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Abstract

Let f ∈ C[−1, 1] and denote by En(f) its degree of approximation by algebraic
polynomials of degree < n. Assume that f changes its monotonicity, respectively,
its convexity finitely many times, say s ≥ 2 times, in (−1, 1) and we know that for
q = 1 or q = 2 and some 1 < α ≤ 2, such that qα ̸= 4, we have

En(f) ≤ n−qα, n ≥ s+ q + 1,

The purpose of this paper is to prove that the degree of comonotone, respectively,
coconvex approximation, of f , by algebraic polynomials of degree < n, n ≥ N ,
is also ≤ c(α, s)n−qα, where the constant N depends only on the location of the
extrema, respectively, inflection points in (−1, 1) and on α.

This answers, affirmatively, questions left open by the authors in papers with
Kopotun and Vlasiuk (see the list of references).

1 Introduction and main results

Let C[a, b], −1 ≤ a < b ≤ 1, denote the space of continuous functions on [a, b]
equipped with the usual uniform norm, ∥f∥[a,b] := maxa≤x≤b |f(x)|. When dealing
with [−1, 1], we suppress referring to the interval, namely, we denote ∥f∥ :=
∥f∥[−1,1]. For Pn is the space of algebraic polynomials of degree < n and f ∈
C[−1, 1], denote by

En(f) := inf
pn∈Pn

∥f − pn∥,

the degree of approximation of f by algebraic polynomials of degree < n.
Given s ≥ 1, denote by Ys, the set of all collections Ys = {yi}si=1, of points yi,

such that ys+1 := −1 < ys < · · · < y1 < 1 =: y0. For such a collection we write
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f ∈ ∆(1)(Ys) if f ∈ C[−1, 1] and (−1)if is nondecreasing on [yi+1, yi], 0 ≤ i ≤ s.
Similarly, we write f ∈ ∆(2)(Ys) if f ∈ C[−1, 1] and (−1)if is convex on [yi+1, yi],
0 ≤ i ≤ s.

For f ∈ ∆(q)(Ys), q ∈ {1, 2}, we denote by

E(q)
n (f, Ys) := inf

Pn∈Pn∩∆(q)(Ys)
∥f − Pn∥

the degree of best comonotone, respectively, coconvex approximation of f relative
to Ys.

Assuming that for some α > 0 and N ≥ 1,

(1.1) nαEn(f) ≤ 1, n ≥ N,

the answer to the following question was provided (see [3], [4], [5] and [9]).
If (1.1) holds for an f ∈ ∆(q)(Ys), is it possible to have constants c(q, α, s,N)

and N∗ such that

(1.2) nαE(q)
n (f, Ys) ≤ c(q, α, s,N), n ≥ N∗?

Here N∗, if it exists, may depend on q, α, s and N , but may also depend of Ys or
even on f . It turns out that N∗ always exists and its dependence on the various
parameters, in all cases, but 1 < α ≤ 2, N = s + 2, s ≥ 2, for the comonotone
case (q = 1), was given in [5] and [9] and, in all cases, but 2 < α ≤ 4, N = s+ 3,
s ≥ 3, for the coconvex case (q = 2), was given in [3] and [4].

O. V. Vlasiuk [10], has attempted to close the above gaps, but, regrettably,
the proof of the main lemma there is incorrect (see [11]). Our main results are the
following.

Theorem 1.1. Given Ys ∈ Ys, s ≥ 2, and 1 < α ≤ 2. Then, there exist constants
c(α, s) and N∗(α, Ys), such that for all functions f ∈ ∆(1)(Ys) satisfying (1.1) with
N = s+ 2, (1.2) with q = 1, holds.

And

Theorem 1.2. Given Ys ∈ Ys, s ≥ 3, and 2 < α < 4. Then, there exist constants
c(α, s) and N∗(α, Ys), such that for all functions f ∈ ∆(2)(Ys) satisfying (1.1) with
N = s+ 3, (1.2) with q = 2, holds.

Remark 1.3. Note that this leaves open what happens in the coconvex case when
α = 4 < s+ 3 = N .

In Section 2 we bring some auxiliary lemmas and in Section 3 we prove The-
orems 1.1 and 1.2. Throughout the paper, k, r, s, q, i, j and n, are nonnegative
integers, while α, a, b, h, t, u and v, are real numbers.

In the sequel, constants c will denote constants which may depend on s and,
perhaps on α (we will not detail that), and may differ from one occurrence to
another, even when they appear in the same line; constants c1, c2, . . . will denote
specific such constants the values of which remain the same during the paper;
constants C will denote constants which, in addition, depend on Ys, and may differ
from one occurrence to another; and constants C1, C2, . . . , will denote specific such
constants the values of which remain the same during the paper.
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2 Auxiliary results

For g ∈ C[a, b], denote by

∆k
h(g, x) :=

{∑k
i=0(−1)k−i

(
k
i

)
g(x− (k/2− i)h), if x± kh/2 ∈ [a, b],

0, otherwise,

the kth symmetric difference, and define the ordinary kth modulus of smoothness
of g by

ωk(g, t; [a, b]) := sup
0<h≤t

∥∆k
h(g, ·)∥[a,b].

Let
φ(x) :=

√
1− x2,

and for δ > 0, denote

φδ(x) :=

{√
(1− δφ(x)/2)2 − x2, x± δφ(x)/2 ∈ [−1, 1],

0, otherwise.

The weighted DT modulus of smoothness of a function f ∈ Cr(−1, 1), is defined
by

ωφ
k,r(f

(r), t) := sup
0<h≤t

∥∥∥φr
kh(·)∆k

hφ(·)(f
(r), ·)

∥∥∥ .
In particular, if r = 0, then

ωφ
k (f, t) := ωφ

k,0(f, t),

is the (ordinary) kth DT modulus, [1].
It is known (see, e.g., [2]) that if r ≥ 1, then ωφ

k,r(f
(r), t) → 0, as t → 0, if and

only if limx→±1 φ
r(x)f (r)(x) = 0. Therefore, we denote C0

φ := C[−1, 1] and, for
r ≥ 1,

Cr
φ := {f ∈ C[−1, 1] ∩ Cr(−1, 1) | lim

x→±1
φr(x)f (r)(x) = 0}.

The interrelations between the two moduli are the subject of the following result.
Denote

ϕ(a, b) :=
√

(1 + a)(1− b).

Lemma 2.1. Let −1 < a < b < 1, k ≥ 1 and r ≥ 1, be given. If g ∈ Cr
φ, then

(2.1) ωk(g
(r), t; [a, b]) ≤ 1

ϕr(a, b)
ωφ
k,r

(
g(r),

t

ϕ(a, b)

)
, t > 0,

and

(2.2) ωk(g
(r), t; [a, b]) ≤ 1

ϕr(a, b)
ωφ
k,r(g

(r),
√
2t/k), t > 0.

Proof. Let x ∈ [a, b] and 0 < h ≤ t, be such that x± kh/2 ∈ [a, b]. Then

|∆k
h(g

(r), x)| =
φr
kh(x)

φr
kh(x)

∣∣∆k
h

φ(x)
φ(x)

(g(r), x)
∣∣

≤ 1

ϕr(a, b)
φr
kh(x)

∣∣∆k
h

φ(x)
φ(x)

(g(r), x)
∣∣

≤ 1

ϕr(a, b)
ωφ
k,r

(
g(r),

h

φ(x)

)
≤ 1

ϕr(a, b)
ωφ
k,r

(
g(r),

h

ϕ(a, b)

)
,
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and (2.1) follows.
Also, since |x| + kh/2 < 1, it readily follows that h < 2

kφ
2(x). Hence h <√

2h
k φ(x), and (2.2) follows from the above second inequality.

Next, we quote the following auxiliary lemma, see [2, Theorem 7.1.2] (see also
[4, Theorem 3.3]).

Lemma 2.2. Let r ≥ 0, k ≥ 1 and α > 0, be such that r < α < k + r, and let
f ∈ C[−1, 1]. If

(2.3) nαEn(f) ≤ 1, n ≥ k + r,

then f ∈ Cr
φ and

(2.4) ωφ
k,r(f

(r), t) ≤ A(α, k, r)tα−r, t > 0,

where A(α, k, r) = const, depends only on α, k and r.

Henceforth, let

1 < α ≤ 2, q ∈ {1, 2}, qα ̸= 4, , s ≥ 1 and Ys ∈ Ys,

be given.
The following is needed in dealing with the endpoints.

Lemma 2.3. There is a constant C1, such that for any 0 < h < C1 and every
function g ∈ Cq

φ, satisfying

(2.5) ωφ
s+1,q(g

(q), t) ≤ tqα−q,

(2.6) g(q)(yi) = 0, i = 1, . . . , s,

and

(2.7) g(q)(1− h2) = 0,

we have,

(2.8) |g(q)(u)| ≤ c1
hq(α−1)

(1− u)q/2
, 1− h2 ≤ u < 1.

Proof. Let h < 1
2ϕ(ys, y1), and take t :=

√
1− u ≤ h. Then by virtue of (2.2) and

(2.5),

ωs+1(g
(q), v; [ys, 1− t2]) ≤

ωφ
s+1,q(g

(q),
√
v)

(1 + ys)q/2tq

≤ vq(α−1)/2

(1 + ys)q/2tq
.

Hence, by (2.6) and (2.7), Whitney’s inequality implies,

∥g(q)∥[ys,1−t2] ≤ Cωs+1(g
(q), 1; [ys, 1− t2]) ≤ C

tq
.
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Similarly, with y0s := max{0, ys}, we get by (2.2) and (2.5),

ωs+1(g
(q), v; [y0s , 1− t2]) ≤

ωφ
s+1,q(g

(q),
√
v)

tq
≤ vq(α−1)/2

tq
.

By Marchaud’s inequality, we obtain for τ := h2 − t2,

|g(q)(1− t2)| = |g(q)(1− t2)− g(q)(1− h2)| ≤ ω1(g
(q), τ ; [y0s , 1− t2])

≤ cτ

∫ 1

τ

ωs+1(g
(q), v; [y0s , 1− t2])

v2
dv +

c

1− y0s
τ∥g(q)∥[ys,1−t2]

≤ cτ

∫ 1

τ

vq(α−1)/2

tqv2
dv +

C2τ

tq

≤ c2
τ q(α−1)/2

tq
+

C2τ

tq

≤ c2h
q(α−1)

tq
+

C2h
2

tq
≤ 2c2h

q(α−1)

tq
,

provided h is so small that C2h
2−q(α−1) ≤ c2.

This proves (2.8) and completes our proof.

Remark 2.4. Clearly, in Lemma 2.3, one may replace (2.7) by g(q)(−1+h2) = 0,
and arrive at similar conclusions for −1 < u ≤ −1 + h2.

Lemma 2.5. Let g ∈ Cq
φ satisfy (2.5) and (2.6), and let 0 < h < C1. If g(q)(1 −

h2) ≥ 0, then there exists a polynomial P+(x) = P+(x; 1 − h2), of degree s + q,

such that P
(q)
+ (x) ≥ 0, x ∈ [1− h2, 1], P

(j)
+ (1− h2) = g(j)(1− h2), 0 ≤ j ≤ q − 1,

and

(2.9) |g(x)− P+(x)| ≤ 2c1h
qα, 1− h2 ≤ x ≤ 1.

Proof. Let

p(x) := g(q)(1− h2)
s∏

i=1

x− yi
1− h2 − yi

,

so that p is nonnegative in [1− h2, 1].
Denote

P+(x) := g(1− h2) + (q − 1)g′(1− h2)(x− 1 + h2) +

∫ x

1−h2

(x− u)q−1p(u)du.

Then P
(q)
+ (x) ≥ 0, x ∈ [1−h2, 1], P

(j)
+ (1−h2) = g(j)(1−h2), 0 ≤ j ≤ q− 1, and if

we set G(x) := g(x) − P (x), we observe that G satisfies (2.5), (2.6) and (2.7). It
follows from Lemma 2.3 that

|g(q)(u)− P
(q)
+ (u)| ≤ c1

hq(α−1)

(1− u)q/2
, 1− h2 ≤ u < 1.

Hence,

|g(x)− P+(x)| ≤ c1h
q(α−1)

∫ x

1−h2

(x− u)q−1

(1− u)q/2
du

≤ c1h
q(α−1)

∫ 1

1−h2

(1− u)q/2−1du =
2c1
q

hqα,

and (2.9) is proved.
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Remark 2.6. Clearly, in Lemma 2.5, one may replace g(q)(1−h2) ≥ 0 by g(q)(−1+
h2) ≥ 0, and arrive at similar conclusions for a polynomial P−(x) = P−(x;−1 +
h2). Similarly, if one replaces g(q)(1 − h2) ≥ 0 by g(q)(−1 + h2) ≤ 0, then one
arrives at analogous, modified, conclusions.

The next two lemmas are applied in the neighborhoods of the points yi, 1 ≤
i ≤ s.

Denote

d :=
1

2
min

1≤i≤s+1
(yi−1 − yi),

and put
y∗1 := y1 + d and y∗s := ys − d.

Lemma 2.7. There is a constant C3 ≤ d, such that for any 0 < h ≤ C3 and every
function g ∈ Cq

φ, satisfying (2.5) and (2.6), if for some 1 ≤ i∗ ≤ s,

(2.10) g(q)(yi∗ + h) = 0,

then

(2.11) ∥g(q)∥[y∗s ,y∗1 ] ≤ C4

∫ 2

h
tqα−q−2dt,

and

(2.12) ∥g(q)∥[yi∗−h,yi∗−h] ≤
c5h

qα−q

φ(yi∗)qα
.

Proof. Note that (2.1) and (2.5) imply that

(2.13) ωs+1(g
(q), t; [y∗s , y

∗
1]) ≤ Ctqα−q.

Denote by Ls(x) := Ls(x; g
(q); y1, . . . , ys, y

∗
1), the Lagrange polynomial, of degree

s, that interpolates g(q) at the points yi, i = 1, . . . , s and at y∗1, and note that by
virtue of (2.6),

Ls(x) = g(q)(y∗1)

s∏
i=1

x− yi
y∗1 − yi

,

whence

(2.14) ∥Ls∥[y∗s ,y∗1 ] ≤ C|g(q)(y∗1)|.

Set
G(x) := g(q)(x)− Ls(x),

so that G(y∗1) = G(yi) = 0, 1 ≤ i ≤ s.
Evidently,

ωs+1(G, t; [y∗s , y
∗
1]) = ωs+1(g

(q), t; [y∗s , y
∗
1]), t > 0.

Therefore, by (2.13) and Whitney’s inequality,

(2.15) ∥G∥[y∗s ,y∗1 ] ≤ Cωs+1(G, 1; [y∗s , y
∗
1]) ≤ C.

Thus, by (2.14),

(2.16) ∥g(q)∥[y∗s ,y∗1 ] ≤ ∥G∥[y∗s ,y∗1 ] + ∥Ls∥[y∗s ,y∗1 ] ≤ C + C|g(q)(y∗1)|.
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so that we need to estimate |g(q)(y∗1)|.
To this end, denote y∗ := yi∗ + h. Then,

|g(q)(y∗1)| =|(y∗1 − y1) · · · (y∗1 − ys)(y
∗
1 − y∗)|[g(q); y∗1, y1, . . . , ys, y∗]|

≤2s|(y∗1 − y∗)[g(q); y∗1, y1, . . . , ys, y
∗]|

=2s|(y∗1 − y∗)[G; y∗1, y1, · · · , ys, y∗]|
=2s|(y∗ − y1) . . . (y

∗ − ys)|−1|G(y∗)|

≤C

h
|G(y∗)| = C

h
|G(y∗)−G(yi∗)|.

Hence, Marchaud’s inequality and (2.15) imply

|g(q)(y∗1)| ≤
C

h
ω1(G,h; [y∗s , y

∗
1])

≤C

∫ y∗1−y∗s

h

tqα−q

t2
dt+

c

y∗1 − y∗s
∥G∥[y∗s ,y∗1 ]

≤C

∫ 2

h
tqα−q−2dt+ C.

Thus, by (2.16), we conclude that

∥g(q)∥[y∗s ,y∗1 ] ≤ C

∫ 2

h
tqα−q−2dt+ C ≤ C

∫ 2

h
tqα−q−2dt,

and (2.11) is proved.
Now denote y±i∗ := yi∗ ± d and note that (2.1) and (2.5) yield,

ωs+1(g
(q), t; [y−i∗ , y

+
i∗ ]) ≤

c

φq(yi∗)
ωs+1,q

(
g(q),

ct

φ(yi∗)

)
≤ c

tqα−q

φqα(yi∗)
,

where we used the fact that φ(yi∗) ≤ cϕ(y−i∗ , y
+
i∗).

It follows by Marchaud’s inequality that,

ω2(g
(q), t; [y−i∗ , y

+
i∗ ]) ≤ ct2

∫ 2d

t

ωs+1(g
(q), u; [y−i∗ , y

+
i∗ ])

u3
du+ c

t2

d
∥g(q)∥[[y−

i∗ ,y
+
i∗ ]

≤ c

φqα(yi∗)
t2
∫ ∞

t
uqα−q−3du+ c

t2

d
∥g(q)∥[y∗s ,y∗1 ]

=
c6

φqα(yi∗)
tqα−q + c

t2

d
∥g(q)∥[y∗s ,y∗1 ].

In particular,

ω2(g
(q), h; [yi∗ − h, yi∗ + h]) ≤ω2(g

(q), h; [yi∗ − d, yi∗ + d])

≤ c6
φqα(yi∗)

hqα−q + C5h
2

∫ 2

h
tqα−q−2dt

≤ 2c6
φqα(yi∗)

hqα−q,

where for the middle inequality we applied (2.11), and provided we take C3 small
enough.

Since g(q)(yi∗) = g(q)(yi∗ + h) = 0, (2.12) now follows by Whitney’s inequality.
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Lemma 2.8. Let 0 < h1 ≤ C3, 0 < h2 ≤ C3 and yi∗ ∈ Ys, be given. If a function
g ∈ Cq

φ satisfies (2.6) and (2.5), and g(q)(x)(x − yi∗) ≥ 0, x ∈ [yi∗ − d, yi∗ + d],
then there exists a polynomial P∗(x) = P∗(x; yi∗ −h1, yi∗ +h2; yi∗), of degree s+ q,

such that P
(q)
∗ (x)(x− yi∗) ≥ 0, x ∈ [yi∗ − d, yi∗ + d], satisfying

(2.17) ∥g − P∗∥[yi∗−h1,yi∗+h2] ≤
c7h

qα

φqα(yi∗)
,

where h := max{h1, h2}, and

(2.18) P∗(yi∗ − h1) = g(yi∗ − h1).

If q = 2, then, in addition, either

(2.19) P ′
∗(yi∗ − h1) = g′(yi∗ − h1) and P ′

∗(yi∗ + h2) ≤ g′(yi∗ + h2),

or

(2.20) P ′
∗(yi∗ − h1) ≤ g′(yi∗ − h1) and P ′

∗(yi∗ + h2) = g′(yi∗ + h2).

Proof. Set

pi∗(x) := g(q)(yi∗ + h)

s∏
i=1

x− yi
yi∗ + h− yi

.

Evidently, since h ≤ d, pi∗ is nonpositive in [yi∗ − d, yi∗ ] and nonnegative in
[yi∗ , yi∗ + d].

Now, let

G(x) :=

∫ x

0
(x− t)q−1

(
g(q)(t)− pi∗(t)

)
dt.

Then, G satisfies the assumptions of Lemma 2.7. Hence, by (2.12),

∥g(q) − pi∗∥[yi∗−h1,yi∗+h2] ≤ ∥g(q) − pi∗∥[yi∗−h,yi∗+h](2.21)

= ∥G(q)∥[yi∗−h,yi∗+h] ≤
c4h

qα−q

φqα(yi∗)
.

For q = 1, let

P∗(x) := g(yi∗ − h1) +

∫ x

yi∗−h1

pi∗(u)du.

Then (2.18) holds, and P∗ is comonotone with g on [yi∗ −h1, yi∗ +h2]. Finally, by
(2.21),

∥g − P∗∥[yi∗−h1,yi∗+h2] ≤
2c4h

α

φα(yi∗)
.

For q = 2, we apply [8, Corollary 2.6] with g instead of f , β = yji∗ and Pk−1 = pi∗ ,
and conclude that there exists a polynomial P∗ of degree s+2 such that it satisfies
(2.18), and (2.19) or (2.20), and by (2.21),

∥g − P∗∥[yi∗−h1,yi∗+h2] ≤ ch2∥g′′ − pi∗∥[yi∗−h1,yi∗+h2]

≤ ch2α

φ2α(yi∗)
.

This completes the proof.
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Remark 2.9. Note that if g(q)(x)(x − yi∗) ≤ 0, x ∈ [yi∗ − h1, yi∗ + h2], then the
same proof yields a polynomial P∗, of degree s + q, satisfying (2.17) and (2.18)
and, if q = 2, then, in addition, either

(2.22) P ′
∗(yi∗ − h1) = g′(yi∗ − h1) and P ′

∗(yi∗ + h2) ≥ g′(yi∗ + h2),

or

(2.23) P ′
∗(yi∗ − h1) ≥ g′(yi∗ − h1) and P ′

∗(yi∗ + h2) = g′(yi∗ + h2).

The following lemma is an immediate consequence of [6, p. 125, Lemma 2], for
the monotone case, and of [8, Corollary 2.4], for the convex case. We will give a
few details.

Lemma 2.10. Let g ∈ Cq
φ be such that (2.5) holds. Let −1 < a < a + 4

3h < 1,

and assume that g(q)(x) ≥ 0, x ∈ [a, a + h]. Then, there exists a polynomial
P (x) = P (x; a, a + h), of degree s + q, such that P (q)(x) ≥ 0, x ∈ [a, a + h],
satisfying

(2.24) ∥g − P∥[a,a+h] ≤
c8h

qα

φqα(a)
,

and

(2.25) P (a) = g(a) and P (a+ h) = g(a+ h).

If q = 2, then, in addition, either

(2.26) P ′(a) = g′(a) and P ′(a+ h) ≤ g′(a+ h),

or

(2.27) P ′(a) ≥ g′(a) and P ′(a+ h) = g′(a+ h).

Proof. First we note that since a+ 4
3h < 1, we have ϕ(a, a+h) ≤ φ(a) ≤ 2ϕ(a, a+

h).
For q = 1, our lemma follows directly from [6, Lemma 2] with k = s + 1 and

r = 1, when we apply the estimate (2.5).
For q = 2, we obtain by virtue of Lemma 2.1 and (2.5),

ωs+1(g
′′, t, [a, a+ h]) ≤ 1

ϕ2(a, a+ h)

(
t

ϕ(a, a+ h)

)2α−2

≤ ct2α−2

φ2α(a)
.

Hence, by [8, Corollary 2.4], there exists a convex polynomial pj , of degree s+ 2,
such that (2.25), and either (2.26), or (2.27) hold. Moreover,

∥g − P∥[a,a+h] ≤ ch2ωs+1(g
′′, h, [a, a+ h]) ≤ ch2α

φ2α(a)
.

This completes the proof.

Remark 2.11. Note that if g(q)(x) ≤ 0, x ∈ [a, a+ h], then the same proof yields
a polynomial P , of degree s+ q, such that P (q)(x) ≤ 0, x ∈ [a, a+ h], interpolates
g at both ends of the interval and satisfies (2.24) and, if q = 2, then, in addition,
it satisfies either

(2.28) P ′(a) = g′(a) and P ′(a+ h) ≥ g′(a+ h),

or

(2.29) P ′(a) ≤ g′(a) and P ′(a+ h) = g′(a+ h).
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Denote by xn,j := cos(jπ/n), j = 0, . . . , n, the Chebyshev partition of order n.
Further, denote In,j := [xn,j , xn,j−1], j = 1, . . . , n and let |In,j | := xn,j−1 − xn,j .

Given g ∈ Cq
φ ∩∆(q), we now construct a continuous piecewise polynomial Sn

on the Chebyshev partition, that is,

Sn|In,j = Pj j = 1, . . . n,

where Pj are algebraic polynomials, so that Sn is comonotone, respectively, co-
convex with g, and is sufficiently close to it. We take N = N(Ys) so big that
2π
N ≤ min{C2

1 , C3}, thus |In,j | ≤ 1
2 min{C2

1 , C3} for all n ≥ N and j = 1, . . . , n.

Lemma 2.12. If a function g ∈ Cq
φ∩∆(q) satisfies (2.5), then for each n ≥ N(Ys)

there is a piecewise polynomial, Sn(x) = Sn(x; g), on the Chebyshev partition, such
that

(2.30) Sn|In,j = Pj ∈ Pq+s+1, j = 1, . . . n,

(2.31) Pj±1 ≡ Pj , if yi ∈ [xn,j , xn,j−1), i = 1 . . . , s,

(2.32) Sn ∈ ∆(q)(Ys),

and

(2.33) ∥g − Sn∥ ≤ c

nqα
.

Proof. Fix n ≥ N and, for simplicity set xj := xn,j , Ij := In,j and |Ij | := |In,j |.
For each i = 1, . . . , s denote by ji the index for which yi ∈ [xji , xji−1).

If 2 ≤ j ≤ n−1, j ̸= ji, ji±1, 1 ≤ i ≤ s, then we denote Pj(x) := P (x;xj , xj−1),
with P from Lemma 2.10, or Remark 2.11, as the case may be. Then Pj is of degree

s+ q, satisfies sgnP
(q)
j (x) = sgn g(q)(x), x ∈ Ij , interpolates g at both xj and xj−1

and, if q = 2, such that either (2.26) or (2.27) holds. Also, by virtue of (2.24),

(2.34) ∥g − Pj∥Ij ≤
c4|Ij |qα

φ(xj)qα
≤ c

nqα
,

where we used the inequality
|Ij |

φ(xj)
≤ c

n .

Next, we denote Pji±1(x) = Pji(x) := P∗(x;xji+1, xji−2; yji), where P∗ is de-
fined in Lemma 2.8. Then Pji is a polynomial of degree s + q, comonotone,
respectively, coconvex with g on [xji+1, xji−2], with Pji(xji+1) = g(xji+1) and, if
q = 2, such that either (2.19) or (2.20) holds with Pji instead of P∗. Also, in view
of (2.17), Pji satisfies

(2.35) ∥g − Pji∥[xji+1,xji−2] ≤
c|Iji |qα

φ(yji)
qα

≤ c

nqα
,

where we used the fact that max{yji − xji+1, xji−2 − yji} ≤ c|Iji |, and
|Iji |
φ(yji )

≤ c
n .

Note that it follows by (2.35) that,

(2.36) |δi := g(xji−2)− Pji(xji−2)| ≤
c

nqα
, 1 ≤ i ≤ s.
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Finally, we have to define P1 and Pn. We Denote P1(x) := P+(x;x1), with P+

from Lemma 2.9. The polynomial Pn(x) := P−(x;xn−1), is obtained in the same
way, applying Remark 2.6.

We are ready to define, Sn. Denote j0 := 3 and js+1 := n+ 2, and set

Sn|[xj ,xj−1] := Pj +
i∑

k=1

δk, ji − 2 ≤ j ≤ ji+1 − 2, 0 ≤ i ≤ s.

It follows by our construction that Sn is continuous, comonotone, respectively,
coconvex with g, and since by (2.36),

s∑
i=1

|δi| ≤
c

nqα
,

Sn satisfies (2.33). This completes our construction.

3 Proof of the theorems

We summarize the lemmas in the following theorem from which both Theorems
1.1 and 1.2 follow. We devote this section to proving it.

Theorem 3.1. For each 1 < α ≤ 2, q ∈ {1, 2}, qα ̸= 4, and s ≥ 1, there is
a constant c = c(α, s) and for each Ys ∈ Ys there is a constant N∗ = N∗(α, Ys),
such that for every function f ∈ ∆(q)(Ys), satisfying

(3.1) En(f) ≤ n−qα, n ≥ s+ q + 1,

we have
E(q)

n (f, Ys) ≤ cn−qα, n ≥ N∗.

Proof. First we observe that by Lemma 2.2, (3.1) implies that

(3.2) f ∈ Cq
φ and ωs+1,q(f

(q), t) ≤ ctqα−q, t > 0.

Therefore we may apply Lemma 2.12 with g = cf . Denote by Sn(x) = Sn(x; cf),
the piecewise polynomial, guaranteed by Lemma 2.12.

Also, by Lemma 2.2, (3.1) implies that

ωφ
s+1+q(f, t) ≤ ctqα.

Hence, by (2.33)

(3.3) ωφ
s+1+q(Sn, 1/n) ≤ ωφ

s+1+q(f, 1/n) + c∥f − Sn∥ ≤ c

nqα
.

Observe that (2.30) and (2.31) imply that, if q = 1, then, in the notation of [6],
Sn ∈ Σs+2,O(Ys,n) and, if q = 2, then, in the notation of [7], Sn ∈ Σs+3,n(Ys).
Therefore, by virtue of (2.32), [6, p. 137, Proposition 3], for q = 1, and [7, p.
24, Theorem 3], for q = 2, we conclude by (3.3) that there exists a polynomial
Qn ∈ ∆q(Ys) of degree ≤ cn, such that

∥Sn −Qn∥ ≤ cωφ
s+1+q(Sn,

1

n
) ≤ c

nqα
,

which, in turn, by (2.33) yields

∥f −Qn∥ ≤ ∥f − Sn∥+ ∥Sn −Qn∥ ≤ c

n2α
.

This completes our proof.

11



References

[1] Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational
Mathematics, vol. 9, Springer-Verlag, New York, 1987.

[2] V. K. Dzyadyk and I. A. Shevchuk, Theory of Uniform Approximation of Functions
by Polynomials, Walter de Gruyter, Berlin, 2008.

[3] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk, Are the degrees of best (co)convex
and unconstrained polynomial approximation the same?, Acta Math. Hungar. 123
(2009), 273–290.

[4] , Are the degrees of the best (co)convex and unconstrained polynomial approx-
imations the same? II, Ukrainian Math. J. 62 (2010), 369–386.

[5] D. Leviatan, D. V. Radchenko, and I. A. Shevchuk, Positive results and counterex-
amples in comonotone approximation, Constr. Approx. 36 (2012), 243–266.

[6] D. Leviatan and I. A. Shevchuk, Some positive results and counterexamples in
comonotone approximation II, J. Approx. Theory 100 (1999), 113–143.

[7] , Coconvex approximation, J. Approx. Theory 118 (2002), 20–65.

[8] , Coconvex polynomial approximation, J. Approx. Theory 121 (2003), 100–118.

[9] D. Leviatan, I. A. Shevchuk, and O. V. Vlasiuk, Positive results and counterexamples
in comonotone approximation II, J. Approx. Theory 179 (2014), 1–23.

[10] O. V. Vlasiuk, On the degree of piecewise shape-preserving approximation by polyno-
mials, J. Approx. Theory 189 (2015), 67–75.

[11] , Corrigendum to “On the degree of piecewise shape-preserving approximation
by polynomials” [J. Approx. Theory 189 (2015), 67–75], J. Approx. Theory ? (2015),
?.

12


