
COCONVEX APPROXIMATION

D. Leviatan and I. A. Shevchuk1

Abstract. Let f ∈ C[−1, 1] change its convexity finitely many times, in the interval. We
are interested in estimating the degree of approximation of f by polynomials which are
coconvex with it, namely, polynomials that change their convexity exactly at the points
where f does. We discuss some Jackson type estimates where the constants involved depend
on the location of the points of change of convexity. We also show that in some cases the
constants may be taken independent of the points of change of convexity, but that in other
cases this dependence is essential. But mostly we obtain such estimates for functions f
that themselves are continuous piecewise polynomials on the Chebyshev partition, which
form a single polynomial in a small neighborhood of each point of change of convexity.
These estimates involve the k modulus of smoothness of the piecewise polynomials when
they themselves are of degree k − 1.

§1. Introduction

Let f ∈ C[−1, 1] change its convexity finitely many times, say s ≥ 0 times, in the
interval. We are interested in estimating the degree of approximation of f by polynomials
which are coconvex with it, namely, polynomials that change their convexity exactly at
the points where f does.

In a recent survey [9] we have collected all known positive and negative results on
monotone and comonotone approximation on a finite interval, by algebraic polynomials in
the uniform norm (see also [8]). We have established complete truth tables for the validity
of Jackson-type estimates, involving the ordinary k-th moduli of smoothness of the r-
th derivative of a given monotone or piecewise monotone function, as well as estimates
involving the Ditzian-Totik moduli of smoothness. The two main ingredients in the proofs
of all positive results in these truth tables were first the approximation of an arbitrary
such function by piecewise polynomials with the same changes of monotonicity, and then
the approximation of such a piecewise monotone piecewise polynomial, by polynomials
with the same changes of monotonicity. See [10] for details.

Our intention in our research program is to construct the corresponding truth table
for convex and coconvex polynomial approximation. The main thrust in this paper is to
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obtain Jackson-type estimates for the approximation of a continuous piecewise polynomial
which changes convexity finitely many times in the interval, by algebraic polynomials that
change convexity at exactly the same points. The main result is Theorem 3 stated below,
which is the analogue of [10, Proposition 3]. Our strategy for the future is to approximate
an arbitrary continuous function that changes convexity finitely many times in the interval,
by an appropriate coconvex piecewise polynomial which in turn, by virtue of Theorem 3,
will be approximated by a coconvex polynomial. In order to illustrate the intricacies we
begin in Section 3 with some negative results for the coconvex polynomial approximation
of more general piecewise convex functions (see Theorem 1 below). Also as a byproduct
of Theorem 4 below, we obtain one significant positive result for coconvex polynomial
approximation (Theorem 2 below). So the outlay of the paper is the following. We state
the main results in Section 2. Section 3 contains the construction of the negative results.
Section 4 contains auxiliary lemmas. Section 5 is devoted to the proof of Theorem 4 which
is a preliminary step and a special case of Theorem 3, and as a byproduct, its proof yields a
proof of Theorem 2. We need some more preparation and lemmas in Sections 6 and 7, and
in Section 8 we prove Theorem 5 and with it conclude the proof of Theorem 3. Many of the
methods we apply are modifications of similar ones in the papers by DeVore, Dzyubenko,
Gilewicz, Kopotun, Mania, Yu and the authors (see the References). Nevertheless, for the
sake of completeness proofs are given.
In the sequel we will have positive constants c that depend only on s and k, and we will have
positive constants C, which may also depend on b ∈ N. We will use the notation c and C
for such constants which are of no significance to us and may differ on different occurrences,
even in the same line. However, we will have constants with indices c0, c1, . . . , c5 and C0,
when we have a reason to keep track of them in the computations that we have to carry
out in the proofs.

§2. The main results

Let I := [−1, 1] and denote by C and Cr, respectively the space of continuous functions,
and that of r-times continuously differentiable function on I, equipped with the uniform
norm

‖f‖ := max
x∈I

|f(x)|.

Given f ∈ C, and k ∈ N, let

∆k
hf(x) :=

k∑

i=0

(−1)k−i

(
k

i

)
f(x− k

2
h + ih),

be the symmetric difference of order k, defined for all x and h ≥ 0, such that x± k
2h ∈ I.

The Ditzian-Totik (DT-)moduli of smoothness [3] are defined by

ωϕ
k (f, t) := sup

0≤h≤t
sup

x
|∆k

hϕ(x)f(x)|, t ≥ 0,
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where ϕ(x) =
√

1− x2, and the inner supremum is taken over all x such that x± k
2hϕ(x) ∈

I. We also deal with the ordinary moduli of smoothness which are given by the above
with ϕ(x) ≡ 1 replacing the above ϕ, namely,

ωk(f, t) := sup
0≤h≤t

sup
x
|∆k

hf(x)|, t ≥ 0,

where the inner supremum is taken over all x such that x± k
2h ∈ I.

Denote by Ys, s ∈ N, the set of all collections Ys := {yi}s
i=1, such that −1 < ys < · · · <

y1 < 1, and for s = 0, we write Y0 := {∅}. For later reference set y0 := 1 and ys+1 := −1.
Finally, let ∆2(Ys) denote the collection of all functions f ∈ C that change convexity at
the set Ys, and are convex in [y1, 1].

Given n ∈ N, n > 1, we set xj := xj,n := cos (jπ/n), j = 0, . . . , n, the Chebyshev
partition of [−1, 1], and we denote Ij := Ij,n := [xj , xj−1], j = 1, . . . , n. Let Σk,n be the
collection of all continuous piecewise polynomials of degree k − 1, on the Chebyshev par-
tition and let Σ1

k,n ⊆ Σk,n, be the subset of all continuously differentiable such functions.
That is, if S ∈ Σk,n, then

S|Ij = pj , j = 1, . . . , n,

where pj ∈ Πk−1, the collection of polynomials of degree ≤ k − 1, and

pj(xj) = pj+1(xj), j = 1, . . . , n− 1,

and if S ∈ Σ1
k,n, then in addition,

p′j(xj) = p′j+1(xj), j = 1, . . . , n− 1.

Given Ys ∈ Ys, let

Oi := Oi,n(Ys) := (xj+1, xj−2), if yi ∈ [xj , xj−1),

where xn+1 := −1, x−1 := 1, and denote

O = O(n, Ys) :=
s⋃

i=1

Oi, O(n, ∅) := ∅.

Finally, we write j ∈ H = H(n, Ys), if Ij ∩O = ∅.
Denote by Σk,n(Ys) ⊆ Σk,n and Σ1

k,n(Ys) ⊆ Σ1
k,n, the subsets of those piecewise poly-

nomials for which
pj ≡ pj+1, whenever both j, (j + 1) /∈ H.

We wish to approximate a general function f ∈ ∆2(Ys), by means of polynomials which
are coconvex with f , that is, which belong to ∆2(Ys). We denote by

E(2)
n (f, Ys) := inf

pn∈Πn∩∆2(Ys)
‖f − pn‖,
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where Πn is the set of polynomials of degree not exceeding n.
In a recent paper [7] with Kopotun, we proved that if a function f ∈ C[−1, 1] changes

convexity at Ys, then

(2.1) E(2)
n (f, Ys) ≤ cωϕ

3

(
f,

1
n

)
≤ cω3

(
f,

1
n

)
, n ≥ N,

where c = c(s), is a constant which depends only on s, and N = N(Ys), a constant which
depends on the location of the points Ys. On the other hand, Wu and Zhou [14] proved
that for k ≥ 4, estimate (2.1) cannot be had with ω3 replaced by ωk, and Pleshakov
and Shatalina [11] have just proved, that (2.1) is not valid with N = N(s) replacing
N = N(Ys).

In this paper we will prove that if s > 1, then even

(2.2) E(2)
n (f, Ys) ≤ cω

(
f,

1
n

)
, n ≥ N,

is not valid with N = N(s) replacing N = N(Ys). In fact we prove more, namely,

Theorem 1. For no k ≥ 1, r = 0, 1, 2, 3 and s ≥ 2, is it possible to have constants
c = c(k, r, s) and N = N(k, r, s), depending only on k, r and s, such that the inequality

(2.3) E(2)
n (f, Ys) ≤ c

nr
ωk(f (r),

1
n

),

holds for all n ≥ N , and for all f ∈ Cr ∩∆2(Ys).

On the other hand, we show that if s = 1, then (2.2) is valid for N = 1, in fact we prove
that

Theorem 2. Let f ∈ C ∩∆2(Y1), that is, changes convexity once on [−1, 1]. Then

(2.4) E(2)
n (f, Y1) ≤ cωϕ

2

(
f,

1
n

)
, n ≥ 1.

As mentioned above, in view of [11], (2.4) is the best that one can expect.
However, our main positive result is

Theorem 3. For every k, n ∈ N and s ∈ N0 there are constants c = c(k, s) and c∗ =
c∗(k, s), such that if S ∈ Σk,n(Ys) ∩ ∆2(Ys), then there is a polynomial Pn ∈ ∆2(Ys) of
degree ≤ c∗n, satisfying

(2.5) ‖S − Pn‖ ≤ cωϕ
k

(
S,

1
n

)
.

Theorem 3 is trivial for k = 1, since Σ1,n ⊆ Π0. On the other hand it is new for k ≥ 4
even for convex approximation, namely the case s = 0. As was proved by Shvedov [13],
(2.5) cannot be had for a general convex function f (that is s = 0), with k ≥ 4. The proof
for k ≥ 2 is divided into two stages. First we prove a special case of Theorem 3, which in
particular, proves it for the case k = 2, namely.
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Theorem 4. For every k, n ∈ N and s ∈ N0, if S ∈ Σk,n(Ys) ∩∆2(Ys), then there exists
a polynomial Pn ∈ ∆2(Ys), of degree not exceeding cn, such that

(2.6) ‖S − Pn‖ ≤ cωϕ
2

(
S,

1
n

)
.

Then we note that by virtue of Lemma 1 below, in order to conclude the proof of
Theorem 3, it suffices to prove

Theorem 5. For every k, n ∈ N and s ∈ N0 there are constants c and c∗, such that if
S ∈ Σ1

k,n(Ys)∩∆2(Ys), then there is a polynomial Pn ∩∆2(Ys) of degree ≤ c∗n, satisfying
(2.5).

Note that by the above, we have to prove Theorem 5 only for k ≥ 3, but the cases
k = 1, 2 are anyway trivial in this setting since Σ1

2,n ⊆ Π1.

Lemma 1. Let k ≥ 3. Then for each S ∈ Σk,n(Ys) ∩∆2(Ys), there is an S̃ ∈ Σ1
k,n(Ys) ∩

∆2(Ys), such that

(2.7) ‖S − S̃‖ ≤ cωϕ
k

(
S,

1
n

)
.

In particular

ωϕ
k

(
S̃,

1
n

)
≤ cωϕ

k

(
S,

1
n

)
.

Proof. For each 2 ≤ j ≤ n, set

aj(x) :=
1
2

xj−1 − xj−2

xj−1 − xj

p′j−1(xj−1)− p′j(xj−1)
xj − xj−2

(x− xj)2, if j, (j − 1) ∈ H,

aj(x) :=
1
2

p′j−1(xj−1)− p′j(xj−1)
xj−1 − xj

(x− xj)2, if j ∈ H, (j − 1) /∈ H,

and aj(x) := 0, if j /∈ H.

Also for each 1 ≤ j ≤ n− 1, set

bj(x) :=
1
2

xj − xj+1

xj − xj−1

p′j(xj)− p′j+1(xj)
xj+1 − xj−1

(x− xj−1)2, if j, (j + 1) ∈ H,

bj(x) :=
1
2

p′j(xj)− p′j+1(xj)
xj−1 − xj

(x− xj−1)2, if j ∈ H, (j + 1) /∈ H,

and bj(x) := 0, if j /∈ H.

Finally set a1(x) := 0 and bn(x) := 0. Then

S̃(x) = pj(x) + aj(x) + bj(x) + J(x), x ∈ Ij ,
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is the required function, where J is a piecewise constant function with jumps in at most
the 2s points xj near the yi’s, explicitly, the jumps at these xj ’s are

J(xj+)− J(xj−) :=

{
1
2 [p′j(xj)− p′j+1(xj)](xj − xj+1) if j /∈ H, (j + 1) ∈ H
1
2 [p′j(xj)− p′j+1(xj)](xj − xj−1) if j ∈ H, (j + 1) /∈ H.

Indeed, straightforward computations show that S̃ ∈ Σ1
k,n(Ys)∩∆2(Ys), and by Markov’s

inequality

|p′j(xj)− p′j+1(xj)| ≤ 2k2

xj−1 − xj
‖pj − pj+1‖Ij

.

Thus (2.7) readily follows by the inequality

‖pj − pj+1‖Ij ≤ cωϕ
k

(
S,

1
n

)
,

which is an immediate consequence of [10, Lemma 9] (see more details at the beginning
of Section 6). ¤

§3. Negative results

Given 0 < b < 1, set

g′′b (x) :=
{ −b−4(x2 − b2)2, |x| < b,

0, elsewhere,

and let
gb(x) :=

∫ x

0

(x− u)g′′b (u) du.

Then clearly gb ∈ C3, and it is readily seen that

(3.1)
‖gb‖ =

8b

15
− b2

6
≤ 2b

3
, ‖g′b‖ =

8b

15
,

‖g′′b ‖ = 1, and ‖g(3)
b ‖ =

8
3
√

3
b−1 ≤ 2b−1.

Lemma 2. Given n ≥ 1, for each polynomial pn of degree ≤ n, and satisfying

(x2 − b2)p′′n(x) ≥ 0, x ∈ [−1
2
,
1
2
],

with b = 1
2n−

4
3 , we have

‖gb − pn‖ >
b

40
.
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Proof. First we observe that p′′n(±b) = 0, and that p′′n(x) ≤ 0, for −b < x < b. Assume
that for some −b < x0 < b, p′′n(x0) < − 1

4 . Then

|[p′′n;−b, x0, b]| = |p′′n(x0)|
(b− x0)(b + x0)

>
1

4b2
.

Since
[p′′n;−b, x0, b] =

1
2
p(4)

n (θ),

for some −b < θ < b(≤ 1
12 ), it follows by Bernstein’s inequality that

n4‖pn‖ ≥ 1
2
|p(4)

n (θ)| > 1
4b2

.

Now by (3.1) and the prescribed value of b,

(3.2) ‖gb − pn‖ ≥ ‖pn‖ − ‖gb‖ >
1

4n4b2
− 2b

3
=

4b

3
.

If on the other hand, p′′n(x) ≥ − 1
4 , for all −b < x < b, then we represent pn in the form

pn(x) = pn(0) + xp′n(0) +
∫ x

0

(x− u)p′′n(u) du.

Since p′′n(x) ≥ 0 for b ≤ |x| ≤ 1
2 , it follows that

pn(−1
2
)− 2pn(0) + pn(

1
2
) =

∫ 1
2

0

(
1
2
− u)p′′n(u) du +

∫ − 1
2

0

(−1
2
− u)p′′n(u) du

≥
∫ b

0

(
1
2
− u)p′′n(u) du +

∫ b

0

(
1
2
− u)p′′n(−u) du ≥ − b

4
.

Similarly,

gb(−1
2
)− 2gb(0) + gb(

1
2
) = 2

∫ b

0

(
1
2
− u)g′′(u) du

= − 8b

15
+

b2

3
.

Therefore

4‖gb − pn‖ ≥ (pn(−1
2
)− gb(−1

2
))− 2(pn(0)− gb(0)) + (pn(

1
2
)− gb(

1
2
))

≥ − b

4
+

8b

15
− b2

3
≥ b

10
.

Thus together with (3.2), this concludes the proof of Lemma 2. ¤
As an immediate consequence we get
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Corollary 1. For every constant A > 1 there exists an N(A) sufficiently large such that
if n > N(A), then for any s ≥ 2, there is a function g = gn ∈ C3[−1, 1], which changes
convexity s times in [−1, 1], and such that any polynomial pn of degree ≤ n which is
coconvex with it, satisfies

‖g − pn‖ >
A‖g(3)‖

n3
,

‖g − pn‖ >
A‖g′′‖

n2
,

and

‖g − pn‖ >
A‖g′‖

n
.

Proof. Let N(A) = (80A)3 and let s ≥ 2. We take b = bn, n > N(A), as in Lemma 2, and
let g = gb. The function g changes convexity at y2 = −b and y1 = b, it is convex in [y1, 1],
and if s > 2, then we take s− 2 arbitrary points satisfying −1 < ys < · · · < y3 < − 1

2 , and
regard g as changing convexity at these points too, hence g ∈ ∆2(Ys). If the polynomial pn

is coconvex with g, then it satisfies the requirements of Lemma 2. Therefore, by Lemma
2 we have

‖g − pn‖ >
b

40
≥ ‖g(3)‖b2

80
>

A‖g(3)‖
n3

,

‖g − pn‖ >
b

40
=
‖g′′‖b

40
>

A‖g′′‖
n2

,

and

‖g − pn‖ >
b

40
=

3n‖g′‖
64n

>
A‖g′‖

n
. ¤

Remark. It should be noted that the function gb above is independent of A.
We are ready to prove Theorem 1.

Proof of Theorem 1. The proof readily follows from the observation that for all k ≥ 1,

ωk(f, t) ≤ 2k−1ω(f, t) ≤ 2k−1t‖f ′‖,

which by Corollary 1 does not allow the case r = 0 in (2.3) and

ωk(f, t) ≤ 2k‖f‖,

which takes care of the other cases. ¤
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§4. Some auxiliary lemmas

We begin with two lemmas of independent interest which are needed only in the proof of
Theorem 4. We need the notation [f ; z1, z2, z3] for the second divided difference of f ∈ C
at the points z1, z2 and z3.

Lemma 3. Let E := [a, b] ⊂ [0, 1] and set X ′′
E := χ

E
, where χ

E
is the characteristic

function of E. Then for every x0 ∈ (0, 1), we have

(b− a)2

2
< [XE ; 0, x0, 1] < b− a,

Proof. Recall that if a function f ∈ C1[0, 1] has an absolutely continuous first derivative,
then its second divided difference possesses the well known representation,

[f ; 0, x0, 1] =
∫ 1

0

∫ x

0

f ′′(x− (1− x0)y) dy dx.

Hence,

∆ := [XE ; 0, x0, 1] =
∫ 1

0

∫ x

0

χE (x− (1− x0)y) dy dx,

and we observe that, putting λ := (1− x0)−1, ∆ is the area of the set

A := {(x, y) : a ≤ x− λ−1y ≤ b} ∩ {(x, y) : 0 ≤ y ≤ x ≤ 1}.

Note that A is readily seen to be the intersection of the right-angle triangle bounded by
the x–axis and the lines y = x and x = 1, with the parallelogram in the first quadrant,
the basis of which is [a, b], the height 1, and the sides of which are the lines y = λ(x− a)
and y = λ(x− b). The area of the parallelogram is b− a, hence the upper estimate.

As for the lower bound, we observe that since λ > 1, it follows that A contains the right-
angle triangle which is bounded by the x-axis and the lines x = b and y = x− a, the area
of which is exactly 1

2 (b− a)2. The proof of the lower estimate is therefore concluded. ¤
Corollary 2. If E ⊆ [0, 1] is a finite union of intervals, then

[XE ; 0, x0, 1] < measE =: |E|.

The second result is

Lemma 4. Let pk be a polynomial of degree not exceeding k and let a < b. If

meas{x ∈ [a, b] : p′′k(x) ≤ 0} <
b− a

16k3
,

then for every x0 ∈ (a, b),
[pk; a, x0, b] ≥ 0.
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Proof. Without loss of generality assume that a = 0 and b = 1. If p′′k ≡ 0, then there is
nothing to prove, so we may assume that ‖p′′k‖[0,1] := max{|p′′k(x)| : 0 ≤ x ≤ 1} = 1. Write

E2 := {x ∈ [0, 1] : p′′k(x) ≤ 0},
so that E2 is a finite union of intervals, and let x ∈ E2 be arbitrary. Then there is an
x2 ∈ E2 such that |x− x2| ≤ |E2| and p′′k(x2) = 0. By Markov’s inequality,

|p′′k(x)| = |(x− x2)p
(3)
k (θ)| ≤ |E2|2k2‖p′′k‖[0,1] <

1
8k

,

so that

(4.1) p′′k(x) > − 1
8k

, x ∈ E2.

Since we have assumed that ‖p′′k‖[0,1] = 1, this implies that there exists x1 ∈ [0, 1] such
that p′′k(x1) = 1. We take an interval E1 ⊂ [0, 1] of length |E1| = 1

4k2 which contains x1.
Then for each x ∈ E1, it follows again by Markov’s inequality that

|p′′k(x)− p′′k(x1)| = |(x− x1)p
(3)
k (θ)| ≤ |E1|2k2‖p′′k‖[0,1] =

1
2
,

which in turn implies that

(4.2) p′′k(x) ≥ 1
2
, x ∈ E1.

Combining (4.1) and (4.2) we get,

p′′k(x) ≥ 1
2
χE1

− 1
8k

χE2
, x ∈ [0, 1].

By virtue of Lemma 3 and its corollary we obtain

[pk; 0, x0, 1] ≥ 1
2

1
2
|E1|2 − 1

8k
|E2| ≥ 1

26k4
− 1

8k

1
16k3

> 0. ¤

Now denote
ρn(x) :=

1
n2

+
1
n

√
1− x2 =

1
n2

+
1
n

ϕ(x).

Throughout the paper we will have x and n as the generic variables, so whenever it will
be clear that we deal with them, then we will write ρ for ρn(x). For each j = 1, . . . , n
set hj = hj,n := |Ij | = xj−1 − xj , where we recall that xj := xj,n := cosπj/n are the
Chebyshev nodes. Then the following inequalities are well-known (see, e.g., [10]).

(4.3)

ρ < hj < 5ρ, x ∈ Ij ,

hj±1 < 3hj ,

ρ2
n(y) < 4ρ(|x− y|+ ρ), x, y ∈ I,

(|x− y|+ ρ)/2 < |x− y|+ ρn(y) < 2(|x− y|+ ρ), x, y ∈ I.

In particular,

(4.4) (|x− xj |+ hj)/10 < |x− xj |+ ρ < 2(|x− xj |+ hj), x ∈ I, j = 0, . . . , n.
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The next two lemmas are needed in the proofs of both Theorems 4 and 5.

Lemma 5. If 0 ≤ j ≤ i < J ≤ n, then

(4.5)
1
2
(J − j) ≤ xj − xJ

xi − xi+1
≤ (J − j)2.

Furthermore, if either J ≤ 3j or n− j ≤ 3(n− J), then

(4.6)
1
2
(J − j) ≤ xj − xJ

xi − xi+1
≤ 2(J − j).

Proof. Let t := π
2n . We begin with the upper bound and first assume that 2i + 1 ≤ J + j.

Then

xj − xJ

xi − xi+1
=

sin (J + j)t sin (J − j)t
sin (2i + 1)t sin t

≤ J + j

2i + 1
(J − j)

≤ J + j

2j + 1
(J − j) ≤ (J − j)2,

where we have used the fact that sin u/u is decreasing for 0 < u < π. If on the other hand
2i+1 > J +j, then we observe that xj−xJ = xn−J−xn−j and xi−xi+1 = xn−i−1−xn−i,
and 2(n− i− 1)+1 < (n−J)+ (n− j). Thus we obtain the same bound. This proves the
upper bound in (4.5). Further, if J ≤ 3j, then clearly J+j

2j+1 ≤ 2, so that the upper bound in
(4.6) follows. Similar considerations yield the upper bound in (4.6) when n− j ≤ 3(n−J).

As for the lower bound, we first assume that J ≤ n
2 . Then

xj − xJ

xi − xi+1
≥ xj − xJ

xJ−1 − xJ

=
sin 2Jt + sin 2jt

2 sin (2J − 1)t
tan (J − j)t

sin t

≥ 1
2
(J − j).

If j ≥ n
2 , then we have the symmetric situation and the proof is the same. We are left

with the case j < n
2 < J . To this end we observe that if n is even, then xn

2
− xn

2 +1 =
xn

2−1 − xn
2
≥ xi − xi+1, j ≤ i < J . Hence by the above inequalities

xj − xJ

xi − xi+1
=

(xj − xn
2
) + (xn

2
− xJ)

xi − xi+1

≥ xj − xn
2

xn
2−1 − xn

2

+
xn

2
− xJ

xn
2
− xn

2 +1

≥ 1
2
(
(
n

2
− j) + (J − n

2
)
)

=
1
2
(J − j).

11



If on the other hand n is odd, then the biggest denominator is xn−1
2
−xn+1

2
. Observe that

xi,n = x2i,2n so that by the inequality for the even case we have

xj − xJ

xi − xi+1
≥ xj − xJ

xn−1
2
− xn+1

2

=
x2j,2n − x2J,2n

xn−1,2n − xn+1,2n

=
(

(xn−1,2n − xn,2n) + (xn,2n − xn+1,2n)
x2j,2n − x2J,2n

)−1

≥
(

2
2J − 2j

+
2

2J − 2j

)−1

=
1
2
(J − j). ¤

Given Ys, s > 0, set

(4.7) Π(x) :=
s∏

i=1

(x− yi) and δ(x) := sgn Π(x), x ∈ I.

Let

(4.8) π(x) :=
s∏

i=1

|x− yi|
|x− yi|+ ρ

,

then it follows immediately from (4.3) that

(4.9) π(x) > 2−s, x ∈ (−1, 1) \O.

Now, by virtue of (4.4)

|x− yi|+ ρ < 2|x− xj |+ |xj − yi|+ 2hj ,

and if j ∈ H, then 3|xj − yi| ≥ hj . Hence

hj

(|x− xj |+ hj)|xj − yi| ≤
7

|x− yi|+ ρ
, j ∈ H,

which in turn implies

(4.10)
(

hj

|x− xj |+ hj

)s |Π(x)|
|Π(xj)| ≤ 7sπ(x), x ∈ I, j ∈ H.

Similarly,

(4.11)
( |x− xj |+ ρ

ρ

)s |Π(x)|
|Π(xj)| ≥ π(x), x ∈ I, j = 0, . . . , n.

12



Following [12], let

(4.12) tj(x) := tj,n(x) :=
cos2 2n arccosx

(x− x0
j )2

+
sin2 2n arccosx

(x− x̄j)2
,

where x̄j = cos (j − 1
2 )π/n and x0

j = cos β0
j with β0

j = (j − 1
4 )π/n, j ≤ n/2, and β0

j =
(j − 3

4 )π/n, j > n/2. Note that x̄j and x0
j are zeros of the respective numerators which

are contained in
◦
Ij (the interior of Ij), and that the tj are algebraic polynomials of degree

4n− 2. Recall, that

(4.13) tj(x) ≤ c

(|x− xj |+ hj)2
≤ ctj(x), x ∈ I.

With j ∈ H and an integer b ≥ 6(s + 1), we associate the polynomial of degree ≤ Cn,

(4.14) Tj(x) = Tj,n(x; b;Ys) :=
1
dj

∫ x

−1

tbj(u)Π(u)du,

where

dj =
∫ 1

−1

tbj(u)Π(u)du.

It follows by [5, Lemma 5.3] that

(4.15) Ch2b−1
j ≤ Π(xj)

dj
≤ Ch2b−1

j ,

which clearly yields

(4.16) T ′j(x)Π(x)Π(xj) ≥ 0, x ∈ I.

Denoting

Γj(x) :=
hj

|x− xj |+ hj
,

we obtain by (4.13) and (4.15),

(4.17) |T ′j(x)| ≤ C

hj
Γ2b

j (x)
|Π(x)|
|Π(xj)| ≤ C|T ′j(x)|, x ∈ I.

Also by [5, Lemma 5.3], if
χj(x) := χ(xj ,1](x),

is the characteristic function of (xj , 1], then for j ∈ H,

(4.18) |χj(x)− Tj(x)| ≤ CΓ2b−s−1
j (x), x ∈ I.
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Similarly, the polynomials of degree ≤ Cn,

T̄j(x) :=
1
d̄j

∫ x

−1

(u− xj)(xj−1 − u)tb+1
j (u)Π(u)du,

so that T̄j(1) = 1, satisfy

T̄ ′j(x)Π(x)Π(xj) ≤ 0, x ∈ I \ Ij ,

and, in addition, they satisfy inequalities similar to (4.17), (4.18), namely,

|T̄ ′j(x)| ≤ C

hj
Γ2b

j (x)
|Π(x)|
|Π(xj)| , x ∈ I,

and
|χj(x)− T̄j(x)| ≤ CΓ2b−s−1

j (x), x ∈ I.

Then we obtain

Lemma 6. Let b = 6(s + 1). Then for each j ∈ H there exist polynomials τj and τ̄j of
degree ≤ cn, satisfying

(4.19)
τ ′′j (x)Π(x)Π(xj) ≥ 0, x ∈ I,

τ̄ ′′j (x)Π(x)Π(xj) ≤ 0, x ∈ I \ Ij ,

(4.20) |τ̄ ′′j (x)| ≤ c

hj
Γ2b

j (x)
|Π(x)|
|Π(xj)| ≤ c|τ ′′j (x)|, x ∈ I,

and

(4.21)
|(x− xj)+ − τj(x)| ≤ chjΓ2b−s−2

j (x),

|(x− xj)+ − τ̄j(x)| ≤ chjΓ2b−s−2
j (x), x ∈ I.

Proof. We will prove only the existence of the polynomials τj , the other case being com-
pletely analogous. For every j ∈ H let Tj be defined by (4.14). We use it to construct τj .
By virtue of (4.18)

(4.22)
∫ 1

−1

|χj(x)− Tj(x)| dx ≤ c

∫ 1

−1

Γ2
j (x) dx ≤: c0hj , j ∈ H.

If for r := d6c0e (where dae denotes the ceiling of a), both j − r ≥ 0 and j + r ≤ n, and if
for all j − r ≤ i ≤ j + r, we have i ∈ H, then by Lemma 5 we have

xj−r − xj ≥ 3c0hj−r−1 ≥ c0hj−r, and xj − xj+r ≥ c0hj+r,
14



so that it follows from (4.22) that,
∫ 1

−1

(
Tj−r(x)− χj(x)

)
dx =

∫ 1

−1

(
Tj−r(x)− χj−r(x)

)
dx− (xj−r − xj) ≤ 0,

and
∫ 1

−1

(
Tj+r(x)− χj(x)

)
dx =

∫ 1

−1

(
Tj+r(x)− χj+r(x)

)
dx + (xj − xj+r) ≥ 0.

Hence for some 0 ≤ α ≤ 1, we have

α

∫ 1

−1

(
Tj−r(x)− χj(x)

)
dx + (1− α)

∫ 1

−1

(
Tj+r(x)− χj(x)

)
dx = 0.

We set
τj,n := τj(x) := α

∫ x

−1

Tj−r(u) du + (1− α)
∫ x

−1

Tj+r(u) du,

so that
τj(1) = 1− xj ,

which by (4.18), in turn implies (4.21). Now (4.19) follows from (4.16) and (4.20) follows
from (4.17) since by our assumption sgnΠ(xj−r) =sgnΠ(xj+r) =sgnΠ(xj).

If j − r < 0, then it suffices to take

τj(x) :=
∫ x

−1

Tj(u) du,

and if j + r > n, then it suffices to take

τj(x) := 1− xj −
∫ 1

x

Tj(u) du.

We are left with the case where there is an i /∈ H, such that 0 ≤ j − r ≤ i < j + r ≤ n. In
this case we take the Chebyshev partition of order 2rn, so that we have xj = x2rj,2rn and
i ∈ H(Ys, 2rn), for all 2rj − r ≤ i ≤ 2rj + r. Thus we set

τj(x) := τ2rj,2rn(x),

and we observe that by the above construction this τj satisfies (4.19) through (4.21), since
by virtue of (4.5),

h2rj,2rn ≤ hj ≤ 4r2h2rj,2rn. ¤

Remark. One should note that by going from n to 2rn, we may reduce all cases save j = 0
and j = n, to the first situation.

The last four lemmas of this section are required in the proof of Theorem 5. Combining
Lemma 6 with (4.3), (4.10) and (4.11), readily yields
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Lemma 7. The polynomials τj and τ̄j satisfy

(4.23) |τ ′′j (x)| ≥ chj

ρ2
π(x)

(
ρ

|x− xj |+ ρ

)25(s+1)

, x ∈ I,

|τ̄ ′′j (x)| ≤ chj

ρ2
π(x), x ∈ Ij ,

and

(4.24)
|(x− xj)+ − τj(x)| ≤ cρ

(
hj

|x− xj |+ ρ

)2

,

|(x− xj)+ − τ̄j(x)| ≤ cρ

(
hj

|x− xj |+ ρ

)2

, x ∈ I.

In order to prove Lemma 10 below, we need two more auxiliary results.

Lemma 8. Let l0, l1 ∈ N, and assume that 0 ≤ j0 ≤ j1 < · · · < j2l1 ≤ j0 + l0 ≤ n. Then

(4.25)
1
l1

l1∑
ν=1

(xjν − xjν+l1
) ≥

(
l1
l0

)2

(xj0 − xj0+l0).

Proof. With no loss of generality we may assume that j0 ≤ n − j0 − l0. Then for each
1 ≤ ν ≤ l1,

xjν − xjν+l1
≥ xjν − xjν+l1 ≥ xj0 − xj0+l1 .

Thus, in order to prove (4.25), it suffices to estimate

xj0 − xj0+l1

xj0 − xj0+l0

=
sin πl1/2n

sin πl0/2n

sin π(2j0 + l1)/2n

sin π(2j0 + l0)/2n

≥ sin2 πl1/2n

sin2 πl0/2n
≥

(
l1
l0

)2

,

where in both inequalities we use the fact that l1 < l0 and in the last inequality also that
sin x/x is decreasing in (0, π). This completes the proof. ¤

Lemma 9. Let A := {j0, . . . , j0 + l0}, and let A1, A2 ⊆ A, be such that #A1 = 2l1 and
#A2 = l2. If δj ∈ {−1, 1}, j ∈ A2, then there exist 2l1 constants ai, i ∈ A1, such that

(4.26) |ai| ≤
(

l0
l1

)2

, i ∈ A1,
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and

(4.27)
1
l2

∑

j∈A2

δj(x− xj) +
1
l1

∑

i∈A1

ai(x− xi) ≡ 0.

Proof. Without loss of generality we may take l2 = 1, that is, A2 = {j∗}, and we may
assume δj∗ = −1. We may write A1 as A1 = A+

1 ∪A−1 , where each set contains l1 elements,
and each index in A+

1 is less than all indices in A−1 . Denote

1
l1

∑

i∈A+
1

(x− xi) =: x− α+ and
1
l1

∑

i∈A−1

(x− xi) =: x− α−,

and put

ai :=





xj∗−α−

α+−α− , i ∈ A+
1

xj∗−α+

α−−α+ , i ∈ A−1 .

Then (4.27) for l2 = 1, follows. By virtue of Lemma 8 we have

α+ − α− ≥
(

l1
l0

)2

(xj0 − xj0+l0),

whence (4.26) follows by the straightforward inequality |xj∗ − α±| ≤ xj0 − xj0+l0 . This
completes the proof of Lemma 9. ¤

We are ready to state and prove Lemma 10.

Lemma 10. Let E be an interval which is the union of l ≥ 12s of the intervals Ij, and let
a set J ⊆ E be the union of 1 ≤ µ ≤ l/4 of these intervals. Then there exists a polynomial
Qn(x) = Qn(x,E, J) of degree ≤ cn, satisfying

(4.28) Q′′n(x)δ(x) ≥ c1
l

µ

(
ρ

max{ρ, dist(x,E)}
)25(s+1)

π(x)
ρ2

, x ∈ J ∪ (I \ E),

(we may take c1 ≤ 1)

(4.29) Q′′n(x)δ(x) ≥ −π(x)
ρ2

, x ∈ E \ J

and

(4.30) |Qn(x)| ≤ cl6ρ
∑

Ij⊆E

hj

(|x− xj |+ ρ)2
, x ∈ I.
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Proof. Let H(E) := {j ∈ H | Ij ⊆ E}, H(J) := {j ∈ H | Ij ⊆ J}, E(O) := {j | Ij ⊆
E∩O}, and H∗(E) := {j ∈ H(E) | Ij∩O 6= ∅}, where O denotes the closure of O. Finally,
let j∗ := min{j ∈ H(E)} and j∗ := max{j ∈ H(E)}. Set

A2 := H(J) ∪H∗(E) ∪ {j∗, j∗}, and A1 := H(E) \ (A2 ∪ E(O)).

Denote by l∗1 and l2 the number of elements in A1 and A2, respectively, and set l1 := [ l∗1
2 ].

Then it readily follows that

(4.31) l2 ≤ µ + 2s + 2 ≤ cµ,

(recall that we allow c to depend on s), and

(4.32) l > l∗1 ≥ l − (l2 + 3s) ≥ 1
6
l.

Denote by j0 and j0 = j0 + l− 1 the smallest and the largest integers j, such that Ij ⊆ E.
We consider three cases.

Case I. Let l ≥ j0. Set

Qn(x) :=
l

µ

∑

j∈A2

δjτj(x)
hj

,

where δj := sgnΠ(xj). Then Q′′
n(x)δ(x) ≥ 0, x ∈ I, which implies (4.29), and (4.28)

readily follows from (4.23). Thus we only have to prove (4.30). To this end, by (4.24) we
obtain for any j ∈ A2,

|τj(x)|
hj

≤ 1
hj
|τj(x)− (x− xj)+|+ (x− xj)+

hj
≤ c

ρhj

(|x− xj |+ ρ)2
+

(x− xj)+
hj

.

Now, if x ≤ xj , then (x−xj)+ = 0. Otherwise, observe that x ∈ Ii for some 1 ≤ i ≤ j ≤ 2l.
Thus,

(x− xj)
hj

(x− xj + ρ)2

ρhj
≤ 10

x− xj

hj

x− xj + hj

hj

x− xj + hi

hi

≤ 10
(x0 − x2l

h1
+ 1

)3 ≤ cl6.

which implies (4.30).
Case II. Let j0 ≥ n− 2l. Set

Qn(x) :=
l

µ

∑

j∈A2

δj

hj
(τj(x)− (x− xj)),

and proceed in the same manner as in the Case I.
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Case III. Let l < j0 < n − 2l. Denote by h = |E| = xj0−1 − xj0+l−1, the length of the
interval E. Then (4.6) implies

(4.33)
1
2
h ≤ lhj ≤ 2h, Ij ⊂ E.

Lemma 9, (4.31) and (4.32), guarantee the existence of ai, i ∈ A1, such that

(4.34)
l

µ

∑

j∈A2

δj(x− xj) +
∑

i∈A1

ai(x− xi) ≡ 0,

and

(4.35) |ai| ≤ l

µ

(
l

l1

)2
l2
l1
≤ c, i ∈ A1.

(Note that if l∗1 is odd, then we apply Lemma 9 to A1 \ {i∗}, for some arbitrary i∗, and
put ai∗ = 0 in (4.34).)
For each i ∈ A1 set

τ∗i :=
{

τi, if δiai ≥ 0,

τ̄i, otherwise,
and let

Qn(x) := c
l

h


 l

µ

∑

j∈A2

δjτj(x) +
∑

i∈A1

aiτ
∗
i (x)


 ,

for some c to be prescribed. Then by virtue of (4.33) and (4.35), we see that (4.28) readily
follows by (4.19) and (4.23), and that (4.29) is valid for a proper choice of the constant c.
We conclude with the proof of (4.30). Take

L(x) :=
l

µ

∑

j∈A2

δj(x− xj)+ +
∑

i∈A1

ai(x− xi)+.

Then by (4.24) we have

|Qn(x)| ≤ clρ
∑

j∈H(E)

hj

(|x− xj |+ ρ)2
+ c

l

h
|L(x)|, x ∈ I.

So we only need to estimate l
h |L(x)|. To this end, note that if x 6∈ E, then (4.34) implies

that L(x) ≡ 0. On the other hand, if x ∈ E, then

l

h
|L(x)| ≤ cl

h

(
ll2
µ

h + 2l1h

)
≤ cl2 ≤ cl3ρ

∑

Ij⊆E

hj

(|x− xj |+ ρ)2
,

where for the last inequality we have applied (4.3), (4.33) and the estimate

1 = h
∑

Ij⊆E

hj

h2
≤ 16h

∑

Ij⊆E

hj

(|x− xj |+ ρ)2
≤ 160lρ

∑

Ij⊆E

hj

(|x− xj |+ ρ)2
.

This completes the proof of (4.30), and in turn of Lemma 10. ¤
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§5. Proof of Theorems 2 and 4

We begin with the

Proof of Theorem 4. Since Theorem 4 for k = 1 is trivial, we have to prove Theorem 4
only for k ≥ 2. Given n ≥ 1, denote by Gν = (xJν

, xjν
) the connected components of

O = O(n, Ys). For j = 1, . . . , n−1, let τ̃j be polynomials of degree ≤ cn defined as follows.
a. if j ∈ H, then

τ̃j(x) := τj(x),

where τj are from Lemma 6;
b. if jν = 0 and 0 < j < Jν , then τ̃j(x) := 0;
c. Jν = n and jν < j < n, then τ̃j(x) := x− xj .

Finally, we have the j’s for which 0 < jν < j < Jν < n. We divide the ν’s into two
groups. Let n1 := 22s(k − 1)3n. We say that ν ∈ Od if there exists an lν ∈ H(n1, Ys)
such that Ilν ,n1 ∩Gν 6= ∅, and the interval (xlν ,n1 , xjν ,n) contains an odd number of points
yi. Note that if ν /∈ Od, then the set Gν contains an even number, say 2m, of points
yi, the points yi0+2m−1 < ... < yi0 , say. In this case each two consecutive points yi0+2v

and yi0+2v+1, v = 0, ..., m− 1, must belong to the union of four consecutive intervals, say
[xlv+2,n1 , xlv−2,n1), whence

{x ∈ Gν : Π(xjν )S′′(x) < 0} ⊆ ∪m−1
v=0 [xlv+2,n1xlv−2,n1 ].

It follows by the left-hand side of (4.5) that,

(5.1)

meas{x ∈ Gν : Π(xjν )S′′(x) < 0} ≤ s

2
4 max

Il,n1⊆(xJν ,xjν )
|Il,n1 |

≤ 4s

2
2

|Gν |
(Jν − jν)n1

n

≤ 4s
|Gν |
3n1

n

=
1

16(k − 1)3
|Gν |.

We need the polynomials τjν and τJν , however, we note that jν might not be in H. Since
2jν is always in H(2n, Ys), in the case jν /∈ H, we define τ̃jν := τjν := τ2jν ,2n. Similarly,
we always have Jν /∈ H and 2Jν ∈ H(2n, Ys), so we define τ̃Jν := τJν := τ2Jν ,2n. Now,
d. if 0 < jν < j < Jν < n and ν /∈ Od, then we let

τ̃j(x) := τjν (x),

if on the other hand,
e. 0 < jν < j < Jν < n and ν ∈ Od, then we let

τ̃j(x) := δjτjν (x) + (1− δj)τlν ,n1(x),
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where δj = 0 or = 1, is to be prescribed.
We are in a position to define Pn. Recall that the piecewise linear function L that

interpolates S, at the xj ’s satisfies

(5.2) ‖S − L‖ ≤ cωϕ
2

(
S,

1
n

)
,

and may be written in the form

L(x) = l(x) +
n−1∑

j=1

[S; xj+1, xj , xj−1](xj−1 − xj+1)(x− xj)+,

where l(x) is a linear function. Thus, denote

Pn(x) := l(x) +
n−1∑

j=1

[S;xj+1, xj , xj−1](xj−1 − xj+1)τ̃j(x).

We begin with the proof of (2.6). To this end, we show that for each j = 1, . . . , n− 1, we
have

(5.3) |(x− xj)+ − τ̃j(x)| ≤ chjΓ2
j (x), x ∈ I.

Indeed, going through the various cases we see that
a. (5.3) readily follows from (4.21);
b., c. (5.3) readily follows from the inequalities

(5.4) hj ≤ |Gν | < chj , jν < j < Jν ;

d. by (4.21) and (5.4),

|(x− xj)+ − τ̃j(x)| ≤ |(x− xj)+ − (x− xjν )+|+ |(x− xjν )+ − τ̃jν (x)|
≤ chjΓ2

j (x) + chjν Γ2
jν

(x) ≤ chjΓ2
j (x);

and finally,
e. if δj = 1, then we are back in Case d., and if δj = 0, then similarly we have,

|(x− xj)+ − τ̃j(x)| ≤ chjΓ2
j (x) + |(x− xlν ,n1)+ − τ̃lν ,n1(x)|

≤ chjΓ2
j (x) +

h3
lν ,n1

(|x− xlν ,n1 |+ hlν ,n1)2

≤ chjΓ2
j (x),
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and (5.3) is proved. Since it is well-known that

|[S; xj+1, xj , xj−1]| ≤ ch−2
j ωϕ

2

(
S,

1
n

)
, j = 1, . . . , n− 1,

and

‖
n∑

j=1

Γ2
j‖ ≤ c,

we obtain

‖L− Pn‖ ≤ c‖
n−1∑

j=1

Γ2
j‖ωϕ

2

(
S,

1
n

)
.

This together with (5.2) concludes the proof of (2.6).
In order to prove that Pn ∈ ∆2(Ys) we denote

Lj(x) := [S;xj+1, xj , xj−1](xj−1 − xj+1)τ̃j(x), j = 1, . . . , n− 1,

and
Pn(x) =: l(x) + A(x) + B(x) + C(x) + D(x) + E(x),

where
A(x) =

∑

j∈H

Lj(x) +
∑

Jν<n

LJν (x),

B(x) =
Jν−1∑

j=1

Lj(x), if jν = 0,

C(x) =
n−1∑

j=jν+1

Lj(x), if Jν = n,

D(x) =
∑

ν∈Od

Jν−1∑

j=jν+1

Lj(x),

and

E(x) =
∑

ν /∈Od

Jν−1∑

j=jν+1

Lj(x) =:
∑

ν /∈Od

Eν(x).

It is important to emphasize that we either have jν ∈ H or jν = Jν+1, so that indeed all
1 ≤ j ≤ n− 1 are taken care of.

Again we have to investigate each case separately.
a. If j ∈ H, then by definition of ∆2(Ys) we have, Π(xj)[S;xj+1, xj , xj−1] ≥ 0. Hence by
(4.19),

Π(x)L′′j (x) = Π(x)[S; xj+1, xj , xj−1](xj−1 − xj+1)τ ′′j (x) ≥ 0,
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and similarly Π(x)L′′Jν
(x) ≥ 0, Jν < n, so that Π(x)A′′(x) ≥ 0, x ∈ I.

b., c. Since B and C are linear functions, we have B′′(x) ≡ 0 and C ′′(x) ≡ 0.
e. If ν ∈ Od, then by definition, we have an odd number of points yi ∈ (xlν ,n1 , xjν

), which
in turn implies that

Π(xlν ,n1)Π(xjν
) < 0.

Hence, (4.19) implies
τ ′′lν ,n1

(x)τ ′′jν
(x) ≤ 0, x ∈ I.

Hence for each j = jν + 1, . . . , Jν − 1, we may prescribe δj so that

Π(x)L′′j (x) ≥ 0, x ∈ I.

With this choice
Π(x)D′′(x) ≥ 0, x ∈ I.

Finally we conclude with the proof of Case
d. If ν /∈ Od, then

Eν(x) =
Jν−1∑

j=jν+1

Lj(x)

= τjν (x)
Jν−1∑

j=jν+1

[S;xj+1, xj , xj−1](xj−1 − xj+1)

= τjν (x)
(
[S; xJν , xjν+1, xjν ](xjν+1 − xJν ) + [S; xJν , xJν−1, xjν ](xjν − xJν−1)

)

=: τjν (x)eν .

By virtue of Lemma 4 and (5.1), it now follows that

Π(xjν )eν ≥ 0.

Therefore, (4.19) implies

Π(x)E′′
ν (x) = τ ′′jν

(x)Π(x)Π(xjν )
eν

Π(xjν )
≥ 0, x ∈ I.

Since l′′(x) ≡ 0, we have shown that Pn ∈ ∆2(Ys), and concluded the proof of Theorem
4. ¤
Proof of Theorem 2. Analyzing the above proof, one notes that the only place one needs
the assumption that our function is a piecewise polynomial, is in order to apply Lemma 4.
Thus for a general f ∈ ∆2(Ys), if one is guaranteed that n is sufficiently big so that each
component Gν contains an odd number of points of Ys, in particular one point, then one
may conclude the same. If f changes convexity just once, then obviously the requirement
that each component Gν contains an odd number of points of Ys, specifically one point,
holds for all n ≥ 1. This proves Theorem 2. ¤
Remark. In view of the above discussion we see that we always have the estimate (2.4)
for n ≥ N = N(Ys). This is of course weaker than (2.1) and we only mention it since we
have got it for free.
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§6. Smoothing lemmas

Let Ii,j be the smallest closed interval, containing Ii and Ij , and denote hi,j := |Ii,j |.
For S ∈ Σk,n set

(6.1) ai,j(S) := ‖pi − pj‖Ii

(
hj

hi,j

)k

, i, j = 1, . . . , n,

where ‖p‖Ii = max{|p(x)| : x ∈ Ii}.
We are going to call an interval A a proper interval, if its endpoints belong to the Chebyshev
partition, that is, are among the xj ’s. For any proper interval A, let

ak(S, A) := max ai,j(S),

where the maximum is taken over all i, j, such that Ij ⊆ A and Ii ⊆ A. Finally, write

ak(S) := ak(S, I).

Then, by virtue of [10, Lemma 9] we have

(6.2) ak(S) ≤ cωϕ
k

(
S,

1
n

)
≤ cak(S).

Given x ∈ I, if θ ∈ [x − hϕ(x), x + hϕ(x)] ⊆ I, then we have ϕ(x) ≤ 2(h + ϕ(θ)). If
S ∈ Σ1

k,n, S′ is absolutely continuous in I, whence for 0 < h ≤ 1/n,

|∆2
hϕ(x)S(x)| =

∣∣∣∣∣
∫ x+hϕ(x)

x

(
S′(t)− S′(t− hϕ(x)

)
dt

∣∣∣∣∣

=

∣∣∣∣∣
∫ x+hϕ(x)

x

∫ t

t−hϕ(x)

S′′(u)du dt

∣∣∣∣∣

≤ 1
min(h2 + hϕ(θ))2

∣∣∣∣∣
∫ x+hϕ(x)

x

∫ t

t−hϕ(x)

ρ2
n(u)S′′(u)du dt

∣∣∣∣∣

≤ (hϕ(x))2

min(h2 + hϕ(θ))2
‖ρ2S′′‖

≤ 4‖ρ2S′′‖,

where the minimum is taken above on θ ∈ [x−hϕ(x), x+hϕ(x)]. Hence, if S ∈ Σ1
k,n, then

(6.3) ωϕ
2

(
S,

1
n

)
≤ c‖ρ2S′′‖,

which in turn by (6.2), and the inequality ωϕ
k (S, t) ≤ cωϕ

2 (S, t), k ≥ 3, readily implies
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Lemma 11. If S ∈ Σ1
k,n, then

ak(S) ≤ c‖ρ2S′′‖.
Finally we have

Lemma 12. Suppose k ≥ 3 and S ∈ Σ1
k,n is such that

(6.4) ak(S) ≤ 1.

If an interval Iµ,ν contains at least 2k − 5 intervals Ii, and points x∗i ∈
◦
I i, such that

(6.5) ρ2
n(x∗i )|S′′(x∗i )| ≤ 1,

then for every 0 ≤ j ≤ n, we have
(6.6) ‖ρ2S′′‖Ij

≤ c
(
(j − µ)4k + (j − ν)4k

)
.

Proof. Fix j and x ∈
◦
Ij . It follows by (6.1) and (6.4) that for every i,

‖pi − pj‖Ii ≤
(

hi,j

hj

)k

.

Since pi and pj are polynomials of degree k − 1, we get

‖p′′i − p′′j ‖Ii ≤
c

h2
i

(
hi,j

hj

)k

.

In view of (4.3) and (4.5), we see that (6.5) implies

(6.7)

|p′′j (x∗i )| ≤
c

h2
i

(
hi,j

hj

)k

+
c

h2
i

≤ c

h2
i

(
hi,j

hj

)k

≤ c

h2
j

(|i− j|+ 1)2k

.

By assumption there are k − 2 points x∗im
∈ Iµ,ν , m = 1, . . . , k − 2, each two being

separated by an interval Ii ⊆ Iµ,ν . Recalling that x ∈ Ij , we have for each 1 ≤ l ≤ k − 2
and 1 ≤ m ≤ k − 2, with l 6= m,

(6.8)
|x− x∗im

|
|x∗il

− x∗im
| ≤ c

hj,im

him

≤ c(|j − im|+ 1)2 ≤ c
(
(j − µ)2 + (j − ν)2

)
.

Now, by virtue of the representation

p′′j (x) ≡
k−2∑

l=1

p′′j (x∗il
)

k−2∏

m=1,m6=l

x− x∗im

x∗il
− x∗im

,

we obtain from (6.7) and (6.8),

ρ2|S′′(x)| = ρ2|p′′j (x)| ≤ h2
j |p′′j (x)| ≤ c

(
(j − µ)4k−6 + (j − ν)4k−6

)
, x ∈

◦
Ij ,

and the proof is complete. ¤
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§7. Zero-preserving approximation

We begin with a technical result. Namely,

Lemma 13. For s ∈ N, let 2s vectors āl = (a0,l, a1,l, ..., as−1,l), l = 0, . . . , 2s−1, be given
so that sgn aν,l = (−1)δν,l , 0 ≤ ν ≤ s − 1, where δν,l ∈ {0, 1} is from the representation
l =

∑s−1
ν=0 δν,l2ν . Then there are 2s positive numbers αl such that

(7.1)
2s−1∑

l=0

αlāl = (0, 0, ..., 0).

Proof. The proof by induction is straightforward. ¤

Next we need

Lemma 14. Let K(x) be a continuous strictly positive function on I, and let 0 ≤ i∗ ≤ s
be fixed. Then there exist s interlacing points yi+1 < ti < yi, i = 0, . . . , s, i 6= i∗, such
that the function

(7.2) Φ(x) = Φ(x,K, i∗, Ys) :=
∫ x

−1

K(u)Π2(u)
s∏

i=0,i6=i∗
(u− ti)du,

(if s = 0, then the empty product = 1), satisfies

(7.3) Φ′(yi) = Φ′′(yi) = 0, 1 ≤ i ≤ s,

and

(7.4) Φ(yi) =
{

Φ(1), 0 ≤ i ≤ i∗,

Φ(−1), i∗ < i ≤ s + 1.

Proof. Since (7.3) is self-evident for any choice of {ti}, we prove that we may select them
so as to yield (7.4). For each 0 ≤ l ≤ 2s − 1 and every 0 ≤ i ≤ s, i 6= i∗, we take
yi,l ∈ {yi, yi+1}, such that for u ∈ (yi+1, yi),

sgn
(
Π(u)(u− yi∗)(u− yi,l)

)
=

{
(−1)δi,l , i < i∗,

(−1)δi−1,l , i > i∗,

and denote

Φl(x) :=
∫ x

−1

K(u)Π2(u)
s∏

i=0,i 6=i∗
(u− yi,l)du.
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Now, for

(7.5) ai,l :=
{

Φl(yi)− Φl(yi+1), i < i∗,

Φl(yi+1)− Φl(yi+2), i ≥ i∗,
,

it follows that sgn ai,l = (−1)δi,l , therefore by Lemma 13 there are 2s positive numbers αl

such that
2s−1∑

l=0

αl(a0,l, a1,l, , ..., as−1,l) = (0, 0, ..., 0).

Set

(7.6) Φ(x) :=

(
2s−1∑

l=0

αl

)−1
2s−1∑

l=0

αlΦl(x).

Then Φ is the required function. Indeed, for each 0 ≤ i < i∗, we have

2s−1∑

l=0

αl

(
Φl(yi+1)− Φl(yi)

)
=

2s−1∑

l=0

αlai,l = 0,

which implies (7.4) for 0 ≤ i ≤ i∗. Similarly we have (7.4) for i∗ < i ≤ s + 1. By its
definition,

(7.7) Φ(x) :=
∫ x

−1

K(u)Π2(u)Ps(u)du,

where Ps(x) is a monic polynomial of degree s. By Rolle’s theorem (7.4) implies that Φ′(x)
has a zero in (yi+1, yi), 0 ≤ i ≤ s, i 6= i∗. Hence by (7.7), Φ(x) possesses the representation
(7.2). ¤

Let j ∈ H and let 0 ≤ ij ≤ s be such that yij+1 < xj < yij . For a fixed integer
b ≥ 6(3s + 1), denote

(7.8) Ťj(x) := Ťj,n(x, b, Ys) := d−1
j,b,Ys,nΦ(x, tbj , ij , Ys),

where tj was defined in (4.12) and where dj,b,Ys,n is chosen so that Ťj(1) = 1. Evidently,
it is a polynomial of degree ≤ Cn. A proof similar to that of (4.18) yields

(7.9) |χj(x)− Ťj(x)| ≤ C

(
hj

|x− xj |+ hj

)b1

, x ∈ I,

where b1 = 2b− 3s− 1.
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For the rest of this section we assume that s > 0 otherwise many of the statements
are vacuous and there is nothing to prove. For j /∈ H, let j∗ be the closest element to it
from H (if there are two such elements, then we take the bigger one), and denote by I∗j
the connected component of O (the closure of O), that contains xj . Since the interval I∗j
contains at most 3s intervals Iν , we conclude from (4.5) that

(7.10) hj ≤ |I∗j | ≤ (3s)2hj .

In order to use a unified notation we denote for j ∈ H, j∗ := j, and I∗j := Ij . It follows
by (7.10) that (7.9) is valid also for the polynomial

(7.11) Ťj(x) := Ťj,n(x, b, Ys) := Ťj∗,n(x, b, Ys), j /∈ H.

We summarize the above in the following

Lemma 15. For every 1 ≤ j ≤ n,

(7.12) Ť ′j(yi) = Ť ′′j (yi) = 0, 1 ≤ i ≤ s,

(7.13) χj(yi)− Ťj(yi) = 0, 1 ≤ i ≤ s, yi /∈ I∗j ,

and

(7.14) |χj(x)− Ťj(x)| < C

(
hj

|x− xj |+ hj

)b1

, x ∈ I.

Set

(7.15)

T̂1(x) = T̂1,n(x, b, Ys) := Ť1,n(x, b, Ys),

T̂n(x) = T̂n,n(x, b, Ys) := 1− Ťn−1,n(x, b, Ys),

T̂j(x) = T̂j,n(x, b, Ys) := Ťj,n(x, b, Ys)− Ťj−1,n(x, b, Ys), 2 ≤ j ≤ n− 1.

Then we prove

Lemma 16. The following relations hold

(7.16)
n∑

j=1

T̂j(x) ≡ 1,

(7.17)
T̂ ′j(yi) =T̂ ′′j (yi) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ n,

T̂j(yi) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ n, yi /∈ I∗j ,
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and

(7.18) |T̂ (q)
j (x)| < C

ρq

(
hj

|x− xj |+ hj

)b1

, x ∈ I, 1 ≤ j ≤ n, 0 ≤ q ≤ s + 2.

Proof. Obviously (7.16) is self-evident, and (7.17) and (7.18) with q = 0, readily follow by
(7.12) through (7.14). One can deduce (7.18) for q > 0 from the case q = 0 in the standard
way, using Dzyadyk’s inequality (see, e.g., [4, p. 262], see also [12, p. 118])

‖ρα+1P ′n‖ ≤ d‖ραPn‖,

where d = d(α) is independent of n. ¤
Now let n1 be divisible by n and for every 1 ≤ j ≤ n, denote

T̃j,n1(x) = T̃j,n1(x, b, Ys) :=
∑

Iν,n1⊆Ij

T̂ν,n1(x, b, Ys).

Clearly it is a polynomial of degree ≤ Cn1. We have

Lemma 17. The following relations hold.

(7.19)
n∑

j=1

T̃j,n1(x) ≡ 1,

(7.20)
T̃ ′j,n1

(yi) = T̃ ′′j,n1
(yi) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ n,

T̃j,n1(yi) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ n, yi 6∈ I∗j ,

and

(7.21)
|T̃ (q)

j,n1
(x)| ≤ C

ρq
n1(x)

(
ρn1(x)

ρn1(x) + dist(x, Ij)

)b2

,

x ∈ I, 1 ≤ j ≤ n, 0 ≤ q ≤ s + 2,

where b2 = 1
2 (b1 − 1).

Proof. Relations (7.19) and (7.20) follow immediately from (7.16) and (7.17), when we
observe that if Iν,n1 ⊆ Ij , then I∗ν,n1

⊆ I∗j . Thus we just have to prove (7.21). Note that
(4.3) and (4.4) yield

(
hν,n1

|x− xν,n1 |+ hν,n1

)2

≤ c
ρn1(x)

|x− xν,n1 |+ ρn1(x)
.
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Now if x < xj , then it follows by (7.18) that

ρq
1|T̃ (q)

j,n1
(x)| ≤ C

∑

Iν,n1⊆Ij

(
hν,n1

|x− xν,n1 |+ hν,n1

)b1

≤ Cρb2
n1

(x)
∑

Iν,n1⊆Ij

hν,n1

(|x− xν,n1 |+ ρn1(x))b2+1

≤ Cρn1(x)b2

∫ ∞

xj−x

du

(u + ρn1(x))b2+1

= C

(
ρn1(x)

ρn1(x) + xj − x

)b2

= C

(
ρn1(x)

ρn1(x) + dist(x, Ij)

)b2

.

Similar proofs yield (7.21) if xj−1 < x, and if x ∈ Ij . ¤
Let S ∈ Σk,n, take n1 divisible by n and set

(7.22) Dn1(x) := Dn1(x, S) :=
n1∑

j=1

pj(x)T̃j,n1(x, b, Ys),

evidently a polynomial of degree ≤ Cn1. Finally, denote

Oe := {u ∈ O : [u− 1
2
ρn(u), u +

1
2
ρn(u)] ⊆ O} ∪ (O ∩ (I1 ∪ In)).

Recall that A is a proper interval if its endpoints belong to the Chebyshev partition. We
have

Lemma 18. Let b3 = b2−s−2k−6 > 0, and let A be a proper interval. For S ∈ Σk,n(Ys),

(7.23)
|S(q)(x)−D(q)

n1
(x)| ≤ C

ρq

(
ak(S,A) + ak(S)

n

n1

(
ρ

ρ + dist(x, I \A)

)b3
)

,

x ∈ A ∩Oe, q = 0, . . . , s + 2.

Furthermore, if S ∈ Σ1
k,n, then for x 6= xj, 0 ≤ j ≤ n,

(7.24) |S′′(x)−D′′
n1

(x)| ≤ C

ρ2

(
ak(S, A) + ak(S)

n

n1

(
ρ

dist(x, I \A)

)b3
)

, x ∈ A.

Proof. The proof of the two statements is similar and we will proceed simultaneously in
both. Fix Iν ⊆ A ∩ O (or simply Iν ⊆ A, if we prove (7.24)), and let x ∈ Iν ∩ Oe (or
simply x ∈ Iν) be such that, say,

(7.25) x− xν ≤ xν−1 − x.
30



For the sake of brevity, we will write in this proof ρ1 for ρn1(x), T̃j for T̃j,n1 , and aν,j for
aν,j(S). By (6.1),

‖pν − pj‖Iν
= aν,j

(
hν,j

hj

)k

,

whence, for each r ∈ N,

‖p(r)
ν − p

(r)
j ‖Iν

≤ caν,j

hr
ν

(
hν,j

hj

)k

.

First let j 6= ν, ν +1. Then (4.3) and (7.25) imply dist (x, Ij) > 1
2ρ. Hence (7.21) combined

with (4.3) and (4.4) yields

(7.26)

‖p(r)
ν − p

(r)
j ‖Iν

|T̃ (q−r)
j (x)|

≤ Caν,j

hr
ν

(
hν,j

hj

)k 1
ρq−r
1

(
ρ1

ρ1 + dist(x, Ij)

)b2

≤ Caν,j

hr
ν

(
hν,j

hj

)k+1
hj

hν,j

1
ρq−r
1

(
ρ1

ρ1 + dist(x, Ij)

)b2

≤ Caν,j

hr
ν

(
ρ + dist(x, Ij)

ρ

)2(k+1)
hj

hν

1
ρq−r
1

(
ρ1

ρ1 + dist(x, Ij)

)q−r+1

×
(

ρ

ρ + dist(x, Ij)

)b2−q+r−1

≤ Caν,j

hr+1
ν

hj
ρ1

ρ

1
ρq−r

(
ρ

ρ + dist(x, Ij)

)b3+1

≤ Caν,j

ρq

n

n1
ρb3hj

(
1

ρ + dist(x, Ij)

)b3+1

, 0 ≤ r ≤ q,

where in the third inequality we applied the third inequality in (4.3)and (4.4), in the
next one we used the fact that dist (x, Ij) > 1

2ρ, and in the last we have applied the
straightforward inequality

ρ1

ρ
≤ n

n1
.

Now, by virtue of (7.19) we may represent S(q)(x)−D
(q)
n1 (x) as

S(q)(x)−D(q)
n1

(x) =
(
(pν(x)− pν+1(x))T̃ν+1(x)

)(q)

+


 ∑

Ij⊆A,j 6=ν,ν+1

+
∑

Ij*A,j 6=ν,ν+1




(
(pν(x)− pj(x))T̃j(x)

)(q)

=: σ1(x) + σ2(x) + σ3(x),
31



where we write pn+1 := pn, if ν = n.
We begin with the estimate of σ1. Note that if ν = n, then σ1 ≡ 0, so that we may

assume that ν < n. We need separate arguments for (7.23) and (7.24).
First we deal with (7.24). Since S ∈ Σ1

k,n, q = 2, and Iν ⊆ A, it readily follows that

‖p′′ν − p′′ν+1‖Iν ≤
c

ρ2
aν,ν+1,

which in turn implies

|p′ν(x)− p′ν+1(x)| =
∣∣∣∣
∫ x

xν

(p′′ν − p′′ν+1)du

∣∣∣∣ ≤
c

ρ2
aν,ν+1(x− xν),

and
|pν(x)− pν+1(x)| ≤ c

ρ2
aν,ν+1(x− xν)2.

Therefore, by (7.21)

(7.27)
|σ1(x)| ≤ c

ρ2
aν,ν+1

(
1 +

x− xν

ρ1
+

(x− xν)2

ρ2
1

)(
ρ1

ρ1 + |x− xν |
)b2

≤ c

ρ2
aν,ν+1

(
ρ1

ρ1 + |x− xν |
)b2−2

.

Now, if Iν+1 ⊆ A, then (7.27) implies

(7.28) |σ1(x)| ≤ C

ρ2
ak(S,A),

and if Iν+1 * A, then (7.27) yields

(7.29)

|σ1(x)| ≤ C

ρ2
ak(S)

ρ1

ρ

ρ

ρ1 + |x− xν |
(

ρ1

ρ1 + |x− xν |
)b2−3

≤ C

ρ2
ak(S)

n

n1

ρ

|x− xν |
(

ρ

ρ + |x− xν |
)b2−3

≤ C

ρ2
ak(S)

n

n1

(
ρ

dist(x, I \A)

)b3

.

As for (7.23). Since x ∈ Oe, ν /∈ H. If also (ν + 1) /∈ H, then S ∈ Σk,n(Ys) implies
pν ≡ pν+1. Hence σ1 = 0. Otherwise, (ν + 1) ∈ H, so that x ∈ Oe implies x − xν ≥ ρ.
Therefore (7.26) holds for j = ν + 1, and we may absorb σ1 either in σ2 or in σ3, as the
case may be, and which we estimate below.
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What is left is to estimate σ2 and σ3. It follows from (7.26) that

(7.30)

|σ3(x)| ≤ Cak(S)
ρq

n

n1
ρb3

∑

Ij*A,j 6=ν,ν+1

hj

(ρ + dist(x, Ij))b3+1
,

≤ Cak(S)
ρq

n

n1

(
ρ

ρ + dist(x, I \A)

)b3

.

Similarly, if dist (x, Iv∗) := min{dist(x, Iν−1),dist(x, Iν+2)}, then we obtain

(7.31) |σ2(x)| ≤ Cak(S,A)
ρq

n

n1

(
ρ

ρ + dist(x, Iν∗)

)b3

≤ Cak(S, A)
ρq

.

Thus (7.23) follows by combining (7.30) and (7.31) with the above discussion of σ1, and
(7.24) is obtained by combining (7.28) through (7.31). This completes the proof. ¤

The following result is almost trivial.

Lemma 19. If S ∈ Σk,n, then

(7.32) ‖S −Dn1‖ ≤ Cak(S).

Moreover, if S ∈ Σk,n(Ys) and

(7.33) S′′(yi) = 0, i = 1, . . . , s,

then

(7.34) D′′
n1

(yi) = 0, i = 1, . . . , s.

Proof. The proof of (7.32) is similar to that of (7.24), in fact easier, so we only prove
(7.34).

To this end fix 1 ≤ i ≤ s, and let ν be such that yi ∈ Iν . Since pj ≡ pν , for all Ij ⊆ I∗ν ,
then

D′′
n1

(yi) =
n∑

j=1

(pj(yi)T̃ ′′j (yi) + p′j(yi)T̃ ′j(yi)) +
∑

Ij*I∗ν

p′′j (yi)T̃j(yi) + p′′ν(yi)
∑

Ij⊆I∗ν

T̃j(yi).

Now, by virtue of (7.20), the first and the second sums are zero, and since p′′ν(yi) =
S′′(yi) = 0, it follows that the third term vanishes. ¤.

Finally we have,
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Lemma 20. If A is a proper interval, S ∈ Σ1
k,n(Ys), and (7.33) holds, then

(7.35) |S′′(x)−D′′
n1

(x)| ≤ C0π(x)
ρ2

(
ak(S, A) + ak(S)

n

n1

(
ρ

dist(x, I \A)

)b3
)

, x ∈ A,

where C0 = C0(k, s, b), and recall that π(x) is from (4.8).

Proof. Let x ∈ A. First observe that if x /∈ Oe, then π(x) > c. Indeed, if x /∈ Ō,
then it follows from (4.9), and we only have to check the case where x is in a connected
component, say [xµ, xν ], of Ō and either x + ρ/2 > xν and ν > 0, or x − ρ/2 < xµ and
µ < n. Clearly, we have to worry only about yi’s in this component, so let yi ∈ [xµ, xν ].
It is easily seen that x + ρ/2 is increasing in [−1, x1] and that x − ρ/2 is increasing in
[xn−1, 1]. We will show that xν < x + ρ/2 and x < xν+xν+1

2 , cannot hold simultaneously.
Indeed if xν < x+ρ/2 and xν+1 ≤ x ≤ xν , then xν < x+ρ/2 ≤ x+ |Iν+1|/2, which yields
that x−xν+1 > |Iν+1|/2. Since x+ρ/2 is increasing, this in turn implies that if x < xν+1,
then x + ρ/2 < xν . Hence if xν < x + ρ/2, then x− yi ≥ x− xν+1 > |Iν+1|/2, so that

x− yi

x− yi + ρ
≥ |Iν+1|/2
|Iν+1|/2 + |Iν+1| ≥

1
3
.

The case x− ρ/2 < xµ is symmetric. Thus (7.35) follows by (7.24).
If, on the other hand, x ∈ Oe ⊆ O, then x ∈ I∗j , where I∗j is a connected component of

O, such that

(7.36) ρn(u) ≤ |I∗j | ≤ cρn(u), u ∈ I∗j ,

and we have

(7.37) S(u) = pj(u), u ∈ I∗j .

This together with (7.36) implies that for A1 := A ∪ I∗j , which is a proper interval, we
have ak(S,A1) ≤ cak(S, A). Set

I∗e := I∗j ∩Oe

Since x ∈ I∗e , dist (x, I \ I∗j ) ≥ ρ/2, and by (7.36), dist (x, I \ I∗j ) ≤ |I∗j | ≤ c dist (x, I \ I∗j ).
Hence

dist (x, I \A1) ≤ |I∗j |+ dist (I∗j , I \A1)

≤ c dist (x, I \ I∗j ) + dist (x, I \A1)

≤ c dist (x, I \A1), x ∈ I∗e .

By virtue of (7.23) we thus obtain,

(7.38) ‖S(q) −D(q)
n1
‖I∗e ≤

C

|I∗j |q
Ω, q = 0, . . . , s + 2,
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with

Ω := ak(S,A) + ak(S)
n

n1

(
|I∗j |

|I∗j |+ dist (I∗j , I \A)

)b3

,

where we used the fact that dist (I∗j , I \A1) ≥ dist (I∗j , I \A). It remains to prove that

(7.39) |S′′(x)−D′′
n1

(x)| ≤ Cπ(x)
|I∗j |2

Ω.

To this end, let

π1(x) :=
∏

yi∈I∗
j

|x− yi|
|x− yi|+ ρ

, π2(x) :=
∏

yi /∈I∗
j

|x− yi|
|x− yi|+ ρ

,

so that π(x) = π1(x)π2(x). If yi /∈ I∗j , then |x− yi| > ρ/2, whence π2(x) ≥ 3−s. Therefore
we have to prove (7.39) with π1(x) in place of π(x). Now by (7.37) S−Dn1 is a polynomial
in I∗j , and (7.33) and (7.34) imply

S′′(yi)−D′′
n1

(yi) = 0, i = 1 . . . , s.

Hence, if yiµ , 1 ≤ µ ≤ l ≤ s, are the points of Ys in I∗j , then there is a θ ∈ I∗e , such that

|S′′(x)−D′′
n1

(x)| = |S(l+2)(θ)−D(l+2)
n1

(θ)|
l∏

µ=1

|x− yiµ |

≤ CΩ
|I∗j |2

l∏
µ=1

|x− yiµ |
|I∗j |

≤ Cπ1(x)
|I∗j |2

Ω,

where in the first inequality we applied (7.38) and for the second we used the inequality
|x− yiµ |+ ρ ≤ c|I∗j |. This completes the proof of (7.39), and of our lemma. ¤

We are in a position to prove Theorem 5.

§8 Proof of Theorem 5

Recall that we may assume that k ≥ 3. We begin with notation. Given A ⊆ I denote

Ae := ∪Ij∩A 6=∅Ij , A2e := (Ae)e and A3e := (A2e)e.

Without loss of generality we may assume that

(8.1) ak(S) ≤ 1,
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so that in view of (6.2), in order to prove our assertion, we have to find a polynomial Pn

of degree ≤ cn, such that

(8.2) ‖S − Pn‖ ≤ c,

and

(8.3) P ′′n (x)δ(x) ≥ 0, x ∈ I,

where δ(x) was defined in (4.7). We fix b so big that b3 ≥ 25(s + 1), (b3 was defined in
(7.29)). This makes C0(k, s, b), the constant in (7.35), dependent only on k and s so we
denote c2 := C0. Fix an integer c3 such that

(8.4) c3 ≥ max{8k/c1, 12s},

where c1 is the constant from (4.28), and without loss of generality we may assume, that
n is divisible by c3, i.e., n = Nc3, where this defines N .

We divide I into N intervals

Eq := [xqc3 , x(q−1)c3 ] = Iqc3 ∪ · · · ∪ I(q−1)c3+1, q = 1, . . . , N.

We will write j ∈ UC (for ”Under Control”), if there is an x ∈ Ij , such that

(8.5) |S′′(x)| ≤ 5c2

ρ2
,

and we will say that q ∈ G1, if Eq contains at least 2k − 5 intervals Ij with j ∈ UC. We
will say that q ∈ G, if either q ∈ G1, or there is a q∗ ∈ G1, such that

(8.6) Ee
q+ν ∩O 6= ∅,

{
ν = 0, 1, . . . , q∗ − q, if q∗ ≥ q

ν = 0,−1, . . . , q∗ − q, if q∗ < q.

Note that if q ∈ G \G1, then |q − q∗| ≤ 2s, hence (8.1), (8.5) and Lemma 12 imply

(8.7) ‖ρ2S′′‖Eq ≤ c, q ∈ G.

Now set
E := ∪q/∈GEq,

and decompose S into a ”small” part and a ”big” one by setting

s1(x) :=
{

S′′(x), if x /∈ Ee,

0, if x ∈ Ee,
36



and s2 := S′′ − s1, and finally putting

S1(x) := S(−1) + (x + 1)S′(−1) +
∫ x

−1

(x− u)s1(u)du,

S2(x) :=
∫ x

−1

(x− u)s2(u)du.

(Note that s1 and s2 are well defined for x 6= xj , 0 ≤ j ≤ n, so that S1 and S2 are well
defined everywhere and possess a second derivative again for x 6= xj , 0 ≤ j ≤ n. Thus
from now on whenever we write S′′l (x) we will mean x 6= xj , 0 ≤ j ≤ n.) It follows from
(5.6) that S1, S2 ∈ Σ1

k,n(Y ). Evidently,

S′′1 (x)δ(x) ≥ 0, x ∈ I, and S′′2 (x)δ(x) ≥ 0, x ∈ I.

Lemma 10 and (8.7) imply
ak(S1) ≤ c,

which by virtue of (8.1) yields

(8.8) ak(S2) ≤ c + 1 < [c + 2] =: c4.

The set E is a union of disjoint intervals Fp = [ap, bp], between any two of which there is
an interval Eq with q ∈ G. We may assume that n > c3c4, and write p ∈ AG (for ”Almost
Good”), if Fp consists of no more than c4 intervals Eq, in particular it consists of no more
than c3c4 intervals Ij . Set

F := ∪p/∈AGFp,

and let

s4 :=
{

S′′(x), if x ∈ F e,

0, otherwise,

and s3 := S′′ − s4. Now put

S3(x) := S(−1) + (x + 1)S′(−1) +
∫ x

−1

(x− u)s3(u)du,

S4(x) :=
∫ x

−1

(x− u)s4(u)du.

Then evidently

(8.9) S3, S4 ∈ Σ1
k,n(Ys),

(8.10) S′′3 (x)δ(x) ≥ 0, x ∈ I,
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and

(8.11) S′′4 (x)δ(x) ≥ 0, x ∈ I.

For p ∈ AG, Lemma 12 and (8.8) imply

|S′′3 (x)| = |S′′2 (x)| ≤ c

ρ2
, x ∈ Fp.

Hence

(8.12) |S′′3 (x)| ≤ c

ρ2
, x ∈ I,

which by virtue of Lemma 10 yields, ak(S3) ≤ c, whence by (8.1),

(8.13) ak(S4) ≤ c + 1 < [c + 2] =: c5.

In view of (8.9), (8.10), combining Theorem 4 with (8.12) and (6.3), we obtain the existence
of a polynomial rn which is coconvex with S, and such that

(8.14) ‖S3 − rn‖ ≤ c.

Since
s4(x) = S′′(x), x ∈ F e,

then by (8.1) we have for p /∈ AG

(8.15) ak(S4, F
e
p ) = ak(S, F e

p ) ≤ ak(S) ≤ 1.

Also for such p,
s4(x) = S′′2 (x), x ∈ F 3e

p .

Hence from (8.8)

(8.16) ak(S4, F
3e
p ) = ak(S2, F

3e
p ) ≤ ak(S2) ≤ c4.

We still have to approximate S4. To this end, applying Lemma 9 we construct three
polynomials Qn and Mn of degree < cn and we let Dn1(·, S4) of degree cn1, be defined by
(7.22).

We begin with Qn. For each q for which Eq ⊆ F , let Jq be the union of all intervals
Ij ⊆ Eq with j ∈ UC. Recall that q /∈ G, therefore by (8.4), the number of such intervals
is at most 2k − 6 < c3/4, and the total number of intervals in Eq is c3. Thus Lemma 9 is
applicable for each Eq and if we set

Qn :=
∑

Eq⊆F

Qn(·, Eq, Jq),
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where on the right-hand side are the polynomials guaranteed by Lemma 9 (Qn(·, Eq, Jq) ≡
0, if Jq = ∅), and denote

J :=
⋃

Eq⊆F

Jq,

then we conclude that Qn satisfies

(8.17) Q′′
n(x)δ(x) ≥ 0, x ∈ I \ F,

(8.18) Q′′n(x)δ(x) ≥ −π(x)
ρ2

, x ∈ F \ J,

(8.19) Q′′n(x)δ(x) ≥ 4π(x)
ρ2

, x ∈ J.

Note that (8.17), (8.18) and (8.19) follow since for any given x all relevant Q′′n(x, Eq, Jq),
except perhaps one, have the same sign. Finally, it follows from (4.30) that

(8.20) ‖Qn‖ ≤ c.

Next we define the polynomial Mn. For each Fp with p /∈ AG, let Jp− denote the union of

two intervals in the left side of F 2e
p \

◦
F p, and let Jp+ denote the union of two intervals in

the right side of F 2e
p \

◦
F p. Similarly, let Fp− and Fp+ be closed intervals each consisting of

l := c3c4 intervals Ij and such that Jp− ⊆ Fp− ⊆ F 2e
p and Jp+ ⊆ Fp+ ⊆ F 2e

p . Now we set

Mn :=
∑

p/∈AG

(
Qn(·, Fp+ , Jp+) + Qn(·, Fp− , Jp−)

)
.

Since l = c3c4 and µ = 2, it follows from (8.4) that c1
l
µ ≥ 2c4. Again by Lemma 9

(8.21) M ′′
n (x)δ(x) ≥ −2

π(x)
ρ2

, x ∈ F,

(8.22) M ′′
n (x)δ(x) ≥ 2c4π(x)

ρ2
, x ∈ F 2e \ F,

and

(8.23) M ′′
n (x)δ(x) ≥ π(x)

ρ2

(
ρ

dist (x, F e)

)25(s+1)

, x ∈ I \ F 2e,
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where in (8.23) we used the inequality

max{ρ, dist (x, F 2e)} ≤ dist (x, F e), x ∈ I \ F 2e.

Finally, it readily follows from (4.30) that

(8.24) ‖Mn‖ ≤ c.

The third auxiliary polynomial the properties of which we need to recall is Dn1 :=
Dn1(·, S4). By (8.13) and the choice of b, Lemma 19 yields

(8.25) ‖S4 −Dn1‖ ≤ c,

and Lemma 20 combined with (8.9) and (8.11) implies that for any proper interval A

(8.26)
|S′′4 (x)−D′′

n1
(x)| ≤ c2π(x)

ρ2
ak(S4, A) +

c2c5π(x)
ρ2

n

n1

(
ρ

dist(x, I \A)

)13(s+1)

,

x ∈ A.

Put n1 := c5n, and write

(8.27) Rn := Dn1 + c2Qn + c2Mn.

By virtue of (8.20), (8.24), and (8.25), we obtain

‖S4 −Rn‖ ≤ c.

Combined with (8.14), this proves (8.2) for Pn := Rn + rn. Thus in order to conclude the
proof of Theorem 5, we should prove that (8.3) holds for our Pn. To this end, we recall
that rn is coconvex with S, so that we only have to deal with Rn. Since (8.26) holds for
any proper interval A, we will prescribe different ones as needed. As long as x ∈ F , it
suffices to take A = F e

p , where p is such that x ∈ Fp. Then the quotient inside the big
parentheses in (8.26) is bounded by 1, for all x ∈ F , and (8.15) and (8.26) yield

(8.28) |S′′4 (x)−D′′
n1

(x)| ≤ c2π(x)
ρ2

ak(S4, F
e
p ) +

c2c5π(x)
ρ2

n

n1
≤ 2

c2π(x)
ρ2

, x ∈ F.

If x ∈ F 2e \F , then it suffices to take A = F 3e
p , where p is such that x ∈ F 2e

p , and similarly
(8.16) and (8.26) imply

(8.29) |S′′4 (x)−D′′
n1

(x)| ≤ c2π(x)
ρ2

ak(S4, F
3e
p ) +

c2c5π(x)
ρ2

n

n1
≤ 2

c2c4π(x)
ρ2

, x ∈ F 2e.
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Finally, if x ∈ I \ F 2e, then we take A, to be the connected component of I \
◦
F e, that

contains x. Then by (8.26),

(8.30)

|S′′4 (x)−D′′
n1

(x)|

≤ c2π(x)
ρ2

ak(S4, A) +
c2c5π(x)

ρ2

n

n1

(
ρ

dist(x, I \A)

)25(s+1)

=
c2π(x)

ρ2

(
ρ

dist(x, F e)

)25(s+1)

, x ∈ I \ F 2e.

Since by (8.27)

R′′n(x)δ(x) ≥ c2Q
′′
n(x)δ(x) + c2M

′′
n (x)δ(x) + S′′4 (x)δ(x)− |S′′4 (x)−D′′

n1
(x)|, x ∈ I,

it follows by (8.19), (8.21), (8.11) and (8.28), that

R′′n(x)δ(x) ≥ c2π(x)
ρ2

(4− 2 + 0− 2) = 0, x ∈ J.

If x ∈ F \ J , then (8.5) is violated so that

S′′4 (x)δ(x) >
5c2

ρ2
≥ 5c2

ρ2
π(x).

Hence by virtue of (8.18), (8.21), (8.28), we get

R′′n(x)δ(x) ≥ c2π(x)
ρ2

(−1− 2 + 5− 2) = 0, x ∈ F \ J.

Next, if x ∈ F 2e \ F , then by (8.17), (8.22), (8.11) and (8.29), we obtain

(8.31) R′′n(x)δ(x) ≥ 0.

Finally, (8.11), (8.17), (8.23) and (8.30) imply (8.31) for x ∈ I \ F 2e.
Thus, (8.31) holds for all x ∈ I, and so we have constructed a polynomial Pn, satisfying

(8.2) and (8.3), for each n > c, divisible by c3. For all other n’s Theorem 5 follows by the
inclusion

Σ1
k,n(Ys) ⊆ Σ1

k,c3n(Ys).

This completes the proof. ¤
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