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1 Introduction

There are two kinds of estimates of the degree of approximation of continu-
ous functions on [−1, 1] by algebraic polynomials, Nikolskii-type pointwise
estimates and Jackson-type uniform estimates, involving either ordinary
moduli of smoothness, or the Ditzian-Totik (DT) ones, or the recent es-
timates involving the weighted DT-moduli of smoothness. Specifically, if

This paper is in final form and no version of it will be submitted for publication
elsewhere.
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ωk(f, 1/n) denotes the ordinary modulus of smoothness (of order k), then
the uniform estimates took the form

(1) En(f) := inf
pn∈Pn

‖f − pn‖C[−1,1] ≤ c(k, r)n−rωk(f (r), 1/n), n ≥ k + r,

where f ∈ Cr[−1, 1] =: Cr, the space of r times continuously differentiable
functions on [−1, 1] (when r = 0 we suppress the superscript r, that is, we
write C := C[−1, 1] instead of C0[−1, 1]), En(f) is the degree of approxi-
mation of f by polynomials of degree < n, the class of which we denote by
Pn, and c(k, r) is a constant which may depend on k and r but is indepen-
dent of f and n. Similar estimates hold for the other moduli of smoothness
mentioned above.

In the sequel, we denote by c constants, which may depend only on the
parameters indicated in the parentheses.

While we are dealing with the notation of function spaces, we denote
as usual by L∞ := L∞[−1, 1] the space of functions essentially bounded
in [−1, 1], equipped with the norm ‖ · ‖ := ‖ · ‖L∞[−1,1] := esssupf and,
in particular, if f ∈ C, then ‖f‖ = ‖f‖C[−1,1]. For r ∈ N we let W r be
the subspace of all functions f ∈ C, possessing an absolutely continuous
(r − 1)-st derivative in (−1, 1) and such that f (r) ∈ L∞.

Since the early papers by Lorentz, Zeller, DeVore, and Newman, on
shape preserving approximation most papers (many of them by some or all
the authors of this paper), were dedicated to the question of the validity of
analogs of these estimates for comonotone and coconvex approximations.
Namely, for each triple (k, r, s), where k and r are as above and s is the num-
ber of changes of monotonicity or convexity, respectively, of the function
f , it is now known whether or not (1) is valid where the approximation is
restricted to polynomials which are comonotone or coconvex, respectively,
with f (see, e.g., [15] and [17], respectively). Estimates for the analogue
of (1) for the weighted DT-moduli of smoothness are also known (see e.g.
[15, 12, 13]). Finally, in [15] are given the complete tables of validity for
comonotone pointwise estimates (see [3] for details).

Recently, Dzyubenko and collaborators have dealt with coconvex Nikol-
skii-type (pointwise) estimates (see references) and have covered most but
not all cases. The purpose of this paper is to complete the table of the
validity or invalidity of the estimates in the case of coconvex polynomial
approximation. This will enable us to compare this table with a corre-
sponding one for coconvex Jackson-type (uniform) estimates.
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2 Pointwise and uniform coconvex approxima-
tion: tables of validity

Let f ∈ C[a, b], where a < b. For k ∈ N, denote by

(2) ωk(f, t, [a, b])

:= sup
h∈[0,t]

sup
a≤x−kh/2<x+kh/2≤b

∣∣∣∣∣∣

k∑

j=0

(−1)k−j

(
k

j

)
f(x− kh/2 + jh)

∣∣∣∣∣∣
,

the ordinary k-th modulus of smoothness of f , in [a, b]. For the sake of
uniformity in notation we also denote ω0(f, t, [a, b]) := ‖f‖[a,b]. When
f ∈ C we suppress mentioning the interval, namely, we write ωk(f, t) :=
ωk(f, t, [−1, 1]).

For n ∈ N, let

ρn(x) :=
1
n2

+
√

1− x2

n
, x ∈ [−1, 1].

If f ∈ Cr, then by the classical Nikolskii-type direct pointwise estimates a
sequence {Pn}∞n=k+r of polynomials Pn ∈ Pn, exists, such that

(3) |f(x)− Pn(x)| ≤ c(k, r)ρr
n(x)ωk(f (r), ρn(x)), x ∈ [−1, 1].

This direct theorem was proved by Timan for k = 1, by Dzyadyk and,
independently, by Freud, for k = 2, and by Brudnyi for k ≥ 3 (for details,
see [1], p. 381). Note that since ρn(x) ≤ 2

n , (3) implies (1).
Everywhere below we assume that f /∈ Pk+r, and for such an f , we find

it convenient to rewrite (3) in the form

En,k,r(f) := inf
Pn∈Pn

∥∥∥∥
f − Pn

ρr
nωk(f (r), ρn)

∥∥∥∥ ≤ c(k, r), n ≥ k + r.

It follows immediately by (3) that if f ∈ W r, then a sequence {Pn}∞n=r of
polynomials Pn ∈ Pn, exists, such that

|f(x)− Pn(x)| ≤ c(r)ρr
n(x)‖f (r)‖, x ∈ [−1, 1].

In this paper we compare the validity or invalidity of the uniform and
pointwise estimates for coconvex approximation, for a given triplet (k, r, s),
where k ≥ 0 is the order of the modulus of smoothness of f (r), r ≥ 0, and s
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is the number of changes of convexity. More precisely, denote by Ys, s ∈ N,
the set of all collections Ys := {yi}s

i=1 of points yi, such that

−1 < ys < · · · < y1 < 1.

For Ys ∈ Ys denote by ∆(2)(Ys) the collection of functions f ∈ C, that
change convexity at the points yi, and are convex in [y1, 1]. That is f ∈
∆(2)(Ys) if and only if f is convex in [y1, 1], concave in [y2, y1], convex in
[y3, y2], and so on. Note that if f is twice differentiable in [−1, 1], then
f ∈ ∆(2)(Ys) if and only if

f ′′(x)Π(x) ≥ 0, x ∈ [−1, 1],

where

Π(x) :=
s∏

i=1

(x− yi).

To unify the notation we set Y0 := ∅, Y0 = {∅}, and denote by ∆(2)(Y0)
the set of convex functions f ∈ C.

For f ∈ ∆(2)(Ys) let

E(2)
n (f, Ys) := inf

Pn∈Pn∩∆(2)(Ys)
‖f − Pn‖,

denote the degree of best uniform coconvex polynomial approximation, and
denote for f ∈ Cr ∩∆(2)(Ys) (f ∈ W r ∩∆(2)(Ys), if k = 0),

E
(2)
n,k,r(f, Ys) := inf

Pn∈Pn∩∆(2)(Ys)

∥∥∥∥
f − Pn

ρr
nωk(f (r), ρn)

∥∥∥∥ ,

so that we always have

E(2)
n (f, Ys) ≤ 2k+rn−rωk(f (r), 1/n)E(2)

n,k,r(f, Ys).

Thus, with this notation the purpose of the paper is for a given triplet
(k, r, s), to establish whether or not the inequality

(4) E
(2)
n,k,r(f, Ys) ≤ c, n ≥ N,

is valid for a function f ∈ Cr ∩∆(2)(Ys) (f ∈ W r ∩∆(2)(Ys), if k = 0), and
f /∈ Pk+r.

With N0 := N∪ {0}, let (k, r, s) ∈ N0 ×N0 ×N0 and k + r 6= 0. We say
that
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a) (4) is not valid with both c and N independent on Ys, if for each A > 0
there is a positive integer N , such that for every n ≥ N there are, a
collection Ys ∈ Ys and a function f ∈ Cr ∩∆(2)(Ys) (f ∈ W r ∩∆(2)(Ys), if
k = 0), satisfying

(5) E
(2)
n,k,r(f, Ys) ≥ A;

b) (4) is not valid with c = c(k, r, s) and N independent of f , if for each
A > 0 there are, a positive integer N and a collection Ys ∈ Ys, such that
for every n ≥ N , a function f ∈ Cr∩∆(2)(Ys) (f ∈ W r∩∆(2)(Ys), if k = 0)
exists, satisfying (5);
c) (4) is not valid for any Ys with both c and N independent of f , if for
each A > 0 and Ys ∈ Ys, there is a positive integer N , such that for every
n ≥ N , a function f ∈ Cr ∩∆(2)(Ys) (f ∈ W r ∩∆(2)(Ys), if k = 0) exists,
satisfying (5);
d) (4) cannot be had even if we allow both constants c and N to depend
on all parameters k, r, Ys and f , if for each Ys ∈ Ys there is a function
f ∈ Cr ∩∆(2)(Ys), such that

lim sup
n→∞

E
(2)
n,k,r(f, Ys) = ∞.

It turns out we have to distinguish between five different cases for a triplet
(k, r, s). Namely,

Definition 1. Let (k, r, s) ∈ N0 × N0 × N0 and k + r 6= 0. We write
1. (k, r, s) ∈ “ + ” if (4) holds with c = c(k, r, s) and N = k + r;
2. (k, r, s) ∈ “⊕” if (4) holds with c = c(k, r, Ys) and N = k + r, as well as,
with c = c(k, r, s) and N = (k, r, Ys), but (4) is not valid with both c and N
independent on Ys;
3. (k, r, s) ∈ “®” if (4) holds with c = c(k, r, Ys) and N = k + r, as
well as, with c = c(k, r, s) and N = (k, r, Ys, f), but (4) is not valid with
c = c(k, r, s) and N independent of f ;
4. (k, r, s) ∈ “ª” if (4) holds with c = c(k, r, s) and N = (k, r, Ys, f) but
(4) is not valid for any Ys, with both c and N independent of f ;
5. (k, r, s) ∈ “− ”: (4) cannot be had even if we allow both constants c and
N to depend on all parameters k, r, Ys and f .

We summarize the results in the following theorem.

Theorem 1.
1. (k, r, s) ∈ “ + ”, if s = 0 and either k ≤ 3 and r ≤ 3− k, or k ≥ 0 and
r ≥ 2; or s = 1 and k ≤ 2 and r ≤ 2− k;
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2. (k, r, s) ∈ “⊕ ”, if s ≥ 2 and k ≤ 2 and r ≤ 2− k;
3. (k, r, s) ∈ “®”, if s ≥ 2 and either k = 3 and r = 0, or k = 2 and r = 1,
or 1 ≤ k ≤ 3 and r = 2, or k ≥ 0 and r ≥ 3;
4. (k, r, s) ∈ “ª”, if s = 1 and either k = 3 and r = 0, or k = 2 and r = 1,
or 1 ≤ k ≤ 3 and r = 2, or k ≥ 0 and r ≥ 3.
5. (k, r, s) ∈ “− ”, otherwise.

We find it easier and more convenient for the reader to comprehend
Theorem 1 by describing the results in the following truth tables for the
pairs (k, r), for “pointwise estimates, s = 0”, “pointwise estimates, s = 1”
and “pointwise estimates, s ≥ 2”. We also take the opportunity to compare
these tables with tables for “uniform” coconvex approximation (see [17], p.
110 and 114), namely, when the estimates

(6) E(2)
n (f, Ys) ≤ cn−rωk(f (r), 1/n), n ≥ N,

are valid.
We do this before proceeding to give references to the already known

results and to prove the new ones.

r
...

...
...

...
...

... r
...

...
...

...
...

...
...

3 + + + + + + · · · 3 + + + + + + + · · ·
2 + + + + + + · · · 2 + + + + + + + · · ·
1 + + + − − − · · · 1 + + + ª − − − · · ·
0 + + + − − · · · 0 + + + ª − − · · ·

0 1 2 3 4 5 k 0 1 2 3 4 5 6 k

Pointwise, s = 0 Uniform, s = 0

r
...

...
...

...
...

... r
...

...
...

...
...

...
4 ª ª ª ª ª ª · · · 4 + + + + + + · · ·
3 ª ª ª ª ª ª · · · 3 + + + + + + · · ·
2 + ª ª ª − − · · · 2 + + + ⊕ − − · · ·
1 + + ª − − − · · · 1 + + ⊕ − − − · · ·
0 + + ª − − · · · 0 + + ⊕ − − · · ·

0 1 2 3 4 5 k 0 1 2 3 4 5 k

Pointwise, s = 1 Uniform, s = 1
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r
...

...
...

...
...

... r
...

...
...

...
...

...
4 ® ® ® ® ® ® · · · 4 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
3 ® ® ® ® ® ® · · · 3 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ · · ·
2 ⊕ ® ® ® − − · · · 2 ⊕ ⊕ ⊕ ⊕ − − · · ·
1 ⊕ ⊕ ® − − − · · · 1 ⊕ ⊕ ⊕ − − − · · ·
0 ⊕ ⊕ ® − − · · · 0 ⊕ ⊕ ⊕ − − · · ·

0 1 2 3 4 5 k 0 1 2 3 4 5 k

Pointwise, s ≥ 2 Uniform, s ≥ 2

Note that the “Uniform” tables do not contain the case ”® ”.

Credits. Theorem 1.1 (that is, the “ + ” case) was proved for s = 0, first
by Leviatan [14] for k ≤ 2 and r ≤ 2 − k, and later by Kopotun [10] for
k ≤ 3 and r ≤ 3− k, and by Mania and Shevchuk (see [1], Theorem 7.6.5)
for k = 0 and r ≥ 2. For s = 1, k ≤ 2 and r ≤ 2 − k, it was proved by
Dzyubenko, Gilewicz and Shevchuk [4].

The positive result in Theorem 1.2 (that is, the “⊕ ” cases) was proved
in [4], and the negative result in [16].

The first variant of the positive result in Theorem 1.3 (that is, the “®”
cases) was proved in [7, 8] and the second one for r ≥ 2 follows from Remark
1.3 in [6] (“... the arguments of this paper can be easily extended to the
case s > 1, so that the exact analogs of Theorems 1.1 through 2.2 hold also
for s > 1.”). We prove here the second variant for r < 2, that is, for s > 1
and either k = 3 and r = 0, or k = 2 and r = 1. The negative result was
proved in [5].

The positive result in Theorem 1.4 (that is, the “ ª ” cases) for r ≥ 2
was proved in [6]. We are going to prove it here for r < 2, that is, for s = 1
and either k = 3 and r = 0, or k = 2 and r = 1. The negative result was
proved in [5].

Finally, Theorem 1.5 (that is, the “ − ” case) was proved by Wu and
Zhou [18, 20], for s = 0 and either k ≥ 5 and r = 0, or k ≥ 4 and r = 1;
and for s ≥ 1 and either k ≥ 4 and r = 0, or k ≥ 3 and r = 1. It was
proved by Gilewicz and Yushchenko [9] for s ≥ 1 and k ≥ 4 and r = 2, and
by Yushchenko [19] for s = 0 and either k = 4 and r = 0, or k = 3 and
r = 1.

3 The case (k = 3, r = 0, s ≥ 1)

Our aim is to prove,
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Theorem 2. For each Ys ∈ Ys and every function f ∈ ∆(2)(Ys) there are
a number N = N(Ys, f) and a sequence {Pn}∞n=N of polynomials Pn ∈ Pn,
such that

|f(x)− Pn(x)| ≤ cω3(f, ρn(x)), x ∈ [−1, 1],

where c is an absolute constant.

Theorem 2 readily follows from Theorems 3 and 4 below, but in order
to formulate them we need some notations.

Let xj,n := cos (jπ/n), j = 0, . . . , n, be the Chebyshev partition of
[−1, 1]. For n ∈ N and Ys = {yi}s

i=1 ∈ Ys, denote by

Oi,n := (xj+1,n, xj−2,n), if yi ∈ [xj,n, xj−1,n),

where xn+1,n := −1 and x−1,n := 1. Let

O = O(n, Ys) :=
s⋃

i=1

Oi,n.

Set Ij,n := [xj,n, xj−1,n], j = 1, . . . , n, and let |Ij,n| = xj−1,n − xj,n, be its
length. It is well known that

(7) |Ij±1,n| < 3|Ij,n|,
and

(8) ρn(x) < |Ij,n| < 5ρn(x), x ∈ Ij,n.

In particular

(9) |Oi,n| < c1ρn(x), x ∈ Oi,n,

where |Oi,n| denotes the length of Oi,n and c1 < 65 is an absolute constant.
Denote by Σk,n the collection of all continuous piecewise polynomials

of degree < k, on the Chebyshev partition {xj,n}n
j=0, and by Σk,n(Ys), the

subset of Σk,n consisting of those continuous piecewise polynomials S ∈ Σk,n

such that for every i = 1, . . . , s, S|Oi,n is a polynomial.
The following Theorem allows us to reduce the proofs of the direct

estimates for (co)convex polynomial approximation to those for (co)convex
piecewise polynomial approximation, proofs which are much easier.

Theorem 3[2]. Let k ∈ N and s ∈ N0. For every Ys ∈ Ys, an f ∈ ∆(2)(Ys),
an n ≥ N(k, Ys), and a piecewise polynomial S ∈ Σk,n(Ys)∩∆(2)(Ys), there
is a polynomial Pn ∈ ∆(2)(Ys) of degree < c∗(k, s)n, such that

|f(x)− Pn(x)| ≤ c(k, s)
(

1 +
∥∥∥∥

f − S

ωk(f, ρn)

∥∥∥∥
)

ωk(f, ρn(x)), x ∈ [−1, 1].
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Thus, our main result is,

Theorem 4. If f ∈ ∆(2)(Ys), then there exists an N = N(f, Ys), such that
for each n ≥ N , a piecewise polynomial S ∈ Σ3,n(Ys)∩∆(2)(Ys) exists, such
that

|f(x)− S(x)| ≤ cω3(f, ρn(x)), x ∈ [−1, 1],

where c is an absolute constant.

4 Proof of Theorem 4

We begin with three lemmas.
Everywhere below ci are absolute constants.

Lemma 1. For each convex (concave) function f ∈ C[a, b] there exists a
number d = d([a, b], f) > 0, such that for each h,

|h| ≤ E2(f)[a,b] := inf
l∈P2

‖f − l‖[a,b],

there is convex (concave) function g ∈ C[a, b], g(x) = g(x, h, f, [a, b]),
satisfying

g(x) = f(x) + h, x ∈ [a, a + d]; g(x) = f(x), x ∈ [b− d, b],

and

‖f − g‖[a,b] = |h|.

Proof. We prove Lemma 1 for a convex function f . Let l be a linear function
of best approximation of the function f , that is ‖f−l‖[a,b] = E2(f)[a,b] =: E.
Set f∗ := f − l, and note that f∗(a) = f∗(b) = E. If h = 0, then there is
nothing to prove. Hence, we may assume that 0 < |h| ≤ E 6= 0. Denote by
x1 and x5 the (exactly two) roots of the equation f∗(x) = 0, x1 < x5, and
let x2 and x4 be the (exactly two) roots of the equation f∗(x) = |h| − E,
x2 < x4. Finally, let x3 be a root of the equation f∗(x) = −E. Clearly we
have

a < x1 < x2 < x3 < x4 < x5 < b.
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Then Lemma 1 is valid with d = min{x1 − a, b − x5}, and the evidently
convex function,

g(x) = l(x) +





f∗(x) + h, if x ∈ [a, x3],
h− E if x ∈ [x3, x4],
f∗(x) if x ∈ [x4, b],

if h > 0, and

g(x) = l(x) +





f∗(x) + h, if x ∈ [a, x2],
−E if x ∈ [x2, x3],
f∗(x) if x ∈ [x3, b],

if h < 0. ¤
Denote by

[t1, t2; f ] :=
f(t2)− f(t1)

t2 − t1
,

the first divided difference of the function f at the points t1 and t2.

Lemma 2. Given the interval [a, b], let y ∈ (a, b) be such that (b− y)/3 <
y − a < 3(b − y). If a function f ∈ C[a, b] is concave on [a, y] and convex
on [y, b], then there is a linear function l(x) = l(x, f, [a, b], y), such that

(10) l′ ≤ [a, y; f ] and l′ ≤ [y, b; f ],

we may choose l(a) = f(a) or l(b) = f(b), and

(11) ‖f − l‖[a.b] ≤ c2ω3(f, b− a, [a, b]),

where the modulus of smoothness for the interval [a, b] was defined in (2).

Proof. Since f is concave on [a, y] and convex on [y, b], then (see [11])
E2(f)[a,b] ≤ c3E3(f)[a,b] := c3 infp∈P3 ‖f − p‖[a,b], whence E2(f)[a,b] ≤
c4ω3(f, b − a, [a, b]). Therefore, it readily follows that the choice of either
l1(x) = f(a) + (x − a)[a, y; f ], or l2(x) = f(b) + (x − b)[y, b; f ], according
to which of the two divided differences is smaller, clearly fulfils (10), while
(11) follows immediately by Whitney’s Theorem and the fact that lj j = 1
or j = 2, interpolates f at two points, the distance between which is pro-
portional to b−a. In order to guarantee that l(a) = f(a), if the choice is l1,
then we take l = l1. Otherwise, if h := l2(a) − f(a), then by (11) we may
take l = l2 − h, which satisfies (10) and (11), and we obtain l(a) = f(a).
Guaranteeing, instead, that l(b) = f(b) is done in a similar way. ¤
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Lemma 3. For f ∈ ∆(2)(Ys), there exists an N = N(f, Ys), such that for
each n ≥ N , a function fn ∈ ∆(2)(Ys) exists, such that fn|0i,n is linear for
all i = 1, . . . , s, and

|f(x)− fn(x)| ≤ c5 ω3 (f, ρn(x)) , x ∈ [−1, 1].

Proof. Set

y+
i := min{yi +

1
2
(1− |yi|), 1

2
(yi−1 + yi)},

and
y−i := max{yi − 1

2
(1− |yi|), 1

2
(yi + yi+1)},

where y0 := 1 and ys+1 := −1. Now write

J−i := [y−i , yi] and J+
i := [yi, y

+
i ].

We divide 1 ≤ i ≤ s into two sets. We write i ∈ A, if there are two linear
functions li− and li+, such that,

f |J−i = li− and f |J+
i

= li+.

Otherwise i /∈ A.
Let N0 be so big that for n ≥ N0,

Oi,n ⊂ J−i ∪ J+
i = [y−i , y+

i ], 1 ≤ i ≤ s,

and note that in particular Oi,n∩Oi+1,n = ∅, 1 ≤ i < s. Denote by y+
i,n and

y−i,n the right and left ends of Oi,n, respectively. Let n ≥ N0 and i ∈ A. We
denote by L+

i,n, the polygonal line consisting of three segments, such that

L+
i,n(−1) = L+

i,n(yi) = L+
i,n(1) = 0 and L+

i,n(y+
i,n) = 1,

and similarly, we denote by L−i,n, the polygonal line consisting of three linear
pieces, such that,

L−i,n(−1) = L−i,n(yi) = L−i,n(1) = 0 and L−i,n(y−i,n) = 1,

and define

Li,n :=
{

(li−(y+
i,n)− li+(y+

i,n))L+
i,n, if (−1)i(l′i− − l′i+) ≥ 0;

(li+(y−i,n)− li−(y−i,n))L−i,n, otherwise.
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Clearly,

(12) Li,n ∈ ∆(2)(Ys),

and either (f + Li,n)|Oi,n = li−, or (f + Li,n)|Oi,n = li+, so that f + Li,n is
linear on Oi,n. Hence, with

Ln :=
∑

i∈A

Li,n,

we conclude that (f +Ln)|Oi,n is linear for each i ∈ A. Also, clearly, Ln|Oi,n

is linear for each i /∈ A.
If M := maxi∈A |l′i+ − l′i−|, then by (9),

|l′i+ − l′i−|(y+
i,n − yi) ≤ M(y+

i,n − yi) ≤ M |Oi,n| ≤ c1Mρn(y+
i,n),

and
|l′i+ − l′i−|(yi − y−i,n) ≤ c1Mρn(y−i,n).

Hence, it follows that

|Li,n(x)| ≤ c1Mρn(x), x ∈ [−1, 1],

which in turn implies,

(13) |Ln(x)| ≤ sc1Mρn(x), x ∈ [−1, 1].

On the other hand, for each i ∈ A there exists t0i > 0, such that

ω3(f, t, [y−i , y+
i ]) = |l′i+ − l′i−|t, t ≤ t0i .

Therefore, if A 6= ∅, then we have

ω3(f, t) ≥ Mt, t ≤ t0 := min
i∈A

t0i .

Combining with (13) this in turn yields, for all n ≥ N0 := max{N0, [1/t0]},

(14) |Ln(x)| ≤ sc1ω3(f, ρn(x)), x ∈ [−1, 1],

Next, for i /∈ A, denote Ji := J−i , if f |J+
i

is linear. Otherwise, we put

Ji := J+
i .

Now we need an auxiliary function gn, which coincides with f on a
major part of the interval [−1, 1]. In fact, it differs from f only on the
Oi,n’s and on the Ji’s, where i /∈ A.
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We fix i /∈ A and assume that Ji := J+
i and that i is odd, that is, f is

convex on Ji. The other cases are similar. By Lemma 2, there is a linear
function li,n, such that

(15) l′i,n ≤ [y−i,n, yi; f ], l′i,n ≤ [yi, y
+
i,n; f ],

(16) f(y−i,n) = li,n(y−i,n),

and

(17) ‖f − li,n‖Oi
≤ c2ω3(f, |Oi,n|),

in particular,

hi,n := li,n(y+
i,n)− f(y+

i,n) ≤ c2ω3(f, |Oi,n|).

Since i /∈ A, it follows that E2(f)Ji > 0, and we may apply Lemma 1 with
di := d(Ji, f) and g(x, hi,n, f, Ji), guaranteed by that lemma.

We take Ni ≥ N0 so big that for all n ≥ Ni we have

y+
i,n − yi < di and c2ω3(f, |Oi,n|) < E2(f)Ji ,

and we define

gi,n(x) :=





f(x), if x ∈ J−i \Oi,n;
li,n, if x ∈ Oi,n;
g(x, hi,n, f, Ji), if x ∈ Ji \Oi,n.

Then by (17),

|f(x)− gi,n(x)| ≤ c2ω3(f, |Oi,n|), x ∈ J−i ∪ Ji.

Hence, the inequality

max
x∈J−i ∪J+

i

ρn(x) ≤ 2 min
x∈J−i ∪J+

i

ρn(x),

combined with (7) through (9), yields

(18) |f(x)− gi,n(x)| ≤ c4ω3(f, ρn(x)), x ∈ J−i ∪ Ji.

Also, gi,n, is continuous on J−i ∪ Ji, it is concave on J−i and convex on Ji,
and gi,n(x) = f(x) near both ends of J−i ∪ Ji.
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Thus, for each n ≥ N := maxi/∈A Ni, the function

gn(x) :=
{

gi,n(x), if x ∈ Oi,n ∪ Ji with i /∈ A;
f(x), otherwise

satisfies

(19) gn ∈ ∆(2)(Ys),

(20) |f(x)− gn(x)| ≤ c9ω3(f, ρn(x)), x ∈ [−1, 1],

and

(21) gn is a linear function on each Oi with i /∈ A.

Combining (19) through (21) with (12) and (14), we conclude that

fn := gn + Ln,

is the required function. This completes the proof of Lemma 3. ¤

Denote by

[t1, t2, t3; f ] :=
[t1, t2; f ]− [t2, t3; f ]

t1 − t3
,

the second divided difference of the function f at the points t1, t2, t3.

Proof of Theorem 4. Let N and fn be defined by Lemma 3. For each n ≥ N
and j = 2, . . . , n− 1 let

pj,n := fn(xj,n) + (x− xj,n)[xj,n, xj−1,n; fn]
+(sgnΠ(xj,n))(x− xj,n)(x− xj−1,n)
·min{|[xj,n, xj−1,n, xj−2,n; fn]|, |[xj,n, xj−1,n, xj+1,n; fn]|},

be the quadratic polynomial that interpolates fn at the points xj,n, xj−1,n

and either xj−2,n or xj+1,n. It is readily seen (see e.g.,[10]), that the required
piecewise polynomial S may be taken in the form

S|Ij,n = pj,n, j = 2, . . . , n− 1, S|I1,n = p2,n and S|In,n = pn−1,n.

This concludes the proof.
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Verlag, Basel 132 (1999), 145–158.

[16] D. Leviatan, I.A. Shevchuk, Coconvex approximation, J. Approx.
Theory 118 (2002), 20–65.

[17] D. Leviatan, I.A. Shevchuk, Coconvex polynomial approximation,
J. Approx. Theory 121 (2003), 100–118.

[18] X. Wu, S.P. Zhou, A contrexample in comonotone approximation in
Lp space, Colloq. Math. 114 (1993), 265–274.

[19] L.P. Yushchenko, On one counterexample in coconvex approxima-
tion, Ukrain. Math. J. 52 (2000), 12, 1956–1962.

[20] S.P. Zhou, On comonotone approximation by polynomials in Lp space,
Analysis 13 (1993), 363–376.

G.A. Dzyubenko
International Mathematical Center NAS of Ukraine
Tereschenkivska str., 3, 01601 Kyiv, Ukraine
e-mail: dzyuben@imath.kiev.ua

D. Leviatan
Raymond and Beverly Sackler School of Mathematics Tel Aviv University
69978 Tel Aviv, Israel
e-mail: leviatan@post.tau.ac.il

I.A. Shevchuk
Faculty of Mechanics and Mathematics
National Taras Shevchenko University of Kyiv
01017 Kyiv, Ukraine
e-mail: shevchuk@mail.univ.kiev.ua


