Comparing the degrees of unconstrained and shape preserving approximation by polynomials *[†]

D. Leviatan[‡] and I. A. Shevchuk[§]

August 24, 2015

Abstract

Let $f \in C[-1, 1]$ and denote by $E_n(f)$ its degree of approximation by algebraic polynomials of degree $\langle n$. Assume that f changes its monotonicity, respectively, its convexity finitely many times, say $s \geq 2$ times, in (-1, 1) and we know that for q = 1 or q = 2 and some $1 < \alpha \leq 2$, such that $q\alpha \neq 4$, we have

 $E_n(f) \le n^{-q\alpha}, \quad n \ge s+q+1,$

The purpose of this paper is to prove that the degree of comonotone, respectively, coconvex approximation, of f, by algebraic polynomials of degree $\langle n, n \geq N$, is also $\leq c(\alpha, s)n^{-q\alpha}$, where the constant N depends only on the location of the extrema, respectively, inflection points in (-1, 1) and on α .

This answers, affirmatively, questions left open by the authors in papers with Kopotun and Vlasiuk (see the list of references).

1 Introduction and main results

Let C[a, b], $-1 \leq a < b \leq 1$, denote the space of continuous functions on [a, b]equipped with the usual uniform norm, $||f||_{[a,b]} := \max_{a \leq x \leq b} |f(x)|$. When dealing with [-1, 1], we suppress referring to the interval, namely, we denote ||f|| := $||f||_{[-1,1]}$. For \mathbb{P}_n is the space of algebraic polynomials of degree < n and $f \in$ C[-1, 1], denote by

$$E_n(f) := \inf_{p_n \in \mathbb{P}_n} \|f - p_n\|,$$

the degree of approximation of f by algebraic polynomials of degree < n.

Given $s \ge 1$, denote by \mathbb{Y}_s , the set of all collections $Y_s = \{y_i\}_{i=1}^s$, of points y_i , such that $y_{s+1} := -1 < y_s < \cdots < y_1 < 1 =: y_0$. For such a collection we write

^{*}AMS classification: 41A10, 41A25.

 $^{^{\}dagger}Keywords$ and phrases: Comonotone and coconvex approximation by polynomials, Degree of approximation, Jackson-type estimates.

[‡]Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (leviatan@post.tau.ac.il).

[§]Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine (shevchuk@univ.kiev.ua).

 $f \in \Delta^{(1)}(Y_s)$ if $f \in C[-1,1]$ and $(-1)^i f$ is nondecreasing on $[y_{i+1}, y_i]$, $0 \le i \le s$. Similarly, we write $f \in \Delta^{(2)}(Y_s)$ if $f \in C[-1,1]$ and $(-1)^i f$ is convex on $[y_{i+1}, y_i]$, $0 \le i \le s$.

For $f \in \Delta^{(q)}(Y_s)$, $q \in \{1, 2\}$, we denote by

$$E_{n}^{(q)}(f, Y_{s}) := \inf_{P_{n} \in \mathbb{P}_{n} \cap \Delta^{(q)}(Y_{s})} \|f - P_{n}\|$$

the degree of best comonotone, respectively, coconvex approximation of f relative to Y_s .

Assuming that for some $\alpha > 0$ and $N \ge 1$,

(1.1)
$$n^{\alpha} E_n(f) \le 1, \quad n \ge N,$$

the answer to the following question was provided (see [3], [4], [5] and [9]).

If (1.1) holds for an $f \in \Delta^{(q)}(Y_s)$, is it possible to have constants $c(q, \alpha, s, N)$ and N^* such that

(1.2)
$$n^{\alpha} E_n^{(q)}(f, Y_s) \le c(q, \alpha, s, N), \quad n \ge N^*?$$

Here N^* , if it exists, may depend on q, α , s and N, but may also depend of Y_s or even on f. It turns out that N^* always exists and its dependence on the various parameters, in all cases, but $1 < \alpha \leq 2$, N = s + 2, $s \geq 2$, for the comonotone case (q = 1), was given in [5] and [9] and, in all cases, but $2 < \alpha \leq 4$, N = s + 3, $s \geq 3$, for the coconvex case (q = 2), was given in [3] and [4].

O. V. Vlasiuk [10], has attempted to close the above gaps, but, regrettably, the proof of the main lemma there is incorrect (see [11]). Our main results are the following.

Theorem 1.1. Given $Y_s \in \mathbb{Y}_s$, $s \geq 2$, and $1 < \alpha \leq 2$. Then, there exist constants $c(\alpha, s)$ and $N^*(\alpha, Y_s)$, such that for all functions $f \in \Delta^{(1)}(Y_s)$ satisfying (1.1) with N = s + 2, (1.2) with q = 1, holds.

And

Theorem 1.2. Given $Y_s \in \mathbb{Y}_s$, $s \geq 3$, and $2 < \alpha < 4$. Then, there exist constants $c(\alpha, s)$ and $N^*(\alpha, Y_s)$, such that for all functions $f \in \Delta^{(2)}(Y_s)$ satisfying (1.1) with N = s + 3, (1.2) with q = 2, holds.

Remark 1.3. Note that this leaves open what happens in the coconvex case when $\alpha = 4 < s + 3 = N$.

In Section 2 we bring some auxiliary lemmas and in Section 3 we prove Theorems 1.1 and 1.2. Throughout the paper, k, r, s, q, i, j and n, are nonnegative integers, while α, a, b, h, t, u and v, are real numbers.

In the sequel, constants c will denote constants which may depend on s and, perhaps on α (we will not detail that), and may differ from one occurrence to another, even when they appear in the same line; constants c_1, c_2, \ldots will denote specific such constants the values of which remain the same during the paper; constants C will denote constants which, in addition, depend on Y_s , and may differ from one occurrence to another; and constants C_1, C_2, \ldots , will denote specific such constants the values of which remain the same during the paper.

2 Auxiliary results

For $g \in C[a, b]$, denote by

$$\Delta_{h}^{k}(g,x) := \begin{cases} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} g(x - (k/2 - i)h), & \text{if } x \pm kh/2 \in [a,b], \\ 0, & \text{otherwise}, \end{cases}$$

the kth symmetric difference, and define the ordinary kth modulus of smoothness of g by

$$\omega_k(g,t;[a,b]) := \sup_{0 < h \le t} \|\Delta_h^k(g,\cdot)\|_{[a,b]}$$

Let

$$\varphi(x) := \sqrt{1 - x^2},$$

and for $\delta > 0$, denote

$$\varphi_{\delta}(x) := \begin{cases} \sqrt{(1 - \delta\varphi(x)/2)^2 - x^2}, & x \pm \delta\varphi(x)/2 \in [-1, 1], \\ 0, & \text{otherwise.} \end{cases}$$

The weighted DT modulus of smoothness of a function $f \in C^r(-1, 1)$, is defined by

$$\omega_{k,r}^{\varphi}(f^{(r)},t) := \sup_{0 < h \le t} \left\| \varphi_{kh}^{r}(\cdot) \Delta_{h\varphi(\cdot)}^{k}(f^{(r)},\cdot) \right\|$$

In particular, if r = 0, then

$$\omega_k^{\varphi}(f,t) := \omega_{k,0}^{\varphi}(f,t),$$

is the (ordinary) kth DT modulus, [1].

It is known (see, e.g., [2]) that if $r \ge 1$, then $\omega_{k,r}^{\varphi}(f^{(r)}, t) \to 0$, as $t \to 0$, if and only if $\lim_{x\to\pm 1} \varphi^r(x) f^{(r)}(x) = 0$. Therefore, we denote $C_{\varphi}^0 := C[-1, 1]$ and, for $r \ge 1$,

$$C_{\varphi}^{r} := \{ f \in C[-1,1] \cap C^{r}(-1,1) \mid \lim_{x \to \pm 1} \varphi^{r}(x) f^{(r)}(x) = 0 \}.$$

The interrelations between the two moduli are the subject of the following result. Denote

$$\phi(a,b) := \sqrt{(1+a)(1-b)}$$

Lemma 2.1. Let -1 < a < b < 1, $k \ge 1$ and $r \ge 1$, be given. If $g \in C_{\varphi}^r$, then

(2.1)
$$\omega_k(g^{(r)}, t; [a, b]) \le \frac{1}{\phi^r(a, b)} \omega_{k, r}^{\varphi} \left(g^{(r)}, \frac{t}{\phi(a, b)} \right), \quad t > 0,$$

and

(2.2)
$$\omega_k(g^{(r)}, t; [a, b]) \le \frac{1}{\phi^r(a, b)} \omega_{k, r}^{\varphi}(g^{(r)}, \sqrt{2t/k}), \quad t > 0.$$

Proof. Let $x \in [a, b]$ and $0 < h \le t$, be such that $x \pm kh/2 \in [a, b]$. Then

$$\begin{split} |\Delta_{h}^{k}(g^{(r)},x)| &= \frac{\varphi_{kh}^{r}(x)}{\varphi_{kh}^{r}(x)} |\Delta_{\frac{h}{\varphi(x)}\varphi(x)}^{k}(g^{(r)},x)| \\ &\leq \frac{1}{\phi^{r}(a,b)}\varphi_{kh}^{r}(x) |\Delta_{\frac{h}{\varphi(x)}\varphi(x)}^{k}(g^{(r)},x)| \\ &\leq \frac{1}{\phi^{r}(a,b)}\omega_{k,r}^{\varphi}\left(g^{(r)},\frac{h}{\varphi(x)}\right) \\ &\leq \frac{1}{\phi^{r}(a,b)}\omega_{k,r}^{\varphi}\left(g^{(r)},\frac{h}{\phi(a,b)}\right), \end{split}$$

and (2.1) follows.

Also, since |x| + kh/2 < 1, it readily follows that $h < \frac{2}{k}\varphi^2(x)$. Hence $h < \sqrt{\frac{2h}{k}}\varphi(x)$, and (2.2) follows from the above second inequality.

Next, we quote the following auxiliary lemma, see [2, Theorem 7.1.2] (see also [4, Theorem 3.3]).

Lemma 2.2. Let $r \ge 0$, $k \ge 1$ and $\alpha > 0$, be such that $r < \alpha < k + r$, and let $f \in C[-1, 1]$. If

(2.3)
$$n^{\alpha} E_n(f) \le 1, \quad n \ge k+r,$$

then $f \in C^r_{\varphi}$ and

(2.4)
$$\omega_{k,r}^{\varphi}(f^{(r)},t) \le A(\alpha,k,r)t^{\alpha-r}, \quad t > 0,$$

where $A(\alpha, k, r) = const$, depends only on α , k and r.

Henceforth, let

$$1 < \alpha \leq 2, \quad q \in \{1, 2\}, \quad q\alpha \neq 4, , \quad s \geq 1 \quad \text{and} \quad Y_s \in \mathbb{Y}_s,$$

be given.

The following is needed in dealing with the endpoints.

Lemma 2.3. There is a constant C_1 , such that for any $0 < h < C_1$ and every function $g \in C^q_{\varphi}$, satisfying

(2.5)
$$\omega_{s+1,q}^{\varphi}(g^{(q)},t) \le t^{q\alpha-q},$$

(2.6)
$$g^{(q)}(y_i) = 0, \quad i = 1, \dots, s,$$

and

(2.7)
$$g^{(q)}(1-h^2) = 0.$$

we have,

(2.8)
$$|g^{(q)}(u)| \le c_1 \frac{h^{q(\alpha-1)}}{(1-u)^{q/2}}, \quad 1-h^2 \le u < 1.$$

Proof. Let $h < \frac{1}{2}\phi(y_s, y_1)$, and take $t := \sqrt{1-u} \le h$. Then by virtue of (2.2) and (2.5),

$$\omega_{s+1}(g^{(q)}, v; [y_s, 1 - t^2]) \le \frac{\omega_{s+1,q}^{\varphi}(g^{(q)}, \sqrt{v})}{(1 + y_s)^{q/2} t^q} \le \frac{v^{q(\alpha - 1)/2}}{(1 + y_s)^{q/2} t^q}.$$

Hence, by (2.6) and (2.7), Whitney's inequality implies,

$$\|g^{(q)}\|_{[y_s,1-t^2]} \le C\omega_{s+1}(g^{(q)},1;[y_s,1-t^2]) \le \frac{C}{t^q}.$$

Similarly, with $y_s^0 := \max\{0, y_s\}$, we get by (2.2) and (2.5),

$$\omega_{s+1}(g^{(q)}, v; [y_s^0, 1-t^2]) \le \frac{\omega_{s+1,q}^{\varphi}(g^{(q)}, \sqrt{v})}{t^q} \le \frac{v^{q(\alpha-1)/2}}{t^q}.$$

By Marchaud's inequality, we obtain for $\tau := h^2 - t^2$,

$$\begin{split} |g^{(q)}(1-t^2)| &= |g^{(q)}(1-t^2) - g^{(q)}(1-h^2)| \le \omega_1(g^{(q)},\tau;[y^0_s,1-t^2]) \\ &\le c\tau \int_{\tau}^1 \frac{\omega_{s+1}(g^{(q)},v;[y^0_s,1-t^2])}{v^2} dv + \frac{c}{1-y^0_s}\tau \|g^{(q)}\|_{[y_s,1-t^2]} \\ &\le c\tau \int_{\tau}^1 \frac{v^{q(\alpha-1)/2}}{t^q v^2} dv + \frac{C_2\tau}{t^q} \\ &\le c_2 \frac{\tau^{q(\alpha-1)/2}}{t^q} + \frac{C_2\tau}{t^q} \\ &\le \frac{c_2 h^{q(\alpha-1)}}{t^q} + \frac{C_2 h^2}{t^q} \le \frac{2c_2 h^{q(\alpha-1)}}{t^q}, \end{split}$$

provided h is so small that $C_2 h^{2-q(\alpha-1)} \leq c_2$.

This proves (2.8) and completes our proof.

Remark 2.4. Clearly, in Lemma 2.3, one may replace (2.7) by $g^{(q)}(-1+h^2) = 0$, and arrive at similar conclusions for $-1 < u \leq -1 + h^2$.

Lemma 2.5. Let $g \in C_{\varphi}^{q}$ satisfy (2.5) and (2.6), and let $0 < h < C_{1}$. If $g^{(q)}(1 - h^{2}) \geq 0$, then there exists a polynomial $P_{+}(x) = P_{+}(x; 1 - h^{2})$, of degree s + q, such that $P_{+}^{(q)}(x) \geq 0$, $x \in [1 - h^{2}, 1]$, $P_{+}^{(j)}(1 - h^{2}) = g^{(j)}(1 - h^{2})$, $0 \leq j \leq q - 1$, and

(2.9)
$$|g(x) - P_+(x)| \le 2c_1 h^{q\alpha}, \quad 1 - h^2 \le x \le 1.$$

Proof. Let

$$p(x) := g^{(q)}(1-h^2) \prod_{i=1}^{s} \frac{x-y_i}{1-h^2-y_i},$$

so that p is nonnegative in $[1 - h^2, 1]$.

Denote

$$P_{+}(x) := g(1-h^{2}) + (q-1)g'(1-h^{2})(x-1+h^{2}) + \int_{1-h^{2}}^{x} (x-u)^{q-1}p(u)du.$$

Then $P_+^{(q)}(x) \ge 0$, $x \in [1-h^2, 1]$, $P_+^{(j)}(1-h^2) = g^{(j)}(1-h^2)$, $0 \le j \le q-1$, and if we set G(x) := g(x) - P(x), we observe that G satisfies (2.5), (2.6) and (2.7). It follows from Lemma 2.3 that

$$|g^{(q)}(u) - P^{(q)}_{+}(u)| \le c_1 \frac{h^{q(\alpha-1)}}{(1-u)^{q/2}}, \quad 1-h^2 \le u < 1.$$

Hence,

$$\begin{aligned} |g(x) - P_{+}(x)| &\leq c_{1} h^{q(\alpha-1)} \int_{1-h^{2}}^{x} \frac{(x-u)^{q-1}}{(1-u)^{q/2}} du \\ &\leq c_{1} h^{q(\alpha-1)} \int_{1-h^{2}}^{1} (1-u)^{q/2-1} du = \frac{2c_{1}}{q} h^{q\alpha}, \end{aligned}$$

and (2.9) is proved.

Remark 2.6. Clearly, in Lemma 2.5, one may replace $g^{(q)}(1-h^2) \ge 0$ by $g^{(q)}(-1+h^2) \ge 0$, and arrive at similar conclusions for a polynomial $P_-(x) = P_-(x; -1+h^2)$. Similarly, if one replaces $g^{(q)}(1-h^2) \ge 0$ by $g^{(q)}(-1+h^2) \le 0$, then one arrives at analogous, modified, conclusions.

The next two lemmas are applied in the neighborhoods of the points y_i , $1 \le i \le s$.

Denote

$$d := \frac{1}{2} \min_{1 \le i \le s+1} (y_{i-1} - y_i),$$

and put

$$y_1^* := y_1 + d$$
 and $y_s^* := y_s - d$.

Lemma 2.7. There is a constant $C_3 \leq d$, such that for any $0 < h \leq C_3$ and every function $g \in C^q_{\varphi}$, satisfying (2.5) and (2.6), if for some $1 \leq i^* \leq s$,

(2.10)
$$g^{(q)}(y_{i^*} + h) = 0,$$

then

(2.11)
$$\|g^{(q)}\|_{[y_s^*, y_1^*]} \le C_4 \int_h^2 t^{q\alpha - q - 2} dt.$$

and

(2.12)
$$\|g^{(q)}\|_{[y_{i^*}-h,y_{i^*}-h]} \leq \frac{c_5 h^{q\alpha-q}}{\varphi(y_{i^*})^{q\alpha}}$$

Proof. Note that (2.1) and (2.5) imply that

(2.13)
$$\omega_{s+1}(g^{(q)}, t; [y_s^*, y_1^*]) \le Ct^{q\alpha - q}.$$

Denote by $L_s(x) := L_s(x; g^{(q)}; y_1, \ldots, y_s, y_1^*)$, the Lagrange polynomial, of degree s, that interpolates $g^{(q)}$ at the points y_i , $i = 1, \ldots, s$ and at y_1^* , and note that by virtue of (2.6),

$$L_s(x) = g^{(q)}(y_1^*) \prod_{i=1}^s \frac{x - y_i}{y_1^* - y_i},$$

whence

(2.14)
$$||L_s||_{[y_s^*, y_1^*]} \le C|g^{(q)}(y_1^*)|$$

Set

$$G(x) := g^{(q)}(x) - L_s(x),$$

so that $G(y_1^*) = G(y_i) = 0, \ 1 \le i \le s$. Evidently,

$$\omega_{s+1}(G,t;[y_s^*,y_1^*]) = \omega_{s+1}(g^{(q)},t;[y_s^*,y_1^*]), \quad t > 0.$$

Therefore, by (2.13) and Whitney's inequality,

(2.15) $\|G\|_{[y_s^*, y_1^*]} \le C\omega_{s+1}(G, 1; [y_s^*, y_1^*]) \le C.$

Thus, by (2.14),

(2.16)
$$||g^{(q)}||_{[y_s^*, y_1^*]} \le ||G||_{[y_s^*, y_1^*]} + ||L_s||_{[y_s^*, y_1^*]} \le C + C|g^{(q)}(y_1^*)|.$$

so that we need to estimate $|g^{(q)}(y_1^*)|$.

To this end, denote $y^* := y_{i^*} + h$. Then,

$$\begin{split} |g^{(q)}(y_1^*)| &= |(y_1^* - y_1) \cdots (y_1^* - y_s)(y_1^* - y^*)| [g^{(q)}; y_1^*, y_1, \dots, y_s, y^*]| \\ &\leq 2^s |(y_1^* - y^*)[g^{(q)}; y_1^*, y_1, \dots, y_s, y^*]| \\ &= 2^s |(y_1^* - y^*)[G; y_1^*, y_1, \cdots, y_s, y^*]| \\ &= 2^s |(y^* - y_1) \dots (y^* - y_s)|^{-1} |G(y^*)| \\ &\leq \frac{C}{h} |G(y^*)| = \frac{C}{h} |G(y^*) - G(y_{i^*})|. \end{split}$$

Hence, Marchaud's inequality and (2.15) imply

$$\begin{split} |g^{(q)}(y_1^*)| &\leq \frac{C}{h} \omega_1(G,h;[y_s^*,y_1^*]) \\ &\leq C \int_h^{y_1^* - y_s^*} \frac{t^{q\alpha - q}}{t^2} dt + \frac{c}{y_1^* - y_s^*} \|G\|_{[y_s^*,y_1^*]} \\ &\leq C \int_h^2 t^{q\alpha - q - 2} dt + C. \end{split}$$

Thus, by (2.16), we conclude that

$$\|g^{(q)}\|_{[y_s^*, y_1^*]} \le C \int_h^2 t^{q\alpha - q - 2} dt + C \le C \int_h^2 t^{q\alpha - q - 2} dt,$$

and (2.11) is proved.

Now denote $y_{i^*}^{\pm} := y_{i^*} \pm d$ and note that (2.1) and (2.5) yield,

$$\omega_{s+1}(g^{(q)}, t; [y_{i^*}, y_{i^*}^+]) \le \frac{c}{\varphi^q(y_{i^*})} \omega_{s+1,q}\left(g^{(q)}, \frac{ct}{\varphi(y_{i^*})}\right) \le c \frac{t^{q\alpha-q}}{\varphi^{q\alpha}(y_{i^*})}$$

where we used the fact that $\varphi(y_{i^*}) \leq c\phi(y_{i^*}^-, y_{i^*}^+)$.

It follows by Marchaud's inequality that,

$$\begin{split} \omega_2(g^{(q)},t;[y_{i^*}^-,y_{i^*}^+]) &\leq ct^2 \int_t^{2d} \frac{\omega_{s+1}(g^{(q)},u;[y_{i^*}^-,y_{i^*}^+])}{u^3} du + c \frac{t^2}{d} \|g^{(q)}\|_{[[y_{i^*}^-,y_{i^*}^+]} \\ &\leq \frac{c}{\varphi^{q\alpha}(y_{i^*})} t^2 \int_t^\infty u^{q\alpha-q-3} du + c \frac{t^2}{d} \|g^{(q)}\|_{[y_s^*,y_1^*]} \\ &= \frac{c_6}{\varphi^{q\alpha}(y_{i^*})} t^{q\alpha-q} + c \frac{t^2}{d} \|g^{(q)}\|_{[y_s^*,y_1^*]}. \end{split}$$

In particular,

$$\begin{split} \omega_2(g^{(q)},h;[y_{i^*}-h,y_{i^*}+h]) &\leq \omega_2(g^{(q)},h;[y_{i^*}-d,y_{i^*}+d]) \\ &\leq \frac{c_6}{\varphi^{q\alpha}(y_{i^*})} h^{q\alpha-q} + C_5 h^2 \int_h^2 t^{q\alpha-q-2} dt \\ &\leq \frac{2c_6}{\varphi^{q\alpha}(y_{i^*})} h^{q\alpha-q}, \end{split}$$

where for the middle inequality we applied (2.11), and provided we take C_3 small enough.

Since $g^{(q)}(y_{i^*}) = g^{(q)}(y_{i^*} + h) = 0$, (2.12) now follows by Whitney's inequality.

Lemma 2.8. Let $0 < h_1 \leq C_3$, $0 < h_2 \leq C_3$ and $y_{i^*} \in Y_s$, be given. If a function $g \in C^q_{\varphi}$ satisfies (2.6) and (2.5), and $g^{(q)}(x)(x - y_{i^*}) \geq 0$, $x \in [y_{i^*} - d, y_{i^*} + d]$, then there exists a polynomial $P_*(x) = P_*(x; y_{i^*} - h_1, y_{i^*} + h_2; y_{i^*})$, of degree s + q, such that $P^{(q)}_*(x)(x - y_{i^*}) \geq 0$, $x \in [y_{i^*} - d, y_{i^*} + d]$, satisfying

(2.17)
$$\|g - P_*\|_{[y_{i^*} - h_1, y_{i^*} + h_2]} \le \frac{c_7 h^{q\alpha}}{\varphi^{q\alpha}(y_{i^*})},$$

where $h := \max\{h_1, h_2\}$, and

(2.18)
$$P_*(y_{i^*} - h_1) = g(y_{i^*} - h_1)$$

If q = 2, then, in addition, either

(2.19)
$$P'_*(y_{i^*} - h_1) = g'(y_{i^*} - h_1)$$
 and $P'_*(y_{i^*} + h_2) \le g'(y_{i^*} + h_2),$

or

(2.20)
$$P'_*(y_{i^*} - h_1) \le g'(y_{i^*} - h_1)$$
 and $P'_*(y_{i^*} + h_2) = g'(y_{i^*} + h_2).$

Proof. Set

$$p_{i^*}(x) := g^{(q)}(y_{i^*} + h) \prod_{i=1}^s \frac{x - y_i}{y_{i^*} + h - y_i}$$

Evidently, since $h \leq d$, p_{i^*} is nonpositive in $[y_{i^*} - d, y_{i^*}]$ and nonnegative in $[y_{i^*}, y_{i^*} + d]$.

Now, let

$$G(x) := \int_0^x (x-t)^{q-1} \left(g^{(q)}(t) - p_{i^*}(t) \right) dt.$$

Then, G satisfies the assumptions of Lemma 2.7. Hence, by (2.12),

(2.21)
$$\|g^{(q)} - p_{i^*}\|_{[y_{i^*} - h_1, y_{i^*} + h_2]} \le \|g^{(q)} - p_{i^*}\|_{[y_{i^*} - h, y_{i^*} + h]}$$
$$= \|G^{(q)}\|_{[y_{i^*} - h, y_{i^*} + h]} \le \frac{c_4 h^{q\alpha - q}}{\varphi^{q\alpha}(y_{i^*})}.$$

For q = 1, let

$$P_*(x) := g(y_{i^*} - h_1) + \int_{y_{i^*} - h_1}^x p_{i^*}(u) du$$

Then (2.18) holds, and P_* is comonotone with g on $[y_{i^*} - h_1, y_{i^*} + h_2]$. Finally, by (2.21),

$$||g - P_*||_{[y_{i^*} - h_1, y_{i^*} + h_2]} \le \frac{2c_4 h^{\alpha}}{\varphi^{\alpha}(y_{i^*})}.$$

For q = 2, we apply [8, Corollary 2.6] with g instead of f, $\beta = y_{j_{i^*}}$ and $P_{k-1} = p_{i^*}$, and conclude that there exists a polynomial P_* of degree s+2 such that it satisfies (2.18), and (2.19) or (2.20), and by (2.21),

$$\begin{aligned} \|g - P_*\|_{[y_{i^*} - h_1, y_{i^*} + h_2]} &\leq ch^2 \|g'' - p_{i^*}\|_{[y_{i^*} - h_1, y_{i^*} + h_2]} \\ &\leq \frac{ch^{2\alpha}}{\varphi^{2\alpha}(y_{i^*})}. \end{aligned}$$

This completes the proof.

	-	٦.
		L
-	-	

Remark 2.9. Note that if $g^{(q)}(x)(x - y_{i^*}) \leq 0$, $x \in [y_{i^*} - h_1, y_{i^*} + h_2]$, then the same proof yields a polynomial P_* , of degree s + q, satisfying (2.17) and (2.18) and, if q = 2, then, in addition, either

(2.22)
$$P'_*(y_{i^*} - h_1) = g'(y_{i^*} - h_1)$$
 and $P'_*(y_{i^*} + h_2) \ge g'(y_{i^*} + h_2),$

or

(2.23)
$$P'_*(y_{i^*} - h_1) \ge g'(y_{i^*} - h_1)$$
 and $P'_*(y_{i^*} + h_2) = g'(y_{i^*} + h_2).$

The following lemma is an immediate consequence of [6, p. 125, Lemma 2], for the monotone case, and of [8, Corollary 2.4], for the convex case. We will give a few details.

Lemma 2.10. Let $g \in C_{\varphi}^q$ be such that (2.5) holds. Let $-1 < a < a + \frac{4}{3}h < 1$, and assume that $g^{(q)}(x) \ge 0$, $x \in [a, a + h]$. Then, there exists a polynomial P(x) = P(x; a, a + h), of degree s + q, such that $P^{(q)}(x) \ge 0$, $x \in [a, a + h]$, satisfying

(2.24)
$$||g - P||_{[a,a+h]} \le \frac{c_8 h^{q\alpha}}{\varphi^{q\alpha}(a)},$$

and

(2.25)
$$P(a) = g(a)$$
 and $P(a+h) = g(a+h)$.

If q = 2, then, in addition, either

(2.26)
$$P'(a) = g'(a)$$
 and $P'(a+h) \le g'(a+h),$

or

(2.27)
$$P'(a) \ge g'(a) \text{ and } P'(a+h) = g'(a+h).$$

Proof. First we note that since $a + \frac{4}{3}h < 1$, we have $\phi(a, a+h) \leq \varphi(a) \leq 2\phi(a, a+h)$.

For q = 1, our lemma follows directly from [6, Lemma 2] with k = s + 1 and r = 1, when we apply the estimate (2.5).

For q = 2, we obtain by virtue of Lemma 2.1 and (2.5),

$$\omega_{s+1}(g'', t, [a, a+h]) \le \frac{1}{\phi^2(a, a+h)} \left(\frac{t}{\phi(a, a+h)}\right)^{2\alpha-2} \le \frac{ct^{2\alpha-2}}{\varphi^{2\alpha}(a)}.$$

Hence, by [8, Corollary 2.4], there exists a convex polynomial p_j , of degree s + 2, such that (2.25), and either (2.26), or (2.27) hold. Moreover,

$$||g - P||_{[a,a+h]} \le ch^2 \omega_{s+1}(g'', h, [a, a+h]) \le \frac{ch^{2\alpha}}{\varphi^{2\alpha}(a)}.$$

This completes the proof.

Remark 2.11. Note that if $g^{(q)}(x) \leq 0$, $x \in [a, a + h]$, then the same proof yields a polynomial P, of degree s + q, such that $P^{(q)}(x) \leq 0$, $x \in [a, a + h]$, interpolates g at both ends of the interval and satisfies (2.24) and, if q = 2, then, in addition, it satisfies either

(2.28)
$$P'(a) = g'(a) \text{ and } P'(a+h) \ge g'(a+h),$$

or

(2.29)
$$P'(a) \le g'(a)$$
 and $P'(a+h) = g'(a+h).$

Denote by $x_{n,j} := \cos(j\pi/n), j = 0, \dots, n$, the Chebyshev partition of order n. Further, denote $I_{n,j} := [x_{n,j}, x_{n,j-1}], j = 1, \dots, n$ and let $|I_{n,j}| := x_{n,j-1} - x_{n,j}$.

Given $g \in C^q_{\varphi} \cap \Delta^{(q)}$, we now construct a continuous piecewise polynomial S_n on the Chebyshev partition, that is,

$$S_n|_{I_{n,j}} = P_j \quad j = 1, \dots n,$$

where P_j are algebraic polynomials, so that S_n is common tone, respectively, coconvex with g, and is sufficiently close to it. We take $N = N(Y_s)$ so big that $\frac{2\pi}{N} \leq \min\{C_1^2, C_3\}$, thus $|I_{n,j}| \leq \frac{1}{2} \min\{C_1^2, C_3\}$ for all $n \geq N$ and $j = 1, \ldots, n$.

Lemma 2.12. If a function $g \in C^q_{\varphi} \cap \Delta^{(q)}$ satisfies (2.5), then for each $n \ge N(Y_s)$ there is a piecewise polynomial, $S_n(x) = S_n(x;g)$, on the Chebyshev partition, such that

(2.30)
$$S_n|_{I_{n,j}} = P_j \in \mathbb{P}_{q+s+1}, \quad j = 1, \dots n,$$

(2.31) $P_{j\pm 1} \equiv P_j, \quad if \quad y_i \in [x_{n,j}, x_{n,j-1}), \quad i = 1..., s,$

$$(2.32) S_n \in \Delta^{(q)}(Y_s),$$

and

$$(2.33) ||g - S_n|| \le \frac{c}{n^{q\alpha}}.$$

Proof. Fix $n \ge N$ and, for simplicity set $x_j := x_{n,j}$, $I_j := I_{n,j}$ and $|I_j| := |I_{n,j}|$. For each $i = 1, \ldots, s$ denote by j_i the index for which $y_i \in [x_{j_i}, x_{j_i-1})$.

If $2 \leq j \leq n-1$, $j \neq j_i, j_i \pm 1, 1 \leq i \leq s$, then we denote $P_j(x) := P(x; x_j, x_{j-1})$, with P from Lemma 2.10, or Remark 2.11, as the case may be. Then P_j is of degree s+q, satisfies sgn $P_j^{(q)}(x) = \text{sgn } g^{(q)}(x), x \in I_j$, interpolates g at both x_j and x_{j-1} and, if q = 2, such that either (2.26) or (2.27) holds. Also, by virtue of (2.24),

(2.34)
$$||g - P_j||_{I_j} \le \frac{c_4 |I_j|^{q\alpha}}{\varphi(x_j)^{q\alpha}} \le \frac{c}{n^{q\alpha}},$$

where we used the inequality $\frac{|I_j|}{\varphi(x_j)} \leq \frac{c}{n}$.

Next, we denote $P_{j_i\pm 1}(x) = P_{j_i}(x) := P_*(x; x_{j_i+1}, x_{j_i-2}; y_{j_i})$, where P_* is defined in Lemma 2.8. Then P_{j_i} is a polynomial of degree s + q, comonotone, respectively, coconvex with g on $[x_{j_i+1}, x_{j_i-2}]$, with $P_{j_i}(x_{j_i+1}) = g(x_{j_i+1})$ and, if q = 2, such that either (2.19) or (2.20) holds with P_{j_i} instead of P_* . Also, in view of (2.17), P_{j_i} satisfies

(2.35)
$$\|g - P_{j_i}\|_{[x_{j_i+1}, x_{j_i-2}]} \le \frac{c|I_{j_i}|^{q\alpha}}{\varphi(y_{j_i})^{q\alpha}} \le \frac{c}{n^{q\alpha}}$$

where we used the fact that $\max\{y_{j_i} - x_{j_i+1}, x_{j_i-2} - y_{j_i}\} \le c|I_{j_i}|$, and $\frac{|I_{j_i}|}{\varphi(y_{j_i})} \le \frac{c}{n}$. Note that it follows by (2.35) that,

(2.36)
$$|\delta_i := g(x_{j_i-2}) - P_{j_i}(x_{j_i-2})| \le \frac{c}{n^{q\alpha}}, \quad 1 \le i \le s.$$

Finally, we have to define P_1 and P_n . We Denote $P_1(x) := P_+(x; x_1)$, with P_+ from Lemma 2.9. The polynomial $P_n(x) := P_-(x; x_{n-1})$, is obtained in the same way, applying Remark 2.6.

We are ready to define, S_n . Denote $j_0 := 3$ and $j_{s+1} := n+2$, and set

$$S_n|_{[x_j,x_{j-1}]} := P_j + \sum_{k=1}^i \delta_k, \quad j_i - 2 \le j \le j_{i+1} - 2, \quad 0 \le i \le s.$$

It follows by our construction that S_n is continuous, comonotone, respectively, coconvex with g, and since by (2.36),

$$\sum_{i=1}^{s} |\delta_i| \le \frac{c}{n^{q\alpha}},$$

 S_n satisfies (2.33). This completes our construction.

3 Proof of the theorems

We summarize the lemmas in the following theorem from which both Theorems 1.1 and 1.2 follow. We devote this section to proving it.

Theorem 3.1. For each $1 < \alpha \leq 2$, $q \in \{1,2\}$, $q\alpha \neq 4$, and $s \geq 1$, there is a constant $c = c(\alpha, s)$ and for each $Y_s \in \mathbf{Y}_s$ there is a constant $N^* = N^*(\alpha, Y_s)$, such that for every function $f \in \Delta^{(q)}(Y_s)$, satisfying

(3.1)
$$E_n(f) \le n^{-q\alpha}, \quad n \ge s + q + 1,$$

we have

$$E_n^{(q)}(f, Y_s) \le cn^{-q\alpha}, \quad n \ge N^*.$$

Proof. First we observe that by Lemma 2.2, (3.1) implies that

(3.2) $f \in C^q_{\varphi} \quad \text{and} \quad \omega_{s+1,q}(f^{(q)}, t) \le ct^{q\alpha - q}, \quad t > 0.$

Therefore we may apply Lemma 2.12 with g = cf. Denote by $S_n(x) = S_n(x; cf)$, the piecewise polynomial, guaranteed by Lemma 2.12.

Also, by Lemma 2.2, (3.1) implies that

$$\omega_{s+1+q}^{\varphi}(f,t) \le ct^{q\alpha}.$$

Hence, by (2.33)

(3.3)
$$\omega_{s+1+q}^{\varphi}(S_n, 1/n) \le \omega_{s+1+q}^{\varphi}(f, 1/n) + c \|f - S_n\| \le \frac{c}{n^{q\alpha}}.$$

Observe that (2.30) and (2.31) imply that, if q = 1, then, in the notation of [6], $S_n \in \Sigma_{s+2,O(Y_{s,n})}$ and, if q = 2, then, in the notation of [7], $S_n \in \Sigma_{s+3,n}(Y_s)$. Therefore, by virtue of (2.32), [6, p. 137, Proposition 3], for q = 1, and [7, p. 24, Theorem 3], for q = 2, we conclude by (3.3) that there exists a polynomial $Q_n \in \Delta^q(Y_s)$ of degree $\leq cn$, such that

$$||S_n - Q_n|| \le c\omega_{s+1+q}^{\varphi}(S_n, \frac{1}{n}) \le \frac{c}{n^{q\alpha}},$$

which, in turn, by (2.33) yields

$$||f - Q_n|| \le ||f - S_n|| + ||S_n - Q_n|| \le \frac{c}{n^{2\alpha}}.$$

This completes our proof.

References

- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987.
- [2] V. K. Dzyadyk and I. A. Shevchuk, *Theory of Uniform Approximation of Functions by Polynomials*, Walter de Gruyter, Berlin, 2008.
- [3] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk, Are the degrees of best (co)convex and unconstrained polynomial approximation the same?, Acta Math. Hungar. 123 (2009), 273–290.
- [4] _____, Are the degrees of the best (co)convex and unconstrained polynomial approximations the same? II, Ukrainian Math. J. **62** (2010), 369–386.
- [5] D. Leviatan, D. V. Radchenko, and I. A. Shevchuk, Positive results and counterexamples in comonotone approximation, Constr. Approx. 36 (2012), 243–266.
- [6] D. Leviatan and I. A. Shevchuk, Some positive results and counterexamples in comonotone approximation II, J. Approx. Theory 100 (1999), 113–143.
- [7] _____, Coconvex approximation, J. Approx. Theory **118** (2002), 20–65.
- [8] _____, Coconvex polynomial approximation, J. Approx. Theory **121** (2003), 100–118.
- [9] D. Leviatan, I. A. Shevchuk, and O. V. Vlasiuk, Positive results and counterexamples in comonotone approximation II, J. Approx. Theory 179 (2014), 1–23.
- [10] O. V. Vlasiuk, On the degree of piecewise shape-preserving approximation by polynomials, J. Approx. Theory 189 (2015), 67–75.
- [11] _____, Corrigendum to "On the degree of piecewise shape-preserving approximation by polynomials" [J. Approx. Theory 189 (2015), 67–75], J. Approx. Theory ? (2015), ?.