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Abstract

We prove that for a 3-monotone function F ∈ C[−1, 1], one can achieve the pointwise estimates

|F(x) − Ψ(x)| ≤ cω3(F, ρn(x)), x ∈ [−1, 1],

where ρn(x) :=
1

n2 +

√
1−x2

n and c is an absolute constant, both with Ψ , a 3-monotone quadratic spline on
the nth Chebyshev partition, and with Ψ , a 3-monotone polynomial of degree ≤ n.

The basis for the construction of these splines and polynomials is the construction of 3-monotone splines,
providing appropriate order of pointwise approximation, half of which nodes are prescribed and the other
half are free, but “controlled”.
c⃝ 2012 Elsevier Inc. All rights reserved.

Keywords: Shape preserving approximation; 3-monotone approximation by piecewise polynomials and splines;
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1. Introduction and historical background

In recent years there has been much interest and there have been quite a few achievements
in questions concerning the degree of approximation of a continuous function f , on a finite
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interval, which has a certain shape, by algebraic polynomials and by piecewise polynomials
possessing the same shape. By shape we mean nonnegativity, monotonicity, convexity and higher
order monotonicity (q-monotonicity), and finitely many changes in one of the above shapes in
the interval (e.g., f may be nondecreasing and nonincreasing, alternately, or f may be convex
and concave, alternately, finitely many times). Estimates on the degree of approximation are
either given in the uniform norm, usually involving various moduli of smoothness of f or its
derivatives (provided they exist), or are pointwise estimates. Much is known about the degree of
positive, monotone and convex approximation and a lot is known on the degree of q-monotone
approximation where q ≥ 4 (mostly negative results), but relatively little is known about
the degree of 3-monotone approximation. The interested reader can find details in the recent
survey [7].

We begin with the basic notions and the known results on 3-monotone approximation.
Let n ∈ N. Throughout the paper x j := cos jπ

n , j = 0, . . . , n, will denote the Chebyshev
knots, and −1 = xn < xn−1 < · · · < x1 < x0 = 1, the Chebyshev partition. Set
I j := [x j , x j−1], j = 1, . . . , n, and |I j | = x j−1 − x j . Finally, for x ∈ [−1, 1], let

ρn(x) :=
1
n2 +

√
1 − x2

n
.

Let Pn denote the space of algebraic polynomials of degree <n. Denote by ∆3
= ∆3

[−1, 1]

the set of 3-monotone continuous functions on [−1, 1], i.e., f ∈ ∆3, if f ∈ C[−1, 1] and f ′

exists and is convex in (−1, 1). For f ∈ ∆3 we denote the degree of 3-monotone polynomial
approximation by

E (3)
n ( f ) := inf

Pn∈Pn∩∆3
∥ f − Pn∥,

where the norm is the uniform norm on [−1, 1].
It was proved by Beatson [1] (for k = 1), Shvedov [11] (for k = 2), and Bondarenko [2] (for

k = 3), that

E (3)
n ( f ) ≤ cωk( f, 1/n), n ≥ N , (1.1)

where c is an absolute constant, independent of f and n, and N = k for k = 1, 2 and 3,
respectively.

We remind the reader that for g ∈ C[−1, 1] and k ≥ 1,

ωk(g, δ) := sup
|h|≤δ

∥∆k
h(g, ·)∥, δ > 0, (1.2)

where

∆k
h(g, x) :=


k

i=0


k
i


(−1)k−i g


x +


k
2

− i


h


, if x ± kh/2 ⊆ [−1, 1]

0, otherwise.

(1.3)

Furthermore, Shvedov [12] proved that for k > 4, (1.1) cannot be had with c = c(k) and
N = N (k) (constants which depend on k), and Wu and Zhou [13] proved that for k > 5, (1.1)
cannot be had even with c = c( f ) and N = N ( f ). Still nothing is known for k = 4.

In the case of 3-monotone piecewise polynomial approximation we shall limit ourselves to
the uniform and the Chebyshev partition of [−1, 1]. The first estimate is due to Konovalov and
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Leviatan [5], who proved that given f ∈ ∆3
∩ C2

[−1, 1], there exists a quadratic spline S ∈ ∆3,
with n equidistant nodes in [−1, 1] (the uniform partition), such that

∥ f − S∥ ≤
c

n2 ω1( f ′′, 1/n), n ≥ 1,

where c is an absolute constant. This was extended by Prymak [10] who proved for f ∈ ∆3, the
existence of a piecewise quadratic S ∈ ∆3, with n equidistant nodes in [−1, 1], such that

∥ f − S∥ ≤ cω3( f, 1/n), n ≥ 1.

(In fact Prymak [10] has obtained estimates involving the third modulus of smoothness of f for
the approximation by 3-monotone piecewise quadratics on an arbitrary partition of [−1, 1].)

In 2005 Leviatan and Prymak [8] proved that most of the expected Jackson type norm
estimates are valid for 3-monotone piecewise polynomial approximation. Namely, given f ∈

∆3
∩ Cr

[−1, 1], where either r ≥ 3 and k ≥ 1, or r = 1, 2 and k = 4 − r , there exist piecewise
polynomials S1, S2 ∈ ∆3, of degree ≤ k + r − 1, such that S1 has n equidistant nodes and S2 has
nodes on the Chebyshev partition, and which satisfy

∥ f − S1∥ ≤
c(k, r)

nr ωk( f (r), 1/n),

and

∥ f − S2∥ ≤
c(k, r)

nr ω
ϕ
k ( f (r), 1/n),

where ω
ϕ
k is the kth Ditzian–Totik (D–T) modulus of smoothness. Namely, for g ∈ C[−1, 1] and

k ≥ 1,

ω
ϕ
k (g, δ) := sup

0<h≤δ

∥∆k
hϕ(·)(g, ·)∥, δ > 0,

where ∆k
h is defined in (1.3) and ϕ(x) :=

√
1 − x2, x ∈ [−1, 1].

Recently Dzyubenko et al. [4] have closed the gap by proving the only remaining open case,
k = 4 and r = 0, namely, there exist splines S1, S2 ∈ ∆3, of degree ≥ 3, such that S1 has n
equidistant nodes and S2 has nodes on the Chebyshev partition, and which satisfy

∥ f − S1∥ ≤ cω4( f, 1/n),

and

∥ f − S2∥ ≤ cωϕ
4 ( f, 1/n).

Since the purpose of this paper is to establish pointwise estimates involving the third modulus
of smoothness for 3-monotone approximation of f ∈ ∆3 by both 3-monotone polynomials and
quadratic splines on the Chebyshev partition, it is worthwhile mentioning the negative result of
Bondarenko and Gilewicz [3], who proved that for r > 4, there exists a constant c = c(r) > 0,
such that for each n ∈ N, there is an f = fn ∈ ∆3

∩ Cr
[−1, 1], ∥ f (r)

∥ ≤ 1, such that for every
polynomial Pn ∈ Pn ∩ ∆3, there is an x ∈ [−1, 1] for which

| fn(x) − Pn(x)| > c
√

nρr
n(x).

Note that while for monotone and convex approximation by polynomials we cannot have
estimates involving the third and fourth moduli of smoothness (of the function), respectively,
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we do have estimates involving higher moduli of the derivatives, provided they exist. The
above mentioned negative result shows us that we cannot expect similar results for pointwise
3-monotone approximation, at least not for r > 4.

2. The main results

As mentioned above we have the interval [−1, 1] and the Chebyshev partition −1 = xn <

xn−1 < · · · < x1 < x0 = 1. When we refer to an arbitrary partition of an arbitrary interval
[a, b], we will use the notation a =: τn < τn−1 < · · · < τ1 < τ0 := b, and we will denote
by ∆3

[τn, τ0], the 3-monotone continuous functions on [τn, τ0]. We will also need the notation
∆2(τn, τ0), for the set of all convex continuous functions on (τn, τ0).

Theorem 1. Let τn < · · · < τ1 < τ0 be given and let F ∈ ∆3
[τn, τ0] be a function with a

derivative f := F ′
∈ ∆2(τn, τ0). Suppose, that s ∈ ∆2(τn, τ0) is a piecewise polynomial of

order k (degree k − 1) with nodes τn, . . . , τ1, τ0, satisfying

s(τi ) = f (τi ), i = 0, . . . , n,

s′(τi+) ≥ f ′(τi+), i = 1, . . . , n,

f ′(τi−) ≥ s′(τi−), i = 0, . . . , n − 1.

Then, there are at most n additional nodes θn, . . . , θ1, such that τn < θn < τn−1 < θn−1 <

τn−2 < · · · < θ1 < τ0, and a piecewise polynomial S ∈ ∆3
[τn, τ0] of order k + 1 with the nodes

τn, θn, τn−1, . . . , θ1, τ0, satisfying

∥F − S∥C[τi ,τi−1] ≤ 2


 (·)

τi

( f (x) − s(x)) dx


C[τi ,τi−1]

, i = 1, . . . , n, (2.1)

and such that

F(τi ) = S(τi ), i = 0, . . . , n. (2.2)

We are now able to state the pointwise estimates for 3-monotone approximation.
We begin with the splines.

Theorem 2. For each function F ∈ ∆3 and every n ≥ 1, there exists a quadratic spline S ∈ ∆3

on the Chebyshev partition −1 = xn < · · · < x1 < x0 = 1, satisfying

|F(x) − S(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1], (2.3)

where c is an absolute constant.

For the polynomials we have the following theorem.

Theorem 3. For each function F ∈ ∆3 and every n ≥ 2, there exists a polynomial Pn ∈ ∆3 of
degree ≤ n, satisfying

|F(x) − Pn(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1], (2.4)

where c is an absolute constant.

The next section is devoted to the proof of Theorem 1. Then we need quite a few lemmas, in
Sections 4 and 5, before we are able to prove Theorem 2 in Section 6. Finally, in Section 7, we
replace the 3-monotone quadratic spline we construct in Section 6, by a 3-monotone polynomial.
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In the sequel c denotes a generic constant which may differ at each occurrence.

3. Splines with controlled nodes

Theorem 1 is an easy consequence of the following lemma, which is a modification of Lemma
1 from [8].

Lemma 1. Let f, g, f1, f2 be continuous functions on [a, b], and such that

f1(x) ≤ f (x), g(x) ≤ f2(x), x ∈ [a, b].

Then, there are coefficients α, α1, α2 ≥ 0, with α + α1 + α2 = 1, such that

h(x) := αg(x) + α1 f1(x) + α2 f2(x), x ∈ [a, b]

satisfies b

a
f (x) dx =

 b

a
h(x) dx,

 (·)

a
(h(x) − f (x)) dx


C[a,b]

≤ 2


 (·)

a
(g(x) − f (x)) dx


C[a,b]

.

Proof. If
 b

a f (x) dx =
 b

a g(x) dx , then take h(x) := g(x), x ∈ [a, b], namely, α = 1 and
α1 = α2 = 0, and there is nothing to prove. Otherwise, if

 b
a f (x) dx >

 b
a g(x) dx , then we

apply the arguments of proof of Lemma 1 in [8] with g replacing q and f2 replacing l. The
resulting function is the convex combination of g and f2, namely, α1 := 0, and α, α2 are defined
by the corresponding formula from [8]. On the other hand, if

 b
a f (x) dx <

 b
a g(x) dx , then

we apply similar arguments, which we detail here and which will serve also as a reminder of the
proof in [8]. Thus, assume that

 b
a f (x) dx <

 b
a g(x) dx , and denote b

a
(g(x) − f (x)) dx =: A > 0,

and  b

a
( f (x) − f1(x)) dx =: B ≥ 0.

Set

h(x) :=
A f1(x) + Bg(x)

A + B
.

Now,  x

a
(h(t) − f (t)) dt

 ≤
A

A + B

 x

a
( f1(t) − f (t)) dt


+

B
A + B

 x

a
(g(t) − f (t)) dt


≤

AB
A + B

+
B

A + B

 x

a
(g(t) − f (t)) dt


C[a,b]
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≤
2B

A + B

 x

a
(g(t) − f (t)) dt


C[a,b]

≤ 2
 x

a
(g(t) − f (t)) dt


C[a,b]

.

Finally, b

a
h(x) dx =

A
A + B

 b

a
f1(x) dx +

B
A + B

 b

a
g(x) dx

=
A

A + B


B +

 b

a
f1(x) dx


+

B
A + B


−A +

 b

a
g(x) dx


=

 b

a
f (x) dx .

This concludes the proof. �

Proof of Theorem 1. Let i = 1, . . . , n be fixed. Put

f1(x) := max{ f ′(τi+)(x − τi ) + f (τi ), f ′(τi−1−)(x − τi−1) + f (τi−1)},

x ∈ [τi , τi−1],

and

f2(x) :=
f (τi )(x − τi−1)

τi − τi−1
+

f (τi−1)(x − τi )

τi−1 − τi
, x ∈ [τi , τi−1].

Then f2 is a linear function, and f1 is a piecewise-linear function with one node θi ∈ (τi , τi−1).
Moreover, the construction of f1 and f2 and well known properties of convex functions yield
that if f̃ is a convex function on [τi , τi−1], satisfying

f̃ (τi ) = f (τi ), f̃ (τi−1) = f (τi−1),

f̃ ′(τi+) ≥ f ′(τi+) and f̃ ′(τi−1−) ≤ f ′(τi−1−),

then

f1(x) ≤ f̃ (x) ≤ f2(x), x ∈ [τi , τi−1].

Hence,

f1(x) ≤ f (x) ≤ f2(x), x ∈ [τi , τi−1],

and

f1(x) ≤ s(x) ≤ f2(x), x ∈ [τi , τi−1].

By virtue of Lemma 1, we have a function

hi (x) := αs(x) + α1 f1(x) + α2 f2(x), x ∈ [τi , τi−1],

such that α, α1, α2 ≥ 0, and α + α1 + α2 = 1, which is a convex piecewise polynomial of order
k with at most one node θi ∈ (τi , τi−1), and satisfies τi−1

τi

hi (x) dx =

 τi−1

τi

f (x) dx, (3.1)
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and 
 (·)

τi

(hi (x) − f (x)) dx


C[τi ,τi−1]

≤ 2


 (·)

τi

(s(x) − f (x)) dx


C[τi ,τi−1]

. (3.2)

Note, that the construction of hi gives

hi (τi ) = hi+1(τi ), i = 1, . . . , n − 1,

and

h′

i+1(τi ) ≤ f ′(τi−) ≤ f ′(τi+) ≤ h′

i (τi ), i = 1, . . . , n − 1,

so that the function

h(x) := hi (x), x ∈ [τi , τi−1], i = 1, . . . , n,

is a piecewise polynomial of order k with the nodes τn, . . . , τ0 and, perhaps, some additional
nodes (with at most one node θi ∈ (τi , τi−1), i = 1, . . . , n), moreover h ∈ ∆2

[τn, τ0].
Finally, let

S(x) :=

 x

τn

h(t) dt + F(τn), x ∈ [τn, τ0].

Then, (2.2) readily follows (3.1), whence, in turn, (2.1) follows by virtue of (3.2). This completes
the proof. �

4. A fundamental lemma

We will need the following relations between the lengths of the various intervals I j , and
between these lengths and ρn(x), x ∈ I j . The following relations are well known (see, e.g.,
[9, (1.2) and (1.3)]).

ρn(x) < |I j | < 5ρn(x), x j ≤ x ≤ x j−1, j = 1, . . . , n, (4.1)

so that, in particular

ρn(x j−1) < 5ρn(x j ), j = 1, . . . , n. (4.2)

Also

|I j±1| < 3|I j |, j = 1, . . . , n, (4.3)

where we put |In+1| = |I0| = 0, and it is easy to see that for j > i ,

max{|I j |, |Ii |}
j − i
3π

≤ xi − x j . (4.4)

Finally, for all x ∈ [−1, 1] and every 1 ≤ j ≤ n − 1

ρ2
n(x) ≤ cρn(x j )(ρn(x j ) + |x − x j |) (4.5)

and, symmetrically,

ρ2
n(x j ) ≤ cρn(x)(ρn(x) + |x − x j |), (4.6)

where c is an absolute constant.
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Lemma 2. Given numbers α j ∈ [0, 1], j = 1, . . . , M. If

M
j=1

α j ≥ S, S ∈ N (4.7)

then
M

j=1

jα j ≥

S
j=1

j. (4.8)

Proof. Since α j ≤ 1, j = 1, . . . , M , it follows from (4.7) that for each K = 1, . . . , S that

M
j=K

α j ≥ S − K + 1.

Thus, adding these inequalities for K = 1, . . . , S, we obtain

α1 + 2α2 + · · · + SαS + SαS+1 + · · · + SαM ≥

S
K=1

(S − K + 1) =

S
j=1

j,

which in turn implies (4.8). �
The next lemma is a fundamental lemma in our construction.
We require the notation

x0
+ =


1, x ≥ 0,

0, x < 0.

Lemma 3. Let F ∈ C[−1, 1], and let the integers D, s and k, such that n/2 ≤ s < k ≤ n, be
given. Assume that

g(x) =

k
j=s

α j (x − x j )
0
+,

is a step function satisfying

0 ≤ α j ≤ C ω3(F, ρn(x j )), j = s, . . . , k, (4.9)
g(xs) > 200 C D ω3(F, ρn(xs)), (4.10)
g(xl) ≤ 200 C D ω3(F, ρn(xl)), l = s + 1, . . . , k, (4.11)

for some constant C > 0. Then there exists a nondecreasing polygonal line

S(x) =

k
j=s

β j

|I j |
(x − x j )+,

such that

|β j | ≤
α j

D
, (4.12)

S(x) = g(x), x ∈ [−1, 1] \ [xk, xs], (4.13)
|g(x) − S(x)| ≤ 402 C D ω3(F, ρn(x)), x ∈ [xk, xs]. (4.14)
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Remark 1. Note that in view of (4.9) and (4.10), F ∉ P3.

Proof. Note that xs ≤ 0, so that ρn(xs) > ρn(xl), l = s + 1, . . . , k, and let u, s ≤ u ≤ k, be the
largest integer such that

ω3(F, ρn(xu)) ≥
1
2

ω3(F, ρn(xs)). (4.15)

Then, by (4.11),

k
j=u+1

α j ≤ 200 C D ω3(F, ρn(xu+1)) ≤ 100 C D ω3(F, ρn(xs)).

Hence, by (4.10)
u

j=s

α j ≥ 100 C D ω3(F, ρn(xs)).

Denote by v, s ≤ v ≤ u, the largest integer such that
u

j=v+1

α j ≥ 65 C D ω3(F, ρn(xs)).

Put

p :=

u
j=v+1

α j

|I j |
, q :=

v
j=s

α j

|I j |
, Λ :=

p
q

.

Note that q ≠ 0, since by the definition of v we have

v+1
j=s

> 35C Dω3(F, ρn(xs)),

and by (4.9), αv+1 ≤ Cω3(F, ρn(xv+1)) ≤ Cω3(F, ρn(xs)), whence
v

j=s α j > 0.
If Λ ≤ 1, then we put

β̂ j :=


−Λα j

D
, j = s, . . . , v,

α j

D
, j = v + 1, . . . , u.

Otherwise, Λ > 1, and we set

β̂ j :=


−α j

D
, j = s, . . . , v,

α j

Λ D
, j = v + 1, . . . , u.

Denote

β j := β̂ j
g(xs)

u
i=s

β̂i
|Ii |

(xs − xi )

, j = s, . . . , u, (4.16)
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and, finally, put β j := β̂ j := 0, for j = u + 1, . . . , k. We will show that the polygonal line

S(x) =

k
j=s

β j

|I j |
(x − x j )+

is the required one. To this end, evidently,

k
j=t

β̂ j

|I j |
≥ 0, t = s + 1, . . . , k, (4.17)

k
j=s

β̂ j

|I j |
= 0, (4.18)

and

|β̂ j | ≤
α j

D
. (4.19)

We will prove that

k
j=s

β̂ j

|I j |
(xs − x j ) > g(xs) =

k
j=s

α j . (4.20)

Indeed, for Λ ≤ 1, by (4.18), (4.4), and Lemma 2, we have

k
j=s

β̂ j

|I j |
(xs − x j ) =

u
j=s

β̂ j

|I j |
(xv − x j ) ≥

1
D

u
j=v+1

α j

|I j |
(xv − x j )

≥
1

3π D

u
j=v+1

α j ( j − v) =
1

3π D

u−v
j=1

jα∗

j

=
C ω3(F, ρn(xs))

3π D

u−v
j=1

j
α∗

j

C ω3(F, ρn(xs))
≥

C ω3(F, ρn(xs))

3π D

65 D
j=1

j

=
65 D(65 D + 1)C ω3(F, ρn(xs))

6π D
> (200 D + 1)C ω3(F, ρn(xs)),

where α∗

j := α j+v , and we used the facts that 0 ≤ α∗

j ≤ C ω3(F, ρn(xs)), and

u−v
j=1

α∗

j =

u
j=v+1

α j ≥ 65 DC ω3(F, ρn(xs)).

Similarly, if Λ > 1, then we have

k
j=s

β̂ j

|I j |
(xs − x j ) =

u
j=s

β̂ j

|I j |
(xv − x j )

≥
1
D

v
j=s

α j

|I j |
(x j − xv)

> (200 D + 1)C ω3(F, ρn(xs)).
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On the other hand, the inequalities (4.9) and (4.11) imply

g(xs) ≤ (200 D + 1)C ω3(F, ρn(xs)). (4.21)

Hence, (4.20) is proven. Now, (4.12) follows by (4.19) and (4.20), and the definition of β j ,
(4.16). Also, (4.16) and (4.17) imply that S is non-decreasing, that S(xs) = g(xs), and by virtue
of (4.18), we get (4.13). Further, since S(x) = 0, x ≤ xu , (4.11) and (4.21) imply (4.14) for
x ∈ [xk, xu], where we note that by (4.11), if xl ≤ x < xl−1, l = u, . . . , k, then

g(x) = g(xl) ≤ 200 C Dω3(F, ρn(xl)) ≤ 200 C Dω3(F, ρn(x)).

Finally, for x ∈ [xu, xs]

|S(x) − g(x)| ≤ g(xs) − S(xu) = g(xs) ≤ (200 D + 1)C ω3(F, ρn(xs)),

by (4.21). Now (4.15) implies (4.14) for x ∈ [xu, xs]. This completes the proof. �

Remark 2. Lemma 3 is stated for the interval [−1, 0]. The situation is completely symmetric
for the interval [0, 1] (one only has to take a mirror image of the conditions, this time with
1 ≤ k < s ≤ n/2). We leave the statement and proof to the reader. (See also Remark 3.)

Lemma 3 is the main tool we use in the proof of Lemma 7. However, in that proof we may
encounter a case where the conditions of Lemma 3 are not satisfied and we need to apply another
tool. This is the purpose of the following observation.

Lemma 4. Let ⌈n/2⌉ ≤ k < n, and assume that the nonnegative numbers α j are such that

k
j=s

α j ≤ cω3(F, ρn(xs)), s = ⌈n/2⌉, . . . , k. (4.22)

Then for xl ≤ x < xl−1, l = ⌈n/2⌉, . . . , k − 1, and for −1 ≤ x < xk−1, for l = k, we have

l
j=⌈n/2⌉

α j


1 + x
1 + x j

2

≤ c̃ω3(F, ρn(x)). (4.23)

Proof. Denote m := ⌈n/2⌉ and let either xl ≤ x < xl−1, l = ⌈n/2⌉, . . . , k − 1, or
−1 ≤ x < xk−1, for l = k. We rewrite the left hand side of (4.23) using summation by parts.

l
j=m

α j


1 + x
1 + x j

2

=

l
j=m

α j


1 + x

1 + xm

2

+

l
s=m+1

l
j=s

α j (1 + x)2

×


1

(1 + xs)2 −
1

(1 + xs−1)2


.

By virtue of (4.22) we obtain,

l
j=m

α j


1 + x
1 + x j

2

≤ cω3(F, ρn(xm))


1 + x

1 + xm

2

+ c
l

s=m+1

ω3(F, ρn(xs))


1 + x
1 + xs

2

−


1 + x

1 + xs−1

2


=: I1 + I2.
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Now, for m ≤ s ≤ l, it follows that

ρ3
n(xs)

ρ3
n(x)


1 + x
1 + xs

3/2

≤ 64, (4.24)

where we recall that x < xl−1.
Observe that

1
(1 + xs)2 −

1
(1 + xs−1)2 ≤ c

|Is |

(1 + xs)3 ,

so that by (4.24),

I2 ≤ c
ω3(F, ρn(x))

ρ3
n(x)

(1 + x)2
l

s=m+1

ρ3
n(xs)

|Is |

(1 + xs)3

≤ cω3(F, ρn(x))

l
s=m+1

|Is |

(1 + xs)3/2

≤ cω3(F, ρn(x))(1 + x)1/2
 xm

xl

(1 + t)−3/2 dt

≤ cω3(F, ρn(x))


1 + x
1 + xl

1/2

. (4.25)

Also,

I1 ≤ c
ρ3

n(xm)

ρ3
n(x)

ω3(F, ρn(x))


1 + x

1 + xm

2

≤ cω3(F, ρn(x)). (4.26)

Combining (4.25) and (4.26), the proof is complete. �

Remark 3. Lemma 4 is stated for the interval [−1, 0], but we need it also for the interval
[0, 1]. However, unlike Lemma 3 which was translated, practically verbatim, to [0, 1], a similar
translation of Lemma 4 to [0, 1] is not helpful for the estimates on the approximation by the
splines with nodes at the Chebyshev knots, due to the non symmetry of the truncated powers.
Rather we will have to modify it. One should note that it is also possible to apply the same
modification in order to translate Lemma 3 to the interval [0, 1]. (See details in the last part
of the proof of Lemma 7.) Nevertheless, we need the translation of Lemma 4 to [0, 1] for the
estimates on the polynomial approximation, but we defer the statement for further preparations
(see Lemma 11).

5. Auxiliary lemmas

We begin with a lemma.

Lemma 5. Let θ ∈ (x j , x j−1), N+1 ≤ j ≤ n−N. For any γ , |γ | < 1
3 |I j |, there are nonnegative

numbers η j , µ j , ν j such that

η j (x − x j+N )2
+ µ j (x − x j+1)

2
+ ν j (x − x j−2)

2

= (x − θ)2
+ h2

j + γ (x − x j−2), x ∈ R, (5.1)

holds with N ≥ 1900 and h j = 7|I j |.



Author's personal copy

A. Bondarenko et al. / Journal of Approximation Theory 164 (2012) 1205–1232 1217

Proof. Comparing the coefficients of the various powers of x on both sides of the equation, we
observe that (5.1) is equivalent to the system of three linear equations

η j + µ j + ν j = 1,

η j x j+N + µ j x j+1 + ν j x j−2 = θ −
γ

2
,

η j x2
j+N + µ j x2

j+1 + ν j x2
j−2 = θ2

+ h2
j − γ x j−2.

The solution to the latter is given by

η j =
∆η, j

∆ j
, µ j =

∆µ, j

∆ j
, ν j =

∆ν, j

∆ j
,

where by straightforward computations we have,

∆ := (x j−2 − x j+1)(x j−2 − x j+N )(x j+1 − x j+N ) > 0,

∆η, j := (x j−2 − x j+1)

(θ − x j+1)

2
+ h2

j − (x j−2 − x j+1)

θ +

γ

2
− x j+1


,

∆µ, j := (x j−2 − x j+N )

(x j−2 − x j+N )

γ

2
+ x j−2 − θ


− (θ − x j−2)

2
− h2

j


,

∆ν, j := (x j+1 − x j+N )

(θ − x j+1)

2
+ h2

j − γ (x j−2 − x j+1)

+ (x j+1 − x j+N )

θ −

γ

2
− x j+1


.

Now,

x j−2 − x j+1 ≤ 7|I j |,

and

x j+1 +
|I j |

2
≤ θ ±

γ

2
≤ x j−2 −

|I j |

2
.

Hence, we obtain

h2
j − (x j−2 − x j+1)


θ +

γ

2
− x j+1


≥ (7|I j |)

2
− (x j−2 − x j+1)

2

≥ (7|I j |)
2
− (7|I j |)

2
= 0,

and as all other terms are nonnegative, we conclude that ∆η, j > 0.
Even simpler is the inequality

h2
j − γ (x j−2 − x j+1) > 49|I j |

2
−

1
3
|I j | · 7|I j | > 0,

so that, with all other terms being nonnegative, we conclude that ∆ν, j > 0.
Finally by virtue of (4.3) and (4.4), we obtain

(x j+1 − x j+N )
γ

2
+ x j−2 − θ


>

N − 1
π

|I j+1|
|I j |

2
≥

N − 1
6π

|I j |
2.

Hence,

(x j+1 − x j+N )
γ

2
+ x j−2 − θ


− (θ − x j+1)

2
− h2

j

>
N − 1

6π
|I j |

2
− 49|I j |

2
− 49|I j |

2
=


N − 1

6π
− 98


|I j |

2 > 0,

since we recall that N ≥ 1900. Thus, ∆µ, j > 0, and the proof is complete. �
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We also need the following lemma.

Lemma 6. For any θ ∈ (x j , x j−1), 1 ≤ j ≤ n − 1, there exists a piecewise quadratic spline
Sθ ∈ ∆3 with the Chebyshev knots, such that

Sθ (x) = (x − θ)2, x ∈ (x j−1, 1], (5.2)

|Sθ (x)| ≤ c


1 + x
1 + x j

2

|I j |
2, x ∈ [−1, x j ), (5.3)

|Sθ (x) − (x − θ)2
+| ≤ c|I j |

2, x ∈ [x j , x j−1]. (5.4)

Proof. For j = 1 we take Sθ (x) := (x − x1)
2
+ and observe that we have a stronger inequality

(5.3), namely, Sθ (x) = 0, x ∈ [−1, x1).
Otherwise, 1 < j < n, so take

Sθ (x) := −η(1 + x)2
+ µ(x − x j )

2
+ + ν(x − x j−1)

2
+, x ∈ [−1, 1],

where

η :=
(x j−1 − θ)(θ − x j )

(x j−1 + 1)(x j + 1)
,

µ :=
(x j−1 − θ)(θ + 1)

(x j + 1)(x j−1 − x j )
,

ν :=
(θ − x j )(θ + 1)

(x j−1 + 1)(x j−1 − x j )
.

By definition, µ, ν > 0, so that Sθ ∈ ∆3. Also, straightforward computations yield (5.2). Thus,
it is left to show (5.3) and (5.4). To this end, first let x ∈ [−1, x j ]. Then

|Sθ (x)| = η(1 + x)2
=

(x j−1 − θ)(θ − x j )

(x j−1 + 1)(x j + 1)
(1 + x)2

≤


1 + x
1 + x j

2

(x j−1 − θ)(θ − x j )

≤
1
4


1 + x
1 + x j

2

|I j |
2,

which proves (5.3). Finally, for x ∈ (x j , x j−1], we have

|Sθ (x)| = η(1 + x)2
+ µ(x − x j )

2

≤
1
4


1 + x
1 + x j

2

|I j |
2
+

θ + 1
x j + 1

|I j |
2

≤ c|I j |
2,

where for the last inequality we applied (4.4) to conclude that

max


1 + x
1 + x j

,
1 + θ

1 + x j


≤

1 + x j−1

1 + x j

= 1 +
x j−1 − x j

x j − xn
≤ 1 + 3π.
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This combined with the fact that

(x − θ)2
+ ≤ |I j |

2, x ∈ (x j , x j−1],

completes the proof of (5.4) and, thus, of the lemma. �

We apply the above lemmas to remove the unwanted θ j ’s.

Lemma 7. Suppose θ j ∈ (x j , x j−1), j = N + 1, . . . , n − N − 1, and

σ(x) =

n−N−1
j=N+1

q j (x − θ j )
2
+,

and assume that the coefficients are such that for some F ∈ C[−1, 1],

0 ≤ q j |I j |
2

≤ cω3(F, ρn(x j )), j = N + 1, . . . , n − N − 1.

Then there is a piecewise quadratic spline σ1 ∈ ∆3 with nodes at the Chebyshev knots, satisfying

|σ(x) − σ1(x)| ≤ c̃ω3(F, ρn(x)), x ∈ [−1, 1].

Proof. We first point out that by virtue of Lemma 5, for each j , N + 1 ≤ j ≤ n − N − 1,

(x − θ j )
2
+ −


η j (x − x j+N )2

+ + µ j (x − x j+1)
2
+ + ν j (x − x j−2)

2
+


− h2

j (x − x j−2)
0
+ − γ j (x − x j−2)+

=


0, if x > x j−2, or x ≤ x j+N ,

R j (x), for x j+N < x ≤ x j−2,
(5.5)

where γ j is to be prescribed, and

|R j (x)| ≤ c|I j |
2, x j+N < x ≤ x j−2. (5.6)

We split the summation in σ into two parts, the sum of the terms with ⌈n/2⌉+2 ≤ j ≤ n−N −1,
and the rest (which is treated similarly, see the last part of the proof).

Consider the sum

n−N−1
j=⌈n/2⌉+2

q j h2
j (x − x j−2)

0
+ =

n−N−3
j=⌈n/2⌉

q j+2h2
j+2(x − x j )

0
+.

Our strategy is to apply Lemma 3. Let D be taken so that

h2
j

D|I j−2|
<

1
3
|I j |, j = ⌈n/2⌉, . . . , n − N − 3. (5.7)

We begin by setting k1 = n − N − 3, and we let s1 < k1 be so that s1 ≥ ⌈n/2⌉, and the
conditions of Lemma 3 are satisfied for s = s1, k = k1, with α j := h2

j+2q j+2. Note that
α j ≤ cω3(F, ρn(x j )), ⌈n/2⌉ ≤ j ≤ n − N − 3, for some constant c. Clearly if s1 = ⌈n/2⌉, we
are done with the construction. Otherwise, set k2 := s1 −1 > ⌈n/2⌉ and let s2, ⌈n/2⌉ ≤ s2 < k2,
be chosen similarly, with the conditions of Lemma 3 to be satisfied. We proceed like that and let
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⌈n/2⌉ ≤ sm < km be the last pair to be chosen in this manner. We apply Lemmas 3 and 5, for
each pair (si , ki ), obtaining a piecewise linear spline

S(x) =

n−N−3
j=sm

β j

|I j |
(x − x j )+ =

n−N−1
j=sm+2

β j−2

|I j−2|
(x − x j−2)+.

Observe that we may choose in (5.5),

γ j = −
β j−2

q j |I j−2|
,

since the only requirement in Lemma 5 is that |γ j | < 1
3 |I j |, that is guaranteed by (5.7). Hence,

n−N−1
j=sm+2


β j−2

|I j−2|
(x − x j−2)+ + q jγ j (x − x j−2)+


= 0,

and in view of the above construction,n−N−1
j=sm+2

q j h2
j (x − x j−2)

0
+ +

n−N−1
j=sm+2

q jγ j (x − x j−2)+


=

n−N−1
j=sm+2

q j h2
j (x − x j−2)

0
+ −

n−N−1
j=sm+2

β j−2

|I j−2|
(x − x j−2)+


≤ cω3(F, ρn(x)), x ∈ [−1, 1]. (5.8)

Also, given xi ≤ x < xi−1, N < i < n − N , we get by (6.5) and (5.6),

n−N−1
j=sm+2

q j |R j (x)| ≤

i+1
j=i−N

q j |R j (x)| ≤ c
i+1

j=i−N

ω(F, ρn(x j )) ≤ cω3(F, ρn(x)), (5.9)

where for the last inequality we have applied (4.1) and (4.2).
Thus, letting

S1(x) :=

n−N−1
j=sm+2

q j


η j (x − x j+N )2

+ + µ j (x − x j+1)
2
+ + ν j (x − x j−2)

2
+


, (5.10)

it follows by (5.8) and (5.9) thatn−N−1
j=sm+2

q j (x − θ j )
2
+ − S1(x)

 ≤ cω3(F, ρn(x)), x ∈ [−1, 1]. (5.11)

If it so happens that sm = ⌈n/2⌉, then we are done. Otherwise, our process stops, that is, we
have an index k (which may even be k = k1), and we cannot find s < k so that the conditions of
Lemma 3 are satisfied. Namely, we have the inequalities

k+2
j=s

q j |I j |
2

≤ C D ω3(F, ρn(xs)), s = ⌈n/2⌉ + 2, . . . , k + 2.

Then we go back to the original sum
k+2

j=⌈n/2⌉+2 q j (x − θ j )
2
+, and approximate it using

Lemma 6.
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To this end, note that by virtue of Lemma 6, for xl ≤ x < xl−1, ⌈n/2⌉ ≤ l ≤ k + 3, and for
−1 ≤ x < xk+1, l = k + 2,

k+2
j=⌈n/2⌉+2

q j
(x − θ j )

2
+ − Sθ j (x)

 ≤

l
j=⌈n/2⌉+2

q j |I j |
2


1 + x
1 + x j

2

≤ C D ω3(F, ρn(x)), (5.12)

where for the last inequality we have applied Lemma 4.
Denoting

S2(x) :=

k+2
j=⌈n/2⌉+2

q j Sθ j (x),

and setting

S := S1 + S2,

we conclude that S ∈ ∆3, and it follows by (5.11) and (5.12) that, n−N−1
j=⌈n/2⌉+2

q j (x − θ j )
2
+ − S(x)

 ≤ C D ω3(F, ρn(x)), x ∈ [−1, 1]. (5.13)

As mentioned at the beginning of the proof, we construct a similar 3-monotone piecewise
quadratic spline with nodes at the Chebyshev knots, approximating

⌈n/2⌉+1
j=N+1

q j (x − θ j )
2
+.

First we apply the construction of Lemma 3; see Remark 2. However, again we may have an
index k ≥ N + 1 such that

s
j=k+2

q j |I j |
2

≤ C D ω3(F, ρn(xs)), s = k + 2, . . . , ⌈n/2⌉ + 1.

Thus, we need to apply an analogue of Lemma 4.
To this end, we observe that

(x − t)2
+ = (x − t)2

− (−x + t)2
+. (5.14)

Hence, substituting y := −x and τ j := −θ j ,

⌈n/2⌉+1
j=k+2

q j (x − θ j )
2
+ =

⌈n/2⌉+1
j=k+2

q j (x − θ j )
2
−

⌈n/2⌉+1
j=k+2

q j (−x + θ j )
2
+

=: P(x) −

⌈n/2⌉+1
j=k+2

q j (y − τ j )
2
+.

Note that P(x) is a quadratic polynomial. Denote y j := −x j . Then τ j ∈ (y j−1, y j ) ⊂ [−1, 0],
except for y⌈n/2⌉+1 and, perhaps, y⌈n/2⌉ (the latter, only if n is odd), but this requires no significant
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modification in the proof of Lemma 4. Thus, by Lemmas 4 and 6, there exists a quadratic spline
Ŝ(y) ∈ ∆3 such that

⌈n/2⌉+1
j=k+2

q j (y − τ j )
2
+ − Ŝ(y)

 ≤ C D ω3(F, ρn(y)), y ∈ [−1, 1],

which in turn implies
⌈n/2⌉+1
j=k+2

q j (x − θ j )
2
+ − (P(x) − Ŝ(−x))

 ≤ C D ω3(F, ρn(x)), x ∈ [−1, 1].

Finally, we observe that P(x) − Ŝ(−x) ∈ ∆3. This completes the proof. �

6. Quadratic spline with nodes at the Chebyshev knots

We are ready to prove Theorem 2.

Proof of Theorem 2. Given F ∈ ∆3, the function f := F ′
∈ C(−1, 1), is convex. Let s(x)

denote the piecewise linear interpolant of f on the Chebyshev knots xn−1 < · · · < x1. Then, it
readily follows that s is convex and the requirements of Theorem 1 are satisfied in [xn−1, x1]. It
was proved in [10, Lemma 3] that xi−1

xi

| f (t) − s(t)| dt ≤ cω3(F, (xi−2 − xi+1)/3; [xi+1, xi−2]), 2 ≤ i ≤ n − 1.

Hence, by Theorem 1 (2.1), we obtain a piecewise quadratic S ∈ ∆3
[xn−1, x1] satisfying

|F(x) − S(x)| ≤ c ω3(F, ρn(x)), x ∈ [xn−1, x1], (6.1)

where we used (4.1)–(4.3).
However, note that S may have nodes not only at the Chebyshev knots but, perhaps, also at

some θ j ∈ (x j , x j−1), 2 ≤ j ≤ n − 1.
We extend the definition of S to the end intervals by

S|[x1,1]
:= F ′′(x1−)(· − x1)

2
+ F ′(x1)(· − x1) + F(x1),

and

S|[−1,xn−1]
:= F ′′(xn−1+)(· − xn−1)

2
+ F ′(xn−1)(· − xn−1) + F(xn−1).

Again, by [10, Lemma 3] 1

x1

| f (t) − S′(t)| dt ≤ cω3(F, (1 − x3)/3; [x3, 1]), xn−1

−1
| f (t) − S′(t)| dt ≤ cω3(F, (xn−3 + 1)/3; [−1, xn−3]),

so that, combined with (6.1), we have

|F(x) − S(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1]. (6.2)

Clearly, we may write

S(x) =: P∗(x) +

n−1
i=1

αi (x − xi )
2
+ +

n−1
i=2

qi (x − θi )
2
+, x ∈ [−1, 1],
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where P∗ is a polynomial of degree ≤ 2, and all αi ≥ 0, 1 ≤ i ≤ n − 1 and qi ≥ 0, 2 ≤ i
≤ n − 1.

We proceed to remove the terms involving θ j , N + 1 ≤ j ≤ n − N − 1. This we do by virtue
of Lemma 7, by showing that q j |I j |

2
≤ c ω3(F, ρn(x j )), N + 1 ≤ j ≤ n − N − 1. To this end,

observe that by (1.3),

Bh(x) := ∆3
h((·)2

+, x) ≥ 0, x ∈ [−2, 2],

and

∆3
h((·)2

+, x) ≥ h2, for − 2h ≤ x ≤ −h.

For h =
1
7 |I j |, N + 2 ≤ j ≤ n − N − 1, let x − θ j ∈ [−2h, −h]. Then it follows that

∆3
h(S, x) =

n−1
i=1

αi Bh(x − xi ) +

n−1
i=2

qi Bh(x − θi ) ≥ q j Bh(x − θ j ) ≥
q j

49
|I j |

2.

On the other hand, by (1.2), for all x such that x − θ j ∈ [−2h, −h],

∆3
h(S, x) ≤ ω3(S, (x j−2 − x j+1); [x j+1, x j−2]) ≤ c ω3(F, ρn(x j )),

where we applied (6.2), and (4.1) and (4.3).
Hence, we conclude that

q j |I j |
2

≤ c ω3(F, ρn(x j )), j = N + 1, . . . , n − N − 1.

Therefore, by virtue of Lemma 7, we have a 3-monotone piecewise quadratic S̄ with nodes at the
Chebyshev knots and perhaps additional nodes at θi , 1 ≤ i ≤ N and n − N ≤ i ≤ n, such that

|S(x) − S̄(x)| ≤ c ω3(F, ρn(x)),

which in turn by (6.2) implies

|F(x) − S̄(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1]. (6.3)

For later purposes, let S̄ be represented by

S̄(x) =: P∗(x) +

n−1
i=n−N

qi (x − θi )
2
+ +

n−1
i=1

λi (x − xi )
2
+

+

N
i=2

qi (x − θi )
2
+, x ∈ [−1, 1], (6.4)

where, evidently, λi ≥ 0, i = N , . . . , n − N −1, and by the same proof as above (estimating qi ),
we conclude that

λi |Ii |
2

≤ c ω3(F, ρn(xi )), i = N , . . . , n − N − 1. (6.5)

We replace S̄ on the intervals [xN+1, 1] and [−1, xn−N−1], by the parabolas S1(x) :=
1
2 S̄′′(xN+1+)(x − xN+1)

2
+ S̄′(xN+1)(x − xN+1) + S̄(xN+1) and

Sn(x) :=
1
2

S̄′′(xn−N−1−)(x − xn−N−1)
2
+ S̄′(xn−N−1)(x − xn−N−1) + S̄(xn−N−1),

respectively. By virtue of [10, Lemma 3] and (6.3), we obtain

|S̄(x) − S1(x)| ≤ c ω3(F, ρn(x)), x ∈ ∪
N+1
i=1 Ii ,
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and

|S̄(x) − Sn(x)| ≤ c ω3(F, ρn(x)), x ∈ ∪
n
i=n−N Ii ,

where, again, we have applied (4.1) and (4.3).
Denote

Ŝ(x) :=


S̄(x), xn−N−1 < x < xN+1

S1(x), x ∈ ∪
N+1
i=1 Ii ,

Sn(x), x ∈ ∪
n
i=n−N Ii .

Then, Ŝ ∈ ∆3, is piecewise quadratic with nodes only at the Chebyshev knots. Finally, it follows
by (6.3) that

|F(x) − Ŝ(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1], (6.6)

where we applied (4.1). We have proved (6.6) for n > 2N + 1. By virtue of Whitney’s theorem
the quadratic polynomial that interpolates F at −1, 0, 1, yields an approximation to F which
is bounded by ω3(F, 1) (and any quadratic polynomial is automatically in ∆3). Hence, since
ρn(x) ≥

1
n2 , we may extend (6.6) down to n ≥ 1. This completes our proof. �

For constructing the polynomial approximant in the next section, we need an explicit represen-
tation of Ŝ (surprisingly, it looks asymmetric, but this is due to the asymmetry of the truncated
powers (· − t)2

+). This is the purpose of the following lemma.

Lemma 8. The following representation of Ŝ is valid.

Ŝ(x) = P∗(x) +

n−1
i=n−N

qi (x − θi )
2
+

n−1
i=n−N

λi (x − xi )
2

+

n−N−1
i=N+1

λi (x − xi )
2
+ =: S̃(x), x ∈ [−1, 1].

Proof. We only have to compare the values of Ŝ and S̃ near the end points, for both are equal to
S̄ in [xn−N−1, xN+1]. Observe that both S̃(x) and S1(x) are quadratic polynomials in [xN+1, 1],
that agree up to the second derivative at xN+1, hence identical. Similarly, observe that both S̃(x)

and Sn(x) are quadratic polynomials in [−1, xn−N−1], that agree up to the second derivative at
xn−N−1, hence identical. This completes the proof. �

7. Pointwise polynomial approximation

We are ready to prove Theorem 3. We begin with some auxiliary lemmas.

Lemma 9. For every n and 1 ≤ j ≤ n − 1, there exist a polynomial Pj ∈ Pn+1 ∩ ∆3 and a
number h j such that 0 ≤ h j ≤ cρ2

n(x j ), and we have the following estimates.

(x − x j )
2
+ + h j (x − x j )

0
+ − Pj (x)

 ≤ cρ2
n(x)


|I j |

ρn(x) + |x − x j |

3

, (7.1)

and (x − x j )
2
+ + h j (x − x j )

0
+ − Pj (x)

 ≤
cρ8.5

n (x)

(ρn(x) + |x − x j |)6.5 . (7.2)
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Proof. By the proof of [2, Lemma 1] there exist Pj ∈ Pn+1 ∩ ∆3 and |h j | ≤ cρ2
n(x j ), such that

(x − x j )
2
+ + h j (x − x j )

0
+ − Pj (x)

 ≤
cρ17

n (x j )

(ρn(x j ) + |x − x j |)15 , (7.3)

and in turn (7.1) holds (see there).
Now, by virtue of (4.5),

(ρn(x) + |x − x j |)
2

≤ 2(ρ2
n(x) + |x − x j |

2)

≤ c(ρn(x j )(ρn(x j ) + |x − x j |) + |x − x j |
2)

≤ c(ρn(x j ) + |x − x j |)
2,

which, in turn, combined with (4.6), yields

ρ17
n (x j )

(ρn(x j ) + |x − x j |)15 ≤
c

ρn(x)(ρn(x) + |x − x j |)

8.5

(ρn(x) + |x − x j |)15

≤
cρ8.5

n (x)

(ρn(x) + |x − x j |)6.5 .

Substituting in (7.3) we obtain (7.2). We are left with having to prove that h j ≥ 0. To this end,
we note that [2, Lemma 1] was proved using [6] construction of convex polynomials σ j ∈ Pn on
[−1, 1] such that

σ j (−1) = 0, σ j (1) = 1 − x j , 0 ≤ σ ′

j (x) ≤ 1, x ∈ [−1, 1].

(See [6, pp. 164–165] for the definition of σ j and the above properties.)
Hence,

σ j (t) − (t − x j )+ =

 t

−1
σ ′

j (y)dy ≥ 0, t ∈ [−1, x j ],

and

σ j (t) − (t − x j )+ =

 1

t
(1 − σ ′

j (y))dy ≥ 0, t ∈ [x j , 1].

Recall that the polynomials Pj and the constants h j were defined by

Pj (x) = 2
 x

−1
σ j (t)dt and h j = 2

 1

−1
(σ j (t) − (t − x j )+)dt.

Thus, we immediately conclude that h j ≥ 0. This completes the proof. �

Remark 4. Note that Kopotun’s [6] construction of σ j yields polynomials of degree cn. Thus,
in order to have the polynomials of degree n, we take the Kopotun construction for n1 := [n/c].
However, in order to avoid unnecessary cumbersome notation, we continue to call it n.

Remark 5. Since we will have to use often the inequalities (7.1) and (7.2), we introduce a single
notation for both right hand sides. Thus, denote

An, j (x) := min


ρ2

n(x)


|I j |

ρn(x) + |x − x j |

3

,
ρ8.5

n (x)

(ρn(x) + |x − x j |)6.5


. (7.4)
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Lemma 10. There is an N such that for every n > 2N + 1 and N ≤ j ≤ n/2, there exists a
polynomial Q j ∈ Pn+1 ∩ ∆3 such that the following inequalities hold.(x − x j )

2
+ − Q j (x)

 ≤ cAn, j (x), x ∈ [−1, x j ], (7.5)

and (x − x j )
2
+ − Q j (x)

 ≤ c


1 − x
1 − x j

2

|I j |
2
+ cAn, j (x), x ∈ (x j , 1]. (7.6)

Proof. Fix N > 0 large enough, to be prescribed, and let b := κn−2
:= maxN≤ j≤n/2

16h j
1−x j

< 1,
where κ = κ(n) = O(1). Set

Q j (x) := γ j Pj


x − ξ j

1 + b


, N ≤ j ≤ n/2,

where the polynomials Pj are given in Lemma 9, and γ j and ξ j are determined by the conditions
T j (1) = T ′

j (1) = 0, where

T j (x) := γ j


x − ξ j

1 + b
− x j

2

+ γ j h j − (x − x j )
2.

The conditions T j (1) = T ′

j (1) = 0 are equivalent to the following system of two equations:
γ j

(1 + b)2 (1 − x j − ξ j − bx j )
2
+ γ j h j = (1 − x j )

2

γ j

(1 + b)2 (1 − x j − ξ j − bx j ) = 1 − x j .

Eliminating γ j , we obtain a quadratic equation for ξ j ,

ξ2
j + (2bx j + x j − 1)ξ j + (1 + b)2h j + bx j (bx j + x j − 1) = 0.

For N > 0 sufficiently large, the discriminant of the above equation, (1 − x j )
2
− 4(1 + b)2h j , is

positive, and we take ξ j to be the solution

ξ j := −bx j +

(1 − x j ) −


(1 − x j )2 − 4(1 + b)2h j

2
.

Then straightforward computations yield

γ j =
2(1 + b)2

1 +


1 −

4(1+b)2h j
(1−x j )2

,

and since h j ≥ 0, this implies that (1 + b)2
≤ γ j ≤ 2(1 + b)2

≤ 8, and

0 ≤
γ j

(1 + b)2 − 1 ≤
4(1 + b)2h j

(1 − x j )2 . (7.7)

Also, since h j ≥ 0, we have by the definition of b,

0 ≤ ξ j + bx j =
4(1 + b)2h j

(1 − x j ) +


(1 − x j )2 − 4(1 + b)2h j

≤
16h j

1 − x j
≤ b.
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Hence, |ξ j | < b.
Set x ′

:= (x − ξ j )/(1 + b). Then

− 1 ≤ x ′
≤ 1, and |x − x ′

| ≤ 2κn−2, x ∈ [−1, 1], (7.8)

so that c1ρn(x) ≤ ρn(x ′) ≤ c2ρn(x), and

ρn(x) + |x − x j | ≤ cρn(x ′) + |x ′
− x j | + cn−2

≤ c(ρn(x ′) + |x ′
− x j |). (7.9)

Fix j, N ≤ j ≤ n/2. If x ∈ [−1, 1] is such that x ′
∈ [−1, x j ], then by Lemma 9 and (7.9), we

obtainPj


x − ξ j

1 + b

 ≤ cAn, j (x). (7.10)

If x ′
∈ (x j , 1] and x ∈ [−1, x j ], then 0 ≤ x j − x ′

≤ x − x ′
≤ 2κn−2

≤ c|I j |, 0 ≤ h j ≤ c|I j |
2,

and An, j (x) ≥ c|I j |
2. Hence, by Lemma 9 and (7.9),Pj


x − ξ j

1 + b


−


x − ξ j

1 + b
− x j

2

− h j

 ≤

Pj


x − ξ j

1 + b


+ (x ′

− x j )
2
+ h j ≤ cAn, j (x).

Hence, together with (7.10), we obtain (7.5).
In order to prove (7.6), fix x ∈ (x j , 1]. If x ′

∈ [−1, x j ], then (x − x j )
2

≤ c|I j |
2

≤ cAn, j (x).
Thus, by (7.10),

|(x − x j )
2
+ Q j (x)| ≤ (x − x j )

2
+ |Q j (x)| ≤ cAn, j (x),

and (7.6) is proved.
Otherwise, x ′

∈ (x j , 1]. Then by Lemma 9 and (7.9), we obtainPj


x − ξ j

1 + b


−


x − ξ j

1 + b
− x j

2

− h j

 ≤ cAn, j (x),

and so

|(x − x j )
2
+ − Q j (x)| <

(x − x j )
2
+ − γ j


x − ξ j

1 + b
− x j

2

− γ j h j

 + cAn, j (x),

x ∈ (x j , 1]. (7.11)

Now by virtue of (7.7),(x − x j )
2
− γ j


x − ξ j

1 + b
− x j

2

− γ j h j

 = |T j (x)| =

1 −
γ j

(1 + b)2

(1 − x)2

< c


1 − x
1 − x j

2

|I j |
2,

hence together with (7.11), we obtain (7.6). This completes our proof. �

We are ready to state the mirror of Lemma 4.
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Lemma 11. Let N ≤ k < ⌈n/2⌉, and assume that the nonnegative numbers α j are such that

s
j=k

α j ≤ cω3(F, ρn(xs)), s = k, . . . , ⌈n/2⌉. (7.12)

Then for xl+1 < x ≤ xl , l = k + 1, . . . , ⌈n/2⌉, and for xk+1 < x ≤ 1, for l = k, we have

⌈n/2⌉
j=l

α j


1 − x
1 − x j

2

≤ c̃ω3(F, ρn(x)). (7.13)

Proof. The proof is a repetition of the proof of Lemma 4. We only need to observe that, instead
of (4.24), we have for all l ≤ s ≤ ⌈n/2⌉,

ρ3
n(xs)

ρ3
n(x)


1 − x
1 − xs

3/2

≤ 64,

for x > xl+1. �

We quote a lemma resembling what was done in Lemma 5.

Lemma 12 ([2, Lemma 4]). With N sufficiently large, let n > 2N + 1. Set

r j :=
1
26


(x j − x j−N )2

+ (x j − x j+N )2


,

and put D = 20N 2.
If |b j | <

r j
D|I j |

, then the linear system of equations
η j + µi + ν j = 1
2η j (x j − x j−N ) + 2ν j (x j − x j+N ) = b j

η j


(x j − x j−N )2

+ h j−N


+ µ j h j + ν j


(x j − x j+N )2

+ h j+N


= r j ,

has a unique solution (η j , µ j , ν j ), satisfying η j ≥ 0, µ j ≥ 0 and ν j ≥ 0.

Remark 6. How big N is depends on the quantities h j , 1 ≤ j ≤ n − 1 of Lemma 9, so that
it is an absolute constant since the Q j ’s defining the h j ’s are fixed (see [2, Lemma 1]), so it is
independent of F . Since we depend in our proof below on the quadratic spline of Theorem 2, we
take N ≥ 1900.

We are ready to prove Theorem 3.

Proof of Theorem 3. Recall that

S̃(x) = P̃(x) +

n−N−1
j=N+1

λ j (x − x j )
2
+, (7.14)

where P̃ := P∗
+

n−1
i=n−N qi (· − θi )

2
+

n−1
i=n−N λi (· − xi )

2, is a quadratic polynomial, and
that it satisfies

|F(x) − S̃(x)| ≤ c ω3(F, ρn(x)). (7.15)
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Also, by (6.5) and (4.1),

λ j ≤ c ω3(F, |I j |)|I j |
−2, j = N + 1, . . . , n − N − 1. (7.16)

Let b j , N + 1 ≤ j ≤ n − N − 1, satisfying the requirements of Lemma 12, to be prescribed. For
the triples (η j , µ j , ν j ), of nonnegative numbers that add up to 1, guaranteed by Lemma 12, we
define

Rn := P̃ +

n−N−1
j=N+1

λ j (η j Pj−N + µ j Pj + ν j Pj+N ),

where the polynomials Pj are from Lemma 9. Then it follows that

R(3)
n (x) ≥ 0, x ∈ [−1, 1].

We will prove that

|S̃(x) − Rn(x)| ≤ c ω3(F, ρn(x)), (7.17)

which combined with (7.15) yields the required estimate, proving Theorem 3 for n > 2N + 1.
To this end, we follow (part of) the proof of [2, Theorem 1] and set

η j Pj−N + µ j Pj + ν j Pj+N − (· − x j )
2
+ =: v j + t j + u j ,

where

v j := η j


Pj−N − h j−N (· − x j−N )0

+ − (· − x j−N )2
+


+ µ j


Pj − h j (· − x j )

0
+ − (· − x j )

2
+


+ ν j


Pj+N − h j+N (· − x j+N )0

+ − (· − x j+N )2
+


,

t j := η j


(· − x j−N )2

+ − 2(x j − x j−N )(· − x j )+

− (x j − x j−N )2(· − x j )
0
+ − (· − x j )

2
+


+ ν j


(· − x j+N )2

+ − 2(x j − x j+N )(· − x j )+

− (x j − x j+N )2(· − x j )
0
+ − (· − x j )

2
+


+ η j h j−N


(· − x j−N )0

+ − (· − x j )
0
+


+ ν j h j+N


(· − x j+N )0

+ − (· − x j )
0
+


,

and

u j := r j (· − x j )
0
+ + b j (· − x j )+,

where r j and b j are from Lemma 12.
In order to derive the estimate for v j (x), we have by virtue of Lemma 9,

|v j (x)| ≤ c


An, j−N (x) + An, j (x) + An, j+N (x)

. (7.18)

Fix x ∈ [−1, 1] and separate the sum

n−N−1
j=N+1

λ j |v j (x)| =


j :ρn(x)≤|I j |

λ j |v j (x)| +


j :ρn(x)>|I j |

λ j |v j (x)| =:


′
+


′′
.
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For j that satisfy |I j | ≥ ρn(x), we have by (7.16),

λ j ≤ c ω3(F, |I j |)|I j |
−2

≤ c


|I j |

ρn(x)
+ 1

3

|I j |
−2ω3(F, ρn(x))

= c
ω3(F, ρn(x))

ρ3
n(x)


1 +

ρn(x)

|I j |

3

|I j |

≤ c
ω3(F, ρn(x))

ρ3
n(x)

|I j |.

Also, in view of (4.3),

λ j ≤ c
ω3(F, ρn(x))

ρ3
n(x)

min{|I j−N |, |I j+N |}.

Therefore, by (7.18)
′
≤


′

cλ jρ
8.5
n (x)


1

(ρn(x) + |x − x j−N |)6.5

+
1

(ρn(x) + |x − x j |)6.5 +
1

(ρn(x) + |x − x j+N |)6.5


≤ c ω3(F, ρn(x))ρ5.5

n (x)

n−1
j=1

|I j |

(ρn(x) + |x − x j |)6.5

≤ c ω3(F, ρn(x))ρ5.5
n (x)


∞

ρn(x)

du
u6.5 < c ω3(F, ρn(x)). (7.19)

For the other sum, note that if |I j | < ρn(x), then ω3(F, |I j |) < cω3(F, ρn(x)). Also by (4.3),
|I j | ≤ c min{|I j−N |, |I j+N |}. Hence, together with (7.16) and (7.18) we obtain,

′′
≤ cω3(F, ρn(x))ρ2

n(x)


′′


|I j−N |

(ρn(x) + |x − x j−N |)3

+
|I j |

(ρn(x) + |x − x j |)3 +
|I j+N |

(ρn(x) + |x − x j+N |)3


≤ cω3(F, ρn(x))ρ2

n(x)

n−1
j=1

|I j |

(ρn(x) + |x − x j |)3

≤ cω3(F, ρn(x))ρ2
n(x)


∞

ρn(x)

du
u3 < cω3(F, ρn(x)). (7.20)

Thus, combining (7.19) and (7.20), we obtain

n−N−1
j=N+1

λ j |v j (x)| < cω3(F, ρn(x)). (7.21)

At the same time the support of the function t j is contained in [x j+N , x j−N ], so that for
x ∈ Ii , 1 ≤ i ≤ n,

n−N−1
j=N+1

λ j |t j (x)| =

min{n−N ,i+N−1}
max{N+1,i−N }

λ j |t j (x)|
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≤ c
min{n−N−1,i+N−1}

max{N+1,i−N }

ω3(F, ρn(x j )) ≤ cω3(F, ρn(x)), (7.22)

since |t j (x)| ≤ c |I j |
2 and we applied (7.16), and by (4.1) and (4.2),

ω3(F, ρn(x j )) ≤ cω3(F, ρn(x)),

max{N + 1, i − N } ≤ j ≤ min{n − N − 1, i + N − 1}.

Finally, we estimate
n−N−1

j=N+1 λ j u j . To this end, we have the piecewise constant

n−N−1
j=N+1

α j (x − x j )
0
+,

with 0 ≤ α j := λ jr j ≤ cω3(F, ρn(x j )) (see (7.16)). We repeat what we have done in the proof
of Lemma 7. We deal separately with the summation on j ≥ ⌈

n
2 ⌉ and with the rest. We begin

with k1 = n − N − 1 and (if possible) find s1 < k1 such that the conditions of Lemma 3 are
satisfied for the pair (s1, k1). Then we take k2 = s1 − 1 and find s2 < k2 with similar properties.
If after a few steps, we arrive at ⌈

n
2 ⌉ = sm < km , with the pair (sm, km) satisfying the conditions

of Lemma 3, we are done. Otherwise, the process stops, that is, we have an index k ≤ n − N − 1
(which again may be k = k1), such that

k
j=s

α j ≤ C D ω3(F, ρn(xs)), s = ⌈n/2⌉, . . . , k. (7.23)

We go through a similar process for the other summation, that is, for j ≤ ⌈n/2⌉. Again, this
process may end with s′

m′ = ⌈n/2⌉, in which case we are done, or we may have an index
k′

≥ N + 1 such that,

s′
j=k′

α j ≤ C D ω3(F, ρn(xs′)), s′
= k′, . . . , ⌈n/2⌉. (7.24)

For the sums of the former type we obtain by the same proof as of Lemma 7, non decreasing
piecewise linear functions

sm
j=k1

β j (x − x j )+ and
k′

1
j=s′

m′

β j (x − x j )+,

such that


s′

m′
j=N+1

+

n−N−1
j=sm

 
α j (x − x j )

0
+ − β j (x − x j )+

 ≤ cD ω3(F, ρn(x)),

x ∈ [−1, 1],

with |β j | <
α j

D|I j |
.

Thus, with b j defined by λ j b j := β j , j = k1, . . . , sm and j = s′

m′ , . . . , k′

1,


s′

m′
j=N+1

+

n−N−1
j=sm

 λ j u j (x)

 ≤ cD ω3(F, ρn(x)), x ∈ [−1, 1]. (7.25)
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Now, we have to deal with the remaining elements, that is, those in (7.23) and (7.24). We go back
to the basic representation (7.14) and replace the truncated powers (x−x j )

2
+, j = k′, . . . , ⌈n/2⌉,

by the polynomials of Lemma 10. One should note that unlike the spline case (see Lemma 6),
the polynomials do not coincide with the truncated powers (x − x j )

2
+ on [−1, x j ], and that our

estimates on (x j , 1] do not involve only the terms

(1 − x)2/(1 − x j )

2
|I j |

2, but also the terms
An, j (x). The sum of the terms An, j (x) is dealt with by the same proof for the v j ’s (see (7.19)
and (7.20)), and we estimate the sum of the terms


(1 − x)2/(1 − x j )

2
|I j |

2, as in the proof of
Lemma 7. Hence, we obtain for this sum, the required estimate by Lemma 11. Finally, we apply
(5.14) to move the truncated powers (x − x j )

2
+, j = ⌈n/2⌉, . . . , k to the interval [0, 1], and

similarly obtain the approximating polynomials and the required estimates as explained above.
So, we summarize that

 k
j=⌈n/2⌉

+

⌈n/2⌉
j=k′

 u j (x)

 ≤ cω3(F, ρn(x)), x ∈ [−1, 1]. (7.26)

Combining (7.21) and (7.22), (7.25) and (7.26), we obtain (7.17). We complete the proof for
2 ≤ n ≤ 2N + 1, by taking the interpolating quadratic we took in the proof of Theorem 2. This
completes the proof. �

Acknowledgments

The first author was supported in part by the Ministerio de Ciencia e Innovación, Spain, grant
MTM 2011-2763. Part of this work was done while the second author visited the University of
Manitoba. The third author was supported in part by NSERC of Canada.

References

[1] R.K. Beatson, The degree of monotone approximation, Pacific J. Math. 74 (1978) 5–14.
[2] A.V. Bondarenko, Jackson type inequality in 3-convex approximation, East J. Approx. 8 (2002) 291–302.
[3] A.V. Bondarenko, J. Gilewicz, Negative result in pointwise 3-convex polynomial approximation, Ukrainian Math.

J. 61 (2009) 674–681.
[4] G.A. Dzyubenko, K.A. Kopotun, A.V. Prymak, Three-monotone spline approximation, J. Approx. Theory 162

(2010) 2168–2183.
[5] V.N. Konovalov, D. Leviatan, Estimates on the approximation of 3-monotone functions by 3-monotone quadratic

splines, East J. Approx. 7 (2001) 333–349.
[6] K.A. Kopotun, Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials,

Constr. Approx. 10 (2) (1994) 153–178.
[7] K.A. Kopotun, D. Leviatan, A. Prymak, I.A. Shevchuk, Uniform and pointwise shape preserving approximation by

algebraic polynomials, Surv. Approx. Theory 6 (2011) 24–74 (See: http://www.math.technion.ac.il/sat/papers/16/).
[8] D. Leviatan, A.V. Prymak, On 3-convex approximation by piecewise polynomials, J. Approx. Theory 133 (2005)

147–172.
[9] D. Leviatan, I.A. Shevchuk, Nearly comonotone approximation, J. Approx. Theory 95 (1998) 53–81.

[10] A.V. Prymak, Three-convex approximation by quadratic splines with arbitrary fixed knots, East J. Approx. 8 (2002)
185–196.

[11] A.S. Shvedov, Comonotone approximation of functions by polynomials, Dokl. Akad. Nauk SSSR 250 (1980)
39–42; English transl. in Sov. Math. Dokl. 21 (1980) 34–37.

[12] A.S. Shvedov, Orders of coapproximations of functions by algebraic polynomials, Mat. Zametki 29 (1981)
117–130; English transl. in Math. Notes 29 (1981) 63–70.

[13] X. Wu, S.P. Zhou, On a counterexample in monotone approximation, J. Approx. Theory 69 (1992) 205–211.


