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Abstract. The Binary Space Partition (BSP) technique is a simple and efficient method to
adaptively partition an initial given domain to match the geometry of a given input function. As such
the BSP technique has been widely used by practitioners, but up until now no rigorous mathematical
justification to it has been offered. Here we attempt to put the technique on sound mathematical
foundations, and we offer an enhancement of the BSP algorithm in the spirit of what we are going
to call geometric wavelets. This new approach to sparse geometric representation is based on recent
development in the theory of multivariate nonlinear piecewise polynomial approximation. We provide
numerical examples of n-term geometric wavelet approximations of known test images and compare
them with dyadic wavelet approximation. We also discuss applications to image denoising and
compression.
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1. Introduction. The Binary Space Partition (BSP) technique is widely used
in image processing and computer graphics [15], [17], [19], and can be described
as follows. Given an initial convex domain in Rd, such as [0, 1]d, and a function
f ∈ Lp

(
[0, 1]d

)
, 0 < p < ∞, one subdivides the initial domain into two subdomains,

by intersecting it with an hyper-plane. The subdivision is performed so that a given
cost function is minimized. This subdivision process then proceeds recursively on the
subdomains until some exit criterion is met. To be specific, we describe the algorithm
of [17], which is a BSP algorithm for the purpose of finding a compact geometric
description of the target function, in this case a digital image (d = 2).

In [17], at each stage of the BSP process, for a given convex polytope Ω, the algo-
rithm finds two subdomains Ω′, Ω′′, and two bivariate (linear) polynomials QΩ′ , QΩ′′ ,
that minimize the quantity

‖f −QΩ′‖p
Lp(Ω′) + ‖f −QΩ′′‖p

Lp(Ω′′) ,

over all pairs Ω′, Ω′′ of polyhedral domains that are the result of a binary space
partition of Ω. The polynomials QΩ′ , QΩ′′ are found using the least-squares technique
with p = 2. The goal in [17] is to encode a cut of the BSP tree, i.e., a sparse
piecewise polynomial approximation of the original digital image based on a union of
disjoint polytopes from the BSP tree. Also, to meet a given bit target, rate-distortion
optimization strategies are used (see also [21]).

Inspired by the recent progress in multivariate piecewise polynomial approxi-
mation, made by Karaivanov, Petrushev and collaborators [13], [14], we propose a
modification to the above method which can be described as a geometric wavelets
approach. Let Ω′ be a child of Ω in a BSP tree, i.e., Ω′ ⊂ Ω and Ω′ has been created
by a BSP partition of Ω. We use the polynomial approximations QΩ, QΩ′ that were
found for these domains by the local optimization algorithm above and define

ψΩ′ := ψΩ′(f) := 1Ω′ (QΩ′ −QΩ) , (1.1)
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as the geometric wavelet associated with the subdomain Ω′ and the function f . A
reader familiar with wavelets (see, e.g., [3], [7]), will notice that ψΩ′ is a ‘local differ-
ence’ component that belongs to the detail space between two levels in the BSP tree,
a ‘low resolution’ level associated with Ω and a ‘high resolution’ level associated with
Ω′. Also, these wavelets have what may be regarded as the ‘zero moments’ property,
i.e., if f is locally a polynomial over Ω, then we get QΩ′ = QΩ = f and ψΩ′ = 0.
However, the BSP method is highly nonlinear, both the partition and the geometric
wavelets are so much dependent on the function f , that one cannot expect some of
the familiar properties of wavelets like a two-scale relation, a partition of unity or,
spanning of some a-priori given spaces.

Our modified BSP algorithm proceeds as follows. We apply the BSP algorithm
and create a ‘full’ BSP tree P. Obviously, in applications, the subdivision process is
terminated when the leaves of the tree are subdomains of sufficiently small volume,
or equivalently, in image processing, when the subdomains contain only a few pixels.
We shall see that under certain mild conditions on the partition P and the function
f we have

f =
∑

Ω∈P
ψΩ (f), a.e. in [0, 1]d,

where

ψ[0,1]d := ψ[0,1]d(f) := 1[0,1]dQ[0,1]d .

We then compute all the geometric wavelets (1.1) and sort them according to their
Lp norm, i.e.,

∥∥ψΩk1

∥∥
p
≥ ∥∥ψΩk2

∥∥
p
≥ ∥∥ψΩk3

∥∥
p
· · · . (1.2)

Given an integer n ∈ N, we approximate f by the n-term geometric wavelet sum
n∑

j=1

ψΩkj
. (1.3)

The sum (1.3) is, in some sense, a generalization of the classical n-term wavelet
approximation (see [7] and references therein), where the wavelets are constructed
over dyadic cubes.

A key observation is that the BSP algorithm described above is a geometric greedy
algorithm. At each stage of the algorithm we try to find a locally optimal partition
of a given subdomain. Indeed, the problem of finding an optimal triangulation or
partition is associated with an NP-HARD problem (see the discussion in [6, Section
4] and references therein).

It is known in classical wavelet theory (see, e.g., [7]) that the energy of the wavelet
basis coefficients in some lτ -norm, 0 < τ < p, is a valid gauge for the ‘sparseness’ of the
wavelet representation of the given function. We follow this idea extending it to our
geometric wavelet setup. Thus we take as a reasonable benchmark by which to measure
the efficiency of the greedy algorithm, a BSP partition that ‘almost’ minimizes, over all
possible partitions, the sum of energies of the geometric wavelets of a given function,
namely,

(∑

Ω∈P
‖ψΩ‖τ

p

)1/τ

, (1.4)
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for some 0 < τ < p.
We note the following geometric sub-optimality of the BSP algorithm (see [12],

[25] and references therein). We say that a BSP for n disjoint objects in a given
convex domain is a recursive dissection of the domain into convex regions such that
each object (or part of an object) is in a distinct region. Ideally, every object should
be in one convex region, but sometimes it is inevitable that some of the objects are
dissected. The size of the BSP is defined as the number of leaves in the resulting BSP
tree.

It can be shown that for a collection of n disjoint line segments in the plane, there
exists a BSP of complexity O (n log n). Recently, Tòth [24] showed a lower bound of
Ω (n log n/ log log n), meaning that for d = 2, in the worst-case, the BSP algorithm
might need slightly more elements to ‘capture’ arbitrary linear geometry. In higher
dimension, the performance of the BSP, in the worst case, decreases. For example the
known lower-bound for the BSP of collection of n disjoint rectangles in R3 is Ω

(
n2

)
.

The paper is organized as follows. In Section 2, we outline the algorithmic aspects
of the geometric wavelet approach so that the reader who is less interested in the
rigorous mathematics may skip Section 3 and proceed directly to Section 4. In Section
3, we review the more theoretical aspects of our approach and we provide some details
on the approximation spaces that are associated with the method. It is interesting to
note that, while the approximation spaces corresponding to nonlinear n-term wavelet
approximation are linear Besov spaces (see [7] for details), the adaptive nature of the
geometric wavelets implies that the corresponding approximation spaces are nonlinear.
Nevertheless, it turns out that the problem at hand is ‘tamed’ enough so as to enable
the application of the classical machinery of the Jackson and Bernstein. Specifically,
the analysis can be carried out because we are adaptively selecting one nested fixed
partition for a given function, from which we select n-term geometric wavelets for
any n. (In contrast, general adaptive piecewise polynomial n-term approximation [6]
allows for each n, the selection of any n pieces, with no assumptions that they are
taken from a fixed partition.) We conclude the paper with Section 4, where some
numerical examples of n-term geometric wavelet approximation of digital images and
discussion of possible applications in image denoising and compression.

2. Adaptive BSP partitions and the geometric wavelet approximation
algorithm. Let Πr−1 := Πr−1(Rd) denote the multivariate polynomials of total de-
gree r − 1 (order r) in d variables. Given a bounded domain Ω ⊂ Rd, we denote the
degree (error) of polynomial approximation of a function f ∈ Lp(Ω), 0 < p ≤ ∞,

Er−1 (f, Ω)p := inf
P∈Πr−1

‖f − P‖Lp(Ω) .

Recall that the greedy BSP algorithm consists of finding, at each step, an optimal
dissection of some domain Ω, and computing polynomials QΩ′ and QΩ′′ that best
approximate the target function f in the p-norm over the children Ω′,Ω′′ ⊂ Ω. In
practice, we will have a suboptimal dissection, and near best approximation. Thus,
we are going to assume that for each Ω ∈ P, QΩ is a near best approximation, i.e.,

‖f −QΩ‖Lp(Ω) ≤ CEr−1(f, Ω)p, (2.1)

where C is independent of f and Ω, but may depend on parameters like d, r and
possibly p. We shall see in Section 3 that for the purpose of analysis when p ≤ 1, we
need the stronger assumption that QΩ is a (possibly not unique) best approximation.
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Let P be a partition of [0, 1]d, and let Ω′ be a child of Ω ∈ P. For f ∈ Lp

(
[0, 1]d

)
,

0 < p < ∞, we set ψΩ′ as in (1.1). As noted in the introduction, the function ψΩ′ in
(1.1) may be regarded as a local wavelet component of the function f that corresponds
to the partition P. For 0 < τ ≤ p we denote the τ -energy of the sequence of geometric
wavelets by the lτ -norm of its Lp norms,

Nτ (f,P) :=

(∑

Ω∈P
‖ψΩ‖τ

p

)1/τ

. (2.2)

We will show that, under some mild conditions, the geometric wavelet expansion
converges to the function. Namely, we introduce a weak constraint on the BSP par-
titions, which allows the analysis below to be carried out (see for example the proof
of Theorem 3.5 below). We say that P is in BSP (ρ), 3/4 < ρ < 1, if for any child Ω′,
of Ω, we have

|Ω′| ≤ ρ |Ω| , (2.3)

where |V | denotes the volume of a bounded set V ⊂ Rd.
Theorem 2.1. Assume that Nτ (f,P) < ∞, for some f ∈ Lp

(
[0, 1]d

)
, 0 < p <

∞, 0 < τ < p, and P ∈ BSP(ρ). Then
1. f =

∑
Ω

ψΩ, absolutely, a.e. in [0, 1]d,

2. ‖f‖p ≤ C (d, r, p, τ, ρ)Nτ (f,P) .
Proof. The proof is almost identical to the proof of [13, Theorem 2.17], except

that here we take η = p, and we replace [13, Lemma 2.7] by Lemma 2.4 below.
Thus, it is expedient to look for partitions (and τ) that yield finite energy, better

still, that minimize the energy. Obviously, this is not always possible or too costly,
and we are willing to settle for somewhat less. To this end, we define

Definition 2.2. For f ∈ Lp

(
[0, 1]d

)
and 0 < τ < p < ∞, we say that Pτ (f) ∈

BSP(ρ), is a near best partition if

Nτ (f,Pτ (f)) ≤ C inf
P∈BSP(ρ)

Nτ (f,P) . (2.4)

Let PD be the BSP partition that gives the classical subdivision of [0, 1]d into
dyadic cubes. This can be done for example in the case d = 2 by partitioning [0, 1]2

along the line x1 = 1/2 and then partitioning the two resulting rectangles along the
line x2 = 1/2. We get four dyadic cubes and we proceed on each one recursively in the
same manner. In Section 3 we show the following relationship between Nτ (f,Pτ (f))
and the Besov seminorm of f (compare with the classical dyadic wavelet-type char-
acterization of Besov spaces [10] and in particular the quantities N3 (f) and N4 (f)
therein).

We will show that for f ∈ Lp

(
[0, 1]d

)
, 0 < p < ∞, α > 0, and 1/τ = α + 1/p, we

have

Nτ (f,Pτ (f)) ≤ CNτ (f,PD) ≈ |f |Bdα,r
τ

, (2.5)

where Bγ,r
τ , γ > 0, is the classical Besov space (see Definition 3.1 below). The proof

follows from the discussion beyond (3.6), and especially from (3.16).
We note that (2.2) was already defined in [16] for the special case of partitions

over dyadic boxes. Also in [16], the author gives an algorithm to find the best dyadic
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box partition (see also [11]), thereby providing a complete solution to a restricted
version of (2.4).

For 1 < p < ∞, a more subtle but sharper definition of Pτ (f) would be to define it
as an ‘almost’ minimizer of the weak `τ -norm of its corresponding geometric wavelets
instead of the `τ -norm (2.2). Recall that the weak `τ -norm of a sequence {ak} is
defined by

‖{ak}‖w`τ
:= inf

{
M : #

{
k : |ak| > Mε1/τ

}
≤ ε−1, ∀ε > 0

}
,

and satisfies ‖{ak}‖w`τ
≤ ‖{ak}‖`τ

. This corresponds to a well known fact that n-term
wavelet approximation can be estimated using the weaker p-norm when 1 < p < ∞
(see [13, Theorem 3.3] for details, and see [7, Theorem 7.2.5] for the case of classic
dyadic wavelets).

As we shall see, Nτ (f,P) may serve as a ‘quality gauge’ for partitions, when τ
takes certain values strictly smaller than p. The following example demonstrates the
role of τ .

Example 2.3. Let Ω̃ ⊂ [0, 1]d be a convex polytope, and denote f(x) := 1eΩ(x).
Assume P is a partition such that for each Ω ∈ P, either Ω̃ ⊆ Ω, Ω ⊆ Ω̃ or int(Ω ∩
Ω̃) = ∅, where int(E) denotes the interior of E ⊂ Rd. Then, for p = 2 and r = 1 it
is easy to see that

QΩ =

{ |eΩ|
|Ω| , Ω̃ ⊆ Ω,

0, int(Ω ∩ Ω̃) = ∅.

Therefore we have ψ[0,1]d =
∣∣∣Ω̃

∣∣∣1[0,1]d and, for Ω′ ∈ P, a child of Ω,

‖ψΩ′‖τ
2 = ‖QΩ′ −QΩ‖τ

L2(Ω′) =





∣∣∣Ω̃
∣∣∣
τ (

1
|Ω′| − 1

|Ω|
)τ

|Ω′|τ/2
, Ω̃ ⊆ Ω′,∣∣∣Ω̃

∣∣∣
τ

1
|Ω|τ |Ω′|τ/2, int(Ω̃) ⊂ Ω \ Ω′,

0, int(Ω ∩ Ω̃) = ∅ or Ω ⊆ Ω̃.

Thus, the energy of the geometric wavelets is given by the formal sum

N τ
τ (f,P) =

∑

Ω∈P
‖ψΩ‖τ

2

= |Ω̃|τ
(

1 +
∑

eΩ⊆Ω′

Ω′ child
of Ω

(
1
|Ω′| −

1
|Ω|

)τ

|Ω′|τ/2 +
1
|Ω|τ (|Ω| − |Ω′|)τ/2

)
. (2.6)

The above sum converges, for example, if P is in BSP(ρ), for some ρ < 1. In the
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special case τ = 2 we get

N 2
2 (f,P) =

∣∣∣Ω̃
∣∣∣
2
(

1 +
∑

eΩ⊆Ω′

Ω′ child of Ω

(
1
|Ω′| −

1
|Ω|

)2

|Ω′|+ 1
|Ω|2 (|Ω| − |Ω′|)

)

=
∣∣∣Ω̃

∣∣∣
2
(

1 +
∑

eΩ⊆Ω′

Ω′ child of Ω

(
1
|Ω′| −

1
|Ω|

))

= |Ω̃|,
which implies that N2 (f,P) = ‖f‖2. Since this equality holds for any partition that
satisfies the above conditions, it follows that N2 (f,P) is not a good sparsity gauge
for adaptive partitions when p = 2.

Fig. 2.1. Two BSP partitions with N2

�
f,P(1)

�
= N2

�
f,P(2)

�
= ‖f‖2

Referring to Figure 2.1, we see that the partition P(1) is optimal since its BSP lines
coincide with the hyper-planes that describe ∂Ω̃, while P(2) contains ‘unnecessary’
subdomains. Nevertheless, the equality N2

(
f,P(1)

)
= N2

(
f,P(2)

)
= ‖f‖2 holds.

However, things change dramatically when we choose a sufficiently small τ . In this
case, the `τ norm serves almost as counting measure and since the sum (2.6) contains
significantly less non-zero elements in the case of P(1), we obtain that Nτ

(
f,P(1)

)
is

much smaller than Nτ

(
f,P(2)

)
.

Thus, we wish to address the issue of the expected range of the parameter τ for
digital images and p = 2. If the image contains a curve singularity that is not a straight
line, then the theory of Section 3 below suggests that we should take τ ≥ 2/5. Since,
in a way, dyadic wavelets are a special case of geometric wavelets, we can obtain an
upper bound estimate on τ using the ideas of [8]. One needs to compute the discrete
dyadic wavelet transform of the image and then compute the rate of convergence of
the n-term wavelet approximation, by fitting the error function with the exponent
e (f, n) := C (f)n−α(f). Since we expect geometric wavelets to perform at least at
the rate of dyadic wavelets, we should take τ ≤ 2/(2α (f) + 1).

Going back to the greedy BSP step described in the introduction, let (Ω′, Ω′′) ∈
BSP(Ω), and let QΩ ,QΩ′ ,QΩ′′ be the near best polynomials approximations for their
corresponding subdomains. Then, we have by (1.1)

‖ψΩ′‖τ
p + ‖ψΩ′′‖τ

p

≤ C
(
‖f −QΩ‖p

Lp(Ω) + ‖f −QΩ′‖p
Lp(Ω′) + ‖f −QΩ′′‖p

Lp(Ω′′)

)
. (2.7)
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Observing that QΩ has been already been determined at a previous (greedy) step,
we have that the local greedy optimization step of [17], will capture the geometry in
which the local geometric wavelet components of f are relatively small. If we denote
the levels of a BSP partition P of [0, 1]d, by {Pm}m∈N, and we say that Ω′ ∈ Pm+1

is a child of Ω ∈ Pm if Ω′ ⊂ Ω. Then we note that our analysis also suggests that a
significant improvement may be obtained if the local optimization step is carried out
for several levels at once. Namely, given Ω ∈ Pm, to try to minimize, for some (small)
J ≥ 2,

J∑

j=1

∑

eΩ⊂Ω
eΩ∈Pm+j

∥∥f −QeΩ
∥∥p

Lp(eΩ). (2.8)

Finally, we return to the proof of Theorem 2.1. Condition (2.3) implies that

(1− ρ) |Ω| ≤ |Ω′| ≤ ρ |Ω| . (2.9)

This condition for BSP partitions corresponds to the weak locally regularity (WLR)
condition that is assumed for triangulations in [13]. Observe that a BSP-partition still
allows the polytopes of the partition to be adaptive to the geometry of the function
to be approximated, i.e., the polytopes may become as thin as one may wish, so long
as the ‘thinning’ process occurs over a sequence of levels of the partition. Also, note
that we have not limited the complexity of the polytopes. Indeed, polytopes at the
mth level may be of complexity m.

we need the following results on norms of polynomials over convex domains.
Lemma 2.4. Let P ∈ Πr−1(Rd), and let 0 < ρ < 1 and 0 < p, q ≤ ∞.

(a) Assume that Ω′,Ω ⊂ Rd are bounded convex domains, such that Ω′ ⊆ Ω, and
(1− ρ)|Ω| ≤ |Ω′|. Then

‖P‖Lp(Ω) ≤ C(d, r, p, ρ)‖P‖Lp(Ω′).

(b) For any bounded convex domain Ω ⊂ Rd,

‖P‖Lq(Ω) ≈ |Ω|1/q−1/p‖P‖Lp(Ω),

with constants of equivalency depending only on d, r, p, and q.
(c) If Ω′ is a child of Ω in a BSP partition P ∈ BSP(ρ), then

‖P‖Lq(Ω) ≈ ‖P‖Lq(Ω′) ≈ |Ω|1/q−1/p‖P‖Lp(Ω′),

with constants of equivalency depending only on d, r, p, q, and ρ.
Proof. The proof of (a) and (b) can be found in [5, Lemma 3.1] and the first part

of the proof of [5, Lemma 3.2], respectively. Assertion (c) follows from (a) and (b),
since by the properties of P, we have that all the domains concerned, are convex, and
the following equivalence of volumes holds

(1− ρ) |Ω| ≤ |Ω′| ≤ (1− ρ)−1 |Ω \ Ω′|.

We conclude this section by outlining the steps of the adaptive geometric wavelet
approximation algorithm:
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1. Given f ∈ Lp

(
[0, 1]d

)
, find a BSP partition using local steps of optimal

partitions and polynomial approximations (see discussion above (2.8)).
2. For each subdomain of the partition, Ω ∈ P, compute the p−norm of the

corresponding geometric wavelet ψΩ.
3. Sort the geometric wavelets according their energy as in (1.2). As in the case

of classical dyadic wavelets, this step can be simplified by using thresholding (see [7,
Section 7.8]).

4. For any n ≥ 1, construct the n-term geometric wavelet sum (1.3).

3. Theoretical aspects of the geometric wavelet approach. One of the
greatest challenges in approximation theory is the characterization of adaptive mul-
tivariate piecewise polynomial approximation (see the discussion in [7, Section 6.5]
and [6]). Given f ∈ Lp

(
[0, 1]d

)
, we wish to understand the behavior of the degree of

nonlinear approximation

inf
S∈Σr

n

‖f − S‖
Lp

(
[0,1]d

), (3.1)

where Σr
n is the collection

n∑
k=1

1Ωk
Pk, and {Ωk} are convex polytopes with disjoint

interiors, such that
n⋃

k=1

Ωk = [0, 1]d, and Pk ∈ Πr−1, 1 ≤ k ≤ n. Usually {Ωk} are

assumed to be simplices (triangles in the bivariate case), so as to keep their complexity
bounded. However, when using the BSP approach, the polytopes {Ωk} can be of
arbitrary complexity and descendant polytopes are contained in their ancestors.

In the univariate case there is a certain equivalence between the two n-term
approximation methods, wavelets and piecewise polynomials. Namely, the approxi-
mation spaces associated with the two methods are characterized by the same Besov
spaces [7] . The advantage of wavelet approximation over piecewise polynomial ap-
proximation is the simplicity and efficiency with which one can implement it. When
d ≥ 2, these two methods are no longer equivalent. Wavelet approximation is still
characterized by the (linear) Besov spaces, while the approximation spaces associated
with piecewise polynomials are known to be nonlinear spaces [6], and their character-
ization remains an open problem.

While the geometric wavelet algorithm of Section 2 is highly adaptive and ge-
ometrically flexible, it is nothing but a ‘tamed’ version of the piecewise polynomial
method (see also discussion in [13]). To explain this, for a given BSP partition P,
denote by Σr

n(P) the collection

n∑

k=1

1Ωk
Pk, Ωk ∈ P, Pk ∈ Πr−1, 1 ≤ k ≤ n. (3.2)

Observe that the n-term geometric wavelet sum (1.3) is in Σr
n (P), for the given

partition P. Let Pτ (f) ∈ BSP(ρ), be the near best partition of Definition 2.2 for
f ∈ Lp

(
[0, 1]d

)
, 0 < τ < p. Then, the degree of nonlinear approximation from the

near best partition is given by

σn,r,τ (f)p := inf
S∈Σr

n(Pτ (f))
‖f − S‖p. (3.3)

We see that the main difference between (3.1) and (3.3) is that in the latter, the
n-term approximations are taken from a fixed partition. This is a major advantage
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as one of the main difficulties one encounters when trying to analyze the degree of
approximation of n-term piecewise polynomial approximation (where the supports
have disjoint interiors), is that for S1, S2 ∈ Σr

n we may have, in the worst case,
that S1 + S2 is of complexity O

(
nd

)
, that is, supported on nd domains with disjoint

interiors. On the other hand, if we have a fixed partition P, and two piecewise
polynomials S1, S2 ∈ Σr

n(P), then S1 + S2 ∈ Σr
2n(P). Still, even for a fixed partition,

it is hard to find a solution to (3.3). As we demonstrate below, a good method
to compute an n-term piecewise polynomial approximation is to take the n-term
geometric wavelet sum (1.3) (see the proof of Theorem 3.6).

The goal of this section is to provide some characterization of the adaptive geo-
metric wavelet approximation, where the n-terms are taken from a near best adaptive
partition Pτ (f), which we consider as a benchmark to any of the greedy algorithms
discussed above. To this end we denote by Aγ,r

q,τ (Lp), γ > 0, 0 < q ≤ ∞, 0 < τ < p,
the approximation space corresponding to nonlinear approximation from Pτ (f). This
is the collection of all functions f ∈ Lp

(
[0, 1]d

)
for which the error (3.3) roughly

‘decays’ at the rate n−γ , i.e., f ∈ Lp

(
[0, 1]d

)
for which

(f)Aγ,r
q,τ (Lp) :=

{
(
∑∞

m=0 (2mγσ2m,r,τ (f)p)
q)1/q

, 0 < q < ∞,
supm≥0 (2mγσ2m,r,τ (f)p) , q = ∞,

is finite.
Recall that for f ∈ Lτ (Ω), 0 < τ ≤ ∞, h ∈ Rd and r ∈ N, we denote the rth

order difference operator

∆r
h(f, x) := ∆r

h(f, Ω, x) :=
{ ∑r

k=0(−1)r+k
(

r
k

)
f(x + kh), [x, x + rh] ⊂ Ω,

0, otherwise,

where [x, y] denotes the line segment connecting the points x, y ∈ Rd. The modulus
of smoothness of order r of f ∈ Lτ (Ω) (see e.g. [7], [9]), is defined by

ωr(f, t)Lτ (Ω) := sup
|h|≤t

‖∆r
h(f, Ω, ·)‖Lτ (Ω) , t > 0,

where for h ∈ Rd, |h| denotes the length of h. We also denote

ωr(f, Ω)τ := ωr(f, diam(Ω))Lτ (Ω). (3.4)

Definition 3.1. For γ > 0, τ > 0 and r ∈ N , the Besov space Bγ,r
τ is the

collection of functions f ∈ Lτ

(
[0, 1]d

)
for which

|f |Bγ,r
τ

:=

( ∞∑
m=0

(
2γmωr

(
f, 2−m

)
Lτ ([0,1]d)

)τ
)1/τ

< ∞.

Definition 3.2. For 0 < p < ∞, α > 0, ρ > 0, and 1/τ := α + 1/p, we define
the Geometric B-space GBα,r

τ , r ∈ N , as the set of functions f ∈ Lp

(
[0, 1]d

)
for which

(f)GBα,r
τ

:=

(
inf

P∈BSP(ρ)

∑

Ω∈P

(
|Ω|−α

ωr (f, Ω)τ

)τ
)1/τ

< ∞. (3.5)
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Note that the smoothness measure ( · )GBα,r
τ

is not a (quasi-)seminorm since the
triangle inequality, in general, is not satisfied. However, it is easy to show that for
α1 ≤ α2 and 1/τk = αk + 1/p, k = 1, 2, we have GBα2,r

τ2
⊆ GBα1,r

τ1
, so just as in

the case of Besov spaces, a larger α implies a smaller class of functions with ‘more
smoothness’. Also, the smoothness measure ( · )GBα,r

τ
of a function is bounded by

the Besov (quasi-)seminorm of the function in Bdα,r
τ . Indeed, let PD denote the BSP

partition that gives the classical dyadic partition. If we denote the collection of dyadic
cubes of side length 2−m by Dm, then

(f)GBα,r
τ

≤
( ∑

Ω∈PD

(
|Ω|−α

ωr (f, Ω)τ

)τ
)1/τ

≤ C

( ∞∑
m=0

∑

I∈Dm

(
2dαmωr (f, I)τ

)τ

)1/τ

(3.6)

≤ C|f |Bdα,r
τ

.

For a Geometric B-space, GB we introduce the (nonlinear) K-functional corresponding
to the pair Lp and GB

K(f, t) := K (f, t, Lp,GB) := inf
g∈GB

{‖f − g‖p + t · (g)GB} , t > 0. (3.7)

The (nonlinear) interpolation space (Lp,GB)λ,q, λ > 0, 0 < q ≤ ∞, is defined as the
set of all f ∈ Lp

(
[0, 1]d

)
such that

(f)(Lp,GB)λ,q
:=





( ∞∑
m=0

(
2mλK (f, 2−m)

)q
)1/q

, 0 < q < ∞,

sup
m≥0

2mλK (f, 2−m) , q = ∞,

is finite. Although the interpolation spaces (Lp,GB)λ,q are nonlinear, we can still ap-
ply the Jackson and Bernstein machinery that one usually applies in the case of linear
spaces defined over fixed geometry, such as dyadic partitions [7] or fixed triangulations
[13], [5]. We obtain the following characterization.

Theorem 3.3. Let 0 < γ < α, 0 < q ≤ ∞, and 0 < p < ∞, then

Aγ,r
q,τ (Lp) = (Lp,GBα,r

τ ) γ
α ,q , (3.8)

where 1/τ := α + 1/p.
The remainder of this section is devoted to the proof of Theorem 3.3.
In [5] we proved that for all bounded convex domains Ω ⊂ Rd and functions

f ∈ Lτ (Ω), 0 < τ ≤ ∞, we have the equivalence

Er−1(f, Ω)τ ≈ ωr(f, Ω)τ , (3.9)

where the constants of equivalency depend only on d, r and τ .
To proceed with our analysis, we have to show that the polynomial approximations

QΩ in (2.1), that are near best approximations in the p-norm are also near best
approximations for some 0 < η < p. Indeed we show that
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Lemma 3.4. Let Ω ⊂ Rd be a bounded convex domain and let f ∈ Lp(Ω),
0 < p < ∞. Then for any r ∈ N, there exists a polynomial Q ∈ Πr−1, such that for
all 0 < η ≤ p, if 0 < p ≤ 1, and for all 1 ≤ η ≤ p, if 1 < p < ∞, we have

‖f −Q‖Lη(Ω) ≤ CEr−1(f, Ω)η, (3.10)

where for 1 < p < ∞, C = C(r, d), and for 0 < p ≤ 1, C = C(r, d, η) ≤ C(r, d, η0),
η0 ≤ η ≤ p.

Proof. We begin with the case 1 < p < ∞. Given a convex domain Ω ⊂ Rd, in [4]
we have constructed for any g ∈ Cr(Ω), a near best polynomial Q̃ ∈ Πr−1 such that

∥∥∥g − Q̃
∥∥∥

Lη(Ω)
≤ C(r, d)Er−1(g, Ω)η, 1 ≤ η < ∞. (3.11)

Let f ∈ Lp(Ω), and let {gn} be a sequence in Cr(Ω), such that ‖f − gn‖p → 0, as
n → ∞. By Hölder’s inequality, it follows that for all 1 ≤ η ≤ p, ‖f − gn‖η → 0,
as n → ∞. Now let Qn be the near best approximation to gn guaranteed by (3.11).
Then ‖gn−Qn‖p ≤ C(r, d)‖g‖p, and since we may assume that ‖f − gn‖p ≤ ‖f‖p, we
obtain

‖Qn‖∞ ≤ C(r, d)|Ω|−1/p‖Qn‖p ≤ C(r, d)|Ω|−1/p‖f‖p.

Hence, the set of polynomials Qn is compact in C(Ω), and we may assume that {Qn}
converges in the uniform norm to a polynomial Q. Now

‖f −Q‖η ≤ ‖f − gn‖η + ‖gn −Qn‖η + ‖Qn −Q‖η, 1 ≤ η ≤ p,

whence

‖f −Q‖η ≤ lim
n→∞

C(r, d)Er−1(gn, Ω)η = C(r, d)Er−1(f, Ω)η 1 ≤ η ≤ p.

This proves (3.10) for 1 < p < ∞.
For the case 0 < p ≤ 1, we first make the following observation. Let A be a

nonsingular affine mapping on Rd, given by A(x) := Mx+b, where M is a nonsingular
d × d matrix and let f ∈ Lp(Ω). Denote f̃ := f(A·), Q̃ := Q(A·), and Ω̃ := A−1Ω.
Then f̃ ∈ Lp(Ω̃), and

‖f −Q‖Lη(Ω) = |detM |1/η‖f̃ − Q̃‖Lη(eΩ), 0 < η ≤ p. (3.12)

Therefore

Er−1(f, Ω)η = |detM |1/ηEr−1(f̃ , Ω̃)η, 0 < η ≤ p. (3.13)

By John’s Theorem (see [4], [5] and references therein), for any bounded convex
domain Ω ⊂ Rd, there exists a nonsingular affine mapping A, such that

B(0, 1) ⊆ Ω̃ ⊆ B(0, d), (3.14)

where B(x0, R) denotes the ball of radius R, with center at x0. Then we follow [1] (see
also [9, Theorem 3.10.4]), and for f̃ ∈ Lp(Ω̃) obtain Q̃ ∈ Πr−1, a so-called polynomial
of best approximation in L1(Ω̃), which satisfies

‖f̃ − Q̃‖Lη(eΩ) ≤ C(r, d, η)Er−1(f̃ , Ω̃)η, η ≤ 1, (3.15)
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where C(r, d, η) ≤ C(r, d, η0), η0 < η ≤ p. Now, (3.10) for 0 < p ≤ 1, follows by virtue
of (3.12) and (3.13).

Theorem 3.5. For 0 < p < ∞, α > 0, 1/τ = α + 1/p and f ∈ Lp

(
[0, 1]d

)
, we

have the equivalence

(f)GBα,r
τ

≈ Nτ (f,Pτ (f)) , (3.16)

with constants of equivalency depending only on α, d, r, p and ρ.
Proof. Let P ∈ BSP(ρ) be a given partition. For 0 < µ ≤ p and Ω ∈ P, denote

by QΩ,µ a near best polynomial approximation of f ∈ Lµ(Ω). Note that with this
notation, the near best polynomials used in (1.1) are QΩ = QΩ,p. We denote

Nτ,µ(f,P) :=

(∑

Ω∈P
‖ψΩ,µ‖τ

p

)1/τ

,

where ψΩ,µ are defined in (1.1) with the near best polynomials QΩ,µ, and

Ñτ,µ(f,P) :=

(∑

Ω∈P

(
|Ω|1/p−1/µωr(f, Ω)µ

)τ
)1/τ

.

By Lemma 3.4 we know that there is an τ < η < p, such that for any Ω ∈ P, we may
take ψΩ,η = ψΩ,p = ψΩ. Therefore, in order to prove (3.16), it suffices to prove that
for any P ∈ BSP(ρ),

Nτ,η(f,P) ≈ Ñτ,τ (f,P), (3.17)

holds with constants of equivalency that depend only on d, r, p, τ , η, and ρ.
To this end, take τ ≤ µ ≤ η, and recall that if Ω′ is a child of Ω, then

‖ψΩ′,µ‖µ ≤ C
(‖f −QΩ,µ‖Lµ(Ω′) + ‖f −QΩ′,µ‖Lµ(Ω′)

)

≤ C (Er−1(f, Ω)µ + Er−1(f, Ω′)µ) , (3.18)

where C = C(r, d, µ). Hence

Nτ,µ(f,P) =

(∑

Ω∈P
‖ψΩ,µ‖τ

p

)1/τ

≤ C

(∑

Ω∈P

(
|Ω|1/p−1/µ ‖ψΩ,µ‖µ

)τ
)1/τ

≤ C

(∑

Ω∈P

(
|Ω|1/p−1/µEr−1(f, Ω)µ

)τ
)1/τ

(3.19)

≤ C

(∑

Ω∈P

(
|Ω|1/p−1/µωr(f, Ω)µ

)τ
)1/τ

= CÑτ,µ(f,P),

where for the first inequality we applied Lemma 2.4, for the second, (3.18) and (2.9),
and finally for the third inequality, we applied (3.9).
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Next we show that for τ ≤ µ ≤ η

Ñτ,η(f,P) ≤ Nτ,µ(f,P). (3.20)

We may assume that Nτ,µ(f,P) < ∞, for otherwise there is nothing to prove. Since
µ < p, we have that f ∈ Lµ

(
[0, 1]d

)
and Theorem 2.1 implies

f =
∑

Ω∈P
ψΩ,µ, a.e.

Therefore,

ωr(f, Ω)τ
η = ωr(f −

∑

eΩ∈P, eΩ⊇Ω

ψeΩ,µ,Ω)τ
η

≤ C
∥∥ ∑

eΩ∈P, eΩ⊂Ω

|ψeΩ,µ|
∥∥τ

η

≤ C
∑

eΩ∈P, eΩ⊂Ω

‖ψeΩ,µ‖τ
η

≤ C
∑

eΩ∈P, eΩ⊂Ω

∣∣∣Ω̃
∣∣∣
τ(1/η−1/τ)

‖ψeΩ,µ‖τ
τ ,

where for the equality we used the fact that for Ω ⊆ Ω̃, the geometric wavelet ψeΩ,µ is a
polynomial of total degree ≤ r− 1, for the second inequality we applied [13, Theorem
3.3], and for the third inequality we applied Lemma 2.4. Therefore,

Ñτ,η(f,P)τ ≤ C
∑

Ω∈P
|Ω|τ(1/p−1/η)

∑

eΩ⊂Ω

∣∣∣Ω̃
∣∣∣
τ(1/η−1/τ)

‖ψeΩ,µ‖τ
τ

= C
∑

Ω∈P

∑

eΩ⊂Ω

(∣∣Ω̃
∣∣

|Ω|

)τ(1/η−1/p) (∣∣Ω̃
∣∣1/p−1/τ‖ψeΩ,µ‖τ

)τ

= C
∑

eΩ∈P

(∣∣Ω̃
∣∣1/p−1/τ‖ψeΩ,µ‖τ

)τ ∑

Ω∈P
Ω⊃eΩ

(∣∣Ω̃
∣∣

|Ω|

)τ(1/η−1/p)

.

Now, if Ω̃ ∈ Pm and Ω ∈ Pm−k, k > 0, is one of its ancestors, then by (2.9),
∣∣∣Ω̃

∣∣∣ ≤ |Ω|ρk.

Hence

∑

Ω∈P, Ω⊃eΩ

(∣∣Ω̃
∣∣

|Ω|

)τ(1/η−1/p)

≤ C

∞∑

k=1

ρkτ(1/η−1/p) ≤ C(p, η, τ, ρ).

We conclude that

Ñτ,η(f,P)τ ≤ C
∑

eΩ∈P

(∣∣Ω̃
∣∣1/p−1/τ‖ψeΩ,µ‖τ

)τ

≤ C
∑

eΩ∈P
‖ψeΩ,µ‖τ

p = CNτ,µ(f,P)τ ,
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where for the last inequality we again applied Lemma 2.4. This proves (3.20).
Now combining (3.19) with µ = η, (3.20) with µ = τ and then (3.19) with µ = τ ,

we obtain

Nτ,η(f,P) ≤ CÑτ,η(f,P) ≤ CNτ,τ (f,P) ≤ CÑτ,τ (f,P),

which proves one direction in (3.17). In order to prove the opposite direction, we
observe that it follows from Hölder’s inequality that

Ñτ,τ (f,P) ≤ Ñτ,η(f,P).

Using (3.20) with µ = η yields

Ñτ,η(f,P) ≤ CNτ,η(f,P),

which gives

Ñτ,τ (f,P) ≤ Ñτ,η(f,P) ≤ CNτ,η(f,P).

This completes the proof of the opposite direction in (3.17), and concludes our proof.

In view of the above one may draw the following conclusion: There are cases
of functions that are not in the Besov space of scale dα and therefore cannot be
approximated by n-term wavelet approximation at the ‘rate’ n−α (see [7]). Yet, there
might exist an adaptive partition which captures the geometry (if it exists!) of the
function’s singularities and does lead to a finite smoothness measure (3.5) for the scale
α. In fact we show that such a partition can also provide n-term geometric wavelet
approximation at the “rate” n−α.

Theorem 3.6 (Jackson estimate). Let 0 < p < ∞, α > 0, and r ∈ N. If
f ∈ GBα,r

τ , 1/τ = α + 1/p, then

σn,r,τ (f)p ≤ Cn−α(f)GBα,r
τ

, (3.21)

where C := C(α, d, r, p, ρ).
Proof. Given f , p and τ we select the near best adaptive partition Pτ (f). Apply-

ing [13, Theorem 3.4] with the collection {Φm} := {ψΩ}Ω∈Pτ (f), and then (3.16) we
obtain

σn,r,τ (f)p ≤ Cn−αNτ

(
f,Pτ (f)

)

≤ Cn−α(f)GBα,r
τ

.

Let φ ∈ Lp

(
[0, 1]d

)
and let P ∈ BSP(ρ) be a fixed partition. Then, the smoothness

of φ with respect to the fixed partition P, is

|φ|Bα,r
τ (P) :=

(∑

Ω∈P

(
|Ω|−α

ωr (φ, Ω)τ

)τ
)1/τ

.

For a fixed partition P, the smoothness quantity | · |Bα,r
τ (P) is a quasi-seminorm.

Therefore we obtain the Bernstein estimate for BSP partitions in much the same way
that it was proved for triangulations in the bivariate case in [13], and in arbitrary
dimension d ≥ 2 in [5]. Namely,
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Theorem 3.7 (Bernstein estimate). Let P ∈ BSP(ρ), and let φ ∈ Σr
n(P). Then

for all 0 < p < ∞, α > 0, and 1/τ = α + 1/p,

|φ|Bα,r
τ (P) ≤ Cnα ‖φ‖p , (3.22)

where C := C (α, d, r, p, ρ).

We are ready to prove Theorem 3.3

Proof of Theorem 3.3. The proof is similar to the proof of [9, Theorem 7.9.1].
The proof that the righthand side of (3.8) is contained in the lefthand side, readily
follows by the Jackson inequality. Indeed, it is a standard technique to show that
(3.21) implies that for every f ∈ Lp,

σn,r,τ (f)p ≤ CK
(
f, n−α, Lp,GBα,r

τ

)
.

Hence by the first part of the proof of [9, Theorem 7.9.1]

(f)Aγ,r
q,τ
≤ C

(
‖f‖p + (f)(Lp,GBα,r

τ ) γ
α

,q

)
.

In order to prove that the lefthand side of (3.8) is contained in the righthand side, we
have to estimate the appropriate K-functional. Namely, we replace the proof of [9,
Theorem 7.5.1(ii)] with the estimate

K
(
f, 2−mα, Lp,GBα,r

τ

) ≤ C2−mα




m∑

j=1

(
2jασ2j−1 (f)p

)µ

+ ‖f‖µ
p




1/µ

, (3.23)

where K (f, ·, Lp,GBα,r
τ ) is defined by (3.7), σ2j (f)p := σ2j ,r,τ (f)p, m ≥ 1 and µ :=

min(τ, 1). Note that, in proving this, special attention is needed to circumvent the fact
that ( · )GBα,r

τ
is not a (quasi-)seminorm. Indeed, for each j ≥ 0 we take a geometric

wavelet sum Sj ∈ Σr
2j (Pτ (f)) such that

‖f − Sj‖
Lp

(
[0,1]d)

≤ 2σ2j (f)p.

Since Pτ (f) is a fixed nested partition, we have that φj := Sj −Sj−1 ∈ Σr
2j+1(Pτ (f)),

j ≥ 1, and

‖φj‖p ≤ ‖f − Sj‖p + ‖f − Sj−1‖p ≤ 2σ2j−1(f)p, j ≥ 1.

We also put φ0 := S0. Since S0 is a single geometric wavelet component, we conclude

that (3.9) implies that ‖φ0‖p ≤ C‖f‖p. Now, we substitute g := Sm =
m∑

j=0

φj , in (3.7)
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and apply the Bernstein inequality (3.22) on the fixed partition Pτ (f) to obtain

K
(
f, 2−mα, Lp,GBα,r

τ

) ≤ ‖f − Sm‖p + 2−mα (Sm)GBα,r
τ

≤ C
(
σ2m(f)p + 2−mα |Sm|Bα,r

τ (Pτ (f))

)

≤ C


σ2m,r(f)p + 2−mα




m∑

j=0

|φj |µBα,r
τ (Pτ (f))




1/µ



≤ C


σ2m(f)p + 2−mα




m∑

j=0

(
2(j+1)α ‖φj‖p

)µ




1/µ



≤ C2−mα




m∑

j=1

(
2jασ2j−1(f)p

)µ
+ ‖f‖µ

p




1/µ

.

We leave the rest of the proof to the reader.

4. Simulation results and discussion. We implemented the geometric wavelet
algorithm for the purpose of finding sparse representations of digital images with r = 2
(linear polynomials) and p = 2. We point out that, in our current implementation,
condition (2.3) does not come into play.

To reduce the time complexity of the implementation, the images were subdivided
to tiles of size 64×64 and a BSP tree was constructed over each of the tiles separately.
Although JPEG-like artifacts, resulting from the tiles’ boundaries, are visible in the
examples below, this approach ensures that the time complexity of the algorithm is
almost linear with respect to the image size. Once all the BSP trees were constructed
over the 64 × 64 tiles, and the geometric wavelets were computed, we extracted a
global n-term approximation (1.3) from the joint list of all the geometric wavelets
over all the tiles. Our experiments show that in most cases increasing the tile size
does not have a significant impact on the results.

To further improve the time complexity of the algorithm, we performed coarse
partition searches at lower levels of the BSP tree and fine searches at the higher
levels. The search for the optimal partition was done by advancing two points on
a domain’s boundary, computing the two subdomains created by the line that goes
through these points and then, the two least-squares linear polynomials over each of
these subdomains. In lower levels of the BSP tree, this march was done in larger steps
and in finer levels, the step size was set to 1, the pixel resolution. In some sense, the
idea of finer partitions at higher resolutions, is related to the way Curvelets [2] have
‘more directions’ at higher resolutions.

In Figure 3 we see an n-term geometric wavelet approximation of the known test
image “peppers” of size 512× 512 with 2048 elements. In Figure 4 we see an n-term
dyadic wavelet approximation with twice as many elements, 4096. In all the examples
below, we used a ratio of 1:2 (“peppers”, “Lena”), 1:3 (“Barbara”) or 1:4 (“Cam-
eraman”) between the number of geometric wavelets and dyadic wavelets, so as to
make the comparison more relevant. Observe that on the more ‘geometric’ images,
“Peppers” and “Cameraman”, i.e., images that are roughly composed of smooth re-
gions and strong distinct edges, the geometric wavelets seem to perform relatively
better. For example, for the “Cameraman” image the 512-term geometric wavelet
approximation gives the same PSNR as the 2048-term dyadic wavelet approximation.
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For the dyadic wavelets approximation we used MatLab’s wavelet toolbox, where
we selected the well known biorthogonal wavelet basis (4, 4) (see [3]), also known
as the “nine-seven” in the engineering community. This biorthogonal wavelet has
4 zero moments, corresponding to r = 4. We note that we actually allowed the
dyadic wavelet approximation to use even slightly more elements than claimed in the
figures, so as to compensate for MatLab’s handling of the image boundaries by a
somewhat over-redundant wavelet decomposition. The results are summarized in the
table below.

Image N-term N-term Ratio PSNR PSNR
dyadic geometric dyadic geometric

“Peppers” 4096 2048 2:1 29.22 31.32
“Lena” 4096 2048 2:1 30.18 31.26
“CameraMan” 2048 512 4:1 26.72 26.71

1024 28.93
“Barbara” 12288 4096 3:1 27.54 27.10

Table 4.1
Comparison of n-term dyadic and geometric wavelets

In Figure 15 we see an example of image denoising using geometric wavelets.
To compare with results in [22], we added Guassian white noise to the “Lena” test
image with standard deviation of 20, which gives a noisy image with PSNR=22.14.
Following the usual ‘sparse representation’ methodology [22], we applied the geometric
wavelet algorithm to the noisy image from and extracted an n-term approximation
(1.3), which serves as the approximation to the original image. We see that geometric
features are recovered quite well in the process, in a manner which is very competitive
with Curvelets. The algorithm produced a restored image with PSNR=29.76.

As with classical wavelets, the n-term strategy can be used for progressive coding
and rate-distortion control where more geometric wavelets are added according to
their order of appearance in (1.2). It is important to note that when trying to encode
the approximation (1.3) it should be remembered that for a geometric wavelet located
in a ‘deep’ level of the BSP tree, one needs to encode the sequence of binary partitions
that created it. Thus, if the wavelet ψΩ is located at the mth level of the BSP partition,
O(m) bits are required to encode its location. Therefore, encoding geometric wavelets
at higher levels is more expensive when considering bit allocation. However, this is
no different from dyadic wavelet compression, where encoding the index of a dyadic
wavelet located at the resolution m also requires O(m) bits. Recall that at lower levels
of the BSP tree we perform coarse partitions and at higher level, fine partitions. As
pointed out in [17], this also improves the coding performance, since it facilitates the
quantization and encoding of the partitions.

Although image coding using geometric wavelets is on-going work, we anticipate
that the problem of encoding ‘geometric side-information’ can be solved by using
zero-tree type encoding [18], [20], and rate-distortion optimization techniques [21],
[23]. Furthermore, we plan to incorporate a geometric Rate-Distortion optimization
technique borrowed from the wavelet coding algorithm WedgePrints [26]. Namely, at
each node of the BSP tree one may allocate a flag (bit) to signal to the decoder a
decision whether all further partitions of this domain are uniform (non-adaptive) or
geometrically adaptive. Encoding geometric wavelets whose supports lie in a ‘uniform’
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ancestor domain, is similar to dyadic wavelet encoding, where only an index of the
geometric wavelet in a uniform partition needs to be encoded and the support of
the geometric wavelet is known from the uniform partition of the ancestor. Thus,
using rate-distortion optimization techniques, one would choose at each node of the
BSP whether to use an adaptive partition whose geometry needs to be encoded, or a
uniform, non-adaptive partition.
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Fig. 4.1. The ”peppers” image 512× 512.
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Fig. 4.2. Geometric wavelet approximation of the ”peppers” image with n = 2048, PSNR=31.32.
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Fig. 4.3. Dyadic biorthogonal wavelet approximation of the ”peppers” image with n = 4096,
PSNR=29.22.



ADAPTIVE MULTIVARIATE APPROXIMATION 23

Fig. 4.4. The ”Lena” image 512× 512.
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Fig. 4.5. Geometric wavelet approximation of the ”lena” image with n = 2048, PSNR=31.26.
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Fig. 4.6. Dyadic biorthogonal wavelet approximation of the ”lena” image with n = 4096,
PSNR=30.18.
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Fig. 4.7. The ”cameraman” image 256× 256.

Fig. 4.8. Geometric wavelet approximation of the ”cameraman” image with n = 512,
PSNR=26.71.
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Fig. 4.9. Geometric wavelet approximation of the ”cameraman” image with n = 1024,
PSNR=28.93.

Fig. 4.10. Dyadic biorthogonal wavelet approximation of the ”cameraman” image with n =
2048, PSNR=26.72.
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Fig. 4.11. The ”Barbara” image 512× 512.
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Fig. 4.12. Geometric wavelet approximation of the ”Barbara” image with n = 4096, PSNR=27.10.
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Fig. 4.13. Dyadic biorthogonal wavelet approximation of the ”Barbara” image with n = 12288,
PSNR=27.54.
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Fig. 4.14. Geometric wavelet denoising. Noisy image PSNR=22.14, Restored image PSNR=29.76


