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Abstract. Let En(f) denote the degree of approximation of f ∈ C[−1, 1], by algebraic
polynomials of degree < n, and assume that we know that for some α > 0 and N ≥ 2,

nαEn(f) ≤ 1, n ≥ N.

Suppose that f changes its monotonicity s ≥ 1 times in [−1, 1]. We are interested in what
may be said about its degree of approximation by polynomials of degree < n that are
comonotone with f . In particular, if f changes its monotonicity at Ys := {y1, . . . , ys} and
the degree of comonotone approximation is denoted by En(f, Ys), we investigate when can
one say that

nαEn(f, Ys) ≤ c(α, s, N), n ≥ N∗,

for some N∗. Clearly, N∗, if it exists at all (we prove it always does), depends on α, s and
N . However, it turns out that for certain values of α, s and N , N∗ depends also on Ys and
in some cases even on f itself. The results extend previous results in the case N = 1.

1. introduction and the main result

Let Pn be the space of algebraic polynomials of degree < n, and let C[−1, 1] be the space
of continuous functions on [−1, 1] equipped with the uniform norm ∥f∥ = maxx∈[−1,1] |f(x)|.
For f ∈ C[−1, 1], denote by

En(f) = inf
Pn∈Pn

∥f − Pn∥,

the degree of approximation of f by algebraic polynomials of degree < n.
Given s ≥ 1, denote by Ys, the set of all collections Ys = {yi}s

i=1, of points yi, such that
y0 := −1 < y1 < · · · < ys < 1 =: ys+1. For such a collection we write f ∈ ∆(1)(Ys) if
f ∈ C[−1, 1] is nondecreasing on [ys, 1], nonincreasing on [ys−1, ys] and so forth, so that
finally, (−1)sf nondecreasing on [−1, y1], in particular, the collection Ys is the set of extreme
points of f . Since f ∈ ∆(1)(Ys) is differentiable a.e. in (−1, 1), we have

f ′(x)
s∏

i=1

(x − yi) ≥ 0,

a.e. there. We say that f ∈ ∆
(1)
s if there exists Ys ∈ Ys such that f ∈ ∆(1)(Ys). Note that

there may be more than one such Ys ∈ Ys. It is also possible that f ∈ ∆
(1)
s for different s’s.
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For f ∈ ∆(1)(Ys) we denote by

E(1)
n (f, Ys) := inf

Pn∈Pn∩∆(1)(Ys)
∥f − Pn∥

the degree of best comonotone approximation of f relative to Ys. We will also use the
notation

(1.1) E1,s
n (f) := sup

Ys∈Ys:f∈∆(1)(Ys)

E(1)
n (f, Ys),

for the worst possible degree of best comonotone approximation of f ∈ ∆
(1)
s , for the given s.

Given f ∈ ∆(1)(Ys), satisfying

(1.2) nαEn(f) ≤ 1, n ≥ 1,

for some α > 0, the question of the validity of the estimate

(1.3) nαE(1)
n (f, Ys) ≤ c(α, s), n ≥ N∗,

and if valid, how does N∗ depend on α, s, Ys and f , has been investigated in [9, Theorem
2 through 4]. It was shown that for each s ≥ 1, there is an exceptional discrete set of α’s,
denoted by As, such that, if f ∈ ∆(1)(Ys) satisfies (1.2) and α /∈ As, then (1.3) is valid with
N∗ = 1. For α ∈ As, (1.3) holds with N∗ = N∗(Ys) and it is impossible to achieve it with
N∗ independent of Ys.

The purpose of the present paper is to investigate a similar question when we have less
information about f ∈ ∆(1)(Ys). Namely, if we only know that for some N ≥ 2,

(1.4) nαEn(f) ≤ 1, n ≥ N,

what may we conclude about

(1.5) nαE(1)
n (f, Ys) ≤ c(α, s, N), n ≥ N∗?

Specifically, we will show that if f ∈ ∆(1)(Ys) satisfies (1.4), then necessarily (1.5) holds with
some N∗, which might, in general, depend on f , on Ys, on α and on N . We will investigate
the dependence of N∗ on these parameters.

Throughout the paper we will denote by c(α, s, . . . , N) different constants that may depend
only on the parameters inside the parentheses. We will use C(α, Ys, . . . , N, f) for constants
that may depend also on sets or functions.

There are three possibilities and in order to describe them we use the following notation.

Definition. The symbol “+” means that (1.5) holds for N∗ = N∗(α, s, N);
the symbol “⊕” means that (1.5) holds for N∗ = N∗(α, Ys, N) and does not hold without

the dependence on Ys, that is, for each A > 0 and M > 0, there are a number m > M , a

collection Y ∗
s ∈ Ys and a function f ∈ ∆(1)(Y ∗

s ) satisfying (1.4), for which mαE
(1)
m (f, Y ∗

s ) ≥ A;
and the symbol “⊖” means that (1.5) holds only for N∗ = N∗(α, Ys, f,N), and does not

hold without the dependence on f itself, that is, for each A > 0 and M > 0, and for every
Ys ∈ Ys there are a function f ∈ ∆(1)(Ys), satisfying (1.4), and a number m > M , for which

mαE
(1)
m (f, Ys) ≥ A.

Indeed, we rule out the possibility (usually denoted by “−”) that for some triple (Ys, α, N),
an f ∈ ∆(1)(Ys) satisfying (1.4), exists, for which there is no N∗ at all (see Section 2).
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Remark 1. Note that if for some s and α, we have “+” for some N0, then we also have
“+” for all N ≤ N0. Similarly, if we have “⊕” for some N0, then for any N ≤ N0, we cannot
have ⊖. On the other hand if for some N0 we have ⊖, then we have ⊖ for all N ≥ N0.
Remark 2. We should emphasize that except for N ≤ s+1, N∗ cannot be smaller than N .
Indeed, if N ≥ s+2 and fs is a polynomial such that f ′

s(x) = A(x+2)N−s−2
∏s

i=1(x−yi), with
A > 0 arbitrary, then clearly fs ∈ ∆(1)(Ys). Since fs is a polynomial of degree N−1, it follows
that En(fs) = 0 for all n ≥ N , thus satisfying (1.4). However, since A is arbitrary, assuming
N∗ < N , (1.5) immediately leads to a contradiction. On the other hand, if N ≤ s + 1,
then PN ∩ ∆(1)(Ys) = P1 ∩ ∆(1)(Ys), since any polynomial of degree ≤ s which changes

monotonicity s times must be constant. Hence E
(1)
N (f, Ys) = E

(1)
1 (f, Ys) = E1(f), so that if

(1.5) holds with N∗ = N , then it already holds with N∗ = 1.
Remark 3. We should also emphasize (see Theorem 3 in Section 6) that in all cases where
we have “ + ”, one may take N∗ = N .

The paper is devoted to proving the following result (the case N = 1 was proved in [9]).

Theorem 1. For every triple (α, s,N), α > 0, s ∈ N, and N ∈ N, there exists a constant
c(α, s,N), satisfying the following properties. If f ∈ ∆(1)(Ys), Ys ∈ Ys, and

nαEn(f) ≤ 1, n ≥ N,

then
nαE(1)

n (f, Ys) ≤ c(α, s,N), n ≥ N∗,

where
(i) “ + ”, N∗ ≤ N , if

(a) α is not an odd integer and α < s, or α is not an even integer and α < 2s, and
N ≤ ⌈α/2⌉;

or
(b) 2s < α ≤ 2s + 2 and N ≤ s + 2;
or
(c) α > 2s + 2 and all N ≥ 1.

(ii) “ ⊖ ”, N∗ = N∗(α, Ys, f,N), if
(a) ⌈α⌉ = 1 and N ≥ s + 2;
or
(b) ⌈α⌉ = 2 and N ≥ s + 3.

(iii) “ ⊕ ”, N∗ = N∗(α, Ys, N), in all other cases, except, perhaps, the case ⌈α⌉ = 2 ≤ s and
N = s + 2.

For the sake of comparison, we mention that in the case of monotone approximation (i.e.,
s = 0, Y0 = ∅, and ∆(1)(Y0) is the set of nondecreasing functions f ∈ C[−1, 1]), the third
possibility, obviously, cannot be present. It is known (see, e.g., [5, Section 11, Table 14])
that we may summarize the results for s = 0 in the following table.

⌈α/2⌉ ...
...

... . ..

2 + + + · · ·
1 + + ⊖ · · ·

1 2 3 N

Fig. 1, s = 0
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The results for s ≥ 2 presented in this paper may be illustrated in the following tables,
where we require two more symbols, namely,

⊕
+ :=

{
⊕, if either α is odd and < s, or α is even and ≤ 2s,

+, otherwise,

and

?
⊖ :=

{
⊖ when α ≤ 1,

? when 1 < α ≤ 2.

A table for s ≥ 4.

⌈α/2⌉ ...
...

...
...

...
...

...
...

... . ..

s + 2 + + + · · · + + + + + · · ·
s + 1 + + + · · · + + + + ⊕ · · ·

s
⊕
+

⊕
+

⊕
+ · · ·

⊕
+

⊕
+ ⊕ ⊕ ⊕ · · ·

s − 1
⊕
+

⊕
+

⊕
+ · · ·

⊕
+ ⊕ ⊕ ⊕ ⊕ · · ·

...
...

... . .. ... . .. ...
...

...
...

...

2
⊕
+

⊕
+ ⊕ · · · ⊕ ⊕ ⊕ ⊕ ⊕ · · ·

1
⊕
+ ⊕ ⊕ · · · ⊕ ⊕ ⊕

?
⊖ ⊖ · · ·

1 2 3 · · · s − 1 s s + 1 s + 2 s + 3 N

Fig. 2, s ≥ 4

The question mark in entry (1, s + 2) indicates that when N = s + 2, we do not know for
any given 1 < α ≤ 2, whether the correct symbol should be ⊕ or ⊖.

For the benefit of the reader we present the tables for s = 2 and s = 3, with the vertical
axis of ⌈α⌉ rather than ⌈α/2⌉. It demonstrates the above pattern, but for clarity we separate
the rows for α ≤ 1 and 1 < α ≤ 2.

⌈α⌉ ...
...

...
...

... . ..

7 + + + + + · · ·
6 + + + + ⊕ · · ·
5 + + + + ⊕ · · ·
4

⊕
+

⊕
+ ⊕ ⊕ ⊕ · · ·

3 + + ⊕ ⊕ ⊕ · · ·
2

⊕
+ ⊕ ⊕ ? ⊖ · · ·

1
⊕
+ ⊕ ⊕ ⊖ ⊖ · · ·
1 2 3 4 5 N

Fig. 3, s = 2
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⌈α⌉ ...
...

...
...

...
... . ..

9 + + + + + + · · ·
8 + + + + + ⊕ · · ·
7 + + + + + ⊕ · · ·
6

⊕
+

⊕
+

⊕
+ ⊕ ⊕ ⊕ · · ·

5 + + + ⊕ ⊕ ⊕ · · ·
4

⊕
+

⊕
+ ⊕ ⊕ ⊕ ⊕ · · ·

3 + + ⊕ ⊕ ⊕ ⊕ · · ·
2

⊕
+ ⊕ ⊕ ⊕ ? ⊖ · · ·

1
⊕
+ ⊕ ⊕ ⊕ ⊖ ⊖ · · ·
1 2 3 4 5 6 N

Fig. 4, s = 3

The table for s = 1 is somewhat different and again we present it with the vertical axis of
⌈α⌉ rather than ⌈α/2⌉, since for s = 1 and N = 3, we do know that for 1 < α ≤ 2 we have
⊕.

⌈α⌉ ...
...

...
...

... . ..

5 + + + + · · ·
4 + + + ⊕ · · ·
3 + + + ⊕ · · ·
2

⊕
+ ⊕ ⊕ ⊖ · · ·

1 + ⊕ ⊖ ⊖ · · ·
1 2 3 4 N

Fig. 5, s = 1

2. Auxiliary results

We begin with a few notions. Let g ∈ C[a, b], the space of continuous functions on [a, b],
with the uniform norm. Denote by

∆k
h(g, x) :=

{∑k
i=0(−1)k−i

(
k
i

)
g(x − (k/2 − i)h), if x ± kh/2 ∈ [a, b],

0, otherwise,

the kth symmetric difference, and define the ordinary kth modulus of smoothness of g by

ωk(g, t; [a, b]) := sup
0<h≤t

∥∆k
h(g, ·)∥[a,b].

If [a, b] = [−1, 1], we suppress the reference to the interval, that is, we write ωk(g, t) :=
ωk(g, t; [−1, 1]).

Let φ :=
√

1 − x2 and denote

φδ(x) :=
√

(1 − x − δφ(x)/2) (1 + x − δφ(x)/2) =

√
(1 − δφ(x)/2)2 − x2.
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The weighted D-T modulus of smoothness of a function f ∈ Cr(−1, 1), is defined by

ωφ
k,r(f

(r), t) := sup
0<h≤t

∥∥φr
kh(·)∆k

hφ(·)(f
(r), ·)

∥∥ .

In particular, if r = 0, then

ωφ
k (f, t) := ωφ

k,0(f, t),

is the (usual) kth D-T modulus.
It is known (see, e.g., [1, 11]) that ωφ

k,r(f
(r), t) is bounded for all t > 0, if and only if f ∈ Br,

the Babenko class, that is, f possesses a locally absolutely continuous (r− 1)st derivative in
(−1, 1) and φrf (r) ∈ L∞[−1, 1]. The following result is well known.

Lemma 1. If f ∈ Br, then

En(f) ≤ c(r)

nr
∥φrf (r)∥L∞[−1,1], n ≥ r.

Also, if r ≥ 1, then ωφ
k,r(f

(r), t) → 0, as t → 0, if and only if limx→±1 φr(x)f (r)(x) = 0.

Therefore, we denote C0
φ := C[−1, 1] and, for r ≥ 1,

Cr
φ := {f ∈ Cr(−1, 1) ∩ C[−1, 1] | lim

x→±1
φr(x)f (r)(x) = 0}.

First, we wish to rule out the possibility that for some triple (Ys, α, N), α ̸= 3, there exists
an f ∈ ∆(1)(Ys) satisfying (1.4), for which there is no N∗ at all. The case α = 3 is deferred
to Section 6, Proposition 5. We need the following result of [1, Theorem 7.1.2] (see also [7,
Theorem 3.3]).

Lemma 2. Let r ∈ N0, k ∈ N, and α > 0, be such that r < α < k + r, and let f ∈ C[−1, 1].
If

nαEn(f) ≤ 1 ∀n ≥ N,

where N ≥ k + r, then f ∈ Cr
φ and

(2.1) ωφ
k,r(f

(r), t) ≤ c(α, k, r)tα−r + c(N, k, r)tkEk+r(f), t > 0.

In case N = k + r, (2.1) takes the form

(2.2) ωφ
k,r(f

(r), t) ≤ c(α, k, r)tα−r, t > 0.

We also need the comonotone approximation estimates of f ∈ ∆(1)(Ys)∩Cr
φ, [11], [12] (see

also [5, §13.2, Statement 11, Tables 19-20]). Namely,

(2.3) E(1)
n (f, Ys) ≤

c(r, s)

nr
ωφ

1,r(f
(r), n−1), n ≥ N(Ys)

and, for r ̸= 2,

(2.4) E(1)
n (f, Ys) ≤

c(r, s)

nr
ωφ

2,r(f
(r), n−1), n ≥ N(Ys).

Note that (2.4) is, in general, invalid for r = 2 (see Nesterenko and Petrova [13]).
Now, if (1.4) holds, then, obviously, it holds for some N ≥ [α] + 1 =: r + 1, so we may

assume so. Hence, by (2.1), for α /∈ N,

ωφ
1,r(f

(r), n−1) ≤ c(α)nr−α + c(N, r)n−1Er+1(f),
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and for α = r ∈ N,

ωφ
2,r−1(f

(r−1), n−1) ≤ c(r)n−1 + c(N, r)n−2Er+1(f).

Hence, for α /∈ N, by (2.3)

nαE(1)
n (f, Ys) ≤ c(α, s)nα−rωφ

1,r(f
(r), n−1)

≤ c(α, s) + c(N,α, s)nα−r−1Er+1(f), n ≥ N(Ys),

which, in turn, implies

(2.5) nαE(1)
n (f, Ys) ≤ c(α, s), n ≥ N(f).

Also for α = r ∈ N, provided α ̸= 3, we obtain by (2.4)

nrE(1)
n (f, Ys) ≤ c(r, s)nωφ

2,r−1(f
(r−1), n−1)

≤ c(r, s) + c(N, r, s)n−1Er+1(f), n ≥ N(Ys),

and (2.5) follows for integer α ̸= 3.

We also need the following well known result (see, e.g., [7, Theorem 3.1]).

Lemma 3. Let 2r < α < 2k + 2r and f ∈ C[−1, 1]. If

nαEn(f) ≤ 1, n ≥ k + r,

then f ∈ Cr[−1, 1] and

ωk(f
(r), t) ≤ c(α, k, r)tα/2−r.

In Section 6 we have to consider subintervals [a, b] of [−1, 1]. Thus we need the notation

∆
(1)
s [a, b] for the set of all continuous functions in [a, b] that have s ∈ N0 changes of mono-

tonicity there, and for g ∈ ∆
(1)
s [a, b], we denote by E1,s

n (g)[a,b], the worst possible degree of
best comonotone polynomial approximation of g in [a, b] (see (1.1)). We state two lemmas
which follow from [2, Corollary 3.1] (see also [9, Corollaries 1 and 2], respectively).

Lemma 4. If g ∈ ∆
(1)
s [a, b] ∩ Cr[a, b], then

(2.6) E1,s
r+1(g)[a,b] ≤ (b − a)rω(g(r), b − a, [a, b]).

And

Lemma 5. If g ∈ ∆
(1)
s [a, b] ∩ Cr[a, b] and r ≥ s, then

(2.7) E1,s
r+2(g)[a,b] ≤ c(r)(b − a)rω2(g

(r), b − a, [a, b]).

3. Negative results

In order to establish the various negative conclusions, we need a few lemmas. We begin
with a sharper version of [10, Theorem 2]. We denote by Br the set of all functions f ∈ Br

such that |φr(x)f (r)(x)| ≤ 1 a.e. in x ∈ (−1, 1).

Lemma 6. Let r ∈ N, r > 2, and denote ρ := [ r+1
2

]. Assume that s ≥ ρ and m ≥ 1. Then

for each A > 0, there are a collection Ys and a function F ∈ ∆(1)(Ys) ∩ Br, such that

Eρ+1(F ) ≤ 1
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and

E(1)
m (F, Ys) > A.

Proof. Let

gr(x) :=

{
(x + 1)r/2 ln(x + 1), if r is even,

−(x + 1)r/2, if r is odd,
x ∈ (−1, 1],

and

gr(−1) := 0.

Simple calculations show that

g(ρ)
r (x) =

{
ρ! ln(x + 1) + c(r), if r is even,

− c(r)

(x+1)1/2 , if r is odd,
x ∈ (−1, 1],

so that, in particular, limx→−1 |g(ρ)
r (x)| = ∞, but |(1 + x)g

(ρ)
r (x)| ≤ c(r, 0), x ∈ (−1, 1].

Denote Mi(r) := ∥g(i)
r ∥, 1 ≤ i < ρ. Also, note that |g(ρ+i)

r (x)|, i ≥ 1, is decreasing and

g
(ρ+1)
r (x) > 0 for x ∈ (−1, 1], and

(3.1) |(1 + x)ρ+i−r/2g(ρ+i)
r (x)| ≡ c(r, i), x ∈ (−1, 1].

Let S ∈ C∞(R) be a monotone function, such that

S(x) :=

{
0, x ≤ 0,

1, x ≥ 1,

and denote Cj := ∥S(j)∥, j ≥ 0.
For b ∈ (0, 1) to be prescribed, write a := b − 1, and let

la(x) := g′
r(a) +

g′′
r (a)

1!
(x − a) + · · · + g

(ρ)
r (a)

(ρ − 1)!
(x − a)ρ−1,

be the Taylor polynomial of the derivative g′
r.

Set

ha(x) := g′
r(x) − la(x) =

1

(ρ − 1)!

∫ x

a

(x − u)ρ−1g(ρ+1)
r (u)du, x ∈ [−1, 1],

and

fa(x) = S

(
x − a

b

)
ha(x),

and denote

Fa(x) :=

∫ x

−1

fa(t)dt and La(x) :=

∫ x

−1

la(t)dt.

First we show that for some constant c1 = c1(r),

(3.2)
1

c1

Fa ∈ Br.

Indeed, we observe that

(1 + x)r/2F (r)
a (x) = (1 + x)r/2f (r−1)

a (x),

so that we should prove that the latter is bounded in (−1, 1].
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To this end, if x ∈ [−1,−1 + b], then fa(x) ≡ 0 and there is nothing to prove, and if x ∈
[−1+2b, 1], then |(1+x)r/2f

(r−1)
a (x)| = |(1+x)r/2h

(r−1)
a (x)| = |(1+x)r/2g

(r)
r (x)| ≡ c(r, r−ρ).

Since |g(ρ+i)
r (x)|, i ≥ 1, is decreasing in (−1, 1], we conclude that

(3.3) |h(i)
a (x)| ≤ bρ−ig(ρ+1)

r (a)/(ρ − i − 1)! , 0 ≤ i < ρ, x ∈ (−1 + b,−1 + 2b).

Also, since la is of degree ρ − 1, we have

(3.4) |h(i)
a (x)| = |g(i+1)

r (x)| ≤ |g(i+1)
r (a)|, ρ ≤ i < r, x ∈ (−1 + b,−1 + 2b).

Thus, for x ∈ (−1 + b,−1 + 2b),

|(1 + x)r/2f (r−1)
a (x)| ≤ (1 + x)r/2

r−1∑
i=0

(
r − 1

i

)
Cr−1−i

br−1−i
|h(i)

a (x)|

= (1 + x)r/2

ρ−1∑
i=0

(
r − 1

i

)
Cr−1−i

br−1−i
|h(i)

a (x)|

+ (1 + x)r/2

r−1∑
i=ρ

(
r − 1

i

)
Cr−1−i

br−1−i
|h(i)

a (x)|

≤ c(r)bρ−r/2+1|g(ρ+1)
r (a)| + c(r)

r−1∑
i=ρ

b−r/2+1+i|g(i+1)
r (a)|

≡ c1(r) =: c1,

where in the second inequality we applied (3.3) and (3.4), and for the last equality, we used
(3.1). This proves (3.2).

We claim that

(3.5) Eρ+1(Fa) ≤ ∥Fa + La∥ ≤ 2∥fa + la∥ ≤ c2(r) =: c2.

Indeed, if x ∈ [−1 + 2b, 1], then

|fa(x) + la(x)| = |ha(x) + la(x)| = |g′
r(x)| ≤ M1(r).

If x ∈ [−1,−1 + 2b), then,

|la(x)| ≤ M1(r) +
1

1!
M2(r) + · · · + 1

(ρ − 2)!
Mρ−1(r) +

g
(ρ)
r (a)

(ρ − 1)!
bρ−1.

≤ c3(r) + c(r, 0) =: c4(r).

Therefore, if x ∈ [−1,−1 + b), then,

|fa(x) + la(x)| = |la(x)| ≤ c4(r),

and if x ∈ [−1 + b,−1 + 2b), then,

|fa(x) + la(x)| ≤ |ha(x)| + |la(x)| ≤ 2|la(x)| + |g′
r(x)| ≤ 2c4(r) + M1(r) =:

1

2
c2(r).

Hence, (3.5) is proved.
Finally, for c5 := c1 + c2, take b so small that,

(3.6)
1

max{ρ,m}2ρ
|g(ρ)

r (a)| > c2 + c5A.
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Now let

F (x) :=
1

c5

Fa(x).

Then, it follows by (3.2), that F ∈ Br, and (3.5) implies that Eρ+1(F ) ≤ 1. Also, since fa ≡ 0
on [−1, a] and fa > 0 on (a, 1], taking Ys := {y1, . . . , ys}, with −1 < y1 < · · · < ys ≤ a,
we, evidently have, F ∈ ∆(1)(Ys). Assume, to the contrary, that there exists a polynomial
Pm ∈ Pm ∩ ∆(1)(Ys), such that

∥F − Pm∥ ≤ A,

equivalently, that
∥Fa − Qm∥ ≤ c5A,

where Qm = c5Pm.

Then, since s ≥ ρ, it follows that there exists a point θ ∈ (−1, a) where Q
(ρ)
m (θ) = 0. We

also observe that L
(ρ)
a (x) = l

(ρ−1)
a (x) ≡ g

(ρ)
r (a). Hence, by Markov’s inequality,

1

max{ρ,m}2ρ
|g(ρ)

r (a)| =
1

max{ρ,m}2ρ
|L(ρ)

a (θ)| =
1

max{ρ, m}2ρ
|L(ρ)

a (θ) + Q(ρ)
m (θ)|

≤ ∥La + Qm∥ ≤ ∥La + Fa∥ + ∥Qm − Fa∥
≤ c2 + c5A,

a contradiction to (3.6). This completes the proof. �
As a consequence we have,

Corollary 1. Let r ∈ N, r > 2, and denote ρ := [ r+1
2

]. Assume that s ≥ ρ and m ≥ 1.

Then for each A > 0, there are a collection Ys and a function f ∈ ∆(1)(Ys), such that

nrEn(f) ≤ 1, n ≥ ρ + 1,

and
E(1)

m (f, Ys) > A.

Proof. Take F of Lemma 6. Since F ∈ Br, it follows by Lemma 1, that

nrEn(F ) ≤ c(r)∥φrF (r)∥ ≤ c(r), n ≥ r.

At the same time, for ρ < n < r, we have nrEn(F ) ≤ rrEρ+1(F ) ≤ rr. Therefore, let
f := F

max{c(r),rr} , and we have the desired function. �

Further, following [3], let r ∈ N and Gr(x) := (x + 1)r ln(x + 1), Gr(−1) := 0. Since

Gr ∈ B2r and ∥φ2rG
(2r)
r ∥ < +∞, we have

(3.7) En(Gr) ≤ c(r)n−2r, n ∈ N.

We need this estimate for the proof of an important case, similar to [7, Lemma 2.3].

Lemma 7. Let s ∈ N0 and let Ys ∈ Ys. For each A > 0 and every m ∈ N, there is a
function f = fA,m ∈ ∆(1)(Ys), such that

n2En(f) ≤ 1, n ≥ s + 3,

and
E(1)

m (f, Ys) ≥ A.
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Proof. For b ∈ (−1, 0), let

fb(x) :=

∫ x

0

Π(t)

(∫ t

b

t − u

(u + 1)2
du

)
dt,

where Π(t) :=
∏s

i=1(t − yi).
Clearly, f ′

b(x)Π(x) ≥ 0, x ∈ (−1, 1), hence fb ∈ ∆(1)(Ys). Substituting the Taylor expan-
sion of Π(x) about x = −1, yields

fb = Ps+3 −
s∑

r=0

Π(r)(−1)

(r + 1)!
Gr+1,

where Ps+3 ∈ Ps+3. By virtue of (3.7), we have

(3.8) n2En(fb) ≤ c(s), n ≥ s + 3,

as ∥Π(r)(·)∥ ≤ c(s), 0 ≤ r ≤ s. We also have that polynomial

ps+3 :=

∫ x

0

Π(t)

(∫ 1

b

t − u

(u + 1)2
du

)
dt

belongs to Ps+3 and satisfies

Π(−1)p′s+3(−1) = Π2(−1) ln
b + 1

2
.

Therefore, for every Pm ∈ Pm ∩ ∆(1)(Ys), m ≥ s + 3, we get

−Π2(−1) ln
b + 1

2
= −Π(−1)p′s+3(−1)

≤ Π(−1)(P ′
m(−1) − p′s+3(−1))(3.9)

≤ m2|Π(−1)|∥Pm − ps+3∥,
where for the last inequality we have applied Markov’s inequality. At the same time,

ps+3(x) − fb(x) =

∫ x

0

Π(t)

(∫ 1

t

t − u

(u + 1)2
du

)
dt

does not depend on b. Hence, it follows by (3.9) that

(3.10) m−2|Π(−1)| ln 2

b + 1
≤ ∥Pm − fb∥ + ∥fb − ps+3∥ ≤ ∥Pm − fb∥ + c(s).

Thus,

E(1)
m (f ; Ys) ≥ m−2|Π(−1)| ln 2

b + 1
− c(s),

which for f := cfb with suitable b and c = c(s) completes the proof. �
Finally, we adapt the ideas of the proof of [7, Lemma 2.4] to obtain the following.

Lemma 8. Let s ∈ N and let Ys ∈ Ys. For each A > 0 and every m ∈ N, there is a function
f = fA,m ∈ ∆(1)(Ys), such that

nEn(f) ≤ 1, n ≥ s + 2,

and
E(1)

m (f, Ys) ≥ A.
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Proof. Denote Dj(x) := xj ln |x|, j ≥ 1 (Dj(0) := 0). It is well known that if Dj,γ(x) :=
Dj(x + γ), −1 < γ < 1, then

(3.11) nEn(Dj,γ) ≤ c(j), n ≥ 1.

Let 0 < b < 1
2
min{1 − ys, ys − ys−1} and denote l̃b(x) := x

b
− 1 + ln b, the tangent to ln x

at x = b. Further, let b∗ be the negative root of the equation l̃b(x) = ln |x|.Then, clearly

|b∗| = −b∗ < b, and (x− b∗)(l̃b(x)− ln |x|) ≥ 0, x ̸= 0. Hence, for lb(x) := l̃b(x + b∗), we have

(3.12) x(lb(x) − ln |x + b∗|) ≥ 0, x ̸= −b∗.

Write Π̃(x) :=
∏s−1

i=1 (x − yi) (Π̃ ≡ 1 if s = 1), and let

Lb(x) :=

∫ x

0

Π̃(u)lb(u − ys) du,

and

gb(x) :=

∫ x

0

Π̃(u) ln |u + b∗ − ys| du.

Finally, denote

fb := Lb − gb,

and observe that (3.12) implies that fb ∈ ∆(1)(Ys).
Integration by parts and induction readily show that

gb(x) =
s−1∑
r=0

Π̃(r)(ys − b∗)

(r + 1)!
Dr+1(x + b∗ − ys) + ps+1(x),

where ps+1 ∈ Ps+1, and since Lb ∈ Ps+2, it follows by (3.11) that

(3.13) nEn(fb) ≤ c(s), n ≥ s + 2.

Now, given any Pm ∈ Pm ∩ ∆(1)(Ys), we see that

0 < Π̃(ys) ln
1

b
< Π̃(ys)

(
ln

1

b
+ 1 − b∗

b

)
= −L′

b(ys) = P ′
m(ys) − L′

b(ys) ≤ C(s, ys)m∥Pm − Lb∥,

where we have applied the Bernstein inequality. Hence

0 < Π̃(ys) ln
1

b
< C(s, ys)m(∥Pm − fb∥ + ∥gb∥)

≤ C(Ys)m(∥Pm − fb∥ + 1),

since ∥gb∥ ≤ 2s ln 2.
This, in turn, implies

E(1)
m (fb, Ys) >

C(Ys)

m
ln

1

b
− 1,

which, together with (3.13), yields a function f = cfb, fulfilling the statements of the lemma
for c = c(s) and sufficiently small b. This completes the proof. �
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4. Positive results

In order to establish the various positive conclusions, we also need a few lemmas.
The following lemma can be derived from [2, Theorem 1.3’]. For the benefit of the readers

we provide a short proof.

Lemma 9. If f ∈ ∆(1)(Ys), s ≥ 1, then

E1(f) ≤ C(Ys)Es+1(f)

Proof. Denote by L the Lagrange polynomial of degree ≤ s, that interpolates the function
g(x) := f(x) − f(ys) at the points y1, . . . , ys and at the point −1. Since g ∈ ∆(1)(Ys), the
polynomial L has s − 1 extreme points in (−1, ys), therefore the polynomial L′ of degree
≤ s − 1 has all its (s − 1) zeroes in (−1, ys). Since L′(ys) < 0, it follows that L′(x) < 0 for
all x ∈ [ys, 1]. Hence L(x) ≤ 0, x ∈ [ys, 1], which, in turn, implies

(4.1) 0 ≤ g(x) ≤ g(x) − L(x), x ∈ [ys, 1].

Evidently,

max
x∈[ys,1]

|g(x) − L(x)| ≤ ∥g − L∥ ≤ C(Ys)Es+1(g)(4.2)

= C(Ys)Es+1(f).

Also, if l denotes the Lagrange polynomial that interpolates g at s + 1 equidistant points in
[ys, 1], including ys and 1, then we have

E1(f) ≤ ∥g∥ ≤ ∥g − l∥ + ∥l∥ ≤ C(ys)
(
Es+1(g) + max

x∈[ys,1]
|g(x)|

)
= C(ys)

(
Es+1(f) + max

x∈[ys,1]
|g(x)|

)
.

Hence, substituting it together with (4.2) into (4.1) yields

E1(f) ≤ C(Ys)Es+1(f).

This completes the proof. �
For the proof of the positive results, we shall first establish certain approximation rate

for piecewise polynomials and then extend it to polynomials. To this end we first introduce
some notation.

For a fixed n ≥ 1, denote xj := xj,n := cos(jπ/n), j = 0, . . . , n. Then −1 = xn,n < · · · <
x0,n is the Chebyshev partition. Further, denote Ij := Ij,n := [xj,n, xj−1,n], j = 1, . . . , n and
let |Ij| := xj−1,n − xj,n.

For a given Ys, let

Oi := Oi,n(Ys) := (xj+1,n, xj−2,n), if yi ∈ [xj,n, xj−1,n),

where xn+1,n := −1 and x−1,n := 1. Finally, define

O := O(Ys, n) :=
s∪

i=1

Oi,

let (aq, bq), q = 1, . . . , l ≤ s, be the connected components of O(Ys, n) and denote Õq :=
[aq, bq],.
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We take a subset of the set of continuous piecewise polynomials of degree < r, with
extreme points at Ys, that may be well approximated by comonotone polynomials. Let
Σr,n := Σr,n(Ys) be the set of continuous piecewise polynomials S, on the Chebyshev partition
x0,n . . . , xn,n composed of polynomial pieces of degree < r, with the additional restriction

that S is a single polynomial on each Õq, q = 1, . . . , l. By [11, Proposition 3] we know the
following.

Lemma 10. If S ∈ Σr,n(Ys) ∩ ∆(1)(Ys), then

(4.3) E(1)
c1n(S, Ys) ≤ c2ω

φ
r (S,

1

n
),

where c1 = c1(r, s) and c2 = c2(r, s).

Another necessary result is an estimate of the ordinary Ditzian-Totik moduli of smoothness
by the weighted moduli. By virtue of [6, (3.4)] and [6, (3.5)], we have for f ∈ Cr

φ, 1 < j < n,
k ≥ 1 and 0 ≤ l ≤ r,

(4.4) |Ij|lωk+r−l(f
(l), |Ij|; Ij) ≤ c(k, r)n−rωφ

k,r(f
(r), 1/n).

Moreover, if 0 ≤ l < r/2, then (4.4) is valid also for j = 1 and j = n.

5. Negative conclusions

In this section we collect all the information on what cannot be achieved in the various
cases.
(1) It follows from Lemma 7, that if α ≤ 2, then in Fig. 2, there can be neither “+” nor
“⊕” in position (N,α) for any N ≥ s + 3. Moreover, it follows from Lemma 8 that if α ≤ 1,
then the same is true for N = s + 2.
(2) By virtue of Corollary 1, we obtain

Proposition 1. Given s ≥ 2 and α ∈ (2, 2s]. In Figs. 2 through 4, there can be no “ + ” in
position (N,α) for any N ≥ ⌈α/2⌉ + 1.

Proof. We may apply Corollary 1 with r = ⌈α⌉ > 2, as we observe that ρ =
[

r+1
2

]
≤ s.

Therefore, there can be no “ + ” for N ≥
[
⌈α⌉+1

2

]
+ 1 = ⌈α/2⌉ + 1. �

(3) By [10, Theorem 2], for every constant A > 0, s ≥ 1 and 2 ≤ r ≤ 2s + 2, excluding

r − 2 = 1 = s, and any m ≥ 1, there is a function f = fA,s,r,m ∈ ∆
(1)
s ∩ Br

φ such that

(5.1) E1,s
m (f) ≥ A∥φrf (r)∥ > 0.

Hence, by virtue of Lemma 1, we may conclude the following.

Proposition 2. If 0 < α ≤ 2, then there is no “ + ” in position (N,α), for all N ≥ 2. If
s = 1 and 2 < α ≤ 4, then there is no “ + ” in position (N, α), for all N ≥ 4

Proof. Taking (5.1) with r = 2, yields the assertion for 0 < α ≤ 2, and taking it with r = 4
yields the other. �
(4) A closer look at the proof of [10, Theorem 2] sharpens the conclusions we may draw from
the statement in (3) above. Namely,
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Proposition 3. If 4 ≤ 2s < α ≤ 2s + 2, then there is no “ + ” in position (N, α) for
N ≥ s + 3.

(5) Given s ≥ 1, we follow [9] and define the sets A1 := {2}, and for s ≥ 2,

As := {j | 1 ≤ j ≤ s − 1 or j = 2i, 1 ≤ i ≤ s}.
For α ∈ As and each m ≥ 1, a function fs,α,m, was constructed in [9], such that on the one
hand

nαEn(fs,α,m) ≤ 1, n ≥ 1,

while at the same time,
mαE1,s

m (fs,α,m) ≥ c(s) ln m.

Clearly, this very function proves that for α ∈ As, in position (N, α) in Fig. 2, there can be
no “+” for any N ≥ 1.

6. Positive conclusions

(1) By virtue of [11, Theorem 4], we have either “+” or “⊕” in Fig. 2, in all positions
(N, α), where N ≤ [α] + 1 and α ̸= 2.
Also, [11, Theorem 3] implies that we have “+” in Fig. 2, in all positions (N,α) where
N ≤ [α] + 1 and either 0 < α < 1, or s = 1 and 2 < α < 3, or α > 2s + 2.

At the same time [12, Theorem 1] implies that we have ⊕ in Fig. 5 (the table for the case
s = 1), in position (3, α) for 1 < α ≤ 2. The proof is similar to that of [12, Corollary 2].

(2) In [5, Tables 19-20], there are truth tables depending on (k, r, s) for the validity of the
estimate

(6.1) E(1)
n (f, Ys) ≤

c(k, r, s)

nr
ωφ

k,r(f
(r), n−1), n ≥ N ,

for various integers N .
By virtue of [5, Tables 19-20] (relating α and r by r = ⌈α⌉ − 1), applying Lemma 2 and

(6.1), we conclude the following.

Proposition 4. Let α ∈ (3, 2s+3], N ≥ ⌈α⌉. Then we have either “+” or “⊕” in position
(N, α) in Fig. 2.
Further, let α > 2s + 3, and N as above. Then we have “ + ” in position (N,α) in Fig. 2.
Consequently, if α > 2s + 3, then we have “ + ” in all positions (N, α).

(3) We can show that for 0 < α ≤ 2 and 2 ≤ N ≤ s + 1 we have “⊕” in the position
(N, α) in Fig. 2. Indeed, if 0 < α < 2, then by Lemma 2,

(6.2) ωφ
2 (f, t) ≤ c(α, s)tα + c(N, s)t2E2(f),

and if α = 2, then by Lemma 2, applied to r = 1 < α = 2 < 3 = r + k, f ∈ C1
φ and,

(6.3) ωφ
2,1(f

′, t) ≤ c(s)t + c(N, s)t2E3(f).

It follows from [4, Theorem 1] (see also [8, Theorem 1’]) that,

E(1)
n (f, Ys) ≤ c(s)ωφ

2 (f, 1/n), n ≥ N(Ys).

Hence, for 0 < α < 2, we conclude by (6.2), that

(6.4) E(1)
n (f, Ys) ≤ c(α, s)n−α + c(N, s)n−2E2(f), n ≥ N(Ys).
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On the other hand by virtue of Lemma 9, we obtain

E2(f) ≤ E1(f) ≤ C(Ys)Es+1(f) ≤ C(α, Ys),

where for the last inequality we applied the assumption that (s + 1)αEs+1(f) ≤ 1. Thus,
substituting in (6.4), we have

nαE(1)
n (f, Ys) ≤ c(α, s) + C(N, α, Ys)n

−2+α, n ≥ N(Ys),

which in turn implies

nαE(1)
n (f, Ys) ≤ c(α, s), n ≥ N∗(N,α, Ys).

If α = 2, then by [10] and [12] (see also [5, paragraph 13.2, Statement 11, Tables 19-20]),

E(1)
n (f, Ys) ≤

c(s)

n
ωφ

2,1(f
′, 1/n), n ≥ N(Ys).

Hence, by (6.3), we obtain for α = 2, that

n2E(1)
n (f, Ys) ≤ c(s) + c(N, s)n−1E3(f), n ≥ N(Ys).

We proceed as above and conclude that

n2E(1)
n (f, Ys) ≤ c(s), n ≥ N∗(N, Ys).

In view of Propositions 1 and 2, we conclude that for all (N, α) under consideration, we have
“⊕”.

(4) What follows is a proof of a theorem that, in essence, appears in the appendix of [9]
(see [9, Theorem 5]). We give a simpler and more transparent proof, and also rectify an
inadvertent minor omission in that proof.

Theorem 2. Assume s ∈ N, α > 1, α /∈ As and N ≤ ⌈α/2⌉. Then there are constants

N∗(α, s, N) and c(α, s), such that for every function f ∈ ∆
(1)
s satisfying

(6.5) nαEn(f) ≤ 1, n ≥ N,

we have

(6.6) nαE1,s
n (f) ≤ c(α, s), n ≥ N∗(α, s, N).

Proof. As in [9, proof of Theorem 3], we first have to establish the inequalities

(6.7) E1,σ
r+1(f)Jj,n

≤ c(α, s)

nα
, j = 1, . . . , n − 1,

where Jj,n := [xj+1, xj−1] and σ is defined by f ∈ ∆
(1)
σ [xj+1, xj−1], and where r := [α] ≥ 1.

But unlike [9], where (6.5) held with N = 1, here we have to take into consideration N .
Thus, if α /∈ N, then by virtue of Lemma 2, with k = 1 and r = [α], (6.5) and (4.4) imply
that f ∈ Cr(−1, 1) and

ω(f (r), |Jj,n|, Jj,n) ≤ c(α)

|Jj,n|rnα
, 2 ≤ j ≤ n − 2,
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and if α ∈ N, then observing that r − 1 < α = r < r + 1, Lemma 2, with k = 2, combined
with (6.5) and (4.4), yields

ω2(f
(r−1), |Jj,n|, Jj,n) ≤ c(α)

|Jj,n|r−1nα
, 2 ≤ j ≤ n − 2.

Note that in order to apply Lemma 2, we have to have N ≤ r + 1 = [α] + 1, but we actually
have to restrict N even further as is seen below.

In order to obtain (6.7) for the end intervals J1,n and Jn−1,n, we need the inequality

ω(f ([ r
2
]), |Jj,n|, Jj,n) ≤ c(α)

|Jj,n|[
r
2
]nα

, j = 1, n − 1,

for α that is not an even integer. This follows by virtue of Lemma 3, when we observe that
with r = [α], we have 2[ r

2
] < α < 2[ r

2
] + 2, and that |Jj,n| ∼ n−2, j = 1, n − 1. Again, note

that in order to apply Lemma 3 we must have N ≤ [ r
2
] + 1 = ⌈α/2⌉.

Finally, when α is an even integer, we have 2( r
2
− 1) < r = α < 2( r

2
− 1) + 4, so we apply

Lemma 3 with k = 2 to obtain that f ∈ C
r
2
−1[−1, 1],

ω2(f
( r
2
−1), |Jj,n|, Jj,n) ≤ c(α)

|Jj,n|
r
2
−1nα

, j = 1, n − 1.

And again, note that in order to apply Lemma 3 we must have N ≤ ( r
2
− 1) + 2 = α/2 + 1.

Summarizing, we see that taking N ≤ ⌈α/2⌉, yields all the above estimates. We observe
that if α is an even integer, then we actually have the estimates also for N = α/2 + 1.

The above four inequalities, combined with (2.6) and (2.7) yield (6.7). Note that for α an
even integer, Lemma 5 is applicable only when α ≥ 2s + 2. This is related to why we have
to exclude the even α’s in As.

Clearly, it suffices to prove (6.6) for E
(1)
n (f, Ys), where Ys ∈ Ys is an arbitrary collection

such that f ∈ ∆(1)(Ys). So denote

σ
(1)
r+1,n(f, Ys) := inf{∥f − S∥ : S ∈ Σr+1,n(Ys) ∩ ∆(1)(Ys)},

the degree of best approximation by the specific class of splines as defined in Section 2. We
will show the piecewise polynomial analogue of (6.6), namely,

(6.8) nασ
(1)
r+1,n(f, Ys) ≤ c̃(α, s), n ≥ Ñ(α, s),

and that it suffices to take Ñ(α, s) = s(2s + 1).
To this end, let m ≥ s, and take two Chebyshev partitions, {x0,m, . . . , xm,m} and

{x0,m(2s+1) . . . , xm(2s+1),m(2s+1)}. Let Õq be the connected components of O(Ys,m(2s + 1))

(see Section 2). Clearly, every Õq is contained in an interval Jj,m := Ij,m ∪ Ij+1,m, for some j,
2 ≤ j ≤ m, since each interval Ij,m contains (2s + 1) adjacent intervals of the type Ii,m(2s+1),

and Õq contains at most (2s + 1) of the latter intervals.

Now, for each Õq, define S on the corresponding Jj,m to be a polynomial of degree ≤ r,
comonotone with f on Jj,m, that yields (6.7), i.e., satisfies

(6.9) E1,σ
r+1(f)Jj,m

≤ c(α, s)

mα
=

c(α, s)(2s + 1)α

mα(2s + 1)α
.

Evidently, doubling the constant on the right hand side of (6.9), we can guarantee that, in
addition, S(xj+1,m) = f(xj+1,m).
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Let Ii,m(2s+1) be an interval where S has yet not been defined that is, a partition interval
not contained in any of the above Jj,m. In particular, f is monotone on Ii,m(2s+1), and
without loss we may assume that it is nondecreasing there. By virtue of (6.7) there exists a
nondecreasing polynomial Pr+1,i of degree ≤ r, on Ii,m(2s+1), satisfying

(6.10) ∥f − Pr+1,i∥Ii,m(2s+1)
= E1,σ

r+1(f)Ii,m(2s+1)
≤ c(α, s)

(m(2s + 1))α
.

To simplify notation, we may assume that Ii,m(2s+1) = [a, b], b > a, that f(a) = 0 and, by
adding a constant to the polynomial, that f(a) = Pr+1,i(a) (again doubling the constant on
the right hand side of (6.10)).

We will further modify Pr+1,i, to ensure that

(6.11) f(b) = Pr+1,i(b).

If (6.11) does not hold, then we distinguish between two cases.

First, assume that Pr+1,i(b) > f(b). Then, let 0 < θ := f(b)
Pr+1,i(b)

< 1. Obviously,

Qr+1,i(x) := θPr+1,i(x) is nondecreasing and Qr+1,i(b) = f(b). Also, by (6.10),

∥Qr+1,i − f∥ ≤ ∥Qr+1,i − Pr+1,i∥ + ∥Pr+1,i − f∥

≤ (1 − θ)∥Pr+1,i∥ + 2
c(α, s)

(m(2s + 1))α

= (1 − θ)|Pr+1,i(b)| + 2
c(α, s)

(m(2s + 1))α

= |Pr+1,i(b) − f(b)| + 2
c(α, s)

(m(2s + 1))α

≤ 4
c(α, s)

(m(2s + 1))α
.

Otherwise Pr+1,i(b) < f(b). Let the linear function l be defined by

l(x) := (f(b) − Pr+1,i(b))
x − a

b − a
.

Then, clearly, l is nondecreasing on Ii,m(2s+1) and so is Qr+1,i := Pr+1,i + l. Also Qr+1,i(b) =
f(b) and

∥Qr+1,i − f∥ ≤ |f(b) − Pr+1,i(b)| + ∥Pr+1,i − f∥ ≤ 4
c(α, s)

(m(2s + 1))α
.

Thus, in both cases we set S := Qr+1,i on Ii,m(2s+1).
To summarize, we have constructed a piecewise polynomial S of degree ≤ r, which is

comonotone with f in [−1, 1] and,

∥f − S∥ ≤ 4c(α, s)(2s + 1)α

(m(2s + 1))α
=: ĉ(α, s).

However, S may not be continuous at the right hand ends of the intervals Jj,m corresponding

to the Õq’s. So we change S going from left to right adding constants to the left part to

match it to the right part to obtain S̃. This increases the error ∥f − S̃∥ by at most an
additional sĉ(α, s).



POSITIVE RESULTS AND COUNTEREXAMPLES IN COMONOTONE APPROXIMATION II 19

In conclusion, we have established (6.8) with c̃(α, s) = 4(s + 1)c(α, s)(2s + 1)α, where
c(α, s) as in (6.7), for every n = m(2s + 1), m ≥ s. This, in turn, trivially implies (6.8) with
Ñ(α, s) = s(2s + 1).

Now, S̃ ∈ Σr+1,n(Ys) ∩ ∆(1)(Ys), so that by Lemma 10, we have

E(1)
n (f, Ys) ≤ E(1)

n (S̃, Ys) + ∥S̃ − f∥
≤ c2(r + 1, s)ωφ

r+1(S̃, 1/n) + c̃(α, s)n−α

≤ c2(r + 1, s)ωφ
r+1(f, 1/n) + c3c̃(α, s)n−α,

for all n ≥ max{c1(r + 1, s), Ñ(α, s)}.
Finally, combining (6.5) and Lemma 2, yields

ωφ
r+1(f, 1/n) ≤ c4(α)n−α.

This completes the proof. �

Combining Theorem 1 with the positive result for 0 < α < 1 and N = 1 from [9], we
conclude,

Corollary 2. For α /∈ As and N ≤ ⌈α
2
⌉, there is “+” in Fig 2. in position (N, α).

(5) We may apply the ideas of the proof of Theorem 2 in order to obtain new information
about some of the outstanding cases. We begin with α ∈ (2, 3]. In particular, the following
proposition will show that, for α = 3, we have “⊕”. Recall that earlier we could not even
guarantee that we have no “−” at some positions of the form (N, 3).

Proposition 5. For α ∈ (2, 3], N ≥ 3 we have either “ + ” or “ ⊕ ”.

Proof. Since we wish to prove at least “⊕”, we may limit ourselves to n ≥ N∗, where
N∗ = N∗(Ys) is so big that any interval Jj,n, 1 < j < n − 1, contains at most one of the
extreme points yi, and both J1,n and Jn−1,n contain no extreme point, that is, f is monotone
there. Following the lines of proof of Theorem 2, it suffices to establish the inequalities

(6.12) E1,σ
N+1(f)Jj,n

≤ c(α, s, N)

nα
, j = 1, . . . , n − 1, n ≥ N∗.

Note that by our choice of N∗, σ = 0 or σ = 1.
Observing that 2 < α < N + 1 = 2 + N − 1, we conclude by Lemma 2 that f ∈ C2

φ, and

ωφ
N−1,2(f

′′, t) ≤ c(α, N)tα−2, t > 0.

Hence, combining with (4.4), we obtain

(6.13) |Jj,n|2ωN−1(f
′′, |Jj,n|; Jj,n) ≤ cn−2ωφ

N−1,2(f
′′, 1/n) ≤ c(α,N)n−α, 1 < j < n − 1.

At the same time, by [5, Tables 2 and 16], we know that if a function g ∈ C(2)[−1, 1] is
monotone in [−1, 1], or if it changes its monotonicity once there, say, at Ỹ1 = {ỹ1}, then,
respectively,

E
(1)
N+1(g) ≤ c(N)ωN−1(g

′′, 1),

and

E
(1)
N+1(g, Ỹ1) ≤ c(N)ωN−1(g

′′, 1).
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Translating the last two inequalities to an interval [a, b], (by the linear transformation 2y =
(b − a)x + b + a), we readily see that if g is monotone in [a, b], or if g changes monotonicity
once there, say, at Ỹ1 = {ỹ1}, then, respectively,

E
(1)
N+1(g)[a,b] ≤ c(N)(b − a)2ωN−1(g

′′, b − a; [a, b]),

and
E

(1)
N+1(g, Ỹ1)[a,b] ≤ c(N)(b − a)2ωN−1(g

′′, b − a; [a, b]).

Therefore, for each Jj,n, 1 < j < n − 1, we obtain by (6.13), that

E1,σ
N+1(f)Jj,n

≤ c(α,N)|Jj,n|2ωN−1(f
′′, |Jj,n|; Jj,n) ≤ c(α, N)n−α.

This proves (6.12) for 1 < j < n − 1.
For the intervals J1,n and Jn−1,n, we observe that 2 < α < 2 + 2N , and apply Lemma 3 to

obtain that f is continuously differentiable in [−1, 1] and,

ωN(f ′, t) ≤ c(α,N)t
α
2
−1, t > 0.

As above, by [5, Table 2], we end up having

E1,0
N+1(f)J1,n ≤ c(α, N)|J1,n|ωN(f ′, |J1,n|; J1,n) ≤ c(α, N)

n2
ωN(f ′, 1/n2) ≤ c(α, N)n−α.

The case of Jn−1,n is the same. This completes the proof of (6.12).
We proceed with the proof as in the proof of Theorem 2, except that the piecewise poly-

nomials are of degree < N + 1 instead of being of degree < r + 1. �
(6) We still need to close some gaps for α ∈ (2s, 2s + 3].

Proposition 6. For α ∈ (2s, 2s + 2] and N = s + 2, there is “ + ” in position (N,α), and
for α ∈ (2s + 2, 2s + 3] and N ≥ s + 3, there is “ + ” in position (N, α).

Proof. We apply the same strategy as in the proof of Proposition 5. Assume first that
2s < α ≤ 2s + 2. Then from 2s < α < 2s + 3, we conclude by Lemma 2 that f ∈ C2s

φ and,

ωφ
3,2s(f

(2s), t) ≤ c(α, s, N)tα−2s, t > 0.

Combining with (4.4), we obtain

|Jj,n|2sω3(f
(2s), |Jj,n|; Jj,n) ≤ cn−2sωφ

3,2s(f
(2s), 1/n) ≤ c(α, s,N)n−α, 1 < j < n − 1.

As explained in the proof of Proposition 5, [5, Tables 16, 17 and 18] show us that

E1,σ
2s+3(f)Jj,n

≤ c(α, s, N)|Jj,n|2sω3(f
(2s), |Jj,n|; Jj,n) ≤ c(α, s, N)n−α, 1 < j < n − 1.

In order to deal with J1,n and Jn−1,n, we use the fact that 2s < α < 2s+4, so that by Lemma
3, f ∈ Cs[−1, 1] and,

ω2(f
(s), t) ≤ c(α, s,N)t

α
2
−s.

Again, we get by [5, Tables 16, 17 and 18] that

E1,σ
s+1(f)J1,n ≤ c(α, s,N)|J1,n|sω2(f

(s), |J1,n|; J1,n) ≤ c(α, s, N)n−α,

and similarly for Jn−1,n. We complete the proof as before.
Now, if 2s + 2 < α ≤ 2s + 3 and N ≥ s + 3, then we write 2s + 2 < α < s + N + 1 =

2s + 2 + N − s − 1, and we conclude from Lemma 2, that f ∈ C2s+2
φ and,

ωφ
N−s−1,2s+2(f

(2s+2), t) ≤ c(α, s,N)tα−2s−2.
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We may also write 2s + 2 < α < 2N = 2s + 2 + 2(N − s− 1), and apply Lemma 3 to obtain
that f ∈ Cs+1[−1, 1] and

ωN−s−1(f
(s+1), t) ≤ c(α, s,N)t

α
2
−s−1.

Thus, we proceed as before. We leave the details to the reader. �
Finally, we summarize the “ + ” cases in the following statement (thus proving the last

statement in Remark 3 in the introduction).

Theorem 3. In all cases where we have “ + ”, we may take N∗ = N .

Proof. We are going to apply the generalized Whitney inequality for comonotone poly-
nomial approximation (see [2, Corollary 3.1] and Pleshakov and Shatalina [14, Theorem
2]). The following Whitney inequality holds for comonotone polynomial approximation for
f ∈ Cr[−1, 1] ∩ ∆(1)(Ys).

(6.14) E
(1)
k+r(f, Ys) ≤ c(k, r, s)ωk(f

(r), 1),

when either k = 1 and r ≥ 0, or k = 2 and r = s, or r ≥ s + 1 and k ≥ 1.
Thus assume that for the triple (α, s,N) satisfying (1.2), there exists N∗ = N∗(α, s, N) for

which (1.3) is valid. Obviously, we may assume that N∗ ≥ N for otherwise there is nothing
to prove.

First, assume N ≤ ⌈α/2⌉. Take r = N − 1 and observe that α > 2r. Let 2r < β <
min{2r + 2, α} and write k = 1 so that N = k + r. Then by (1.2),

nβEn(f) ≤ 1, n ≥ k + r,

which, by virtue of Lemma 3, yields that f ∈ Cr[−1, 1] and

ω1(f
(r), 1) ≤ c(α)1β/2−r = c(α).

Hence, we apply (6.14) and conclude that

(6.15) E
(1)
N (f, Ys) ≤ c(α, s).

In order to complete the proof in this case we have to prove that (1.3) is valid for N ≤ n < N∗.
Indeed, noting that N∗ = N∗(α, s, N), we obtain by (6.15),

nαE(1)
n (f, Ys) ≤ (N∗)αE

(1)
N (f, Ys) ≤ (N∗(α, s,N))αc(α, s) =: c(α, s,N),

and the proof is complete.
Second, assume that ⌈α/2⌉ = s + 1 and N = s + 2. Then we take r = s and k = 2, so

that N = k + r and 2r = 2s < α < 2r + 2k. Since (1.2) is satisfied, it follows by Lemma 3
that f ∈ Cr[−1, 1] and

ω2(f
(r), 1) ≤ c(α, s)1α/2−r = c(α, s).

Hence, we again apply (6.14) and obtain (6.15). We complete the proof in this case as above.
Finally, if N > ⌈α/2⌉ ≥ s + 2, then we take r = s + 1 and k = N − r. Once more

2r = 2s + 2 < α < 2N = 2r + 2k, and (1.2) is satisfied. Hence, by virtue of Lemma 3,
f ∈ Cr[−1, 1] and

ωk(f
(r), 1) ≤ c(α, s,N),

which, in turn, by virtue of (6.14), implies

E
(1)
N (f, Ys) ≤ c(α, s,N).

The proof of this case now follows as above. This completes the proof of our theorem. �
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7. Proof of Theorem 1

(i) First, it follows by Theorem 3 that in all “ + ” cases, N∗ ≤ N (see Remarks 2 and 3 in
the introduction).

(a) That one has “ + ”, in these α’s, for N ≤ ⌈α/2⌉, follows from Theorem 2.
(b) This case follows from Proposition 6.
(c) That one has “ + ” for α > 2s + 2 for all N ≥ 2, follows from Propositions 4 and 6.

(ii) Both cases are the conclusion of Section 5(1).
(iii) For α ∈ As it follows from Section 5(5). For s ≥ 2 and 2 ≤ ⌈α/2⌉ ≤ s we have ⊕ for all
N ≥ ⌈α/2⌉ + 1, by virtue of Proposition 1. For s ≥ 2 and ⌈α/2⌉ = s + 1 we obtain ⊕ for
N ≥ s + 3 by combining Propositions 2 and 4, bearing in mind Remark 1. For ⌈α/2⌉ = 1,
it follows by Section 6(3) that we have ⊕ for 2 ≤ N ≤ s + 1. Finally, for s = 1 if 1 < α ≤ 2,
see Section 6(1), and if 2 < α ≤ 4, then we combine Propositions 2 through 5 to obtain ⊕
for N ≥ 4. This completes the proof. �
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