent of Ys. Namely,

Theorem 2.2 Let s ≥ 2 and r ≥ 1 be given. Then for each n ≥ 1, there are a collection
Ys ∈ Ys and an f := fn ∈ Cr[−1, 1] ∩ ∆2(Ys), such that

E(2)
n (f, Ys) > cn

(

n−r‖f (r)‖
)

.(2.3)

For s = 1, we face a different situation. Depending on the value of r, it is sometimes
possible to replace N(r, Y1) by N(r), while for other r’s it is impossible.

Theorem 2.3 Suppose s = 1. If either r ≤ 2 or r ≥ 7, then (2.1) is valid with N = r.

For r ≤ 2, Theorem 2.3 follows from [9], thus we will prove it only for r ≥ 7.

On the other hand, we show

Theorem 2.4 Let s = 1 and 3 ≤ r ≤ 6. Then for each n ≥ 1 and every A > 0, there
exist Y1 := {y1} and a function f := fn,A ∈ Br ∩ ∆2(Y1), such that

E(2)
n (f, Y1) > A‖ϕrf (r)‖.(2.4)

Moreover, for r = 6 the function fn,A satisfying (2.4), may be taken in C6
ϕ ∩ ∆2(Y1).

Note that the latter part of Theorem 2.4 provides the needed counterexample that
implies that the symbol ⊕ in entries (k, 6), k ≥ 1, in Fig. 1, may not be replaced by +.

We now consider analogous estimates for f ∈ Cr
ϕ ∩ ∆2(Ys). First, we have

Theorem 2.5 Let k ≥ 1, r = 5, s ≥ 1, and Ys ∈ Ys, be given. If f ∈ C5
ϕ ∩∆2(Ys), then

En(f, Ys) ≤ cn−5ωϕ
k,5(f

(5), 1/n), n ≥ N(k, Ys),(2.5)

where N(k, Ys) = const, depends on k and Ys.

An immediate consequence of Theorem 2.5 and (1.8) is

Corollary 2.6 Let k ≥ 1, r ≥ 5, s ≥ 1, and Ys ∈ Ys, be given. If f ∈ Cr
ϕ ∩ ∆2(Ys),

then
En(f, Ys) ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(k, r, Ys),

where N(k, r, Ys) = const, depends on k, r and Ys.

We also prove the following.

Theorem 2.7 (s ≥ 2) Let s ≥ 2, and let Ys ∈ Ys be given. If f ∈ C2
ϕ ∩ ∆2(Ys), then,

E(2)
n (f, Ys) ≤ cn−2ωϕ

3,2(f
′′, 1/n), n ≥ N(Ys),(2.6)

where N(Ys) = const, depends on Ys.
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Theorem 2.8 (s = 1) Let Y1 ∈ Y1 be given. If f ∈ C2
ϕ ∩ ∆2(Y1), then,

E(2)
n (f, Y1) ≤ cn−2ωϕ

3,2(f
′′, 1/n) + cn−4ωϕ

2,2(f
′′, 1/n), n ≥ N(Y1),(2.7)

where N(Y1) = const, depends on Y1. Hence

E(2)
n (f, Y1) ≤ cn−2ωϕ

2,2(f
′′, 1/n), n ≥ N(Y1).(2.8)

Moreover,

E(2)
n (f, Y1) ≤ cn−2ωϕ

3,2(f
′′, 1/n) + cn−6‖f ′′‖[−1/2,1/2], n ≥ N(Y1),(2.9)

and therefore

E(2)
n (f, Y1) ≤ cn−2ωϕ

3,2(f
′′, 1/n), n ≥ N(f).(2.10)

By virtue of (1.8), immediate consequences of Theorems 2.7 and 2.8 are the following
results.

Corollary 2.9 (s ≥ 2) Let s ≥ 2, 2 ≤ r ≤ 4, 1 ≤ k ≤ 5 − r, and Ys ∈ Ys, be given. If
f ∈ Cr

ϕ ∩ ∆2(Ys), then

E(2)
n (f, Ys) ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(Ys).(2.11)

Corollary 2.10 (s = 1) Let s = 1, 2 ≤ r ≤ 4, and Y1 ∈ Y1, be given. If f ∈ Cr
ϕ ∩

∆2(Y1), then
E(2)

n (f, Y1) ≤ cn−rωϕ
5−r,r(f

(r), 1/n), n ≥ N(f).

and, for 1 ≤ k ≤ 4 − r,

E(2)
n (f, Y1) ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(Y1).

Remark In view of (1.7), it readily follows from Theorem 2.2 that, in the case s ≥ 2,
the condition that N in the above statements, depends on Ys, is essential and cannot be
removed. Thus, there cannot be the symbol “+” in any positions (k, r) in Figure 2. This
is in contrast to the case s = 1 where in Figure 1 we do have positions with “+” symbol
(see Theorem 2.11 below).

Theorem 2.11 Let k ≥ 1 and Y1 ∈ Y1 be given. If f ∈ C7
ϕ ∩ ∆2(Y1), then

E(2)
n (f, Y1) ≤ cn−7ωϕ

k,7(f
(7), 1/n), n ≥ k + 7.(2.12)

Again, by virtue of (1.8), an immediate consequence of Theorem 2.11 is

Corollary 2.12 Let k ≥ 1, r ≥ 7, and Y1 ∈ Y1, be given. If f ∈ Cr
ϕ ∩ ∆2(Y1), then

E(2)
n (f, Y1) ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ k + r.

At the same time, we have the following negative result.
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Theorem 2.13 Let s ≥ 1. For each Ys ∈ Ys there is a function f ∈ C4
ϕ ∩∆2(Ys), such

that

lim sup
n→∞

n4E
(2)
n (f, Ys)

ωϕ
2,4(f

(4), 1/n)
= ∞.(2.13)

Therefore, (1.8) implies

Corollary 2.14 For every 0 ≤ r ≤ 4, k ≥ 6 − r, and for each Ys ∈ Ys, there is a
function f ∈ Cr

ϕ ∩ ∆2(Ys), such that

lim sup
n→∞

nrE
(2)
n (f, Ys)

ωϕ
k,r(f

(r), 1/n)
= ∞.

Furthermore, in the special case s = 1 and r = 4, we have

Theorem 2.15 For every Y1 ∈ Y1 and every n ≥ 1, there is a function f := fn ∈
C4

ϕ ∩ ∆2(Y1), such that

E(2)
n (f, Y1) > C

ln n

n4
ωϕ

1,4(f
(4), 1),

where C = C(Y1).

This shows that the symbols “ª” in Figure 1 cannot be replaced by “⊕”.

3 Auxiliary Results

The following results were proved in [10] (see Corollaries 2.4 and 2.6 there).

Lemma 3.1 Let k ≥ 1 and let f ∈ C2[a, a + h], h > 0, be convex. Then there exists a
convex polynomial P of degree ≤ k + 1 satisfying P (a) = f(a), P (a + h) = f(a + h),
P ′(a) ≥ f ′(a), and P ′(a + h) ≤ f ′(a + h), and such that

‖f − P‖[a,a+h] ≤ ch2ωk(f
′′, h, [a, a + h]).

Lemma 3.2 Let k > 1 and let a < β < a + h be fixed and assume that f ∈ C2[a, a + h]
is such that

f ′′(x)(x − β) ≥ 0, a ≤ x ≤ a + h.

If a polynomial p ∈ Pk−1 satisfies

p(x)(x − β) ≥ 0, a ≤ x ≤ a + h,

then there exists a polynomial P ∈ Pk+1 such that P ′′ = p,

P (a) = f(a), P ′(a) ≤ f ′(a), P ′(a + h) ≤ f ′(a + h),

and

‖f − P‖[a,a+h] ≤
3

2
h2‖f ′′ − p‖[a,a+h].
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Let xj := cos(jπ/n), 0 ≤ j ≤ n, be the Chebyshev knots, and denote Ij := [xj, xj−1],
and |Ij| := xj−1−xj, 1 ≤ j ≤ n. Denote by Σk,n the collection of all continuous piecewise
polynomials of degree k − 1, on the Chebyshev partition {xj}n

j=0.
Given Ys ∈ Ys, let

Oi := Oi,n(Ys) := (xj+1, xj−2), if yi ∈ [xj, xj−1),

where xn+1 := −1, x−1 := 1, and denote

O = O(n, Ys) :=
s

⋃

i=1

Oi.

Finally, we write j ∈ H = H(n, Ys), if Ij ∩ O = ∅, and denote by Σk,n(Ys) the subset of
Σk,n consisting of those continuous piecewise polynomials S for which

pj ≡ pj+1 whenever j, j + 1 6∈ H ,

where pj := SIj
. In other words, piecewise polynomials from Σk,n(Ys) do not have any

knots “too close” to the points yi ∈ Ys of convexity change.

Theorem 3.3 ([9, Theorem 3]) For every k ≥ 1 and s ≥ 1 there are constants c and
c∗ = c∗(k, s), such that if n ≥ 1, Ys ∈ Ys, and S ∈ Σk,n(Ys) ∩ ∆2(Ys), then there is a
polynomial Pn ∈ ∆2(Ys) of degree ≤ c∗n, satisfying

‖S − Pn‖ ≤ cωϕ
k (S, 1/n).(3.1)

Let [z0, . . . , zm; g] stand for the m-th divided difference of a function g at the knots
z0, . . . , zm.

Lemma 3.4 Let f ∈ C(−1, 1), let k ≥ 1 and r ≥ 0 be such that k + r ≥ 3, and let
1 ≤ µ ≤ n − k be fixed. Then, for all 1 ≤ j ≤ µ,

|[xµ, . . . , xµ+k−1; f ] − [xj, xj+1, . . . , xj+k−1; f ]|(3.2)

≤ cn2k+r−2

(

1

min{j, n − µ}

)k+r−2

ωϕ
k,r(f, 1/n).

Moreover, if k + r ≥ 5, then for all ν and j such that 1 ≤ j ≤ ν ≤ µ, we also have

ε ([xν , . . . , xν+k−2; f ] − [xj, xj+1, . . . , xj+k−2; f ])(3.3)

≤ cn2k+r−4

(

1 +
n2

(n − µ)k+r−2

)

ωϕ
k,r(f, 1/n),

where ε := sgn ([xµ, . . . , xµ+k−1; f ]).

Note that the righthand sides of the both inequalities (3.2) and (3.3) are finite if
‖ϕrf‖ < ∞. Otherwise both are infinite, while the lefthand sides are always finite,
hence, the lemma is trivially valid in this case.

11



Proof. For convenience, everywhere in the proof below, we write [xj, . . . , xj+l] instead
of [xj, . . . , xj+l; f ], and we put w := ωϕ

k,r(f, 1/n). Also, note that, for all 1 ≤ i ≤ n − 1,
ϕ(xi) ∼ min{i, n − i}/n, and |Ii| ∼ min{i, n − i}/n2, where, as usual, αi ∼ βi means
that αi

βi
is bounded away from 0 and ∞.

The following inequality is contained in the proof of Lemma 3.4 in [6]:

|[xj, xj+1, . . . , xj+k]| ≤ cnk

(

n

min{j, n − j}

)k+r

w,(3.4)

for all 1 ≤ j ≤ n − k − 1.
Now, for any m ≥ 0 and 1 ≤ j ≤ σ < n − m, we have

[xσ, . . . , xσ+m] − [xj, xj+1, . . . , xj+m] =
σ−1
∑

i=j

(xi+m+1 − xi)[xi, xi+1, . . . , xi+m+1].(3.5)

This, with m = k − 1, σ = µ, together with the inequality (3.4) for 1 ≤ j < µ ≤ n − k,
implies

|[xµ, . . . , xµ+k−1] − [xj, xj+1, . . . , xj+k−1]|

=

∣

∣

∣

∣

∣

µ−1
∑

i=j

(xi+k − xi)[xi, xi+1, . . . , xi+k]

∣

∣

∣

∣

∣

≤ c

µ−1
∑

i=j

|Ii|nk

(

n

min{i, n − i}

)k+r

w

≤ cn2k+r−2w

µ−1
∑

i=j

(

1

min{i, n − i}

)k+r−1

≤ cn2k+r−2w
∞

∑

i=min{j,n−µ}

1

ik+r−1

≤ cn2k+r−2

(

1

min{j, n − µ}

)k+r−2

w,

where for the last inequality we used k + r ≥ 3. Thus, (3.2) is proved.
Now, suppose that k + r ≥ 5. Applying (3.5) with m = k − 2 and σ = ν and (3.2),

for all 1 ≤ j ≤ ν ≤ µ, yields

ε ([xν , . . . , xν+k−2] − [xj, xj+1, . . . , xj+k−2])

= ε
ν−1
∑

i=j

(xi+k−1 − xi)[xi, xi+1, . . . , xi+k−1]

= ε

ν−1
∑

i=j

(xi − xi+k−1) ([xµ, . . . , xµ+k−1] − [xi, xi+1, . . . , xi+k−1])
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−ε[xµ, . . . , xµ+k−1]
ν−1
∑

i=j

(xi − xi+k−1)

≤
ν−1
∑

i=j

(xi − xi+k−1) |[xµ, . . . , xµ+k−1] − [xi, xi+1, . . . , xi+k−1]|

≤ cn2k+r−2w
ν−1
∑

i=j

|Ii|
(

1

min{i, n − µ}

)k+r−2

≤ cn2k+r−4w
ν−1
∑

i=j

min{i, n − i}
(min{i, n − µ})k+r−2

≤ cn2k+r−4w

µ−1
∑

i=1

min{i, n − i}
(min{i, n − µ})k+r−2

=: S.

Now, since k + r ≥ 5, if µ ≤ bn
2
c, then

S ≤ cn2k+r−4w
∞

∑

i=1

1

ik+r−3
≤ cn2k+r−4w,

and if µ > bn
2
c, then

S ≤ cn2k+r−4w

(

n−µ
∑

i=1

1

ik+r−3
+

µ−1
∑

i=n−µ+1

min{i, n − i}
(n − µ)k+r−2

)

≤ cn2k+r−4w

(

1 +
1

(n − µ)k+r−2

n
∑

i=1

i

)

≤ cn2k+r−4w

(

1 +
n2

(n − µ)k+r−2

)

.

This completes the proof of the lemma. ¤

Remark Taking into account the inequality

|[xµ, . . . , xµ+k−1; f ]| ≤ cnk−1

(

n

min{µ, n − µ}

)k+r−1

ωϕ
k−1,r(f, 1/n),

(see (3.4)), it follows from (3.2) that for any k ∈ N and r ∈ N0 such that k + r ≥ 3, all
f ∈ C(−1, 1), and every 1 ≤ j ≤ n − k, the following estimate holds

|[xj, xj+1, . . . , xj+k−1; f ]| ≤ cn2k+r−2

(

1

min{j, n − µ}

)k+r−2

ωϕ
k,r(f, 1/n)

+cnk−1

(

n

min{µ, n − µ}

)k+r−1

ωϕ
k−1,r(f, 1/n).
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In particular, taking j = 1 and µ = bn
2
c, we obtain

|[x1, x2, . . . , xk; f ]| ≤ cn2k+r−2ωϕ
k,r(f, 1/n) + cnk−1ωϕ

k−1,r(f, 1/n).(3.6)

Also, the same sequence of inequalities that was used to prove (3.3), in fact implies,

|[xν , . . . , xν+k−2; f ] − [xj, xj+1, . . . , xj+k−2; f ]|

≤ c|[xµ, . . . , xµ+k−1; f ]| + cn2k+r−4

(

1 +
n2

(n − µ)k+r−2

)

ωϕ
k,r(f, 1/n),

if k + r ≥ 5, and in particular,

|[xν , . . . , xν+k−2; f ] − [x1, x2, . . . , xk−1; f ]|(3.7)

≤ cn2k+r−4ωϕ
k,r(f, 1/n) + cnk−1ωϕ

k−1,r(f, 1/n).

Since xn−j = −xj for all 0 ≤ j ≤ n, we may apply Lemma 3.4 to the function f1(x) :=
f(−x), observing that [xi, . . . , xσ; f1] = (−1)σ−i[xn−i, . . . , xn−σ; f ], and ωϕ

k,r(f, δ) =
ωϕ

k,r(f1, δ). Hence we get the following corollary (note that while it is valid for gen-
eral k, r and j we only give its statement for k = 3, r = 2, j = 1 and j = n − 1 which
is what we need in this paper).

Corollary 3.5 Let f ∈ C2
ϕ. Then

(a) For any index 1 ≤ µ ≤ n − 3, if sgn{[xµ, xµ+1, xµ+2; f
′′]} = ε, then

−ε[x1, x2, x3; f
′′] ≤ cn6ωϕ

3,2(f
′′, 1/n).(3.8)

Moreover, if an index 1 ≤ ν ≤ µ is such that sgn{[xν , xν+1; f
′′]} = ε, then we also have

−ε[x1, x2; f
′′] ≤ cn4

(

1 +
n2

(n − µ)3

)

ωϕ
3,2(f

′′, 1/n).(3.9)

(b) For any index 1 ≤ µ ≤ n − 3, if sgn{[xn−µ, xn−µ−1, xn−µ−2; f
′′]} = ε, then

−ε[xn−1, xn−2, xn−3; f
′′] ≤ cn6ωϕ

3,2(f
′′, 1/n).(3.10)

Moreover, if an index 1 ≤ ν ≤ µ is such that sgn{[xn−ν , xn−ν−1; f
′′]} = −ε, then we also

have

ε[xn−1, xn−2; f
′′] ≤ cn4

(

1 +
n2

(n − µ)3

)

ωϕ
3,2(f

′′, 1/n) .(3.11)

We note that, for a set Ys ∈ Ys, s ≥ 1, if

n ≥ 4

(

min
1≤j≤s+1

{yj−1 − yj}
)−1

=: N(Ys),

then there is at least one knot xi between yj−1 and yj, for all 1 ≤ j ≤ s + 1.
The following are consequences of Corollary 3.5 for f ∈ ∆(Ys), s ≥ 2.
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Corollary 3.6 (s ≥ 3) Let s ≥ 3, f ∈ C2
ϕ ∩ ∆(Ys), and

n ≥ max
{

N(Ys), (min{ϕ(yi) | 1 ≤ i ≤ s})−3} .

Then,
max {|[x1, x2, x3; f

′′]|, |[xn−1, xn−2, xn−3; f
′′]|} ≤ cn6ωϕ

3,2(f
′′, 1/n),(3.12)

and

max {|[x1, x2; f
′′]|, |[xn−1, xn−2; f

′′]|} ≤ cn4ωϕ
3,2(f

′′, 1/n).(3.13)

Corollary 3.7 (s = 2) Let f ∈ C2
ϕ ∩ ∆(Y2), and

n ≥ max
{

N(Y2), (min{ϕ(y1), ϕ(y2)})−3} .

Then,
max {−[x1, x2, x3; f

′′],−[xn−1, xn−2, xn−3; f
′′]} ≤ cn6ωϕ

3,2(f
′′, 1/n),(3.14)

and

max {−[x1, x2; f
′′], [xn−1, xn−2; f

′′]} ≤ cn4ωϕ
3,2(f

′′, 1/n).(3.15)

Proof of Corollaries 3.6 and 3.7. For the sake of convenience denote A := A(Ys) :=
min{ϕ(yi) | 1 ≤ i ≤ s}. Let s ≥ 2 and f ∈ C2

ϕ ∩ ∆(Ys), be given. Observe that if an
index i is such that ys ≤ xi ≤ y1, then

min{i, n − i} ≥ n sin(iπ/n)/4 = nϕ(xi)/4 ≥ n min{ϕ(ys), ϕ(y1)}/4 ≥ An/4.

Now, let indices µ1, ν1, ν2, and µ2 (if s ≥ 3) be such that f ′′(xµ1+1) = min{f ′′(xi) | y2 ≤
xi ≤ y1}, xν1+1 ≤ y1 < xν1

, xν2+1 ≤ y2 < xν2
, and f ′′(xµ2+1) = max{f ′′(xi) | y3 ≤ xi ≤

y2}.
Then, using f ′′(x)(x−y1)(x−y2) ≥ 0 for all x ≥ y3 (or x > −1 if s = 2), we conclude

that the following inequalities hold

1 ≤ ν1 ≤ µ1 < ν2 ≤ n − 2 , ν2 ≤ µ2 ≤ n − 3 (if s ≥ 3) ,

[xµ1
, xµ1+1, xµ1+2; f

′′] ≥ 0 , [xν1
, xν1+1; f

′′] ≥ 0 ,

[xµ2
, xµ2+1, xµ2+2; f

′′] ≤ 0 , [xν2
, xν2+1; f

′′] ≤ 0 .

Now by Corollary 3.5(a) with µ = µ1 and ν = ν1, taking into account that n− µ1 + 1 ≥
An/4, it follows that

−[x1, x2, x3; f
′′] ≤ cn6ωϕ

3,2(f
′′, 1/n),(3.16)

and

−[x1, x2; f
′′] ≤ cn4

(

1 +
n2

(n − µ1)3

)

ωϕ
3,2(f

′′, 1/n) ≤ cn4ωϕ
3,2(f

′′, 1/n).(3.17)

Further, if s ≥ 3, then Corollary 3.5(a) with µ = µ2 and ν = ν2 and the observation
that n − µ2 ≥ An/4 imply

[x1, x2, x3; f
′′] ≤ cn6ωϕ

3,2(f
′′, 1/n),(3.18)
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and

[x1, x2; f
′′] ≤ cn4

(

1 +
n2

(n − µ2)3

)

ωϕ
3,2(f

′′, 1/n) ≤ cn4ωϕ
3,2(f

′′, 1/n).(3.19)

This in turn implies that

|[x1, x2, x3; f
′′]| ≤ cn6ωϕ

3,2(f
′′, 1/n) and |[x1, x2; f

′′]| ≤ cn4ωϕ
3,2(f

′′, 1/n),

and the analogous inequalities for |[xn−1, xn−2, xn−3; f
′′]| and |[xn−1, xn−2; f

′′]|, follow by
symmetry. This completes the proof of Corollary 3.6.

In order to complete the proof of Corollary 3.7 it suffices to use Corollary 3.5(b) with
µ = n − µ1 − 2 and ν = n − ν2 − 1, and the estimate µ1 + 1 ≥ An/4, and to combine
the resulting inequalities with (3.16) and (3.17). ¤

In the case s = 1, let f ∈ C2
ϕ ∩∆(Y1). Then, just as in the proof above, for the index

ν1 such that xν1+1 ≤ y1 < xν1
, we have [xν1

, xν1+1; f
′′] ≥ 0. Hence, by virtue of (3.6) and

(3.7) with k = 3, r = 2, and ν = ν1, we obtain the following result (the estimates for
[xn−1, xn−2, xn−3; f

′′] and [xn−1, xn−2; f
′′] follow by symmetry), that will be used in the

proof of (2.7) and (2.8).

Corollary 3.8 (s = 1) Let f ∈ C2
ϕ ∩ ∆(Y1), and n ≥ 7 (ϕ(y1)})−3. Then,

max {|[x1, x2, x3; f
′′]|, |[xn−1, xn−2, xn−3; f

′′]|}(3.20)

≤ cn6ωϕ
3,2(f

′′, 1/n) + cn2ωϕ
2,2(f

′′, 1/n)

and

max {−[x1, x2; f
′′],−[xn−1, xn−2; f

′′]}(3.21)

≤ cn4ωϕ
3,2(f

′′, 1/n) + cn2ωϕ
2,2(f

′′, 1/n) .

The following lemma is an immediate consequence of [6, Corollary 3.5] and will be
used in the proof of estimates (2.9) and (2.10).

Lemma 3.9 Let n ≥ 9, m = 1 or m = 2, and f ∈ C2
ϕ. Then,

max {|[x1, x2, . . . , xm+1; f
′′]|, |[xn−1, xn−2, . . . , xn−m−1; f

′′]|}(3.22)

≤ cn2m+2 ωϕ
3,2(f

′′, 1/n) + c‖f ′′‖[−1/2,1/2] .

Let

l1(x) := f ′′(x1) + (x − x1)[x1, x2; f
′′] + (x − x1)(x − x2)[x1, x2, x3; f

′′],

be the quadratic polynomial function which interpolates f ′′ at x1, x2 and x3; and sym-
metrically, let

ln(x) := f ′′(xn−1)+(x−xn−1)[xn−1, xn−2; f
′′]+ (x−xn−1)(x−xn−2)[xn−1, xn−2, xn−3; f

′′]

be the quadratic polynomial which interpolates f ′′ at xn−1, xn−2 and xn−3.
The following lemma is a consequence of [6, Lemma 3.1].
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Lemma 3.10 Let f ∈ C2
ϕ, n ≥ 4, and let a polynomials p1 and pn of degree ≤ 4 be such

that p
(i)
1 (x1) = f (i)(x1) and p

(i)
n (xn−1) = f (i)(xn−1), for i = 0, 1, and p′′

1(x) = l1(x), and
p′′

n(x) = ln(x). Then,

‖f − p1‖I1 ≤ cn−2ωϕ
3,2(f

′′, 1/n),(3.23)

and

‖f − pn‖In
≤ cn−2ωϕ

3,2(f
′′, 1/n).(3.24)

We end this section by recalling that for f ∈ Cr
ϕ, it was shown in [6] (see inequalities

(3.4) and (3.5) there) that

|Ij|lωk+r−l(f
(l), |Ij|, Ij) ≤ cn−rωϕ

k,r

(

f (r), n−1
)

,(3.25)

where either 1 < j < n and 0 ≤ l ≤ r, or 1 ≤ j ≤ n and 0 ≤ l < r/2.

4 Proofs of the positive results

Proof of Theorem 2.5. In view of Theorem 3.3 and the estimate

ωϕ
k+5(sn, 1/n) ≤ c‖f − sn‖ + cωϕ

k+5(f, 1/n) ≤ c‖f − sn‖ + cn−5ωϕ
k,5(f

(5), 1/n)

(see (1.9)), we only need to construct a spline sn ∈ Σk+5,n(Ys) ∩ ∆2(Ys), such that

‖f − sn‖ ≤ cn−5ωϕ
k,5(f

(5), 1/n).(4.1)

Inequality (3.25) with l = 3 and r = 5 implies

|Ij|3ωk+2(f
(3), |Ij|, Ij) ≤ cn−5ωϕ

k,5

(

f (5), 1/n
)

(4.2)

for 1 < j < n, while, with l = 2 and r = 5, it implies

|Ij|2ωk+3(f
′′, |Ij|, Ij) ≤ cn−5ωϕ

k,5

(

f (5), 1/n
)

(4.3)

for all 1 ≤ j ≤ n.
Taking these estimates into account, the same construction as in [10, Proof of Theo-

rems 4.1 and 4.2] yields a spline sn ∈ Σk+5,n(Ys) which is coconvex with f on [−1, 1] and
such that (4.1) holds. For the sake of completeness, we briefly describe this construction.

We take N(Ys) to be so large that, for n ≥ N , the sets Oi, 1 ≤ i ≤ s, are all disjoint
and do not contain the endpoints of the interval [−1, 1]. Now, if Ij 6∈ O, then f does
not change its convexity on Ij, and Lemma 3.1 implies that there exists a polynomial
pj ∈ Pk+5 which is coconvex with f , interpolates it at the endpoints of Ij, and such that
p′j(xj) ≥ f ′(xj) and p′j(xj−1) ≤ f ′(xj−1) (if f is convex on Ij), or p′j(xj) ≤ f ′(xj) and
p′j(xj−1) ≥ f ′(xj−1) (if f is concave on Ij), and satisfies

‖f − pj‖Ij
≤ c|Ij|2ωk+3(f

′′, |Ij|, Ij) ≤ cn−5ωϕ
k,5

(

f (5), 1/n
)

.
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Now, it is convenient to denote the endpoints of Oi by ai and bi, i.e., Oi = (ai, bi),
1 ≤ i ≤ s. For each 1 ≤ i ≤ s, there exists a polynomial p̃i ∈ Pk+3 which is copositive
with f ′′ on Oi (i.e., p̃i(x)f ′′(x) ≥ 0 for all x ∈ Oi) and such that (see [2, Corollary 3.1])

‖f ′′ − p̃i‖Oi
≤ c|Oi|ωk+2(f

(3), |Oi|, Oi) .

Lemma 3.2 implies that there exists a polynomial pi ∈ Pk+5 such that p′i(ai) ≤ f ′(ai)
and p′i(bi) ≤ f ′(bi) (if f is such that f ′′(x)(x− yi) ≥ 0 for x ∈ Oi), or p′i(ai) ≥ f ′(ai) and
p′i(bi) ≥ f ′(bi) (if f is such that f ′′(x)(x − yi) ≤ 0 for x ∈ Oi), and satisfying

‖f − pi‖Oi
≤ c|Oi|2‖f ′′ − p̃i‖Oi

≤ c|Oi|3ωk+2(f
(3), |Oi|, Oi) ≤ cn−5ωϕ

k,5

(

f (5), 1/n
)

,

where the last inequality follows from (4.2), the observation that |Oi| ∼ |Ij| where j is
such that yi ∈ Ij, and the fact that Oi is “far” from ±1.

Now, the piecewise polynomial continuous approximant sn ∈ Σk+5,n(Ys) ∩ ∆2(Ys) is
constructed from the polynomial pieces pj and pi in such a way that, if sn is constructed
for all x ≤ xν , then, on [xν , xν−1] (or [xν , xν−3] = Oµ if xν happens to be the left endpoint
of some interval Oµ) it is defined to be pν (or pµ + α, where the constant α is chosen in
such a way as to make sn continuous). It is not difficult to see now that sn is coconvex
with f and (4.1) holds. ¤

Proof of Theorems 2.7 and 2.8. Suppose that n is such that

n ≥ max

{

4

(

min
1≤j≤s+1

{yj−1 − yj}
)−1

,

(

min
1≤j≤s

{ϕ(yj)}
)−3

}

.

Then, in particular, f is of fixed convexity in [x2, 1] and in [−1, xn−2].
Again, we use the same construction as in [10, Proof of Theorem 4.1] which we

described in the Proof of Theorem 2.5 above. The only difference now is that, on each
interval Oi, 1 ≤ i ≤ s, the polynomial p̃i is defined to be the quadratic polynomial
interpolating f ′′ at ai, yi and bi, whence, by Whitney’s inequality,

‖f ′′ − p̃i‖Oi
≤ cω3(f

′′, |Oi|, Oi).

Hence, using the inequality

|Ij|2ω3(f
′′, |Ij|, Ij) ≤ cn−2ωϕ

3,2(f
′′, 1/n), 1 < j < n,

which follows from (3.25), we conclude that there exists a spline sn ∈ Σ5,n(Ys) which is
coconvex with f on [x1, xn−1], satisfies the inequality

‖f − sn‖[xn−1,x1] ≤ cn−2 ωϕ
3,2(f

′′, 1/n),(4.4)

and is such that sn(xn−1+) = f(xn−1), (−1)s+1s′n(xn−1+) ≤ (−1)s+1f ′(xn−1), and
s′n(x1−) ≤ f ′(x1).

We now extend the construction of sn to the intervals I1 and In preserving its co-
convexity with the original function f , as well as keeping it close to f .
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To this end, on I1 and In, sn is defined as follows

sn(x1+) = sn(x1−), s′n(x1+) = f ′(x1), and s(i)
n (xn−1−) = f (i)(xn−1), i = 0, 1,

s′′n(x) := f ′′(x1) + (x − x1) max{0, [x1, x2, f
′′]}

+(x − x1)(x − x2) max{0, [x1, x2, x3, f
′′]}, x ∈ I1,

and

s′′n(x) := f ′′(xn−1) + (x − xn−1)(−1)s+1 max{0, (−1)s+1[xn−1, xn−2; f
′′]}

+(x − xn−1)(x − xn−2)(−1)s max{0, (−1)s[xn−1, xn−2, xn−3; f
′′]}, x ∈ In.

(We wish to emphasize that in the case s ≥ 3, we could alternatively define s′′n(x) :=
f ′′(x1), x ∈ I1, and s′′n(x) := f ′′(xn−1), x ∈ In, which is somewhat simpler than the
current construction, but would force us to consider the case s ≤ 2 separately.)

Evidently, sn is continuous on [−1, 1] and is in ∆2(Ys) (since s′n and (−1)ss′n are non-
decreasing on I1 and In, respectively, we have that (−1)ss′n(xn−1−) ≤ (−1)ss′n(xn−1+),
and s′n(x1−) ≤ s′n(x1+)).

Hence, it remains to estimate ‖f − sn‖I1 and ‖f − sn‖In
. First, we note that (4.4)

implies that α := f(x1) − sn(x1−) satisfies |α| ≤ cn−2ωϕ
3,2(f

′′, 1/n). Therefore, by
Lemma 3.10 we have for every x ∈ I1

|f(x) − sn(x)| ≤ ‖f − p1‖I1 + |p1(x) − sn(x)|

≤ cn−2ωϕ
3,2(f

′′, 1/n) +

∣

∣

∣

∣

f(x1) − sn(x1+) +

∫ x

x1

(x − u)(l1(u) − s′′n(u)) du

∣

∣

∣

∣

≤ cn−2ωϕ
3,2(f

′′, 1/n) + |α| +
∣

∣

∣

∣

∫ x

x1

(x − u)(l1(u) − s′′n(u)) du

∣

∣

∣

∣

≤ cn−2ωϕ
3,2(f

′′, 1/n) + cn−4‖l1 − s′′n‖I1 .

Similarly (except that sn(xn−1−) = f(xn−1) = pn(xn−1)), for every x ∈ In, we have

|f(x) − sn(x)| ≤ cn−2ωϕ
3,2(f

′′, 1/n) + cn−4‖ln − s′′n‖In
.

Now, for x ∈ I1,

0 ≤ s′′n(x) − l1(x)(4.5)

= (x − x1) (max{0, [x1, x2, f
′′]} − [x1, x2, f

′′])

+(x − x1)(x − x2) (max{0, [x1, x2, x3, f
′′]} − [x1, x2, x3, f

′′])

= (x − x1) max{0,−[x1, x2, f
′′]} + (x − x1)(x − x2) max{0,−[x1, x2, x3, f

′′]}.

Hence, for s ≥ 2, we conclude by Corollaries 3.6 and 3.7, that

0 ≤ s′′n(x) − l1(x) ≤ (x − x1)cn
4ωϕ

3,2(f
′′, 1/n) + (x − x1)(x − x2)cn

6ωϕ
3,2(f

′′, 1/n)

≤ cn2ωϕ
3,2(f

′′, 1/n), x ∈ I1.
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For s = 1, we apply Corollary 3.8, and similarly conclude that

0 ≤ s′′n(x) − l1(x) ≤ cn2ωϕ
3,2(f

′′, 1/n) + cωϕ
2,2(f

′′, 1/n), x ∈ I1.

Analogously, for x ∈ In,

0 ≤ (−1)s (s′′n(x) − ln(x))

= (xn−1 − x) max{0, (−1)s[xn−1, xn−2; f
′′]}

+(x − xn−1)(x − xn−2) max{0, (−1)s+1[xn−1, xn−2, xn−3; f
′′]}.

Hence, for s ≥ 2, by Corollaries 3.6 and 3.7, we obtain

0 ≤ (−1)s (s′′n(x) − ln(x))

≤ (xn−1 − x)cn4ωϕ
3,2(f

′′, 1/n) + (x − xn−1)(x − xn−2)cn
6ωϕ

3,2(f
′′, 1/n)

≤ cn2ωϕ
3,2(f

′′, 1/n), x ∈ In,

and for s = 1, by Corollary 3.8 we get

0 ≤ − (s′′n(x) − ln(x)) ≤ cn2ωϕ
3,2(f

′′, 1/n) + cωϕ
2,2(f

′′, 1/n), x ∈ In.

Also, in the case s = 1, applying Lemma 3.9 instead of Corollary 3.8 we have for x ∈ I1

|s′′n(x) − l1(x)| ≤ (x − x1) |[x1, x2, f
′′]| + (x − x1)(x − x2) |[x1, x2, x3, f

′′]|
≤ n−2|[x1, x2, f

′′]| + n−4|[x1, x2, x3, f
′′]|

≤ cn2ωϕ
3,2(f

′′, 1/n) + cn−2‖f ′′‖[−1/2,1/2],

and the estimate for ‖s′′n − ln‖In
is derived analogously.

To summarize, in the case s ≥ 2 we have

‖f − sn‖ ≤ cn−2ωϕ
3,2(f

′′, 1/n),(4.6)

and in the case s = 1 we have

‖f − sn‖ ≤ cn−2ωϕ
3,2(f

′′, 1/n) + cn−6‖f ′′‖[−1/2,1/2],(4.7)

and

‖f − sn‖ ≤ cn−2 ωϕ
3,2(f

′′, 1/n) + cn−4 ωϕ
2,2(f

′′, 1/n).(4.8)

By virtue of Lemma 3.3 and the estimate

ωϕ
5 (sn, 1/n) ≤ c‖f − sn‖ + cωϕ

5 (f, 1/n) ≤ c‖f − sn‖ + cn−2ωϕ
3,2(f

′′, 1/n)

(see (1.9)), we conclude that there exists a polynomial Pn ∈ ∆2(Ys) of degree ≤ cn such
that

‖f − Pn‖ ≤ ‖f − sn‖ + ‖sn − Pn‖ ≤ ‖f − sn‖ + cωϕ
5 (sn, 1/n)(4.9)

≤ c‖f − sn‖ + cn−2ωϕ
3,2(f

′′, 1/n).
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Combining this with the inequalities (4.6)–(4.8) we get (2.6), (2.7) and (2.9).
Finally, in order to prove (2.10), note that (1.5) implies that

n3ωϕ
3,2(f

′′, 1/n) ≥ C(f), for all n ∈ N.

Hence, for n ≥ ‖f ′′‖[−1/2,1/2]/C(f) =: N(f),

1

n
‖f ′′‖[−1/2,1/2] ≤ C(f) ≤ n3ωϕ

3,2(f
′′, 1/n).

Therefore, it follows from (4.7) and (4.9) that

‖f − Pn‖ ≤ cn−2ωϕ
3,2(f

′′, 1/n), n ≥ N(f),

and (2.10) is proved. ¤

Proof of Theorem 2.1. As was mentioned above, Theorem 2.1 for r ≤ 3 is due to [5].
For r = 4, it follows from (1.7) and Theorems 2.7 and 2.8, and for r ≥ 6, Theorem 2.1
follows from (1.7) and Theorem 2.5. Finally, if r = 5, then, for s ≥ 2, it follows from (1.7)
and Theorem 2.7, and, for s = 1, we repeat the arguments of the proof of Theorem 2.5,
replacing ωϕ

k,5(f
(5), 1/n) by ‖ϕ5f (5)‖. ¤

Proof of Theorem 2.11. We follow the proof of Theorem 2.5, where we observe that
since s = 1, there is no need to separate the points of inflection. This time we construct
an S ∈ Σk+7,n(Ys) ∩ ∆2(Ys). Also, it follows by virtue of (1.10) that f ∈ C3[−1, 1], and
by (3.25) with l = 3 and r = 7, we have

|Ij|3ωk+4(f
(3), |Ij|, Ij) ≤ cn−7ωk,7(f

(7), 1/n), 1 ≤ j ≤ n,

which we use instead of (4.2). Hence, even if I1 ∈ O1 or In ∈ O1, we are on safe grounds
and we don’t need to make sure that O1 is “far” from ±1. We omit the details. ¤

Proof of Theorem 2.3. As mentioned above, Theorem 2.3 for r ≤ 2 was proved in [9].
For r > 7, Theorem 2.3 readily follows from Corollary 2.12 and (1.7). The case r = 7,
is proved by applying the same arguments as in the proof of Theorem 2.11, replacing
ωk,7(f

(7), 1/n) by ‖ϕ7f (7)‖. ¤

In order to prove Theorem 1.2, we need the following corollary which readily follows
from the positive results described in Section 2 (see Figs 1 and 2).

Corollary 4.1 Let r ≥ 0 and let Ys ∈ Ys. If f ∈ Cr
ϕ ∩ ∆2(Ys), then

E(2)
n (f, Ys) = O(n−rωϕ

1,r(f
(r), 1/n)), n → ∞,(4.10)

and if, in addition, r 6= 4, then

E(2)
n (f, Ys) = O(n−rωϕ

2,r(f
(r), 1/n)), n → ∞.(4.11)
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Proof of Theorem 1.2. Let α > 0, and Ys ∈ Ys, and let f ∈ ∆2(Ys), be such that

En(f) = O(n−α), n → ∞.

Then the well known inverse theorem [1] (see also [12]) implies that for each pair (k, r)
such that r < α < k + r, we have that f ∈ Cr

ϕ, and

ωϕ
k,r(f

(r), t) = O(tα−r), t → 0.(4.12)

Hence, if α 6∈ N, then we put r := [α], and (4.10) yields,

E(2)
n (f, Ys) = O(n−α), n → ∞.(4.13)

If α ∈ N, then we put r := α− 1. Then for α 6= 5, (4.13) follows from (4.11) and (4.12).
The proof for α = 5, needs some modification of the proof of Theorem 2.5, we will not
elaborate here. ¤

5 Proofs of negative results

We begin with two lemmas which we need for the proof of Theorem 2.2. It is possible
that the following lemma is known but we have failed to find any similar result in the
literature.

Lemma 5.1 Given a monotone odd function g ∈ L1[−1, 1]. Then, for every polynomial
Pn−1 ∈ Pn−1, the following inequality holds

‖g(·/n)‖
L1[−1,1] ‖Pn−1‖L1[−1,1] ≤ 2 ‖gPn−1‖L1[−1,1] ,(5.1)

where, as usual, ‖f‖L1[−1,1] :=
∫ 1

−1
|f(x)| dx.

Note that inequality (5.1) is sharp in that the constant 2 is exact since, for the
function g(x) = sgn(x), (5.1) becomes an equality.

Proof. Without loss of generality assume that ‖Pn−1‖L1[−1,1] = 1 and g(x) = 1 for
1/n ≤ x ≤ 1. We may further assume that g is absolutely continuous on [−1, 1].
Integration by parts, together with the observation that g′ is an even function on [−1, 1],
yields

∥

∥

∥
g

( ·
n

)∥

∥

∥

L1[−1,1]
=

∫ 1

−1

∣

∣

∣
g

(x

n

)∣

∣

∣
dx = n

∫ 1/n

−1/n

|g (x)| dx = 2 − 2n

∫ 1/n

0

xg′(x) dx,

and

‖gPn−1‖L1[−1,1] =

∫ 1

−1

|Pn−1(x)| dx −
∫ 1

−1

(1 − |g(x)|) |Pn−1(x)| dx

= 1 −
∫ 1/n

−1/n

(1 − |g(x)|) |Pn−1(x)| dx

= 1 −
∫ 1/n

0

g′ (x)

∫ x

−x

|Pn−1(u)| du dx.
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Therefore, (5.1) is equivalent to

∫ 1/n

0

g′ (x)

∫ x

−x

|Pn−1(u)| du dx ≤ n

∫ 1/n

0

xg′ (x) dx.(5.2)

Since g′ is nonnegative, the proof will be complete if we show that, for any 0 ≤ x ≤ 1/n,
∫ x

−x

|Pn−1(u)| du ≤ nx =
n

2

∫ x

−x

du,

which, in turn, will be proved if we verify that

|Pn−1(x)| ≤ n

2
for all − 1/n ≤ x ≤ 1/n.(5.3)

Now, let −1 < α < 1 be such that
∫ α

−1
|Pn−1(x)| dx =

∫ 1

α
|Pn−1(x)| dx = 1/2, and define

Qn(x) :=
∫ x

α
Pn−1(u) du. Then, Qn ∈ Pn and ‖Qn‖ ≤ 1/2. Therefore, by the Bernstein

inequality, for all −1/n ≤ x ≤ 1/n,

|Pn−1(x)| = |Q′
n(x)| ≤ n − 1√

1 − n−2
‖Qn‖ ≤ n − 1

2
√

1 − n−2
≤ n

2
,

and the proof of the lemma is complete. ¤

Taking g(x) = x|x| in the statement of Lemma 5.1 we get the following corollary.

Corollary 5.2 For every polynomial Pn−1 ∈ Pn−1, we have

‖Pn−1‖L1[−1,1] ≤ 3n2
∥

∥x2Pn−1

∥

∥

L1[−1,1]
.(5.4)

Lemma 5.3 Let h ≤ 1
3n

, and let P ∈ Pn+1 be such that

(x2 − h2)P ′′(x) ≥ 0, x ∈ [−1, 1].(5.5)

Then
P (−1) − 2P (0) + P (1) ≥ 0.(5.6)

Proof. First of all, note that (5.5) implies that P ′′(±h) = 0 and, therefore, P ′′(x) =
(x2 − h2)Q(x), where Q ∈ Pn−3 is nonnegative on I. Now, taking into account that

(1 − |x|)(x2 − h2) ≥ 1

2
(1 − x2)(x2 − 2h2), x ∈ [−1, 1],

we have

P (−1) − 2P (0) + P (1) =

∫ 1

−1

(1 − |x|)P ′′(x) dx

=

∫ 1

−1

(1 − |x|)(x2 − h2)Q(x) dx

≥ 1

2

∫ 1

−1

(1 − x2)(x2 − 2h2)Q(x) dx ≥ 0,
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where the last inequality follows from Corollary 5.2 taking into account that the poly-
nomial R(x) := (1− x2)Q(x) of degree ≤ n− 2 is nonnegative on [−1, 1] and 2h2 ≤ 1

3n2 .
¤

Using linear transformation of the interval [−1, 1] to [−1/2, 1/2], and change of vari-
ables we immediately get the following consequence.

Corollary 5.4 Let h ≤ 1
6n

, and let Q ∈ Pn be such that

(x2 − h2)Q′′(x) ≥ 0 , x ∈ [−1/2, 1/2].

Then
Q(−1/2) − 2Q(0) + Q(1/2) ≥ 0.

We are ready with

Proof of Theorem 2.2. Suppose that s ≥ 2 and r ≥ 1 are given. Let Ys = {yi}s
i=1

be such that −1 < ys < . . . < ys−2 ≤ −1/2, y2 = −h and y1 = h, where h = 1
6n

. Now,
let f be such that

f(x) =

∫ x

0

(x − t)f ′′(t) dt ,

where

f ′′(t) :=

{

−(h2 − t2)r, |t| ≤ h,
0, otherwise.

Clearly, f ∈ Cr[−1, 1] ∩ ∆2(Ys), and

‖f (r)‖ ≤ chr+2.(5.7)

Also, f(0) = 0, and

−f(1/2) − f(1/2) = −
∫ 1/2

0

(1/2 − t)f ′′(t) dt −
∫ −1/2

0

(−1/2 − t)f ′′(t) dt

=

∫ h

0

(1 − 2t)(h2 − t2)r dt

≥ 1

3h

∫ h

0

(h2 − t2)r2t dt =
h2r+1

3(r + 1)
.

If Qn ∈ Pn is in ∆2(Ys) (whence, in particular, (x2 −h2)Q′′(x) ≥ 0 on [−1/2, 1/2]), then
applying Corollary 5.4, we conclude that

h2r+1

3(r + 1)
≤ −f(1/2) − f(1/2)

≤ Qn(−1/2) − f(−1/2) − 2 (Qn(0) − f(0)) + Qn(1/2) − f(1/2)

≤ |Qn(−1/2) − f(−1/2)| + 2 |Qn(0) − f(0)| + |Qn(1/2) − f(1/2)|
≤ 4‖Qn − f‖,
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implying that

E(2)
n (f, Ys) ≥

h2r+1

12(r + 1)
.(5.8)

Now, by (5.7) and (5.8) and recalling that h = 1/(6n), we have

nrE
(2)
n (f, Ys)

‖f (r)‖ ≥ nrh2r+1

12(r + 1)chr+2
= cn.

This completes our proof. ¤

We now construct counterexamples which prove our claims in Theorem 2.4.

Proof of Theorem 2.4. Given A > 0, let

gr(x) :=







(−1)(r−1)/2cr(1 + x)r/2, r = 3, 5,
c4(1 + x)2 ln(1 + x), r = 4,
c6(1 + x)3(3 − ln (1 + x)), r = 6,

where the normalizing constants cr are so chosen that

‖g(r)
r ϕr‖ = 1, 3 ≤ r ≤ 6.(5.9)

Thus, in particular, gr ∈ Br.
First observe that

g(3)
r (x) > 0, 3 ≤ r ≤ 6, and g(5)

r (x) > 0, r = 5, 6, x ∈ (−1, 1].(5.10)

Denote Mr := ‖gr‖, 3 ≤ r ≤ 6, let m := max{4, n − 1}, and take b ∈ (−1, 0) to be
such that

|g′′
r (b)| > m4(A + Mr), r = 3, 4, and g(3)

r (b) > m6(A + Mr), r = 5, 6.(5.11)

Finally, let

fb(x) :=

{

1
2!

∫ x

b
g

(3)
r (t)(x − t)2 dt, r = 3, 4,

1
4!

∫ x

b
g

(5)
r (t)(x − t)4 dt, r = 5, 6,

that is, fb(x) = gr(x) − Tr(x) where Tr is the Taylor polynomial about x = b, of degree
2, for r = 3, 4, and of degree 4, for r = 5, 6, respectively. Then in view of (5.10), it
readily follows that fb changes its convexity once in (−1, 1), at y1 := b. Now assume
that some pn ∈ Pn satisfying

p′′n(x)(x − b) ≥ 0, −1 ≤ x ≤ 1,(5.12)

is such that

‖fb − pn‖ ≤ A‖g(r)
r ϕr‖ = A.(5.13)
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Then
‖Tr + pn‖ ≤ A + Mr,

which by Markov’s inequality implies,

‖T ′′
r + p′′n‖ ≤ m4(A + Mr),(5.14)

and

‖T (3)
r + p(3)

n ‖ ≤ m6(A + Mr).(5.15)

On the other hand, if r = 3 or r = 4, then by (5.11),

‖T ′′
r + p′′n‖ ≥ |T ′′

r (b) + p′′n(b)| = |T ′′
r (b)| = |g′′

r (b)| > m4(A + Mr),

a contradiction to (5.14). If r = 5 or r = 6, then by (5.11),

‖T (3)
r + p(3)

n ‖ ≥ T (3)
r (b) + p(3)

n (b) ≥ T (3)
r (b) = g(3)

r (b) > m6(A + Mr),

contradicting (5.15). Note that in the second inequality we used the fact that p′′n passes

from negative to positive at b, and therefore p
(3)
n (b) ≥ 0.

We conclude that no polynomial satisfying (5.12), also verifies (5.13). This completes
the first part of the proof.

What is left is to modify g6 so that it will be in C6
ϕ, and still preserve (2.4). To this

end, for 0 < ε < 1/2, set
gε := g6(x + ε).

Then gε ∈ C6
ϕ, ‖g(6)

ε ϕ6‖ < 1, g
(3)
ε (x) > 0, and g

(5)
ε (x) > 0, x ∈ [−1, 1], and finally

Mε := ‖gε‖ ≤ 2M6. Now we take ε so small that

g(3)
ε (−1) > m6(A + 2M6),

where we recall that m := max{4, n − 1}, and we proceed with the above arguments to
obtain a contradiction. ¤

In order to prove Theorem 2.13, we let b ∈ (0, 1), and set

gb(x) := Π(x) ln
b

1 + x + b
, x ∈ [−1, 1],

where we recall that Π(x) :=
∏s

i=1(x − yi). Finally, we denote

Gb(x) :=

∫ x

−1

(x − u)gb(u) du , x ∈ [−1, 1],

so that clearly, Gb ∈ C∞[−1, 1].
First, we prove
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Lemma 5.5 The following estimate holds:

ωϕ
2,4(G

(4)
b , t) ≤ c

(

1 + t2 ln
1

b

)

,(5.16)

and

|gb(x)|b ln
1

b
≤ |Π(x)|(1 + x) ln

3e2

1 + x
, x ∈ (−1, 1].(5.17)

Proof. First, since G′′
b (x) = g1(x) + g2(x), where g1(x) := Π(x) ln b and g2(x) :=

−Π(x) ln(1 + x + b), we have

ωϕ
2,4(G

(4)
b , t) ≤ ωϕ

2,4(g
′′
1 , t) + ωϕ

2,4(g
′′
2 , t) ≤ ω2(g

′′
1 , t) + c‖ϕ4g′′

2‖,

where we used the inequalities (1.3) and (1.4).
Now,

ω2(g
′′
1 , t) ≤ t2 ln

1

b
‖Π′′‖ = ct2 ln

1

b
,

and since |(1 + x) ln(1 + x + b)| ≤ 3, and (1 + x)/(1 + x + b) ≤ 1, we conclude that

‖ϕ4g′′
2‖ ≤ c(‖Π‖ + ‖Π′‖ + ‖Π′′‖) ≤ c.

This completes the proof of (5.16). Inequality (5.17) is proved in Lemma 5.1 in [6]. ¤

Denote by P∗
n the subset of polynomials pn ∈ Pn, such that

Π(−1)p′′n(−1) ≥ 0.

Clearly, every polynomial pn from Pn ∩ ∆2(Ys), is also in P∗
n.

Lemma 5.6 For each b ∈ (0, n−2), and every polynomial pn ∈ P∗
n, we have

‖Gb − pn‖ ≥ C

n4
ln

1

n2b
− 1

n4
,

where C = C(Ys).

Proof. Put

g∗
b (x) := −Π(x) ln (n2(1 + x + b)), l(x) := gb(x) − g∗

b (x) = Π(x) ln n2b,

so that l is a polynomial of degree s. Let

G∗
b(x) :=

∫ x

−1

(x − u)g∗
b (u) du and L(x) :=

∫ x

−1

(x − u)l(u) du.

Then we have
G∗

b(x) + L(x) = Gb(x).
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Also, for every pn ∈ P ∗
n ,

Π(−1)p′′n(−1) − Π(−1)L′′(−1) ≥ −Π(−1)l(−1) = Π2(−1) ln 1/n2b.(5.18)

Straightforward computations yield

∫ x

−1

|g∗
b (u)| du ≤ c/n2 + cn2(1 + x)2, −1 ≤ x ≤ 1,

whence
|G∗

b(x)| ≤ c

n4
(1 + n2(1 + x))3.

Hence,

|pn(x) − L(x)| ≤ ‖pn − Gb‖ + ‖G∗
b‖ ≤ cn6(‖pn − Gb‖ +

1

n4
)(1/n2 + (1 + x))3.

We may apply now the Dzjadyk-type inequality, we used in [6], to obtain

|p′′n(−1) − L′′(−1)| ≤ cn4(‖pn − Gb‖ +
1

n4
).

This combined with (5.18), in turn completes the proof of the lemma. ¤

We are now ready to prove Theorem 2.13 by constructing a counterexample.

Proof of Theorem 2.13. The proof follows along the lines of the proof of Theorem
2.3 in [6], and we will only sketch it.

We begin with bn ∈ (0, 1/e), n ≥ 2, such that

bn ln
1

bn

=
1

n2
,

and set

fn(x) := c
1

n2
Gbn

(x),

where c < 1 (which is independent of n) is taken so small that (5.21) and (5.22) below
are fulfilled. We summarize the properties of fn as follows from Lemma 5.5. Namely,
for every n ≥ 2,

fn ∈ C∞[−1, 1].

|f ′′
n(x)| ≤ |Π(x)|(1 + x) ln

3e2

1 + x
.(5.19)

fn(−1) = f ′
n(−1) = f ′′

n(−1) = 0,(5.20)

‖f (j)
n ‖ < 1, j = 0, 1, 2, and ‖ϕ2j−4f (j)

n ‖ < 1, j = 3, 4,(5.21)

and
ωϕ

2,4(f
(4)
n , 1/n) ≤ n−2.(5.22)
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The proof proceeds with no change constructing a subsequence fnj
and an infinite sum

which we continue to denote f1(x), and which differs from the one in [6] in that we
multiply the second derivative of the latter by Π(x). Therefore we have

|f′′1(x)| ≤ 2|Π(x)|(1 + x) ln
3e2

1 + x
,

so that if we put

f′′2(x) := 2Π(x)(1 + x) ln
3e2

1 + x
,

and

f2(x) :=

∫ x

−1

(x − u)f′′2(u)du,

and if we denote
f(x) := f1(x) + f2(x) ,

then f ∈ ∆2(Ys). The rest of the proof follows exactly as the proof of Theorem 2.3 in
[6]. ¤

Finally, we have

Proof of Theorem 2.15. For s = 1, Y1 := {y1}, and Π(x) = (x− y1) is a polynomial
of degree 1. We observe that Lemma 5.5 may be strengthened to yield

ω1,4(G
(4)
b , t) ≤ c.

Let

Fb(x) :=
1

b

∫ x

−1

(x − u)Π(u)(u + 1) du,

and set fb := Gb +Fb. Since F
(4)
b (x) = const, its modulus of continuity vanishes, so that

we have
ωϕ

1,4(f
(4)
b , t) = ωϕ

1,4(G
(4)
b , t) ≤ c.

At the same time

Π(x)f ′′
b (x) = Π2(x)

(

x + 1

b
+ ln

b

x + 1 + b

)

≥ 0, x ∈ [−1, 1],

so that fb ∈ ∆2(Y1).
Since Fb ∈ P∗

n for n ≥ 5, we may apply Lemma 5.6 and conclude that for every
pn ∈ P∗

n,

‖fb − pn‖ ≥ C

n4
ln

1

n2b
− 1

n4
.

Hence, with b = n−5/2 we obtain,

E(2)
n (fb, Y1) ≥ C

ln n

n4
ω1,4(f

(4)
b , 1).

¤
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