
COCONVEX POLYNOMIAL APPROXIMATION

D. Leviatan and I. A. Shevchuk1

Abstract. Let f ∈ C[−1, 1] change its convexity finitely many times, in the interval. We are
interested in estimating the degree of approximation of f by polynomials, and by piecewise
polynomials, which are coconvex with it, namely, polynomials and piecewise polynomials that
change their convexity exactly at the points where f does. We obtain Jackson type estimates
and summarize the positive and negative results in a truth-table as we have previously done
for comonotone approximation.

§1. Introduction

Let f ∈ C[−1, 1] change its convexity finitely many times, say s ≥ 0 times, in the
interval. We are interested in estimating the degree of approximation of f by polynomials
which are coconvex with it, namely, polynomials that change their convexity exactly at
the points where f does.

In a recent survey [14] we have collected all known positive and negative results on
monotone and comonotone approximation on a finite interval, by algebraic polynomials
in the uniform norm (see also [11]). We have established complete truth tables for the
validity of Jackson-type estimates, involving the ordinary k-th moduli of smoothness of the
r-th derivative of a given monotone or piecewise monotone function, as well as estimates
involving the Ditzian-Totik moduli of smoothness.

We intend here to obtain the analogous results for convex and coconvex approximation.
There are two main ingredients in the proofs of positive results. First one has to

establish the existence of piecewise polynomials which are both coconvex with f and
sufficiently close to it, and second, to show that such piecewise polynomials may be well
approximated by polynomials which are coconvex with them. The latter was the main
contents of our recent paper [15]. Thus we concentrate here on establishing the former
and on drawing the final conclusions from having obtained the two needed ingredients.

In a forthcoming paper we will show that if we relax the requirement on the piecewise
polynomial, allowing it not to be coconvex with f in small neighborhoods of the points of
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change of convexity of f , then we may secure a little better estimates. We call this type
of approximation nearly coconvex approximation (compare with [12]).

Let I := [−1, 1] and denote by C = C0 and Cr, respectively the space of continuous
functions, and that of r-times continuously differentiable function on I, equipped with the
uniform norm

‖f‖ := max
x∈I

|f(x)|.
Denote by Ys, s ∈ N, the set of all collections Ys := {yi}s

i=1, such that −1 < ys < · · · <
y1 < 1, and for s = 0, we write Y0 := {∅}. For later reference set y0 := 1 and ys+1 := −1.
Finally, let ∆2(Ys) denote the collection of all functions f ∈ C that change convexity at
the set Ys, and are convex in [y1, 1], that is, f is convex in [y2i+1, y2i], 0 ≤ i ≤ [s/2], and
it is concave in [y2i, y2i−1], 1 ≤ i ≤ [(s + 1)/2]. In particular ∆2 := ∆2(Y0) is the set of
convex functions on I.

We wish to approximate a general function f ∈ ∆2(Ys), by means of polynomials which
are coconvex with f , that is, which belong to ∆2(Ys). We denote the degree of coconvex
approximation by

E(2)
n (f, Ys) := inf

pn∈Πn∩∆2(Ys)
‖f − pn‖,

where Πn is the set of algebraic polynomials of degree not exceeding n. In particular we
denote E

(2)
n (f) := E

(2)
n (f, Y0), the degree of convex approximation.

We will construct continuous piecewise polynomials on the Chebyshev partition, that
are coconvex with f ∈ ∆2(Ys), and approximate it well. Namely, given n ∈ N, n > 1,
we set xj := xj,n := cos (jπ/n), j = 0, . . . , n, the Chebyshev partition of [−1, 1], and we
denote Ij := Ij,n := [xj , xj−1], j = 1, . . . , n. Let Σk,n be the collection of all continuous
piecewise polynomials of degree k − 1, on the Chebyshev partition, that is, if S ∈ Σk,n,
then

S|Ij = pj , j = 1, . . . , n,

where pj ∈ Πk−1, and

pj(xj) = pj+1(xj), j = 1, . . . , n− 1.

Given Ys ∈ Ys, let

Oi := Oi,n(Ys) := (xj+1, xj−2), if yi ∈ [xj , xj−1),

where xn+1 := −1, x−1 := 1, and denote

O = O(n, Ys) :=
s⋃

i=1

Oi, O(n, ∅) := ∅.

Finally, we write j ∈ H = H(n, Ys), if Ij ∩ O = ∅, and denote by Σk,n(Ys) ⊆ Σk,n, the
subset of those piecewise polynomials for which

pj ≡ pj+1, whenever both j, (j + 1) /∈ H.

The following result has been proved recently by Leviatan and Shevchuk [15].
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Theorem LS. For every k ∈ N and s ∈ N0 there are constants c = c(k, s) and c∗ =
c∗(k, s), such that if n ∈ N and Ys ∈ Ys, and S ∈ Σk,n(Ys) ∩ ∆2(Ys), then there is a
polynomial Pn ∈ ∆2(Ys) of degree ≤ c∗n, satisfying

(1.1) ‖S − Pn‖ ≤ cωϕ
k (S, 1/n).

(For the definition of ωϕ
k (f, t), see Section 2.) Thus, if we are able to construct a good

piecewise polynomial approximation, of the above type, to f ∈ ∆2(Ys), then we will have
a good polynomial approximation to f .

In Section 2 we prove some auxiliary lemmas. In Section 3 we discuss convex approxi-
mation, and Section 4 is devoted to coconvex approximation.

In the sequel we will have absolute positive constants C, and we will have positive
constants c that depend only on s, k and r, that are going to be indicated. We will use
the notation C and c for such constants which are of no significance to us and may differ
on different occurrences, even in the same line.

§2. Auxiliary lemmas

In this section we collect some known results as well as new lemmas. In addition to the
spaces of continuously differentiable functions we need two additional spaces. We will use
the norm

‖f‖ := esssupx∈I |f(x)|,
also for a function that is essentially bounded on I, and with this notation, let the space
W r, be the set of functions f ∈ C which possess an absolutely continuous (r − 1)st
derivative in I, such that ‖f (r)‖ < ∞. Also let the space Br, be the set of functions
f ∈ C which possess a locally absolutely continuous (r − 1)st derivative in (−1, 1), such
that ‖ϕrf (r)‖ < ∞, where ϕ(x) :=

√
1− x2.

We sometimes wish to restrict ourselves to a subinterval [a, b] ⊆ I in which case we will
use the notation ‖ · ‖[a,b] for the above norms on the interval [a, b]. Then given f ∈ C[a, b],
and k ∈ N, we let

∆k
hf(x) :=

k∑

i=0

(−1)k−i

(
k

i

)
f(x− k

2
h + ih),

be the symmetric difference of order k, defined for all x and h ≥ 0, such that x± k
2h ∈ [a, b].

The ordinary moduli of smoothness of f in [a, b], ωk(f, t; [a, b]), are defined by

ωk(f, t; [a, b]) := sup
0≤h≤t

sup
x
|∆k

hf(x)|, t ≥ 0,

where the inner supremum is taken over all x such that x± k
2h ∈ [a, b]. In particular when

[a, b] = I, we write ωk(f, t) := ωk(f, t; I). We also need the Ditzian-Totik (DT-)moduli of
smoothness [2] which on [a, b] are defined by

ωφ
k (f, t; [a, b]) := sup

0≤h≤t
sup

x
|∆k

hφ(x)f(x)|, t ≥ 0,
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where φ(x) :=
√

(b− x)(x− a) and the inner supremum is taken over all x such that
x± k

2hφ(x) ∈ [a, b]. In particular for I, we have φ = ϕ and we denote ωϕ
k (f, t) := ωϕ

k (f, t; I).
It is well known that

ωϕ
k (f, t) ≤ c(k)ωk(f, t), t > 0.

If f ∈ Cr, then

(2.1) ωk(f, t) ≤ c(k, r)trωk−r(f (r), t), t > 0, k > r,

and

(2.2) ωϕ
k (f, t) ≤ c(k, r)trωϕ

k−r(f
(r), t), t > 0, k > r.

Also if f ∈ W r, then

(2.3) ωr(f, t) ≤ c(r)tr‖f (r)‖, t > 0,

and if f ∈ Br, then

(2.4) ωϕ
r (f, t) ≤ c(r)tr‖ϕrf (r)‖, t > 0.

We borrow from [13] the notion of the length of an interval J := [a, b] ⊆ I, relative to its
position in I. Namely,

(2.5) /J/ :=
|J |

ϕ((a + b)/2)
,

where |J | := b− a. It follows from [13, (2.21)] that

(2.6) ωk(f, |J |; J) ≤ ωϕ
k (f, /J/).

In our proof of the convex case we need the following lemma which, for the sake of conve-
nience in its proof, we state in [0, 1].

Lemma 2.1. Set φ(x) :=
√

x(1− x) and ωφ
k (f, t) := ωφ

k (f, t; [0, 1]). Then given k ≥ 2
and f ∈ C[0, 1], the following holds for all 0 < t ≤ 1.

ωk(f, t2; [0, t2]) ≤ c(k)ωφ
k+1(f, t) + c(k)t2k|∆k

1/kf(1/2)|.

Proof. We begin as in the proof of Marchaud inequality using divided differences. Recall
that divided differences are defined by

[x0; f ] := f(x0) and [x0, . . . , xk; f ] =
[x0, . . . , xk−1; f ]− [x1, . . . , xk; f ]

x0 − xk
, k ≥ 1.
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It is well known that for all ti ∈ [a, b], i = 0, . . . , k, with ti 6= tj , i 6= j, and all xi ∈ [a, b],
i = 0, . . . , k, with xi 6= xj , i 6= j, we have

(2.7)
|[t0, . . . , tk; f ]− [x0, . . . , xk; f ]|

≤ c
(
min{min

i 6=j
|ti − tj |, min

i 6=j
|xi − xj |}

)−k
ωk+1(f, b− a; [a, b]).

Also, by [13, (2.25)]

(2.8) ωk(f, t2; [0, 1]) ≤ ωφ
k (f, t), k ≥ 2.

We have to estimate ∆k
h(f, x0), where 0 < x0 < t2 and h > 0 is such, that x0 ± kh/2 ∈

[0, t2], where without loss of generality we assume that t2 ≤ 1/2k. Let l ∈ N, be defined
by

(2.9) 2lkh ≤ 1
2

< 2l+1kh.

Write x0 := x0 − kh
2 , and for all j = 0, . . . , l denote

δj := [x0, x0 + 2jh, . . . , x0 + k2jh; f ].

Now, for all j = 0, . . . , l − 1, (2.7) yields

hk|δj − δj+1| ≤ c2−jkωk+1(f, k2j+1h; [x0, x0 + k2j+1h])

≤ c2−jkωk+1(f, 2j+2t2; [0, 2j+2t2])

≤ c2−jkωφ
k+1(f, 21+j/2t),

where in the last inequality we applied (2.8). Therefore

hk|δj − δj+1| ≤ c2−jk+(k+1)(1+j/2)ωφ
k+1(f, t)

≤ c2−j/2ωφ
k+1(f, t),(2.10)

where we have used the fact that k ≥ 2. Hence

(2.11)

|∆k
h(f, x0)| = chk|δ0|

≤ chk
l−1∑

j=0

|δj − δj+1|+ chk|δl|

≤ cωφ
k+1(f, t)

∞∑

j=0

2−j/2 + ct2k|δl|

= cωφ
k+1(f, t) + ct2k|δl|.
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Finally,

(2.12)

t2k|δl| = |ct2k∆k
1/kf(1/2) + t2k(δl − [0, 1/k, 2/k, . . . , 1; f ])|

≤ ct2k|∆k
1/kf(1/2)|+ ct2kωk+1(f, 1; [0, 1])

≤ ct2k|∆k
1/kf(1/2)|+ ct2kωφ

k+1(f, 1)

≤ ct2k|∆k
1/kf(1/2)|+ cωφ

k+1(f, t).

Combining (2.11) and (2.12) we conclude that

(2.13) |∆k
h(f, x0)| ≤ t2k|∆k

1/kf(1/2)|+ cωφ
k+1(f, t),

which completes the proof. ¤
Translating Lemma 2.1 to the interval [−1, 1], we immediately get

Corollary 2.2. Given k ≥ 2 and f ∈ C, we have

(2.14) ωk(f, t2; [−1,−1 + t2]) ≤ c(k)ωϕ
k+1(f, t) + c(k)t2k|∆k

2/kf(0)|,

and by symmetry

(2.15) ωk(f, t2; [1− t2, 1]) ≤ c(k)ωϕ
k+1(f, t) + c(k)t2k|∆k

2/kf(0)|.

Next, we construct convex polynomials on any given interval such that they are close
to a convex function there, and we construct polynomials which change convexity once on
a given interval and again stay close to a function which changes convexity once there.
Eventually these two types of polynomials will provide the pieces we glue together in order
to obtain the piecewise polynomials required by Theorem LS.

Lemma 2.3. Let k ≥ 1 and let f ∈ C2[0, 1], be convex and such that f(0) = f ′(0) = 0,
and

(2.16) ωk(f ′′, 1) = 1.

Then there exists a convex polynomial P ∈ Πk+1, satisfying P (0) = f(0), and P (1) = f(1),
and either P ′(0) = f ′(0) and P ′(1) ≤ f ′(1), or P ′(0) ≥ f ′(0) and P ′(1) = f ′(1), such that

(2.17) ‖f − P‖[0,1] ≤ c,

where c = c(k).

Note that if ωk(f ′′, 1) = 0, then we may take P = f . Otherwise (2.16) is just a
normalization.
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Proof. By virtue of [12, Lemma 2] there exists a nondecreasing polynomial p ∈ Πk, such
that p(0) = f ′(0) and p(1) = f ′(1) and

(2.18) ‖f ′ − p‖[0,1] ≤ c(k).

Let
P∗(x) :=

∫ x

0

p(u) du ∈ Πk+1.

Then P∗ is convex, and since p(0) = 0 and p is nondecreasing, it is nonnegative and
nondecreasing. Also, by (2.18),

(2.19) ‖f − P∗‖[0,1] ≤
∫ 1

0

|f ′(u)− p(u)| du ≤ c.

Now, if P∗(1) ≥ f(1), (note that by virtue of (2.16), f(1) > 0), then set

P :=
f(1)
P∗(1)

P∗.

Then P is convex, P (0) = 0 = f(0), P ′(0) = f(1)
P∗(1)

p(0) = 0 = f ′(0), and P (1) = f(1).
Finally,

P ′(1) =
f(1)
P∗(1)

P ′∗(1) ≤ P ′∗(1) = p(1) = f ′(1),

and by (2.19),

|f(x)− P (x)| ≤ |f(x)− P∗(x)|+ |P∗(x)
P∗(1)

(
P∗(1)− f(1)

)| ≤ 2c,

where we used the fact that P∗(x) ≤ P∗(1) since P∗ is nondecreasing. Hence (2.17) is
proved.

Otherwise, P∗(1) < f(1). Observe that

f ′(1)− f(1) =
∫ 1

0

uf ′′(u) du ≥ 0,

so that we may set

P (x) := P∗(x) +
f(1)− P∗(1)
f ′(1)− P∗(1)

(
xf ′(1)− P∗(x)

)
.

Then P (0) = 0 = f(0), P (1) = f(1) and P ′(1) = f ′(1), where for the last equality we
applied P ′∗(1) = p(1) = f ′(1). Also

P ′(0) =
f(1)− P∗(1)
f ′(1)− P∗(1)

f ′(1) ≥ 0,
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and

P ′′(x) =
f ′(1)− f(1)
f ′(1)− P∗(1)

p′(x) ≥ 0, 0 ≤ x ≤ 1.

Finally, by (2.19),

|f(x)− P (x)| ≤ |f(x)− P∗(x)|+ (
f(1)− P∗(1)

)xf ′(1)− P∗(x)
f ′(1)− P∗(1)

≤ 2c,

where we used the fact that xf ′(1)− P∗(x) is nondecreasing in [0, 1], hence 0 ≤ xf ′(1)−
P∗(x) ≤ f ′(1)− P∗(1). Indeed, by virtue of the monotonicity of p(x),

(
xf ′(1)− P∗(x)

)′ = f ′(1)− p(x) = p(1)− p(x) ≥ 0.

Again (2.17) is proved. ¤

An immediate consequence is

Corollary 2.4. Let k ≥ 1 and let f ∈ C2[a, a + h], h > 0, be convex. Then there exists a
convex polynomial P ∈ Πk+1 satisfying P (a) = f(a) and P (a + h) = f(a + h), and either
P ′(a) = f ′(a) and P ′(a+h) ≤ f ′(a+h), or P ′(a) ≥ f ′(a) and P ′(a+h) = f ′(a+h), such
that

(2.20) ‖f − P‖[a,a+h] ≤ ch2ωk(f ′′, h; [a, a + h]),

where c = c(k).

Lemma 2.5. Let k ≥ 1 and let 0 < β < 1 be fixed. Assume that f ∈ C2[0, 1] is such that

f ′′(x)(x− β) ≥ 0, 0 ≤ x ≤ 1.

If Pk−1 ∈ Πk−1 satisfies

(2.21) Pk−1(x)(x− β) ≥ 0, 0 ≤ x ≤ 1,

then there exists an α such that the polynomial

Pk+1(x) := αx + f(0) +
∫ x

0

(x− u)Pk−1(u) du,

satisfies either

(2.22) P ′k+1(0) = f ′(0) and P ′k+1(1) ≤ f ′(1),
8



or

(2.23) P ′k+1(0) ≤ f ′(0) and P ′k+1(1) = f ′(1),

and

(2.24) ‖f − Pk+1‖[0,1] ≤
3
2
‖f ′′ − Pk−1‖[0,1].

Note that by (2.21)

(2.25) P ′′k+1(x)(x− β) = Pk−1(x)(x− β) ≥ 0.

Proof. Set Pk(x) :=
∫ x

0
Pk−1(u) du, and let

α :=
{

f ′(0), if Pk(1) + f ′(0) ≤ f ′(1)
f ′(1)− Pk(1), otherwise.

Since P ′k+1(0) = α and P ′k+1(1) = α + Pk(1), then either (2.22) or (2.23) is self-evident.
In order to prove (2.24) we observe that

f(x) = xf ′(0) + f(0) +
∫ x

0

(x− u)f ′′(u) du,

whence

|f(x)− Pk+1(x)| ≤ |f ′(0)− α|+ 1
2
‖f ′′ − Pk−1‖[0,1] ≤

3
2
‖f ′′ − Pk−1‖[0,1],

where for the righthand inequality we applied that either f ′(0) − α = 0 or f ′(0) − α =∫ 1

0
(Pk−1(u)− f ′′(u)) du. ¤
Again the following consequence is readily seen

Corollary 2.6. Let k ≥ 1 and let a < β < a+h be fixed and assume that f ∈ C2[a, a+h]
is such that

f ′′(x)(x− β) ≥ 0, a ≤ x ≤ a + h.

If Pk−1 ∈ Πk−1 satisfies

Pk−1(x)(x− β) ≥ 0, a ≤ x ≤ a + h,

then there exists an α such that the polynomial

Pk+1(x) := α(x− a) + f(a) +
∫ x

a

(x− u)Pk−1(u) du,

satisfies either
P ′k+1(a) = f ′(a) and P ′k+1(a + h) ≤ f ′(a + h),

or
P ′k+1(a) ≤ f ′(a) and P ′k+1(a + h) = f ′(a + h),

and
‖f − Pk+1‖[a,a+h] ≤

3
2
h2‖f ′′ − Pk−1‖[a,a+h].
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§3. Convex approximation

In 1994, Hu, Leviatan and Yu [5] and independently Kopotun [7] proved that there
exists an absolute constant C, such that for every f ∈ ∆2,

(3.1) E(2)
n (f) ≤ Cω3(f, 1/n), n ≥ 2.

By virtue of (2.1), inequality (3.1) readily implies for f ∈ Cr,

(3.2) E(2)
n (f) ≤ C

nr
ωk(f (r), 1/n), n ≥ 2,

for all k + r ≤ 3, and thus contains results for r = 0 of Beatson [1] (for k = 1), and of
Shvedov [19] (for k = 2).

For the degree of unconstrained polynomial approximation,

En(f) := inf
pn∈Πn

‖f − pn‖,
we have the well known Jackson estimates, namely, if f ∈ C, then

(3.3) En(f) ≤ c(k)ωϕ
k (f, 1/n), n ≥ k − 1, k = 1, 2, . . . ,

hold, and imply that if f ∈ C(r), then

(3.4) En(f) ≤ c(k, r)
nr

ωϕ
k (f (r), 1/n), n ≥ k + r − 1.

In particular if f ∈ W r, then

(3.5) En(f) ≤ c(r)
nr

‖f (r)‖, n ≥ r − 1,

and if f ∈ Br, then

(3.6) En(f) ≤ c(r)
nr

‖ϕrf (r)‖, n ≥ r − 1.

However, the situation in constrained approximation is much more involved. For instance,
Wu and Zhou [20] established the existence of an f ∈ ∆2 ∩ C1 such that

lim sup
n→∞

nE
(2)
n (f)

ω4(f ′, 1/n)
= ∞.

Hence, for k ≥ 5, the estimate

(3.7) E(2)
n (f) ≤ Aωk(f, 1/n), n ≥ N,

is not valid for all f ∈ ∆2, even if we allow the constants A and N to depend on f (compare
with (3.3)). Wu and Zhou [20] have conjectured that (3.7) cannot be had (with constants
A and N that depend on f) even for k = 4. This is in view of an earlier proof of Shvedov
[19] that for each n ≥ 1 and any A > 0, there exists an f := fA,n ∈ ∆2 for which

E(2)
n (f) > Aω4(f, 1/n).

We first disprove this conjecture, that is, we show that (3.7) is valid for k = 4 with an
absolute constant C provided we allow N = N(f). Specifically, we prove a little more,
namely,
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Theorem 3.1. If f ∈ ∆2, then

(3.8)
E(2)

n (f) ≤ Cωϕ
4 (f, 1/n) +

C

n6
|∆3

2/3f(0)|

≤ Cωϕ
4 (f, 1/n) +

C

n6
‖f‖, n > 1.

An immediate consequence is

Corollary 3.2. There exists an absolute constant C, such that for every f ∈ ∆2 there is
an N = N(f) for which

(3.9) E(2)
n (f) ≤ Cωϕ

4 (f, 1/n) ≤ Cω4(f, 1/n), n ≥ N.

Note that if ωϕ
4 (f, 1/n) = 0 for some n, then f is a polynomial of degree ≤ 3. Thus

E
(2)
n (f) = 0, n ≥ 3, and E

(2)
2 (f) = E2(f) = 9 · 2−6|∆3

2/3f(0)|. Therefore Theorem 3.1 and
Corollary 3.2 remain valid in this case.

Remark. It is interesting to point out that if f is even, then ∆3
2/3f(0) = 0. Hence for even

functions (3.9) actually holds for all n > 1.
Recalling that previous positive estimates by Mania and Shevchuk (see [17]) for r ≥ 2

yield for every k ≥ 1,

(3.10) E(2)
n (f) ≤ c

nr
ωk(f (r), 1/n), n ≥ N,

where c = c(k, r) and N = N(k, r) = k + r − 1, while by Mania (see [17]), (3.10) cannot
be had for r = 1 and k ≥ 3, (compare with (3.4)), we may now summarize the results in
the following array

r
...

...
...

...
...

... . ..

2 + + + + + + · · ·
1 + + + ª − − · · ·
0 + + + ª − · · ·

0 1 2 3 4 5 k

Fig. 1

where the symbol + stands for cases (k, r) for which (3.10) holds with constants c and
N which may depend only on k and r, the symbol ª indicates that (3.10) is invalid with
constants as above, but is valid if we allow either c or N to depend on f itself, and finally
the symbol −, states that (3.10) cannot in general be had.
The case k = 0 describes the validity of the estimate

(3.11) E(2)
n (f) ≤ c(r)

nr
‖f (r)‖, n ≥ r − 1,

for every f ∈ W r ∩∆2, r ≥ 1, which readily follows from (2.3) and the validity of (3.10)
for k = 1 and r ≥ 0 (compare with (3.5)).

We would like to point out another consequence of Theorem 3.1, before proceeding to
prove it. It follows from (2.4) that

11



Corollary 3.3. Let f ∈ B4 ∩∆2. Then

E(2)
n (f) ≤ C

n4
‖ϕ4f (4)‖+

C

n6
‖f‖, n ≥ 1.

Consequently, there exists an N = N(f) for which

(3.12) E(2)
n (f) ≤ C

n4
‖ϕ4f (4)‖, n ≥ N.

It has long been known that the inequality

(3.13) E(2)
n (f) ≤ c(r)

nr
‖ϕrf (r)‖, n ≥ r − 1,

is valid for r 6= 4 (compare with (3.6) and (3.11)). It is due to Leviatan [10] for r = 1, 2,
and to Kopotun [6] for r = 3 and r ≥ 5. (In fact for r ≤ 3, the more general estimate

E(2)
n (f) ≤ Cωϕ

k (f, 1/n), 1 ≤ k ≤ 3,

was first proved by Leviatan [10] for k = 2, and later by Kopotun [7] for k = 3, (see also
[8]).
Moreover, for r = 4, in general (3.13) cannot be had for any fixed n, since Kopotun [6]
has proved that for each n ≥ 1 and any A > 0, there exists a function f = fn,A ∈ B4 ∩∆2

such that
E(2)

n (f) >
A

n4
‖ϕrf (4)‖.

However, note again that for even functions (3.12) holds for n > 1 (see Remark after
Corollary 3.2).

Proof of Theorem 3.1. Recall the Chebyshev partition −1 = xn < xn−1 < · · · < x1 <
x0 = 1, and Ii := [xi, xi−1], 1 ≤ i ≤ n. Denote J1 = J2 := I3 ∪ I2 ∪ I1, Jn = Jn−1 :=
In−2 ∪ In−1 ∪ In, and Ji := ∪i+2

j=i−2Ij , 3 ≤ i ≤ n− 2. For a given f ∈ ∆2, Shevchuk [18],
constructed a continuous piecewise cubic polynomial S ∈ ∆2, on the Chebyshev partition,
such that S interpolates f on the partition, and

(3.14)
‖f − S‖Ii ≤ Cω4(f, |Ji|;Ji), 3 ≤ i ≤ n− 2,

‖f − S‖Ii ≤ Cω3(f, |Ji|;Ji), i = 1, 2, n− 1, n.

For the Chebyshev partition we obtain from (2.5) that /Ji/ ≤ C
n . Hence by virtue of (2.6),

(3.14) implies

(3.15) ‖f − S‖Ii ≤ Cωϕ
4 (f, 1/n), 3 ≤ i ≤ n− 2.

12



At the same time we observe that J1 = [1 − A/n2, 1], with A = A(n) ≤ C, and similarly
for J2. Also Jn = [−1,−1 + A/n2], with A = A(n) ≤ C, and similarly for Jn−1. Thus by
(2.14) and (2.15) we conclude that (3.14) yields

(3.16) ‖f − S‖Ii
≤ Cωϕ

4 (f, 1/n) +
C

n6
|∆3

2/3f(0)|, i = 1, 2, n− 1, n.

Combining (3.15) and (3.16) we obtain

(3.17) ωϕ
4 (S, 1/n) ≤ Cωϕ

4 (f, 1/n) +
C

n6
|∆3

2/3f(0)|,

which together with Theorem LS completes the proof of Theorem 3.1. ¤

§4 Coconvex approximation

In this section we are dealing with functions that change convexity at least once in
[−1, 1], i.e., s ≥ 1. Given Ys ∈ Ys, we wish to investigate the validity of the estimates

(4.1) E(2)
n (f, Ys) ≤ c

nr
ωϕ

k (f (r), 1/n), n ≥ N,

for functions f ∈ ∆2(Ys) ∩ Cr, r ≥ 0, and that of

(4.2) E(2)
n (f, Ys) ≤ c

nr
‖f (r)‖, n ≥ N,

for functions f ∈ ∆2(Ys) ∩W r, r ≥ 1.
Recently, Kopotun and the authors [9] have proved the validity of (4.1) for all pairs

(k, r), k + r ≤ 3, with a constant c = c(s), and with N = N(Ys). Moreover, if s = 1
and k + r ≤ 2, then (4.1) holds for all n ≥ 1 (see [15]). However, if r = 1 and k = 2,
and consequently also if r = 0 and k = 3, then Pleshakov and Shatalina [16] proved that
N(Ys) may not be replaced by N(s).
In fact there are known quite a few negative results. The first, which even preceded [16],
is due to Wu and Zhou [20] who proved that for s ≥ 1, for each k > 2 and any Ys ∈ Ys,
there exists an f ∈ ∆2(Ys) ∩ C1, such that

(4.3) lim sup
n→∞

nE
(2)
n (f, Ys)

ωk(f ′, 1/n)
= ∞.

Therefore, (4.1) cannot be had for r = 1 and any k > 2, even with constants c and N
which depend on f . Moreover, by virtue of (2.1), (4.1) cannot be had for r = 0 and any
k > 3, again even with constants c and N which depend on f . Very recently Gilewicz and
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Yushchenko [4], have extended (4.3), proving that for each k > 3 and any Ys ∈ Ys, there
exists an f ∈ ∆2(Ys) ∩ C2, such that

(4.4) lim sup
n→∞

n2E
(2)
n (f, Ys)

ωk(f ′′, 1/n)
= ∞.

Note that by virtue of (2.1), (4.4) implies (4.3) but only for k > 4. Again, this shows that
(4.1) cannot be had for r = 2 and any k > 3, even with constants c and N which depend
on f .
Also, the authors [15], extending the result of Pleshakov and Shatalina [16], showed that if
s ≥ 2, then (4.1) cannot be had with c = c(k, r, s) and N = N(k, r, s), for any r = 0, 1, 2, 3
with any k ≥ 1.

Our aim here is to prove that the answer is affirmative in all remaining cases, that is,
we prove two theorems.

Theorem 4.1. If f ∈ ∆2(Ys) ∩ C2, then for each k ≤ 3,

(4.5) E(2)
n (f, Ys) ≤ c

n2
ωϕ

k (f ′′, 1/n) ≤ c

n2
ωk(f ′′, 1/n), n ≥ N,

where c = c(s) and N = N(Ys). Furthermore, if s = 1 and k ≤ 2, then N = k + 1.

And

Theorem 4.2. Let r ≥ 3 and assume that f ∈ ∆2(Ys) ∩ Cr. Then (4.1) holds for each
k ≥ 1, with constants c = c(k, r, s) and N = N(k, r, Ys). Furthermore, if s = 1, then (4.1)
holds with N = k + r − 1.

An immediate consequence of the affirmative results is an affirmative answer to the
question of the validity of (4.2), namely,

Corollary 4.3. If f ∈ ∆2(Ys) ∩ W r, r ≥ 1, then (4.2) holds for c = c(r, s), and N =
N(r, Ys) if s ≥ 2, and N = r − 1 if s = 1.

Also, standard technique enables one to exchange the roles of c and N in the above
theorems. Namely, we can state

Corollary 4.4. If f ∈ ∆2(Ys) ∩ C2, then for each k ≤ 3,

E(2)
n (f, Ys) ≤ A

n2
ωk(f ′′, 1/n), n ≥ k + 1,

where A = A(Ys).

And
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Corollary 4.5. Let r ≥ 3 and assume that f ∈ ∆2(Ys) ∩ Cr. Then (4.1) holds with a
constant A = A(k, r, Ys), for each k ≥ 1, and all n ≥ k + r − 1.

We are in a position to summarize the positive and negative results in two separate
truth tables, one for s = 1, and the other for s ≥ 2.

r
...

...
...

...
... . ..

3 + + + + + · · ·
2 + + + ⊕ − · · ·
1 + + ⊕ − − · · ·
0 + + ⊕ − · · ·

0 1 2 3 4 k

Fig. 2, s = 1

where the symbol + stands for cases (k, r) for which (4.1) and (4.2) hold with a constant
c which may depend on k and r, and N = k + r − 1, the symbol ⊕ indicates that (4.1)
is invalid with constants as above, but is valid if we allow either c or N to depend on Ys,
and finally the symbol −, states that (4.1) cannot in general be had.

r
...

...
...

...
... . ..

3 ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
2 ⊕ ⊕ ⊕ ⊕ − · · ·
1 ⊕ ⊕ ⊕ − − · · ·
0 ⊕ ⊕ ⊕ − · · ·

0 1 2 3 4 k

Fig. 3, s ≥ 2.

Note that by Theorem 4.2 we know that (4.1) holds at least with N = N(k, r, Ys), and
that when s ≥ 2, this cannot be improved for any r ≤ 3. In a forthcoming paper with K.
Kopotun, it will be proved that for s ≥ 2, one cannot replace any of the ⊕’s by the symbol
+.

Proof of Theorems 4.1 and 4.2. Given f ∈ ∆2(Ys)∩Cr, r ≥ 2, we take N(Ys) so big that if
n ≥ N , then for each 1 ≤ i ≤ s, the set Oi defined in Section 1, contains only one yi, and
Oi and Oi+1, 1 ≤ i ≤ s− 1, are separated by at least one interval of the partition. Thus,
we have no restriction on N , if s = 1. Then we have s intervals Oi =: (ai, bi), i = 1, . . . , s
such that either

(4.6) f ′′(x)(x− yi) ≥ 0, ai < x < bi,

or

(4.7) f ′′(x)(x− yi) ≤ 0, ai < x < bi.
15



We first deal with the case f ∈ ∆2(Ys)∩C2. As per Theorem 4.1, we only have to consider
k ≤ 3, and we define polynomials Pk−1,i ∈ Πk−1, k = 1, 2, 3, which satisfy, respectively,

(4.8) Pk−1,i(x)(x− yi) ≥ 0, ai < x < bi,

or

(4.9) Pk−1,i(x)(x− yi) ≤ 0, ai < x < bi,

and are close to f ′′. To this end we take P0,i ≡ 0, P1,i to be the linear polynomial
interpolating f ′′ at yi and at ai or bi whichever is farther from yi, and finally P2,i to be
the quadratic polynomial interpolating f ′′ at ai, yi and bi. By Whitney’s theorem we
know that

(4.10) ‖f ′′ − Pk−1,i‖Oi ≤ Cωk(f ′′, |Oi|; Oi), k = 1, 2, 3,

where C depends on the ratios between |Oi| and the distances between the points of
interpolation. Thus C is an absolute constant for k = 1, 2, but for k = 3 one has to worry
about either y1 or ys being too close to one of the endpoints (this would make y1 too close
to b1 and ys too close to as). In order to overcome this problem and have an absolute
constant C also when k = 3, we have to take n ≥ N = N(Ys) even when s = 1.
When f ∈ ∆2(Ys) ∩ Cr, r ≥ 3, we apply [3, Corollary 3.1] to f ′′ and r = 1, and obtain
for each k ≥ 2, the existence of Pk−1,i ∈ Πk−1 such that (4.8) and (4.9) hold, respectively,
and

(4.10’) ‖f ′′ − Pk−1,i‖Oi ≤ c|Oi|ωk−1(f (3), |Oi|; Oi).

Thus, in all cases we conclude by Corollary 2.6 and (4.8) and (4.9), that there exists a
polynomial Pk+1,i ∈ Πk+1 which is coconvex with f on Oi, Pk+1,i(ai) = f(ai) + αi, where
αi is an arbitrary constant to be prescribed, and such that

(4.11) ‖f − Pk+1,i‖Oi ≤ |αi|+ 3
2
|Oi|2‖f ′′ − Pk−1,i‖Oi ,

where by (4.10) and (4.10’) we have an estimate on the second term on the right. Note
that (4.11) implies that

(4.12) |Pk+1,i(bi)− f(bi)| ≤ |αi|+ 3
2
|Oi|2‖f ′′ − Pk−1,i‖Oi .

Also if (4.6) holds, then

(4.13) P ′k+1,i(ai) ≤ f ′(ai) and P ′k+1,i(bi) ≤ f ′(bi),
16



and if (4.7) holds, then

(4.14) P ′k+1,i(ai) ≥ f ′(ai) and P ′k+1,i(bi) ≥ f ′(bi).

In all other intervals Ij , j ∈ H (see Section 1), f is either convex in Ij or f is concave
there. If gj := f + βj , where βj is an arbitrary constant to be prescribed, then by
Corollary 2.4, there exists a polynomial pk+1,j ∈ Πk+1, coconvex with f and satisfying
pk+1,j(xj) = gj(xj) and pk+1,j(xj−1) = gj(xj−1). Also if f is convex, then we have

(4.15) p′k+1,j(xj) ≥ f ′(xj) and p′k+1,j(xj−1) ≤ f ′(xj−1),

and if f is concave, then

(4.16) p′k+1,j(xj) ≤ f ′(xj) and p′k+1,j(xj−1) ≥ f ′(xj−1).

Finally by (2.2)

(4.17)
‖f − pk+1,j‖Ij ≤ |βj |+ c|Ij |2ωk(f ′′, |Ij |; Ij)

≤ |βj |+ cn−2ωϕ
k (f ′′, 1/n),

since /Ij/ ≤ C/n.
We now construct the piecewise polynomial S ∈ Σk+2,n(Ys) ∩∆2(Ys), sweeping [−1, 1]

from left to right. Let as = xj0 , where Os = (as, bs), and let αs := 0. Then for j0 < j ≤ n,
we take βj = 0 and set

S|Ij
:= pk+1,j , j0 < j ≤ n,

and
S|Os

:= Pk+1,s.

Note that S is continuous in [−1, bs), and by (4.14) and (4.15), or (4.13) and (4.16),
respectively, it is coconvex with f there. Suppose that we have defined S in [−1, bi),
1 < i ≤ s, let bi = xj1 and ai−1 = xj2 . Then we take αi−1 :=

∑s
m=i

(
Pk+1,m(bm)−f(bm)

)
,

and for j2 < j ≤ j1, βj := αi−1. Then we set

S|Ij
:= pk+1,j , j2 < j ≤ j1,

and
S|Oi−1

:= Pk+1,i−1.

This guarantees that S is continuous in [−1, bi−1) and coconvex with f there. Finally if
b1 = xj3 , then for 1 ≤ j ≤ j3, we take βj :=

∑s
m=1

(
Pk+1,m(bm)− f(bm)

)
, and we set

S|Ij
:= pk+1,j , 1 ≤ j ≤ j3.
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It is readily seen that we have obtained an S ∈ Σk+2,n(Ys) ∩∆2(Ys).
Again, we deal first with f ∈ C2. Since /Oi/ ≤ C/n, it follows by (4.10) that

‖f ′′ − Pk−1,i‖Oi
≤ Cωϕ

k (f ′′, 1/n), k = 1, 2, 3.

Hence, combining with (4.11), (4.12) and (4.17), yields

(4.18) ‖f − S‖ ≤ Csn−2ωϕ
k (f ′′, 1/n), k = 1, 2, 3.

This in turn implies

(4.19)
ωϕ

k+2(S, 1/n) ≤ ωϕ
k+2(f, 1/n) + Csn−2ωϕ

k (f ′′, 1/n)

≤ cn−2ωϕ
k (f ′′, 1/n), k = 1, 2, 3.

Therefore, we apply (4.18), (4.19), and Theorem LS to obtain a polynomial Pn ∈ Πn ∩
∆2(Ys) such that

(4.20) ‖f − Pn‖ ≤ cn−2ωϕ
k (f ′′, 1/n), k = 1, 2, 3 n ≥ N.

This completes the proof of (4.5) with c = c(s) and N = N(Ys). If s = 1 and k = 1, 2,
then so far we have imposed no restriction on N , except for what is implied by Theorem
LS, namely, that N ≥ c∗(k). By the constrained Whitney inequalities due to Pleshakov
and Shatalina [16], we may take N = k + 1. Thus Theorem 4.1 is proven.

Now we assume that f ∈ Cr, r ≥ 3 and let k ≥ 2. Then it follows by (4.10’) that

‖f ′′ − Pk−1,i‖Oi ≤ cn−1ωϕ
k−1(f

(3), 1/n).

Hence, combining with (4.11), (4.12) and (4.17), yields

(4.18’) ‖f − S‖ ≤ csn−3ωϕ
k−1(f

(3), 1/n).

This in turn gives

(4.19’)
ωϕ

k+2(S, 1/n) ≤ ωϕ
k+2(f, 1/n) + csn−3ωϕ

k−1(f
(3), 1/n)

≤ cn−3ωϕ
k−1(f

(3), 1/n),

where c = c(k, s). Therefore, we apply (4.18’), (4.19’), and Theorem LS to obtain a
polynomial Pn ∈ Πn ∩∆2(Ys) such that

(4.20’) ‖f − Pn‖ ≤ cn−3ωϕ
k−1(f

(3), 1/n), n ≥ N.

Since f ∈ Cr, r ≥ 3, it follows by (2.2) that (4.1) is valid for all r ≥ 3 and k ≥ 1, with
c = c(k, r, s) and N = N(k, r, Ys). For s = 1, we so far have imposed no restriction
on N , except for what is implied by Theorem LS, namely, that N ≥ c∗(k, r). Again,
by the constrained Whitney inequalities of Pleshakov and Shatalina [16], we may take
N = k + r − 1. Theorem 4.2 is proven. ¤
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