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Abstract

The Bramble-Hilbert lemma is a fundamental result on multivariate polynomial ap-
proximation. It is frequently applied in the analysis of Finite Element Methods (FEM)
used for numerical solutions of PDEs. However, this classical estimate depends on the
geometry of the domain and may ‘blow-up’ for simple examples such as a sequence
of triangles of equivalent diameter that become thinner and thinner. Thus, in FEM
applications one usually requires that the mesh has ‘quasi-uniform’ geometry. This
assumption is perhaps too restrictive when one tries to obtain estimates of nonlinear
approximation methods that use piecewise polynomials.

Our main result that improves upon this point is the following. Let Ω ⊂ Rn be a
bounded convex domain and let g ∈ Wm

p (Ω), m ∈ N, 1 ≤ p ≤ ∞, where Wm
p (Ω) is the

Sobolev space. Then there exists a polynomial P of total degree m− 1 for which

|g − P |k,p ≤ C(n,m)
(
diamΩ

)m−k|g|m,p, k = 0, 1, . . . , m ,

where | · |k,p :=
∑
|α|=k ‖Dα · ‖Lp(Ω) is the Sobolev semi-norm of order k. As a conse-

quence we get that for f ∈ Lp(Ω),

Em−1(f, Ω)p ≈ Km

(
f,

(
diam Ω

)m
)

p
,

where Em−1(f, Ω)p := infP∈Πm−1 ‖f − P‖Lp(Ω), is the error of polynomial approxi-
mation of degree m − 1 and Km( , )p is the K-functional associated with the pair
(Lp(Ω),Wm

p (Ω)), and where the constants of equivalence depend only on m and n.
For the case of convex domains (elements) this extends a recent result for p = 2,

and for m = 1 and 2 < p ≤ ∞. This also improves previous results where the constant
in the estimate further depends on the geometry of the domain, or where there is a
constraint p > n(≥ 2).
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1 Introduction

We begin by recalling classical smoothness measures over multivariate domains. Here and

throughout the paper we assume that the domain Ω ⊂ Rn is compact with a nonempty

interior. A first notion of smoothness uses the Sobolev spaces Wm
p (Ω). These are spaces

of functions g ∈ Lp(Ω) which have all their distributional derivatives of order up to m,

Dαg := ∂kg

∂x
α1
1 ···∂xαn

n
, α = (α1, . . . , αn), α ∈ Zn

+, |α| := ∑n
i=1 αi = k, 0 ≤ k ≤ m, in Lp(Ω). The

semi-norm of Wm
p (Ω) is given by |g|m,p :=

∑
|α|=m ‖Dαg‖Lp(Ω) < ∞ and may be regarded

as a measure of the smoothness of order m of a function, provided the function is in the

appropriate Sobolev space. The K-functional of order m of f ∈ Lp(Ω) (see, e.g., [De], [BeSh])

is defined by

Km(f, t)p := K
(
f, t, Lp(Ω),Wm

p (Ω)
)

:= inf
g∈W m

p (Ω)
{‖f − g‖p + t|g|m,p} . (1.1)

Since we assume Ω to be compact we may denote

Km(f, Ω)p := Km(f, dm)p , (1.2)

where d := diam Ω.

For f ∈ Lp(Ω), 1 ≤ p ≤ ∞, h ∈ Rn and m ∈ N, we recall the mth order difference

operator ∆m
h (f, ·) : Ω → R

∆m
h (f, x) := ∆m

h (f, Ω, x) :=

{∑m
k=0(−1)m−k

(
m
k

)
f(x + kh) [x, x + mh] ⊂ Ω,

0 otherwise,

where [x, y] denotes the line segment connecting any two points x, y ∈ Rn. The modulus of

smoothness (see e.g. [De], [BeSh]) is defined by

ωm(f, t)p := sup
|h|≤t

‖∆m
h (f, Ω, ·)‖Lp(Ω), t > 0 (1.3)

where for h ∈ Rn, |h| denotes the norm of h. We also denote

ωm(f, Ω)p := sup
h∈Rn

‖∆m
h (f, Ω, ·)‖Lp(Ω) . (1.4)

It is known that the above two notions of smoothness, (1.1) and (1.3) are sometimes equiv-

alent (see Section 5.4 in [BeSh] for the case Ω = Rn and [JS] for the case of Lipschitz

multivariate domains). That is, there exist C1, C2 > 0, such that for any t > 0

C1Km(f, tm)p ≤ ωm(f, t)p ≤ C2Km(f, tm)p . (1.5)
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However, while it is easy to show that C2 in (1.5) depends only on m (see [BeSh] (5.4.33)),

the constant C1 may further depend on the geometry of Ω.

Let Πm−1 := Πm−1(Rn) denote the multivariate polynomials of total degree m− 1 (order

m) in n variables. Given a ‘non-trivial’ multivariate domain, our goal is to estimate the

degree of approximation of a function f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

Em−1(f, Ω)p := inf
P∈Πm−1

‖f − P‖Lp(Ω) ,

using one of the above notions of smoothness. One of the classical results in this direction

is the Bramble-Hilbert Lemma [BrHi]. To introduce it we require the following definitions.

A domain Ω is star-shaped with respect to a ball B ⊆ Ω, if for each point x ∈ Ω, the

closed convex-hull of {x} ∪ B is contained in Ω. Let ρmax = max{ρ : Ω is star-shaped with

respect to a ball B ⊆ Ω of radius ρ}. The chunkiness parameter of Ω is defined by

γ :=
d

ρmax

, (d = diam Ω) . (1.6)

This leads to the following formulation of the Bramble-Hilbert lemma (a weaker formulation

estimates, instead, sub-linear functionals, see Corollary 1.5).

Bramble-Hilbert Lemma. Let Ω be star-shaped with respect to some ball B and let g ∈
Wm

p (Ω), 1 ≤ p ≤ ∞, m ∈ N. Then there exists a polynomial P ∈ Πm−1 for which

|g − P |k,p ≤ C(n,m, γ)dm−k|g|m,p, k = 0, 1, . . . , m . (1.7)

See Chapter 4 in [BrSc] for a proof of this result and [H] for a slightly stronger version of

(1.7). Obviously the main drawback of (1.7) is that the constant depends on the chunki-

ness parameter (1.6) which ‘blows-up’ for example in the case of a sequence of triangles of

equivalent diameter that become thinner and thinner. This problem is usually resolved in

the FEM literature by assuming that the mesh is quasi-uniform, i.e., that the collection of

domains (elements) used to discretize the given problem has a uniformly bounded chunkiness

parameter.

Perhaps another limitation of (1.7) is that it is too restrictive to be applied in estimates

in nonlinear approximation by piecewise polynomials. For instance, let f ∈ Lp([0, 1]2) and

define Sm
N (R2) to be the collection

N∑

k=1

1∆k
Pk ,
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where ∆k are triangles with disjoint interiors and Pk ∈ Πm−1(R2), and we wish to estimate

(see [KP], [DLS])

σN,m(f)p := inf
ϕ∈Sm

N

‖f − ϕ‖Lp([0,1]2) .

Thus, there have been quite a few attempts at removing the dependence of the constants

on the geometry of Ω, and of estimating them. Perhaps the most significant result has

recently been obtained by Verfürth [V], in the case of convex domains and p = 2. We are

grateful and indebted to the referee for bringing this reference to our attention. Using the

notation Hm := Wm
2 , Verfürth has proved

Proposition [V]. Let Ω be a convex domain and let g ∈ Hm(Ω), m ∈ N. Then there exists

a polynomial P ∈ Πm−1 for which

|g − P |Hk ≤ C(n, m)dm−k|g|Hm , k = 0, 1, . . . , m− 1 . (1.8)

Also if m = 1, and if g ∈ W 1
p , 2 < p ≤ ∞, then

‖g − P‖Lp(Ω) ≤ C(n, p)d|g|W 1
p

. (1.9)

Verfürth gives concrete estimates of the above constants, and has some further results for

star-shaped domains as well.

Earlier, Dechevski and Quak [DQ], improved the Bramble-Hilbert Lemma in some cases.

Their result applies to the larger class of domains that are star-shaped with respect to a

point. A domain Ω is star-shaped with respect to a point x0 ∈ Ω if for any point x ∈ Ω the

line segment [x0, x] is contained in Ω. The following is a modified version of their result.

Proposition [DQ]. Let Ω be a Lipschitz domain, which is star-shaped with respect to a point

x0 ∈ Ω. Then for m ∈ N, and 2 ≤ n < p ≤ ∞, there exists a polynomial P ∈ Πm−1 for

which

|g − P |k,p ≤ C(n,m, p)dm−k|g|m,p, k = 0, 1, . . . , m . (1.10)

Although the constant in (1.10) does not depend on geometrical parameters such as (1.6),

the above proposition assumes the constraint n < p that does not cover one of the most

common cases in applications of the finite element method, namely, n = p = 2.

Our approach differs from previous work in one crucial detail. For convex domains we can

construct an approximating polynomial that is more adaptive to the shape of the domain.

Thus, instead of constructing a polynomial using either some center point x0 ∈ Ω, or some

maximal but relatively small ball B ⊂ Ω, our construction uses John’s ‘maximal’ ellipsoid

(see Proposition 3.2) combined with a simple affine transformation argument. Our main

result is
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Theorem 1.1 Let Ω ⊂ Rn be convex, and let g ∈ Wm
p (Ω), m ∈ N, 1 ≤ p ≤ ∞. Then there

exists a polynomial P ∈ Πm−1 for which

|g − P |k,p ≤ C(n,m)dm−k|g|m,p, k = 0, 1, . . . , m . (1.11)

We emphasize that our proof of Theorem 1.1 is constructive and we are going to spec-

ify the polynomial P which yields (1.11). In fact we show that one may take P (x) :=

Qm(g(A·)(A−1x), where Qm is the averaged Taylor polynomial over the ball B(0, 1) ⊂ Rn,

and A is an affine transformation related to Ω (see definitions and details in Sections 2 and

3).

A direct consequence of Theorem 1.1 is the following.

Corollary 1.2 For all convex domains Ω ⊂ Rn and functions f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

Em−1(f, Ω)p ≈ Km(f, Ω)p ,

where Km(f, Ω)p is defined in (1.2), and the constants of equivalency only depend on m and

n.

We wish to point out a recent result of Karaivanov and Petrushev [KP] who showed that

if ∆ ⊂ R2 is a triangle and f ∈ Lp(∆), 0 < p ≤ ∞, then for any m ∈ N

Em−1(f, ∆)p ≤ C(m, p)ωm(f, ∆)p , (1.12)

where ωm(f, ∆)p is defined in (1.4). This implies that for all triangles ∆ ⊂ R2 and functions

f ∈ Lp(∆), 1 ≤ p ≤ ∞ we have the equivalence

Em−1(f, ∆)p ≈ ωm(f, ∆)p ≈ Km(f, ∆)p ,

where the constants of equivalence depend only on p and m. Indeed, it is this result that

motivated us to try and find shape-independent estimates.

We also get the following formulation of the Bramble-Hilbert lemma.

Corollary 1.3 Let Ω ⊂ Rn be convex, and let l be a sub-linear functional given on Wm
p (Ω),

m ∈ N, 1 ≤ p ≤ ∞, with the following properties.

(i) There exists a constant C̃ such that for all g ∈ Wm
p (Ω), |l(g)| ≤ C̃

∑m
k=0 dk|g|k,p,

(ii) l(P ) = 0 for all P ∈ Πm−1.
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Then for all g ∈ Wm
p (Ω),

|l(g)| ≤ C(n, m, C̃)dm|g|m,p .

Section 2 reviews the averaged Taylor polynomial approach to the classical Bramble-

Hilbert lemma (see Chapter 4 in [BrSc]). In Section 3 we introduce John’s Theorem and

explain how this tool can be applied in the case of convex domains via an affine transforma-

tion argument. Finally, in Section 4 we assemble all the above tools to give a constructive

proof of Theorem 1.1. We also define the notion of ‘almost convex’ domains and note that

our results extend to this case too.

2 The averaged Taylor polynomial

We recall some basic definitions of multivariate polynomials, differentials and Taylor series.

Throughout this section we use the notation of Chapter 4 in [BrSc]. For a multi-index

α ∈ Zn
+ let α! =

∏n
i=1 αi!, and denote by xα :=

∏n
i=1 xαi

i , the multivariate monomial of total

degree |α|. Denote the set of all multivariate polynomials of total degree m− 1 by

Πm−1(Rn) :=

{ ∑

|α|≤m−1

cαxα

}
.

The classical Taylor polynomial of order m (degree m−1) of a function g ∈ Cm(Ω) at x ∈ Ω,

about the point y ∈ Ω, is given by

Tm
y g(x) :=

∑

|α|<m

Dαg(y)

α!
(x− y)α . (2.1)

The Taylor remainder of order m of a function g ∈ Cm(Ω) at x ∈ Ω, about the point y ∈ Ω,

is given by

TRm
y g(x) := m

∑

|α|=m

(x− y)α

α!

∫ 1

0

sm−1Dαg
(
x + s(y − x)

)
ds . (2.2)

It is meaningful provided the segment [y, x] is contained in Ω. Then we have

g(x) = Tm
y g(x) + TRm

y g(x) .

Next we introduce the averaged Taylor polynomial. It can be shown that for a ball B(x0, ρ) :=

{z ∈ Rn : |z − x0| ≤ ρ} there exists a cut-off function φB with the following properties:

(i)
∫
Rn φB(x)dx = 1,
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(ii) supp(φB) = B,

(iii) φB ∈ C∞(Rn),

(iv) ‖φB‖∞ ≤ ρ−n.

Given g ∈ Cm(Ω) the averaged Taylor polynomial of order m (degree m− 1) (averaged over

a ball B ⊆ Ω) is defined by

Qmg(x) :=

∫

B

Tm
y g(x)φB(y)dy, x ∈ Ω . (2.3)

We also define the averaged Taylor remainder, namely,

Rmg(x) := g(x)−Qmg(x) . (2.4)

The following lemma is a special case of the classical Bramble-Hilbert lemma which

estimates the (simultaneous) degree of approximation of the averaged Taylor polynomial in

‘normalized’ setting. For the proof see Theorem 4.3.8 in [BrSc], observe that the chunkiness

parameter (1.6), in this case depends only on n.

Lemma 2.1 Let B(0, 1) ⊆ Ω ⊆ B(0, n), be star-shaped with respect to B(0, 1). Then for

any g ∈ Cm(Ω), m ∈ N, and 1 ≤ p ≤ ∞, we have

|g −Qmg|k,p ≤ C(n,m)|g|m,p, k = 0, 1, . . . , m ,

where Qm is averaged over B(0, 1).

3 John’s theorem

Definition 3.1 An ellipsoid E is the image of the closed unit ball in Rn under a nonsingular

affine map A(x) = Mx + b, M ∈ Mn×n(R), b ∈ Rn. The center of E is b = A(0).

The next result [J] (see also [Ba]) is the crucial ingredient that is missing in previous

work. Let c + n(E − c) := {c + n(x− c) : x ∈ E}.

Proposition 3.2 [John’s Theorem] Let Ω ⊂ Rn be convex. Then there exists an ellipsoid

E ⊆ Ω such that if x0 is the center of E, then

E ⊆ Ω ⊆ x0 + n(E − x0) .
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By Definition 3.1, John’s Theorem implies that for each convex domain Ω we can find an

affine nonsingular map A such that

B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n) .

It is interesting to note that John’s ellipsoid is the ellipsoid E ⊆ Ω with maximal volume.

In some sense this means that E ‘covers’ Ω sufficiently well.

To use John’s maximal ellipsoid (or equivalently John’s optimal affine transform), we

apply the following commutativity of Taylor polynomials and differentiation.

Lemma 3.3 Let A(x) = Mx + b, M ∈ Mn×n(R), b ∈ Rn, be a nonsingular affine map, and

let g ∈ Cm(Ω). Then for any x ∈ Ω, y ∈ A−1(Ω) and α ∈ Zn
+, 1 ≤ |α| ≤ m− 1, we have

Dα
x

[
Tm

y

(
g(A·))(A−1x)

]
= Tm−|α|

y

(
(Dαg)(A·))(A−1x) . (3.1)

Proof. Observe that it is sufficient to prove that for any 1 ≤ k ≤ m− 1 and 1 ≤ s ≤ n,

Des
x

[ ∑

|β|=k

Dβ
y g̃(y)

β!
(A−1x− y)β

]
=

∑

|γ|=k−1

Dγ
y g̃xs(y)

γ!
(A−1x− y)γ , (3.2)

where g̃ := g(A·), g̃xs := gxs(A·), gxs := ∂g
∂xs

, and {es}s=1,...,n is the standard basis of Rn. The

case of a general multivariate derivative Dα
x follows by repeated applications of (3.2), and

the Taylor series formulation (3.1) is obtained by adding all the degrees 1 ≤ k ≤ m− 1. To

prove the above let M =: (ai,j)1≤i,j≤n and M−1 =: (bi,j)1≤i,j≤n. In the calculations below,

if βi = 0, then differentiating (A−1x − y)β with respect to xs, does not produce the term

βibi,s(A
−1x − y)β−ei , rather we have 0, and it does not appear in the summation. Hence in

this case we regard βibi,s(A
−1x − y)β−ei := 0 and (β − ei)! = ∞, and again the term is not

there. This takes care of itself automatically when we switch below the summation from β

to γ = β − ei.
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Des
x


∑

|β|=k

Dβ
y g̃(y)

β!
(A−1x− y)β


 =

∑

|β|=k

Dβ
y g̃(y)

β!
Des

x

(
(A−1x− y)β

)

=
∑

|β|=k

Dβ
y g̃(y)

β!

n∑
i=1

βibi,s(A
−1x− y)β−ei

=
∑

|β|=k

n∑
i=1

Dβ
y g̃(y)

(β − ei)!
bi,s(A

−1x− y)β−ei

=
∑

|γ|=k−1

(A−1x− y)γ

γ!

n∑
i=1

bi,sD
γ+ei
y g̃(y)

=
∑

γ|=k−1

(A−1x− y)γ

γ!

n∑
i=1

bi,sD
γ
y

( n∑
j=1

aj,igxj
(Ay)

)

=
∑

|γ|=k−1

(A−1x− y)γ

γ!

n∑
j=1

Dγ
y

(
gxj

(Ay)
) n∑

i=1

aj,ibi,s

=
∑

|γ|=k−1

(A−1x− y)γ

γ!

n∑
j=1

Dγ
y

(
gxj

(Ay)
)
δj,s

=
∑

|γ|=k−1

Dγ
y (g̃xs(y))

γ!
(A−1x− y)γ . ¤

By (2.3), we have

Corollary 3.4 Let Ω ⊂ Rn, and let A be a nonsingular affine map such that B(0, 1) ⊆
A−1(Ω). Then for g ∈ Cm(Ω) and α ∈ Zn

+, |α| = k, 1 ≤ k ≤ m− 1,

Dα
[
Qm

(
g(A·))(A−1x)

]
= Qm−k

(
(Dαg)(A·))(A−1x) , (3.3)

where Qm is with respect to B(0, 1).

Observing that affine transformations map convex domains onto convex domains, the

following argument, when combined with John’s Theorem, is the main tool of our approach.

Lemma 3.5 Let Ω ⊂ Rn, and let A be a nonsingular affine map such that B(0, 1) ⊆
A−1(Ω) ⊆ B(0, n) and A−1(Ω) is star-shaped with respect to B(0, 1). Then for g ∈ Cm(Ω),

1 ≤ p < ∞, and P (x) = Qm(g(A·))(A−1x) (where Qm is with respect to B(0, 1)), we have

|g − P |W k
p (Ω) ≤ C(n, m)dm−k|g|W m

p (Ω), k = 0, 1, . . . , m . (3.4)
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Proof. Since A(x) = Mx + b maps B(0, 1) into Ω we conclude that ‖M‖2 ≤ d. Thus, with

M = (ai,j)1≤i,j≤n, we have that max1≤i,j≤n |ai,j| ≤ d. Recalling that g̃ = g(A·), this implies

that for y ∈ A−1(Ω), x = Ay, and α ∈ Zn
+, |α| = i, i = 0, . . . , m,

|Dα
y g̃(y)| ≤ di

∑

|γ|=i

|Dγg)(Ay)| ,

hence, in particular,

∑

|α|=m

‖Dα
y g̃‖Lp(A−1(Ω)) ≤ C(n,m)dm

∑

|α|=m

‖(Dαg)(A·)‖Lp(A−1(Ω)) . (3.5)

We can now prove (3.4) for k = 0. Let P̃ := Qm(g(A·)), then by Lemma 2.1 and (3.5)

‖g − P‖Lp(Ω) = | det M |1/p‖g̃ − P̃‖Lp(A−1(Ω))

≤ C(n,m)| det M |1/p|g̃|W m
p (A−1(Ω))

= C(n,m)| det M |1/p
∑

|α|=m

‖Dα
y g̃‖Lp(A−1(Ω))

≤ C(n,m)| det M |1/pdm
∑

|α|=m

‖(Dαg)(A·)‖Lp(A−1(Ω))

= C(n,m)dm
∑

|α|=m

‖Dα
xg‖Lp(Ω)

= C(n,m)dm|g|W m
p (Ω) .

For 1 ≤ k ≤ m − 1 take α ∈ Zn
+, |α| = k, 1 ≤ k ≤ m − 1, and let h := Dαg. Then (3.3)

yields

|Dα(g − P )‖Lp(Ω) =
∥∥h(x)−Qm−k

(
h(A·))(A−1x)

∥∥
Lp(Ω)

.

By the case k = 0 proved above,

∥∥h(x)−Qm−k
(
h(A·))(A−1x)

∥∥
Lp(Ω)

≤ C(n,m)dm−k|h|m−k,p ,

which in turn implies that

‖Dα(g − P )‖Lp(Ω) ≤ C(n,m)dm−k|g|m,p . (3.6)

Summing up (3.6) over all α ∈ Zn
+, |α| = k, we obtain the required result. The case k = m

is trivial. ¤
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4 Proofs of the main results

Proof of Theorem 1.1. The proof of (1.11) for the case p = ∞ can be applied to star-

shaped domains with respect to a point x0, by using the classical Taylor polynomial (2.1)

at the point y = x0, and estimating the remainder (2.2). We leave the details to the reader

and assume 1 ≤ p < ∞. Let E ⊆ Ω be John’s maximal ellipsoid (see Proposition 3.2) and

A the corresponding affine map, i.e., A(B(0, 1)) = E. John’s Theorem implies that

B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n) .

First assume that g ∈ Cm(Ω). By Lemma 3.5 the polynomial P (x) = Qm(g(A·))(A−1x) is

in Πm−1, and satisfies

|g − P |k,p ≤ C(n,m)dm−k|g|m,p, k = 0, 1, . . . , m .

Since C∞(Ω) is dense in Wm
p (Ω) (see, e.g., Theorem 1.3.4 in [BrSc]), the proof of the general

case follows from a standard density argument. ¤

Proof of Corollary 1.2. The method of proof is standard but we give it for the sake of

completeness. Let f ∈ Lp(Ω) and g ∈ Wm
p (Ω) be such that

‖f − g‖p + dm|g|m,p ≤ 2Km(f, Ω)p .

By (1.9) with k = 0, there exists P ∈ Πm−1 such that

‖g − P‖p ≤ C(n,m)dm|g|m,p .

Therefore

Em−1(f)p ≤ ‖f − P‖p

≤ ‖f − g‖p + ‖g − P‖p

≤ ‖f − g‖p + C(n,m)dm|g|m,p

≤ C(n,m)Km(f, Ω)p .

In the other direction, it is easy to see from (1.1) that for any polynomial Q ∈ Πm−1 and

any t > 0

Km(f, t)p ≤ ‖f −Q‖p .

Consequently,

Km(f, Ω)p ≤ Em−1(f)p ¤
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Proof of Corollary 1.3. Let g ∈ Wm
p (Ω), and let P be the polynomial for which (1.9)

holds. Then by property (ii) of the sub-linear functional l we have that |l(g)| ≤ |l(g − P )|.
Property (i) and (1.9) yield

|l(g)| ≤ |l(g − P )|

≤ C̃

m∑

k=0

dk|g − P |k,p

≤ C̃C(n,m)
m∑

k=0

dkdm−k|g|m,p

≤ C(n,m, C̃)dm|g|m,p . ¤

Finally, we would like to point out a certain natural extension of our results to slightly

more general types of domains.

Definition 4.1 A compact domain Ω ⊂ Rn with nonempty interior is almost convex if there

exists a nonsingular affine map A, such that:

(i) B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n).

(ii) A−1(Ω) is star-shaped with respect to B(0, 1).

Indeed, John’s theorem shows that every convex domain is almost convex. Furthermore,

by the method used in this work (specifically Lemma 3.5) it can be seen that our main results

remain valid for this type of domains.
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