
Yet another look at positive linear operators, q-monotonicity

and applications

K. A. Kopotuna,1, D. Leviatanb, A. Prymaka,2, I. A. Shevchukc

aDepartment of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
bRaymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978,

Israel
cFaculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 01033 Kyiv,

Ukraine

Abstract

For each q ∈ N0, we construct positive linear polynomial approximation operators
Mn that simultaneously preserve k-monotonicity for all 0 ≤ k ≤ q and yield the estimate

|f(x)−Mn(f, x)| ≤ cωϕ
λ

2

(
f, n−1ϕ1−λ/2(x) (ϕ(x) + 1/n)−λ/2

)
,

for x ∈ [0, 1] and λ ∈ [0, 2), where ϕ(x) :=
√
x(1− x) and ωψ2 is the second Ditzian-Totik

modulus of smoothness corresponding to the “step-weight function” ψ. In particular,
this implies that the rate of best uniform q-monotone polynomial approximation can be
estimated in terms of ωϕ2 (f, 1/n).

Keywords: Positive linear operators, degree of approximation, Jackson-type estimates,
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1. Introduction and main result

Recall that ∆k
δ (f, x) :=

∑k
i=0

(
k
i

)
(−1)k−if(x−kδ/2+ iδ), denotes the kth symmetric

difference of a function f with a step δ (as is customary, we also define ∆k
δ (f, x) := 0 if

x±kδ/2 6∈ [0, 1]). We say that a function f ∈ C[0, 1] is q-monotone if ∆q
δ(f, x) ≥ 0 for all

δ > 0, and denote the set of all q-monotone (continuous) functions by ∆(q). In particular,
∆(0), ∆(1) and ∆(2) are, respectively, the classes of all nonnegative, nondecreasing and
convex functions from C[0, 1]. We also remark that, for q ≥ 3, f ∈ C[0, 1] is q-monotone
if and only if f ∈ Cq−2(0, 1) and f (q−2) is convex in (0, 1).

Let Πn be the space of all algebraic polynomials of degree ≤ n, ‖·‖ := ‖·‖C[0,1], and
denote by

E(q)
n (f) := inf

pn∈∆(q)∩Πn

‖f − pn‖ (1.1)
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the degree of best q-monotone polynomial approximation of f ∈ ∆(q) in the uniform
norm, and by

ωk(f, t) := sup
0<h≤t

∥∥∆k
h(f, ·)

∥∥ and ωψk (f, t) := sup
0<h≤t

∥∥∆k
hψ(·)(f, ·)

∥∥

the kth classical and kth Ditzian-Totik moduli of smoothness, respectively.
Both uniform and pointwise Jackson type estimates of (1.1) are rather well inves-

tigated for q ≤ 3 though there are still several open problems remaining even in these
“simple” cases (see our survey [13] for the history and detailed discussions), and we are
mostly interested in q ≥ 4 in the current paper. In particular, our main motivation for
the present work was the Jackson type estimate

E(q)
n (f) ≤ cωϕ2 (f, 1/n), n ∈ N, (1.2)

where ϕ(x) :=
√
x(1− x). It has been known for some time that estimate (1.2) is

true with ω2 instead of ωϕ2 and that, for q ≥ 4, it is no longer valid if ωϕ2 is replaced
by ωϕ3 or even by ω3 (see [13] for details). While (1.2) has not been explicitly proved
anywhere (as far as we know) and appeared as an open problem in the literature (see,
e.g., [5, (15.12)]), in our survey [13, p. 52], we wrote that, for q ≥ 4, (1.2) “can be derived
from results in the article by Gavrea, Gonska, Păltănea and Tachev [10], combined with
the q-monotonicity preservation properties of the Gavrea operators (see Gavrea [9]),
appearing in the paper of Cottin, Gavrea, Gonska, Kacsó and Zhou [4].”

However, it turns out that this statement was not justified (we thank Jorge Busta-
mante from Universidad Autónoma de Puebla, Mexico for bringing this to our attention),
and that the validity of (1.2) cannot be immediately concluded from the results in these
articles (this was also confirmed by the corresponding author of [4] who was not aware
of any other papers that would yield this estimate). The confusion was that, in these
papers, the same notation was used for operators preserving q-monotonicity, q ≥ 3, and
for operators yielding estimates in terms of ωϕ2 (f, 1/n). However, these operators de-
pended on different generating polynomials and so, in fact, were different operators not
satisfying both conditions at the same time.

Hence, the main purpose of this manuscript is to justify/modify our statement in
[13] and show how (1.2) “can be derived from [4, 8, 9]” (note that [10] in our original
statement is replaced by an earlier paper [8]) by constructing positive linear polynomial
approximation operators that simultaneously preserve k-monotonicity for all k ≤ q and
yield (1.2). Additionally, we make this paper self-contained and provide all proofs (ex-
cept for some straightforward statements that can be verified directly and some classical
properties of ultraspherical polynomials). Furthermore, we prove a more general state-
ment than (1.2) by bridging pointwise and uniform estimates (see [5, Section 14] for the
history of this type of estimates) and, in fact, making them a bit stronger than what
usually appears in the literature. For example, pointwise inequalities in terms of ωϕ2 are
obtained as a by-product of our estimates.

Let N denote the set of all natural numbers and N0 := N ∪ {0}. Our main result is
the following theorem which is proved in Section 2.5.

Theorem 1.1. Let q ∈ N0. Then, for each n ∈ N, there exists a positive linear operator
Mn : C[0, 1] 7→ Πn preserving k-monotonicity for every 0 ≤ k ≤ q (i.e., f ∈ ∆(k) implies
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Mn(f, ·) ∈ ∆(k)) and such that, for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤ c0,
one has

|f(x)−Mn(f, x)| ≤ c

(
1 +

ϕ2−λ(x)

h2n2 (ϕ(x) + 1/n)λ

)
ωϕ

λ

2 (f, h), (1.3)

where c0 is some absolute constant, and the constant c depends only on q and on λ as
λ→ 2−.

Remark 1.2. The operatorsMn are particular instances (for the generating polynomials
constructed in Lemma 2.13) of, what we call, Gavrea’s operators Hn whose construction
is based on Ioan Gavrea’s clever combination of genuine Bernstein-Durrmeyer polynomi-
als with coefficients of appropriate generating polynomials (see (2.15) below). This con-
struction heavily relies on a very powerful but little known and hardly accessible article
by Alexandru Lupaş [15], extending the Bernstein-Durrmeyer operators by introducing
ultraspherical weights (see Section 3 for details).

We wish to emphasize that the range for λ in the statement of Theorem 1.1 is not
a misprint and that, indeed, we work with λ ∈ [0, 2) and not just λ ∈ [0, 1] which is
what is usually done. This does not seem to have been considered in the literature
as far as we know, and we discuss why it is sometimes useful to work with these λ’s

and corresponding moduli ωϕ
λ

2 by considering an analog of Theorem 1.1 for the clas-
sical Bernstein polynomials (see Corollary 2.7) and comparing various estimates for a
particular function (fǫ(x) = xǫ) in Section 2.1.

We also note that (1.3) is not valid if λ = 2. In fact, it is not difficult to see that the
estimate

En(f) := inf
pn∈Πn

‖f − pn‖ ≤ cωϕ
2

2 (f, 1)

is not valid with c independent of f . Indeed, if gǫ := ln(x + ǫ), then ωϕ
2

2 (gǫ, 1) ≤
c ‖ϕ4g′′ǫ ‖ ≤ c where c is an absolute constant. At the same time, for any A ∈ R and
n ∈ N there exists 0 < ǫ < 1 such that En(gǫ) > A. This follows from the observations
that |pn(0)| ≤ c(n) ‖pn‖C[1/2,1], for any pn ∈ Πn, and ‖gǫ‖C[1/2,1] ≤ ln 2. Hence, if qn ∈ Πn

is such that ‖qn − gǫ‖ ≤ A, then

| ln ǫ| = |gǫ(0)| ≤ |gǫ(0)− qn(0)|+ |qn(0)| ≤ A+ c(n)(A+ ln 2),

and one obtains a contradiction by taking ǫ > 0 sufficiently small.
For 0 ≤ λ < 2, choosing h := min{c0, 1}n−1ϕ1−λ/2(x) (ϕ(x) + 1/n)−λ/2 (which im-

plies that h ≤ c0) we immediately have the following consequence of Theorem 1.1.

Corollary 1.3. Let q ∈ N0. Then, for each n ∈ N, there exists a positive linear operator
Mn : C[0, 1] 7→ Πn preserving k-monotonicity for every 0 ≤ k ≤ q, and such that, for
any 0 ≤ λ < 2, f ∈ C[0, 1] and x ∈ [0, 1], one has

|f(x)−Mn(f, x)| ≤ cωϕ
λ

2

(
f, n−1ϕ1−λ/2(x) (ϕ(x) + 1/n)−λ/2

)
, (1.4)

where c is a constant that depends only on q and on λ as λ → 2−. In particular, for
λ = 0 and λ = 1 we have, respectively,

|f(x)−Mn(f, x)| ≤ cω2

(
f,

√
x(1− x)

n

)
(1.5)
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and

|f(x)−Mn(f, x)| ≤ cωϕ2

(
f, n−1

√
ϕ(x)

ϕ(x) + 1/n

)
≤ cωϕ2

(
f, n−1

)
. (1.6)

Remark 1.4. Estimate (1.6) verifies (1.2). Inequality (1.5) was proved by Cao and
Gonska in 1994 ([3, Theorem 4.5]). However, the operator yielding it in [3] was not
positive.

Remark 1.5. Estimate (1.4) can be rewritten as

|f(x)−Mn(f, x)| ≤ cωϕ
λ

2 (f, δn,λ(x)) ,

where, for n ∈ N and 0 ≤ λ < 2,

δn,λ(x) :=

{
[n−1ϕ(x)]

1−λ/2
, if x ∈ [0, n−2] ∪ [1− n−2, 1] ,

n−1ϕ1−λ(x), if n−2 < x < 1− n−2,

and implies that, for f ∈ C[0, 1] with f ′ ∈ ACloc(0, 1) and
∥∥ϕ2λf ′′

∥∥ <∞,

|f(x)−Mn(f, x)| ≤ c [δn,λ(x)]
2
∥∥ϕ2λf ′′

∥∥ , x ∈ [0, 1].

Throughout this paper, we use the notation ei(x) := xi, i ∈ N0, and (β)k := β(β +
1) . . . (β + k − 1) for k ≥ 1, and (β)0 := 1 (i.e., (β)k is the Pochhammer function).

2. Approximation by positive linear operators preserving linear functions

Recall that an operator L : C[0, 1] 7→ C[0, 1] is positive if L(f, x) ≥ 0 for all x ∈ [0, 1]
provided f(x) ≥ 0, x ∈ [0, 1].

Let

Ω :=
{
ψ ∈ C[0, 1]

∣∣ ψ(x) > 0, 0 < x < 1 and ψ2 is concave on [0, 1]
}

and
K2,ψ(f, h

2) := inf
g′∈ACloc(0,1)

(‖f − g‖+ h2‖ψ2g′′‖).

The following lemma is a corollary of a more general theorem [8, Theorem 1] that
was proved for positive linear operators preserving constants.

Lemma 2.1 (Felten [8]). Suppose that ψ ∈ Ω and L : C[0, 1] 7→ C[0, 1] is a positive
linear operator preserving linear functions (i.e., L(ei) = ei, i = 0, 1). Then, for any
f ∈ C[0, 1] and x ∈ (0, 1), one has

|f(x)− L(f, x)| ≤ 4K2,ψ

(
f,
L(e2, x)− x2

ψ2(x)

)
.

Lemma 2.2 (Bustamante [2, Theorem 11]). Suppose that ψ ∈ Ω and L : C[0, 1] 7→
C[0, 1] is a positive linear operator preserving linear functions. Then, for any f ∈ C[0, 1]
and x ∈ (0, 1), one has

|f(x)− L(f, x)| ≤
(
3

2
+

3

2h2ψ2(x)

(
L(e2, x)− x2

))
ωψ2 (f, h).
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If one does not worry about the constants then Lemma 2.2 follows from Lemma 2.1
provided that ψ is such that K2,ψ(f, h

2) ≤ cωψ2 (f, h).
Since

ϕλ ∈ Ω if and only if 0 ≤ λ ≤ 1,

we conclude that Lemmas 2.1 and 2.2 hold for ψ := ϕλ with 0 ≤ λ ≤ 1.
We will now provide a rather elementary proof that a similar statement (we do not

worry about constants) is valid for all 0 ≤ λ < 2 (for 1 < λ < 2 this seems to be a new
result).

Lemma 2.3. If L : C[0, 1] 7→ C[0, 1] is a positive linear operator preserving linear
functions, then for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1], ξ ∈ (0, 1) and h > 0, one has

|f(x)− L(f, x)| ≤
(
2 +

4

2− λ
· L(e2, x)− x2 + 2(x− ξ)2

h2ϕ2λ(ξ)

)
K2,ϕλ(f, h2). (2.1)

Proof. We first show that for any g ∈ C[0, 1] such that g′ ∈ ACloc(0, 1),

|g(t)− g(ξ)− (t− ξ)g′(ξ)| ≤ 4

2− λ

(t− ξ)2

ϕ2λ(ξ)

∥∥ϕ2λg′′
∥∥ , (2.2)

for all ξ ∈ (0, 1) and t ∈ [0, 1].
Since g′ ∈ ACloc(0, 1) we have

|g(t)− g(ξ)− (t− ξ)g′(ξ)| =
∣∣∣∣
∫ t

ξ

(t− u)g′′(u)du

∣∣∣∣ ≤
∥∥ϕ2λg′′

∥∥
∫ ξ

t

u− t

ϕ2λ(u)
du.

Without loss of generality, assume that ξ ∈ (0, 1/2]. If ξ/2 ≤ t ≤ 1 − ξ/2, then
ϕ(u) ≥ ϕ(ξ/2) ≥ 2−1/2ϕ(ξ) for any u between t and ξ, and so

∫ ξ

t

u− t

ϕ2λ(u)
du ≤ 4

ϕ2λ(ξ)

∫ ξ

t

(u− t) du = 2
(t− ξ)2

ϕ2λ(ξ)
.

If 0 ≤ t < ξ/2, then

∫ ξ

t

u− t

ϕ2λ(u)
du ≤

∫ ξ

0

u

ϕ2λ(u)
du ≤ 1

(1− ξ)λ

∫ ξ

0

u1−λ du =
1

2− λ

ξ2

ϕ2λ(ξ)

≤ 4

2− λ

(ξ − t)2

ϕ2λ(ξ)
.

For the remaining case 1 − ξ/2 < t ≤ 1, the proof is exactly the same, and so (2.2) is
verified.

Since L is positive we conclude that, for any functions F,G ∈ C[0, 1] such that
|F (t)| ≤ G(t), t ∈ [0, 1], the inequality |L(F, x)| ≤ L(G, x) is valid for all x ∈ [0, 1].
Applying this observation to (2.2) and recalling that L is linear and preserves linear
functions we immediately get

|L(g, x)− g(ξ)− (x− ξ)g′(ξ)| ≤ 4

2− λ

∥∥ϕ2λg′′
∥∥

ϕ2λ(ξ)

(
L(e2, x)− 2xξ + ξ2

)
, x ∈ [0, 1].
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Together with (2.2) (with t replaced by x) this yields

|L(g, x)− g(x)| ≤ |L(g, x)− g(ξ)− (x− ξ)g′(ξ)|+ |g(x)− g(ξ)− (x− ξ)g′(ξ)|

≤ 4

2− λ

∥∥ϕ2λg′′
∥∥

ϕ2λ(ξ)

(
L(e2, x)− 2xξ + ξ2

)
+

4

2− λ

∥∥ϕ2λg′′
∥∥

ϕ2λ(ξ)
(x− ξ)2

=
4

2− λ

∥∥ϕ2λg′′
∥∥

ϕ2λ(ξ)

(
L(e2, x)− x2 + 2(x− ξ)2

)
.

Suppose now that, for each ε > 0, gε ∈ C[0, 1] with g′ε ∈ ACloc(0, 1) is such that

‖f − gε‖+ h2‖ϕ2λg′′ε‖ ≤ K2,ϕλ(f, h2) + ε.

Taking into account that any positive linear operator L preserving constants is a con-
traction (i.e., |L(F, x)| ≤ ‖F‖) we have

|f(x)− L(f, x)| ≤ |f(x)− gε(x)|+ |gε(x)− L(gε, x)|+ |L(gε − f, x)|

≤ 2 ‖f − gε‖+
4

2− λ

∥∥ϕ2λg′′ε
∥∥

ϕ2λ(ξ)

(
L(e2, x)− x2 + 2(x− ξ)2

)

≤
(
2 +

4

2− λ
· L(e2, x)− x2 + 2(x− ξ)2

h2ϕ2λ(ξ)

)
(K2,ϕλ(f, h2) + ε),

and (2.1) follows.

Remark 2.4. Clearly, Lemma 2.3 remains valid if ϕλ is replaced by a function φ such
that, for ξ ∈ (0, 1) and t ∈ [0, 1],

∫ ξ

t

u− t

φ2(u)
du ≤ c

(t− ξ)2

φ2(ξ)
. (2.3)

In particular, this inequality is satisfied if φ is such that

(i) x−βφ(x) and (1 − x)−βφ(x) are respectively quasi decreasing and quasi increasing
on (0, 1) for some β < 1 (g is quasi decreasing if g(x) ≥ cg(y) for x ≤ y for some
absolute constant c; g is quasi increasing if −g is quasi decreasing), and

(ii) φ(x) ≥ cmax{φ(ǫ), φ(1− ǫ)}, for any 0 ≤ ǫ ≤ 1/2 and ǫ ≤ x ≤ 1− ǫ.

For example, any φ such that φ(x) ∼ φ(1− x) and φ2 is concave on [0, 1] satisfies these
conditions. Note also that (2.3) is not valid for φ(x) = ϕ2(x) (which is concave on [0, 1])
and so we cannot replace the inequality “β < 1” in (i) by “β ≤ 1”.

Note that if L : C[0, 1] 7→ C[0, 1] is a positive linear operator preserving linear
functions, then L(f, 0) = f(0) and L(f, 1) = f(1) for any f ∈ C[0, 1]. Indeed, suppose
that it is not the case and without loss of generality assume that ǫ := L(f, 0)− f(0) > 0
for some f ∈ C[0, 1]. Continuity of f implies that there exists m ∈ R depending on f
such that l(x) := mx+L(f, 0) satisfies l(x) ≥ f(x)+ ǫ/2 for all x ∈ [0, 1]. (For example,
one can choose m := 2 ‖f‖ /δ where δ > 0 is such that |f(x)−f(0)| < ǫ/2 for 0 ≤ x ≤ δ.)
Then l(x) = L(l, x) ≥ L(f, x) + ǫ/2 and letting x = 0 we get a contradiction.

The above observation implies that, if Ln : C[0, 1] 7→ Πn is a sequence of positive
linear polynomial operators preserving linear functions and such that Ln(f, ·) ∈ Π2
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provided f ∈ Π2, then Ln(e2, x) = x2 + αnϕ
2(x), αn > 0. Taking into account a well

known fact that K2,ϕλ(f, h2) ∼ ωϕ
λ

2 (f, h), for 0 < h ≤ c0 (see [7, Theorem 2.1.1]), we
immediately have the following consequence of Lemma 2.3 by setting

ξ :=





x, if βn ≤ x ≤ 1− βn,

x+
√
βnϕ(x), if 0 ≤ x < βn,

x−
√
βnϕ(x), if 1− βn < x ≤ 1,

where βn := min{αn, 1/4}, and noting that

αnϕ
2(x) + 2(x− ξ)2

ϕ2λ(ξ)
≤

{
αnϕ

2−2λ(x), if x ∈ [βn, 1− βn],

12αnβ
−λ/2
n ϕ2−λ(x), if x ∈ (0, βn) ∪ (1− βn, 1),

≤ 50αnϕ
2−λ(x)

(
ϕ(x) +

√
βn
)λ .

Corollary 2.5. If Ln : C[0, 1] 7→ Πn is a sequence of positive linear polynomial operators
preserving linear functions, then for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤
c0, one has

|f(x)− Ln(f, x)| ≤ c


1 +

αnϕ
2−λ(x)

h2
(
ϕ(x) +

√
min{αn, 1/4}

)λ


ωϕ

λ

2 (f, h), (2.4)

where αn > 0 is such that Ln(e2, x) − x2 = αnϕ
2(x), c0 is some absolute constant, and

the constant c depends on λ as λ→ 2−.

Remark 2.6. Estimate (2.4) implies the following weaker inequality

|f(x)− Ln(f, x)| ≤ c

(
1 +

αnϕ
2−2λ(x)

h2

)
ωϕ

λ

2 (f, h)

which, in turn, yields

|f(x)− Ln(f, x)| ≤ cωϕ
λ

2

(
f,
√
αn ϕ

1−λ(x)
)
.

In the next section, we discuss some applications for the classical Bernstein polyno-
mials (clearly, similar results can be stated for many other positive linear polynomial
operators) and show how our estimates can be used for λ ∈ (1, 2).

2.1. Some applications for Bernstein polynomials.

Let

pn,k(x) :=

(
n

k

)
xk(1− x)n−k, 0 ≤ k ≤ n,

be the Bernstein fundamental polynomials, and recall that the classical Bernstein oper-
ator

Bn(f, x) :=
n∑

k=0

f(k/n)pn,k(x)

is positive, linear, preserves linear functions and Bn(e2, x)−x2 = ϕ2(x)/n. Corollary 2.5
(with αn = 1/n) implies the following result.
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Corollary 2.7. If n ∈ N and Bn : C[0, 1] 7→ Πn is the classical Bernstein polynomial,
then, for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤ c0, one has

|f(x)−Bn(f, x)| ≤ c

(
1 +

ϕ2−λ(x)

h2n (ϕ(x) + n−1/2)
λ

)
ωϕ

λ

2 (f, h), (2.5)

where c0 is some absolute constant, and the constant c depends on λ as λ → 2−. In
particular,

|f(x)− Bn(f, x)| ≤ cωϕ
λ

2 (f, γn,λ(x)) , (2.6)

where

γn,λ(x) := n−1/2ϕ1−λ/2(x)
(
ϕ(x) + n−1/2

)−λ/2

∼
{
[n−1x(1− x)]

(2−λ)/4
, if x ∈ [0, n−1] ∪ [1− n−1, 1] ,

n−1/2[x(1− x)](1−λ)/2, if n−1 < x < 1− n−1.

Remark 2.8. Clearly, γn,λ(x) ≤ n−1/2ϕ1−λ(x) and so (2.6) immediately implies

|f(x)− Bn(f, x)| ≤ cωϕ
λ

2

(
f, n−1/2ϕ1−λ(x)

)
, (2.7)

which is the main result of [6] in the case 0 ≤ λ ≤ 1.

Remark 2.9. For λ = 1, (2.6) becomes

|f(x)−Bn(f, x)| ≤ cωϕ2

(
f, n−1/2

√
ϕ(x)

ϕ(x) + n−1/2

)
, (2.8)

which is equivalent to [18, Theorem 1.1].

We will now consider a very simple example in order to compare the estimates pro-
duced by different methods.

Suppose that one wants to know how well Bernstein polynomials approximate the
function fǫ(x) := xǫ, 0 < ǫ < 1. One can easily calculate (see also [7, Section 3.4]) that,
for 0 ≤ λ ≤ 2,

ωϕ
λ

2 (fǫ, t) ∼
{
t2, if ǫ+ λ− 2 ≥ 0,

tǫ/(1−λ/2), if ǫ+ λ− 2 < 0.

The classical results (estimate (2.7) for λ = 0 and λ = 1) immediately yield

|fǫ(x)−Bn(fǫ, x)| ≤ c
(
n−1/2ϕ(x)

)ǫ
and ‖fǫ −Bn(fǫ, ·)‖ ≤ cn−ǫ. (2.9)

Using (2.7) for 0 ≤ λ ≤ 1, we may conclude that

|fǫ(x)− Bn(fǫ, x)| ≤ c
(
n−1/2ϕ1−λ(x)

)ǫ/(1−λ/2)
, (2.10)

but this is not better than (2.9) since, for all x, λ ∈ [0, 1],

min
{
n−1/2ϕ(x), n−1

}
≤
(
n−1/2ϕ1−λ(x)

)1/(1−λ/2)
.
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However, if we choose λ = 2 − ǫ (note that 1 < λ < 2), then ωϕ
λ

2 (fǫ, t) ∼ t2, and (2.6)
yields

|fǫ(x)− Bn(fǫ, x)| ≤ cn−1 ϕǫ(x)

(ϕ(x) + n−1/2)
2−ǫ .

This implies

|fǫ(x)− Bn(fǫ, x)| ≤ c

{
n−1ϕ2ǫ−2(x), if x ∈ [1/n, 1− 1/n],(
n−1/2ϕ(x)

)ǫ
, if x ∈ [0, 1/n) ∪ (1− 1/n],

(2.11)

which is better in the middle of [0, 1] than anything that one can get from (2.9) or (2.10).
Now, the classical Voronovskaya theorem yields

lim
n→∞

n (fǫ(x)−Bn(fǫ, x)) = −ϕ
2(x)

2
f ′′
ǫ (x) =

ǫ(1− ǫ)

2
xǫ−2ϕ2(x), (2.12)

and this implies that (2.11) in the middle of [0, 1] cannot be improved (note that (2.12)
actually implies (2.11) in the middle of [0, 1] for sufficiently large n depending on x).

This elementary example illustrates that it is sometimes advantageous to work with

moduli ωϕ
λ

2 with λ’s greater than 1.

2.2. Genuine Bernstein-Durrmeyer operator
Let Un : C[0, 1] 7→ Πn, n ≥ 2, be defined by

Un(f, x) := f(0)(1− x)n + f(1)xn + (n− 1)

n−1∑

k=1

pn,k(x)

∫ 1

0

pn−2,k−1(t)f(t)dt.

It seems that operators Un were first considered by Goodman and Sharma in [12] (see
[11] for further discussions of the history of these operators as well as different names
used for them in the literature).

Clearly, Un are positive linear operators with Un(f, 0) = f(0) and Un(f, 1) = f(1).
Also, it immediately follows from the following lemma that

Un(e0, x) = 1, Un(e1, x) = x and Un(e2, x) = x2 +
2x(1− x)

n+ 1
, (2.13)

and so operators Un preserve linear functions.

Lemma 2.10. For any n ≥ 2,

Un(ei, x) =
(n− 1)! i!

(n+ i− 1)!

i−1∑

j=max{0,i−n}

(
i− 1

j

)(
n

i− j

)
xi−j , i ≥ 1, (2.14)

and Un(e0, x) = 1.

Proof. The proof is standard and is based on the fact that, for any i ≥ 0, n ≥ 0 and
0 ≤ k ≤ n,

∫ 1

0

pn,k(t)ei(t)dt =
(k + 1)i
(n+ 1)i+1

and (k)i x
k = x · di

dyi
yk+i−1

∣∣∣∣
y=x

.

We omit details.

Remark 2.11. The following identity can also be used to calculate Un(ek, x):

Un(ek+1, x) =
(n− k)x+ 2k

n + k
Un(ek, x)−

k(k − 1)(1− x)

(n+ k)(n+ k − 1)
Un(ek−1, x).
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2.3. Gavrea’s operator

In this section, we discuss several properties of the operatorHn+2 that was introduced
by Gavrea [9]. Everything here follows from [4, 9], and we include this section in the
current manuscript only for readers’ convenience (we also somewhat clean up some of
the proofs making them, in our opinion, more transparent by utilizing the notation (3.9)
and Corollary 3.5).

For any n ∈ N and a fixed (generating) polynomial Pn(x) =
∑n

k=0 akx
k, Gavrea’s

operator Hn+2 : C[0, 1] 7→ Πn+2 is defined as

Hn+2(Pn; f, x) :=

n∑

k=0

ak
k + 1

Uk+2(f, x). (2.15)

Clearly, these operators are linear. It turns out that they are also positive and, more-
over, preserve monotonicity of high orders if a generating polynomial P satisfies certain
properties (see Lemma 2.12 below).

By (2.13) we immediately get

Hn+2(Pn; e0, x) =

n∑

k=0

ak
k + 1

=

∫ 1

0

Pn(t)dt,

Hn+2(Pn; e1, x) =

n∑

k=0

ak
k + 1

x = x

∫ 1

0

Pn(t)dt

and

Hn+2(Pn; e2, x) =

n∑

k=0

ak
k + 1

(
x2 +

2x(1− x)

k + 3

)
.

Hence,

Hn+2(Pn; e2, x) − x2
∫ 1

0

Pn(t)dt = x(1− x)

n∑

k=0

(
ak

k + 1
− ak
k + 3

)

= x(1 − x)

(∫ 1

0

Pn(t)dt−
∫ 1

0

t2Pn(t)dt

)
.

It was shown in [9, Lemma 3] that, for all 0 < x < 1 and n ≥ 2,

Un(f, x) = f(0)(1− x)n + f(1)xn

+ (n− 1)(1− x)n
∫ x

0

Dn−2(f, y)

(1− y)n
dy + (n− 1)xn

∫ 1

x

Dn−2(f, y)

yn
dy, (2.16)

where

Dn(f, x) := (n+ 1)

n∑

k=0

pn,k(x)

∫ 1

0

pn,k(t)f(t)dt (2.17)

is the (usual) Bernstein-Durrmeyer operator (see also Remark 3.2).
Note that (2.16) follows from the identity

1

n− 1
pn,k+1(x) =

∫ x

0

(
1− x

1− y

)n
pn−2,k(y)dy +

∫ 1

x

(
x

y

)n
pn−2,k(y)dy,

10



which is valid for 0 ≤ k ≤ n− 2 and is easily verified directly.
Now, Corollary 3.5 below yields

Hn+2(Pn; f, x) = f(0)
n∑

k=0

ak
k + 1

(1− x)k+2 + f(1)
n∑

k=0

ak
k + 1

xk+2

+

∫ x

0

(
1− x

1− y

)2 n∑

k=0

ak

(
1− x

1− y

)k
Dk(f, y)dy

+

∫ 1

x

(
x

y

)2 n∑

k=0

ak

(
x

y

)k
Dk(f, y)dy

= f(0)(1− x)

∫ 1−x

0

Pn(y)dy + f(1)x

∫ x

0

Pn(y)dy

+

∫ x

0

(
1− x

1− y

)2 [
L〈0〉
n

(
Pn,

1− x

1− (·) , 1, 0, [0, x] ; f, y
)

+ L〈0〉
n

(
Pn,

1− x

1− (·) , 0, 0, [0, x] ; f, y
)]

dy

+

∫ 1

x

(
x

y

)2 [
L〈0〉
n

(
Pn,

x

(·) , 1, 0, [x, 1] ; f, y
)

+ L〈0〉
n

(
Pn,

x

(·) , 0, 0, [x, 1] ; f, y
)]

dy,

which implies that the operator Hn+2 is positive provided Pn(x) ≥ 0 and P′
n(x) ≥ 0 for

all x ∈ [0, 1].
Now, using the fact that d

dx
Un+1(f, x) = Dn(f

′, x) for any n ∈ N0 (the proof of
this is straightforward or see [4, Theorem 12]) by virtue of Lemma 3.6 below (see also
Remark 3.2) we conclude that, for any ν ∈ N, f ∈ Cν [0, 1] and k ≥ ν − 2,

dν

dxν
Uk+2(f, x) =

dν−1

dxν−1
D

〈0〉
k+1(f

′, x) =
(k + 1)!

(k − ν + 2)!(k + 3)ν−1
D

〈ν−1〉
k−ν+2

(
f (ν), x

)
.

Recalling that Uk+2(f, ·) ∈ Πk+2, this implies, for ν ≥ 2,

dν

dxν
Hn+2(Pn; f, x) =

n∑

k=ν−2

ak
k + 1

· (k + 1)!

(k − ν + 2)!(k + 3)ν−1
D

〈ν−1〉
k−ν+2

(
f (ν), x

)

=

n−ν+2∑

k=0

(k + ν − 2)!

k!(k + ν + 1)ν−1
ak+ν−2D

〈ν−1〉
k

(
f (ν), x

)

=
1

(ν)ν

n−ν+2∑

k=0

(ν)k(k + 1)ν−2

(2ν)k
(k + ν) ak+ν−2D

〈ν−1〉
k

(
f (ν), x

)
.

Since (k + ν)(k + 1)ν−2 = (k)ν−1 + ν(k + 1)ν−2, using Corollary 3.5 we write

dν

dxν
Hn+2(Pn; f, x) =

1

(ν)ν

[
νL〈ν−1〉

n (Pn, 1, ν − 2, ν − 2, [0, 1] ; f (ν), x)

+L〈ν−1〉
n (Pn, 1, ν − 1, ν − 2, [0, 1] ; f (ν), x)

]
,
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and conclude that dν

dxν
Hn+2(Pn; f, x) ≥ 0 provided f (ν)(x) ≥ 0, P

(ν−1)
n (x) ≥ 0 and

P
(ν−2)
n (x) ≥ 0 on [0, 1].
In the case ν = 1, we have

d

dx
Hn+2(Pn; f, x) =

n∑

k=0

ak
k + 1

D
〈0〉
k+1 (f

′, x) =
n+1∑

k=1

ak−1

k
D

〈0〉
k (f ′, x)

=
n+1∑

k=0

bk
k + 1

D
〈0〉
k (f ′, x) = L

〈0〉
n+1(P̃n+1, 1, 0, 0, [0, 1]; f

′, x),

where b0 := 0 and bk := (k + 1)ak−1/k, 1 ≤ k ≤ n + 1, and

P̃n+1(x) :=

n+1∑

k=0

bkx
k = xPn(x) +

∫ x

0

Pn(y)dy.

Corollary 3.5 now implies that d
dx
Hn+2(Pn; f, x) ≥ 0 provided f ′(x) ≥ 0 and P̃n+1(x) ≥ 0

on [0, 1] (and nonnegativity of Pn on [0, 1] is clearly sufficient for the latter inequality).
We summarize the above discussions in this section in the following lemma.

Lemma 2.12 ([9, Theorem 2] and [4, Theorem 14]). Let r, n ∈ N and suppose that a
generating polynomial Pn ∈ Πn is such that

(i) for all 0 ≤ ν ≤ r, P
(ν)
n (x) ≥ 0, x ∈ [0, 1],

(ii)

∫ 1

0

Pn(t)dt = 1.

Then the operator Hn+2 : C[0, 1] 7→ Πn+2 defined in (2.15) has the following properties

(i) Hn+2 is a positive linear operator preserving linear functions, i.e., Hn+2(Pn; g, ·) =
g for any g ∈ Π1,

(ii) Hn+2(Pn; e2, x) = x2 + x(1 − x)

(
1−

∫ 1

0

t2Pn(t)dt

)
,

(iii) For every 0 ≤ k ≤ r + 1, Hn+2 is k-monotonicity preserving. In other words, if
f ∈ ∆(k), then Hn+2(Pn; f, ·) ∈ ∆(k).

2.4. A particular generating polynomial

Let Tm(x) := cosm arccosx, x ∈ [−1, 1], be the Chebyshev polynomial of degree m,
x̃ = cos(π/2m) be its rightmost zero, x1 = cos(π/m) be its rightmost local minimum,
I1 := [x1, 1] (its length |I1| = 1− x1 = 2 sin2(π/2m)). Then

τm(x) :=
Tm(x)

x− x̃
|I1|,

is a polynomial of degree m − 1. It is well known (see, e.g., [14, Appendix A]) and is
not difficult to check, that

4

3
< τm(x) < 4, x ∈ I1. (2.18)

Also note that since |I1| < 2(x̃− x1), we have

|τm(x)| ≤
|I1|
x̃− x

<
2|I1|
1− x

, x ∈ [−1, 1] \ I1. (2.19)

12



Lemma 2.13. For each r ∈ N and n ∈ N0, there exists a polynomial Pn of degree ≤ n
such that, for every 0 ≤ ν ≤ r,

P (ν)
n (x) ≥ 0, x ∈ [0, 1], (2.20)
∫ 1

0

Pn(x)dx = 1, (2.21)

and

1−
∫ 1

0

xµPn(x)dx ≤ c

n2
, µ ∈ N, (2.22)

where c is a constant that depends only on r and µ.

We remark that the estimate (2.22) cannot be improved. An indirect proof of this
fact is that if we could improve it for µ = 2 and some polynomial Pn satisfying (2.20) and
(2.21), then a well known Korovkin’s result on approximation by positive linear operators
would be violated by Hn+2(Pn; f, ·) (since we would have Hn+2(Pn; ei, x) = o(n−2) for
i = 0, 1, 2). One can also easily prove this fact directly. Indeed, let Pn be an arbitrary
polynomial for Πn such that Pn(x) ≥ 0, x ∈ [0, 1], and (2.21) is satisfied. Then, for any
µ ≥ 1,

1−
∫ 1

0

xµPn(x)dx =

∫ 1

0

(1− xµ)Pn(x)dx ≥
∫ 1

0

(1− x)Pn(x)dx

≥
∫ 1−n−2

0

(1− x)Pn(x)dx ≥ n−2

∫ 1−n−2

0

Pn(x)dx

≥ cn−2

∫ 1

0

Pn(x)dx = cn−2,

where the last inequality follows from a well known Remez inequality for algebraic poly-
nomials in L1 (see, e.g., [1, Theorem A.4.10]).

Proof of Lemma 2.13. Clearly, it is enough to prove this lemma for n > 8r. Let Qn−r

be a nonnegative (on [0, 1]) polynomial of degree ≤ n− r, and define

Pn(x) := λn

∫ x

0

(x− t)r−1Qn−r(t)dt.

The polynomial Pn satisfies (2.20) and since
∫ 1

0

Pn(x)dx = λn

∫ 1

0

∫ x

0

(x− t)r−1Qn−r(t)dtdx =
λn
r

∫ 1

0

(1− t)rQn−r(t)dt, (2.23)

in order for (2.21) to hold, we need to take

λn := r

(∫ 1

0

(1− t)rQn−r(t)dt

)−1

. (2.24)

Now,
∫ 1

0

xµPn(x)dx = λn

∫ 1

0

xµ
∫ x

0

(x− t)r−1Qn−r(t)dt

= λn

∫ 1

0

Qn−r(t)

∫ 1

t

xµ(x− t)r−1dxdt.
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Since

∫ 1

t

xµ(x− t)r−1dx =

∫ 1

t

µ∑

i=0

(
µ

i

)
(x− t)i+r−1tµ−i dx

= (1− t)r
µ∑

i=0

(
µ

i

)
1

i+ r
tµ−i(1− t)i,

it follows that

∫ 1

0

xµPn(x)dx =
λn
r

∫ 1

0

Qn−r(t)(1− t)r

[
µ∑

i=0

(
µ

i

)
r

i+ r
tµ−i(1− t)i

]
dt.

Combining this with (2.23) we have

1−
∫ 1

0

xµPn(x)dx

=

∫ 1

0

Pn(x)dx−
∫ 1

0

xµPn(x)dx

=
λn
r

∫ 1

0

Qn−r(t)(1− t)r

[
1−

µ∑

i=0

(
µ

i

)
r

i+ r
tµ−i(1− t)i

]
dt

=
λn
r

∫ 1

0

Qn−r(t)(1− t)r

[
µ∑

i=0

(
µ

i

)
i

i+ r
tµ−i(1− t)i

]
dt

=
λn
r

∫ 1

0

Qn−r(t)(1− t)r+1

[
µ∑

i=1

(
µ

i

)
i

i+ r
tµ−i(1− t)i−1

]
dt

≤ cλn

∫ 1

0

Qn−r(t)(1− t)r+1dt. (2.25)

We now let
m :=

⌈ n
8r

⌉
and Qn−r(x) := τ 4rm (x).

Then, Qn−r is a nonnegative polynomial and its degree ≤ 4r(m − 1) ≤ n − r. Using
(2.18) and (2.19) we have

1−
∫ 1

0

xµPn(x)dx ≤ cλn

(∫ x1

0

+

∫

I1

)
Qn−r(t)(1− t)r+1dt

≤ cλn|I1|4r
∫ x1

−∞

(1− t)1−3rdt+ cλn

∫

I1

(1− t)r+1dt

≤ cλn|I1|r+2.
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Finally, recalling (2.24) we write

1−
∫ 1

0

xµPn(x)dx ≤ c|I1|r+2

(∫ 1

0

(1− t)rQn−r(t)dt

)−1

≤ c|I1|r+2

(∫

I1

(1− t)rQn−r(t)dt

)−1

≤ c|I1|r+2

(∫

I1

(1− t)rdt

)−1

≤ c|I1| ≤
c

n2
,

and the proof of (2.22) is complete.

2.5. Proof of Theorem 1.1

Suppose that q ∈ N0 and let Pn−2 := Pn−2 where Pn is the polynomial from the
statement of Lemma 2.13 with r := max{q − 1, 1}. In particular, (2.22) with µ := 2
implies that

1−
∫ 1

0

x2Pn−2(x)dx ≤ c1
n2
, n ≥ 3,

with the constant c1 depending only on q. Also, let n0 := 2
⌈
c
1/2
1

⌉
∈ N.

For 1 ≤ n < n0, we can define Mn(f, x) := (1 − x)f(0) + xf(1). Clearly, Mn :
C[0, 1] 7→ Π1 ⊂ Πn is a positive linear polynomial operator preserving linear functions
as well as k-monotonicity for all k. Since Mn(e2, x) = x = x2 + ϕ2(x), Corollary 2.5
(with αn = 1) implies that

|f(x)−Mn(f, x)| ≤ c

(
1 +

ϕ2−λ(x)

h2(ϕ(x) + 1/4)λ

)
ωϕ

λ

2 (f, h),

and the statement of Theorem 1.1 follows.
Suppose now that n ≥ n0 is fixed, and define Mn(f, ·) := Hn(Pn−2; f, ·). It fol-

lows from Lemmas 2.12 and 2.13 that Mn : C[0, 1] 7→ Πn is a positive linear op-
erator preserving linear functions as well as k-monotonicity for all 0 ≤ k ≤ q, and
Mn(e2, x)− x2 = αnϕ

2(x) with

αn = 1−
∫ 1

0

t2Pn−2(t)dt ≤
c1
n2

≤ 1

4
.

Therefore, taking into account that the function Λ(t) := t
(
ϕ(x) +

√
t
)−λ

is increasing
for t ∈ [0,∞) if 0 ≤ λ < 2, Corollary 2.5 yields, for 0 < h ≤ c0,

|f(x)−Mn(f, x)| ≤ c

(
1 +

αnϕ
2−λ(x)

h2
(
ϕ(x) +

√
αn
)λ

)
ωϕ

λ

2 (f, h)

≤ c


1 +

c1ϕ
2−λ(x)

h2n2
(
ϕ(x) +

√
c1/n2

)λ


ωϕ

λ

2 (f, h),

which implies (1.3).
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3. Appendix: Bernstein-Durrmeyer-Lupaş polynomials with ultraspherical

weights

The main results in this paper (as well as all results from [4] and [9] that we need)
greatly depend on (in our opinion, a rather interesting) paper by A. Lupaş [15] which
does not seem to be readily available. Hence, in this section, we state and provide
alternative elementary proofs for all theorems from [15] that we use.

For α > −1, let

φ(α)
n (x) :=

(−1)n

(α + 1)n
x−α(1− x)−α

dn

dxn
{
xn+α(1− x)n+α

}
(3.1)

be the (shifted) ultraspherical polynomials on [0, 1] (normalized so that φ
(α)
n (1) = 1).

Note that

φ(α)
n (x) =

P
(α+1/2)
n (2x− 1)

P
(α+1/2)
n (1)

,

where P
(λ)
n is the classical ultraspherical (Gegenbauer) polynomial (see [17, Chapter

IV]). Recall that

P (λ)
n (1) =

(
n+ 2λ− 1

n

)
=

(2λ)n
n!

.

Remark 3.1. With φ
(α)
0 (x) = 1 and φ

(α)
1 (x) = 2x− 1, the following recurrence equation

is valid (see [17, (4.7.17)]:

(n + 2α)φ(α)
n (x) = (2n+ 2α− 1)(2x− 1)φ

(α)
n−1(x)− (n− 1)φ

(α)
n−2(x), n ≥ 2. (3.2)

In particular, this implies that, if φ
(α)
n (x) = λ

(α)
n xn + pn−1(x) with pn−1 ∈ Πn−1, then

λ(α)n :=
4n(α + 1/2)n
(2α+ 1)n

=
(2α + n+ 1)n

(α + 1)n
(3.3)

(see also [17, (4.7.9)]).

Bernstein-Durrmeyer-Lupaş polynomials with ultraspherical weights are defined as

D〈α〉
n (f, x) :=

n∑

k=0

pn,k(x)
〈pn,k, f〉
〈pn,k, 1〉

, (3.4)

where

〈f, g〉 :=
∫ 1

0

f(t)g(t)dw(t, α), dw(t, α) :=
tα(1− t)α

B(α + 1, α+ 1)
dt,

and B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt is the beta function. Note that

〈pn,k, 1〉 =
1

B(α + 1, α+ 1)

(
n

k

)∫ 1

0

tα+k(1− t)α+n−kdt

=
B(α + k + 1, α + n− k + 1)

B(α+ 1, α + 1)

(
n

k

)

=

(
n

k

)
(α + 1)k(α + 1)n−k

(2α+ 2)n
,

where we used the fact that B(x, y) = Γ(x)Γ(y)/Γ(x+ y), where Γ(x) :=
∫∞

0
tx−1e−tdt

is the gamma function, and Γ(x+ 1) = xΓ(x), x > 0.
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Remark 3.2. If α = 0, then D〈0〉(f, x) = Dn(f, x), where Dn is the (usual) Bernstein-
Durrmeyer operator defined in (2.17).

Lemma 3.3 ([15, (1.3) and (3.2)]). For any α > −1,

φ(α)
n (x) = (α + 1)n

n∑

k=0

(−1)n−k

(α + 1)k(α + 1)n−k
pn,k (x) . (3.5)

and, for t 6= 1− x,

(x+ t− 1)nφ(α)
n

(
xt

x+ t− 1

)
= (α+ 1)n

n∑

k=0

pn,k(x)pn,k(t)(
n
k

)
(α + 1)k(α + 1)n−k

. (3.6)

Note that (3.6) corrects a misprint in [15, (3.2)]. Also, we remark that taking the
limit in (3.6) as t→ 1− x we get the identity

λ(α)n = (α+ 1)n

n∑

k=0

(
n

k

)
1

(α + 1)k(α + 1)n−k
.

Proof. First of all,

dn

dxn
{
xn+α(1− x)n+α

}

=

n∑

k=0

(
n

k

)
dn−k

dxn−k
xn+α

dk

dxk
(1− x)n+α

=

n∑

k=0

(
n

k

)
(α + 1)n
(α + 1)k

xα+k
(α + 1)n
(α+ 1)n−k

(−1)k(1− x)n+α−k

= [(α + 1)n]
2xα(1− x)α

n∑

k=0

(−1)k

(α + 1)k(α + 1)n−k
pn,k (x) ,

which together with (3.1) implies (3.5).
Now, since

pn,k(x)pn,k(t) = (−1)n−k
(
n

k

)
(x+ t− 1)npn,k

(
xt

x+ t− 1

)
,

using (3.5) we have

n∑

k=0

pn,k(x)pn,k(t)(
n
k

)
(α + 1)k(α+ 1)n−k

= (x+ t− 1)n
n∑

k=0

(−1)n−k

(α + 1)k(α + 1)n−k
pn,k

(
xt

x+ t− 1

)

=
1

(α+ 1)n
(x+ t− 1)nφ(α)

n

(
xt

x+ t− 1

)
,

which is (3.6).
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Theorem 3.4 ([15, Theorem 4.1]). For any α > −1/2, f ∈ C[0, 1] and x ∈ [0, 1],

D〈α〉
n (f, x) =

(2α+ 2)n
(α + 1)n

∫ 1

0

f(t)

∫ 1

0

[Θ(x, t, u)]n dw(u, α− 1/2) dw(t, α),

where Θ(x, t, u) := (1− u)a(x, t) + ub(x, t) with

a(x, t) :=
(√

xt−
√

(1− x)(1 − t)
)2

and b(x, t) :=
(√

xt +
√
(1− x)(1− t)

)2
.

Proof. Using the definition (3.4) we have, for any α > −1,

D〈α〉
n (f, x) =

∫ 1

0

f(t)

[
n∑

k=0

pn,k(x)pn,k(t)/〈pn,k, 1〉
]
dw(t, α)

= (2α+ 2)n

∫ 1

0

f(t)

[
n∑

k=0

pn,k(x)pn,k(t)(
n
k

)
(α+ 1)k(α+ 1)n−k

]
dw(t, α)

=
(2α+ 2)n
(α + 1)n

∫ 1

0

f(t)

[
(x+ t− 1)nφ(α)

n

(
xt

x+ t− 1

)]
dw(t, α), (3.7)

and it remains to prove that, for α > −1/2,

(x+ t− 1)nφ(α)
n

(
xt

x+ t− 1

)
=

∫ 1

0

[Θ(x, t, u)]n dw(u, α− 1/2). (3.8)

This identity immediately follows from Gegenbauer’s formula (see e.g., [16, (2)] or [17,
(4.10.3)]): for λ > 0 and all real x,

P
(λ)
n (x)

P
(λ)
n (1)

=
Γ(λ+ 1/2)√

π Γ(λ)

∫ π

0

[
x+

√
x2 − 1 cos t

]n
sin2λ−1 t dt,

recalling that φ
(α)
n (x) = P

(α+1/2)
n (2x−1)/P

(α+1/2)
n (1) and changing variables cos t = 2u−

1. Alternatively, (3.8) can be proved by induction using the recurrence equation (3.2).
Yet another way to prove (3.8) is to use several results from the theory of hypergeometric
functions as was originally done by Lupaş in [15].

Since Θ(x, t, u) ∈ [0, 1], for all x, t, u ∈ [0, 1], one can immediately get a result on

positive summation of a sequence of operators D
〈α〉
n as a corollary of Theorem 3.4 (see

[15, Theorem 5.2(2)]). We state this corollary in a slightly more general form which is
useful for applications.

Corollary 3.5. Let α > −1/2 and n, r, ̺ ∈ N0 with 0 ≤ ̺ ≤ r ≤ n, and let a (generat-
ing) polynomial Pn(x) =

∑n
k=0 akx

k be such that

P
(r)
n (x) ≥ 0, for all x ∈ [0, 1].

Then, for any function σ such that 0 ≤ σ(x) ≤ 1, x ∈ [a, b] ⊂ [0, 1],

L〈α〉
n (Pn, σ(·), r, ̺, [a, b] ; f, x)

:=

n−̺∑

k=r−̺

(α + 1)k(k − r + ̺+ 1)r
(2α + 2)k

ak+̺ [σ(x)]
kD

〈α〉
k (f, x) (3.9)
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is a positive linear operator on C[a, b].
In particular, if r = ̺ = 0 and σ(x) = 1, x ∈ [0, 1], then

L〈α〉
n (Pn, 1, 0, 0, [0, 1]; f, x) =

n∑

k=0

(α + 1)k
(2α + 2)k

akD
〈α〉
k (f, x)

is a positive linear operator C[0, 1] 7→ Πn.

Proof. Since

Qn−̺(x) := xr−̺P(r)
n (x) =

n∑

k=r

(k − r + 1)r ak x
k−̺ =

n−̺∑

k=r−̺

(k − r + ̺+ 1)r ak+̺ x
k

we have

L〈α〉
n (Pn, σ, r, ̺ ; f, x)

=

n−̺∑

k=r−̺

(k − r + ̺+ 1)r ak+̺ [σ(x)]
k

∫ 1

0

f(t)

∫ 1

0

[Θ(x, t, u)]k dw(u, α− 1/2) dw(t, α)

=

∫ 1

0

f(t)

∫ 1

0

n−̺∑

k=r−̺

(k − r + ̺+ 1)r ak+̺ [σ(x)Θ(x, t, u)]k dw(u, α− 1/2) dw(t, α)

=

∫ 1

0

f(t)

∫ 1

0

Qn−̺ [σ(x)Θ(x, t, u)] dw(u, α− 1/2) dw(t, α).

In view of the fact that 0 ≤ σ(x)Θ(x, t, u) ≤ 1, for all x, t, u ∈ [a, b], and that Qn−̺ is

nonnegative on [0, 1], we conclude that the operator L
〈α〉
n is positive.

Lemma 3.6 ([15, Lemma 4.2]). For α > −1, n, ν ∈ N and f ∈ Cν [0, 1],

dν

dxν
D〈α〉
n (f, x) =

n!

(n− ν)!(n + 2α+ 2)ν
D

〈α+ν〉
n−ν

(
f (ν), x

)
. (3.10)

Proof. It is sufficient to prove (3.10) for ν = 1 since the general case immediately follows
by induction.

It follows from (3.7) that, for α > −1,

D〈α〉
n (f, x) =

(2α+ 2)n
(α + 1)n

∫ 1

0

f(t)K〈α〉
n (x, t)dw(t, α),

where

K〈α〉
n (x, t) := (x+ t− 1)nφ(α)

n

(
xt

x+ t− 1

)
,

and (3.10) with ν = 1 follows using integration by parts and the following identity:

∂

∂x
K〈α〉
n (x, t) = n(2t− 1)K

〈α+1〉
n−1 (x, t)− nt(1 − t)

α + 1

∂

∂t
K

〈α+1〉
n−1 (x, t). (3.11)

Using
d

dz
φ(α)
n (z) =

n(2α + n+ 1)

α + 1
φ
(α+1)
n−1 (z) (3.12)
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(see, e.g., [17, (4.7.14)]) identity (3.11) can be rewritten as

φ(α)
n (z) = (2z − 1)φ

(α+1)
n−1 (z)− (n− 1)(2α+ n + 2)

(α + 1)(α+ 2)
z(1 − z)φ

(α+2)
n−2 (z). (3.13)

Finally, (3.13) can be proved using the “reduction of α” formula

z(1 − z)φ
(α+1)
n−1 (z) =

α + 1

2n

(
(2z − 1)φ(α)

n (z)− φ
(α)
n+1(z)

)

(see, e.g., [17, (4.7.27)]) and the recurrence equation (3.2). Alternatively, one can use

the formula for the νth derivative of φ
(α)
n that follows from (3.12)

dν

dzν
φ(α)
n (z) =

(n− ν + 1)ν(2α + n+ 1)ν
(α + 1)ν

φ
(α+ν)
n−ν (z), 1 ≤ ν ≤ n,

and the fact that both sides of (3.13) are polynomials of degree n whose νth derivatives
are the same at z = 1 for all 0 ≤ ν ≤ n.

Lemma 3.6 can be used to recursively calculate D
〈α〉
n (ei, x), i ∈ N0, taking into

account that

D〈α〉
n (ei, 0) =

〈pn,0, ei〉
〈pn,0, 1〉

=
B(α + i+ 1, α+ n+ 1)

B(α + 1, α+ n + 1)
=

(α + 1)i
(n + 2α+ 2)i

.

For example,

D〈α〉
n (e0, x) = 1, D〈α〉

n (e1, x) =
nx+ α + 1

n + 2α + 2

and

D〈α〉
n (e2, x) =

n(n− 1)x2 + 2n(α + 2)x+ (α + 1)(α + 2)

(n + 2α+ 2)(n+ 2α + 3)
.
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