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Abstract: It iswell known that it is possible to enhance the approximation properties of an kernel operator
by increasing its support size. There is an obvious tradeoff between higher approximation order of a kernel
and the time complexity of algorithms that employ it. A question is then asked: how do we compare the
efficiency of kernels with comparable support size? We follow Blu and Unser and choose as a measure of
the efficiency of the kernels the first leading constant in a certain error expansion. We use time domain
methods to treat the case of globally supported kernelsin L, (R?), 1£ p£¥ .
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1 Introduction

In this work we perform a “fine” analysis of the approximation properties of integral operators
QL (R?)® L,(R), 1€ p£¥ , h>0 defined by akernel K

Q=0 f(OK(tAd, K, (tx):=h"K(nt, h*x). @1

The approximation error is defined by
- QP ey

Efficient kernels have sufficient decay properties and reproduce polynomials of degree m- 1, for some
m3 1
p(x)=Q, p()K(t.,x)dt, “pl P (R).

Such kernels provide approximation order m. Namely, for f inthe Sobolev space W™ (Rd) (see Section
2 for the multi-index notation we use below)

|f- q(f)||Lp(Rd) ECh"|f] . 1], :=|§}m i Y

An important class of kernel operatorsis that of quasi-interpolation kernels. These kernels are defined by

means of two sets of functions, thegeneratingset F ={f} . and the dual generating set F :{fa} i

the form

K(t,x)=a af,(t- k), (x-k). 12

Kziall

For example, let f T L, (R*) be stable. Then its natural dual f, defined by its Fourier transform
f= . (L3)
S
a [f (=20k)

K z

provides the orthogonal projection P into the shift invariant space %{f (h‘lx- k) - ki Zd} by

RE=Qf=h*d (f.f(nxk))f (k).

K z8

It is known [R] that any univariate generator f that provides approximation order m can be represented as a
convolution of the B-spline of order m and atempered distribution. Therefore, m is aso the minimal
possible support for a univariate generator that provides approximation order m. At the other end of the
scale there is the infinitely supported sinc function given by



sinc(x) :=é%§f“).

The sinc function provides infinite approximation order. That is, the kernel (1 2) with the choice
f =f =sinc hasthe remarkable property that for any m* 1and f1 W"(R?)

[~ QO £

¥

For results on approximation from shift-invariant spaces we refer the reader to [LJC] for the general case
1£ p£¥ andto[JP] for asurvey on harmonic analysis techniquesinthecase p=2.

In thiswork we follow Unser et al. ([U], [BTU], [BU]) and attempt to measure the efficiency of
kernels by the leading coefficient in a certain error expansion. The purpose of this work is to extend their
approach to the multivariate case and to therange 1£ p£¥ .

We impose the following conditions on the kernel K . First we assume the kernel is shift-invariant in
the sense that

K(t- kx-k)=K(t,x),  "kI z. (1.4)

This condition clearly holds for quasi-interpolation kernels of type (1.2). The second assumption is that the
kernel has sufficient decay, namely, that fa some n3 1, C>0and e>0

K (t,x)| € C(1+ft- ¥) " (1.5

For example, (15) holds whenever F,F in (1.2) arefinite sets of generators with sufficient decay. We note
that in general the natural dual (1.3) of a campactly supported f 1 LZ(R") is of infinite support. However,

in applications it is common practice to use kernels that have a compactly supported band, especialy in the
multivariate case where d 3 2.

Property (1.5) also ensures that the operators Q,, h>0, are bounded operatorsin L, (Rd) ,
1£ p£¥ . Thisis proved by first using (1.5) to show that they are bounded operators in I_l(]R{d) and

L, (]Rd ) , and then applying an interpolation argument for the case 1< p<¥ (seeeg. Theorem 13.7.31in

[DL] and the details that follow).
Finaly, we assume that the kernel reproduces polynomials of degree m- 1 for some m3 1, i.e,

X = Q. U K(t,x)dt, "g, |og|£m- 1. (1.6)

It isknown (see e.g. [LJC]) that a kernel that satisfies the above conditions for some n=m23 1in (15)
yields approximation order m. Our main result augments previous results as follows.
Theorem1.1Let m3 1. Assumethat akernel K satisfies (14), (1.5) for n=m+1and (1.6). Let {Q },;,

be the operators (1.1) and let 1£ p £¥ . Then for any function f 1 A (Rd)

|| f- Qh ( f )”Lp(]Rd) £C:DKhm| f |m,p +C§:1 hm+“

f|m+n,p’ (17)



where

p.K "

max ”%K |||_p([0,1]") ’

ST — (1.8)

and
& (X):= Q. (t- x)° K(t,x) ot , gl Zi. (1.9)

Using (1.6) it can be shown that in the univariate case the constant C,  in(1.8) is given by

) XM - Qt K(t,X)dt Lo1)
Pk m! '

It is not surprising to see that we obtain a Chebyshew-type result, namely, the leading constant C,
is determined by how well the kernel, which reproduces polynomials of degree m- 1, approximates the
monomia X" . Obvioudly, if K reproduces polynomials of a degree higher than m- 1, then as expected,
C,x =0.Theconstant C,, can serve as a“fine” measure of the approximation properties of kernels that
provide approximation order m. Since in applications the support size of the kernel determines the
complexity of the algorithms, we should strive for kernels with the highest possible approximation order for
agiven support size and the smallest possible leading constant C,, , . Indeed, Blu, Thevenaz and Unser
construct in [BTU] univariate generators (O-moms) that are asymptotically optimal in the following sense.
Of al the generators that provide approximation order m and have the minimal support size m, these
generators have the smallest constant C; , . For instance, for m=4,6, these “optima” generators are

OM4=N4+$N£2), OM6=N6+3—13N((52)+%N§4)
where N, isthe univariate B -spline of order m. They also demonstrate the advantage of the kernel
operators defined by these generators in image processing applications. However, in these constructions the
kernels are not compactly supported.

Below is a table with examples for known kernels K and the values of their corresponding leading
constants C, . for severa vaues of p.

m Kernel |supp(f~)|' |supp (f )| mIC; m!C; miC, | MCho | MIC, ¢
1 Daubl, N, 11 0.25 0.2888 0.4289 0.9138 1.0
2 Daub2 33 0.1933 0.2236 0.3502 0.4717 0.5
Coifl 55 0.1760 0.2125 0.3920 0.5868 0.6376
(NN, ) ¥ 2 0.07454
3 Daub3 4 4 0.2582 0.2988 0.4362 0.5672 0.5974
N ’ .0
(N31 N3) ¥ 3 0.03450
1,3, [2.6] 2" 6 0.2813 | 0.2989 | 0.3453 | 0.3847 | 0.3951
4 Daub4 6" 6 0.4854 0.5557 0.7141 0.8342 0.8658
Coif2 11" 11 0.4332 0.4953 0.6671 0.8196 0.8560




(E , N4) ¥ 4 0.02182
(6K/|/4 oM 4) ¥4 0.004763
(2,4) 2" 8 1.3756 16360 | 24745 | 3.2882 | 35031
(4,4),[9,7] 97 0.3063 | 03474 | 0.4569 | 05532 | 05760
(4,4),17,9] 79 0.7662 | 0.8929 | 1.2751 | 1.6277 1.7169
5 Daub5 8 8 1.1997 13161 | 1.6086 | 1.8429 1.9085
(st Ns) ¥°5 0.01734
(1,5) 19 11718 12719 | 15075 | 16771 1.7192
(3,5 In 11.4494 | 11.7480 | 12.8894 | 14.5878 | 15.3649
6 Daub6 10" 10 34417 | 37788 | 45029 | 49661 | 5.1092
Coif3 17" 17 28730 | 32314 | 41054 | 4.7317 | 4.9022
(’|\T6 Ne) ¥'6 0.01655
(EJT\/TB,OMG) ¥ 6 0.0003
7 Daub7 12° 12 11.5241 | 12.7441 | 15.6353 | 17.6203 | 18.1699
(3,7) 315 100.6437 | 106.7492 | 122.4140 | 136.1411 | 139.5817
Tablel-1Valuesof C,, for known univariatekernels K.
Remarks

1. All of the entriesin Table 1- 1 correspond to univariate kernels of type (12)
2. The kernels Daubm are the Daubechies orthogonal generatorswith f =f (see[D]).

3. The kernels Coif n with 2n=m are the Coiflets orthogonal generatorswith f =f (see[D]).
4. The kernels (rﬁ, m) are the CDF biorthogonal generators taken from [D] and are identified (asin [D]) by

the approximation orders of (fN,f ) :
5. The kerndl (N; Nm) isthe B-spline of order m and its (globally supported) natural dual.

6. The kernels (OAI\/I/m,OMm) are the “optimal” generators for p=2 and their (globally supported) natural
dual constructed in [BTU].

7. The notation [IL I 2] is used in the signal processing community to represent the length of the
corresponding filters. These are also the support sizes of (f~,f ) .

8. Some of the entries for the case p=2 aregivenin [U].

Our measure for the efficiency of kernels seems to correlate well with empiricd results in signal
processing. For example, the popular [9,7] filters that serve as the default filters in the image compression

standard JPEG2000, correspond to a kernel with arelatively small leading constant compared to other
compactly supported kernels that provide approximation order 4. Observe that the [7,9] filter obtained by

switching the rolesof f and f in (1.2), has the same support size and provides the same approximation



order but with a bigger leading constant. Indeed, it does not perform as well as the [9,7] inimage

compression.
We also observe that the relative efficiency of a kernel changes for different values of p . For example
for p =1 the kernel Daub3 has a smaller constant than (1,3) whilefor p=¥ , the opposite is true.

2 Preliminaries

We recall some basic definitions of multivariate polynomials, differentials and Taylor series. For a

~ . d . . . - - A
multi-index a T 79 wewrite |a|:=§_ a, - Thefactorial of amulti-index isgivenby a!=Qa,!. For
k=1 k=1

~ A
al z9, thefunction x* := Q x* isamultivariate monomial of (total) degree [a|. The monomials of
k=1
degree £ m are the building blocks of the multivariate polynomials

Pm(Rd):i p(x)=|§g_mcaxa§.

The nth order differential of asufficiently smooth function f atapoint xI R can be represented for
our purpose in asimple form as an operator D ":R? ® R defined by

D* f(x)

D"(f,x)xv:=n!§ VvV, vl RY,
R
where
D f :=—ﬂnf :
D T

We find it convenient to also use the genera form of the nth order differential as an operator in the space
L" (Rd,R) (see e.g. [AMR] pp. 76-93). Thisisthe space of all real valued multilinear operators defined
inductively by L" (Rd,R) = L(R“, L”'l(Rd,R)) ,where L(X,Y) isthe space of linear operators from X to

Y . The space L”(Rd,R) is afinite dimensional Banach space of dimension n” d equipped with the norm

o )

(= ) q,..-,%lom.

|A

Denoting L ::{aT Z5 | l|= n} we havefor 1£ p£¥ the following norm equivalence

||]D>"f (x)

D* f(x)

L”(]Rd,R) - | (21

(L)’



where the equivalence constants depend on d , n and p but are independent of the point x. If for
Al L"(R%R) and vi R? we denote
AR = A(v,...,V),

%r_/
ntimes

then the Taylor polynomial of degree n- 1 of a sufficiently smooth function f about the point xT R is
given by

()= T 9(0)= B e

The Taylor remainder of order n of asufficiently smooth function f a apoint xT R? is given by

R (xt)=R,(f,X(t):= %Dn(f ,x+u(t- x))du>(t- x)", (2.2

0
and we have that

(1) =T (xt) +R (x1).

3 Proofofthe main result

This section is devoted to the proof of Theorem 1.1. The following lemma s required in cases where
we wish to estimate a discrete sum of samples of afunctionin the p norm using the (integral) function

norm.
Lemma3.1Forany fi C° (Rd)ﬂW’f (Rd), 1£ p<¥ and h>0 we havethefollowing ‘numerical
integration’ inequality

Up

h & |f(x+hk)|"

K z

d
E|f] +can|f . (3.2)
L¥(]Rd) =1

Proof Without loss of generality we can assume that x = 0, elsewetake the function f (x- 3. Define the
following step function

o (t):= é- f(hk)ls(hk,h)(t)’
Kz
wherefor y=(Yi,...,¥y), S(y,h) isthebox [y, y,+h) - [y4 Yy +h). Then,
o P o « P
a h? |f (k)| _k%d Q(hk,h)|f(hk)| dt

K z¢

£8 Q(hkh)(|f (hic+x)| +| f (hk+x) - (nk)])" cx
K zd '



o LIRLEA

£(lrl, +1 - 41,)"

d
Therefore, it is sufficient to prove that | f - fh||p £CQ h'| ], , - Thislast inequality states that numerical
n=1

integration using interpolation and astep size h provides 1% order accuracy, which is well known for the
univariate case. Now, write

f (t) = é. f (t)ls(h,k,h) (t) !

and we have o
f(t)- f,(t)= kéd (F(t)- f (hk)) Ly (1)
Hence h
I - 1l iéa Q! T (1) £ (k)" dt. 32

We first demonstrate the proof for the case d = 2. In this case, we need to estimate
h(k+1) hk,+1)

O O|f(t.t,)- f(hk,hk,) didt,,

hk,  hk,

or if we denote g(u,u,)= f (u,+hk,u, +hk,), then achange of variables yields that we need to estimate

h h éh hh O
oo () - 9(0,0)]" dudu, £ 27" cega (u,u,) - 9(u,,0)|” dudu, + e (w,0)- g(0,0)|" dugu, =
00 eoo 00 (%]
=27 (1, +1,).
We estimate the first term by
h h gt P
1, £ o 4&(ul,v) dvg dudu,
oo@o|lY 17}
h o 5P
£h¢ (‘:‘ﬂ—g(ul,v) e du,.
Ko, G

Holder' s inequality yields




As for the second term

T
£ ored v,0)|dv+ dudu
2 %0 ﬂul( ) g 2
p
hhﬂg P ﬂg
£ 2p'1hp#7(vl,v2) dydy, + 2" 1h2pc‘l‘+7(v V)
00 ﬂvl 00 ﬂuzﬂ

hud | ff
L(s(mk.h)) T it,

dvdv,

£2°*hP +2PTh?P | ——

Ly (8 (hkh))

Substituting into (3.2) we abtain

i
f-f| £Ccgh
- eeghd ] -

This completes the proof for d =2. Thecase d > 2 followsin similar manner, but requires an induction
process. We denote g(u):= f (u+hk) for any (fixed) kT Z¢ and estimate

o] 2
1,

‘H f
'ﬂtl'ﬂt

pfo’

o}
0
h p

~da(o. Uy)- 9(0,...,0,u.y,...,uy )| du, -+~ duy.
0

We will prove by induction that

h h
O 39(0.....0.4 ....uy)- 9(0.....0,uy,....u, )| du,--du,
0 0
_ - _ p 33
¢ Tg
C(pd)ah” a O 4—9([}1 aUg)| dug--dug.
j=1 k<K £ig ﬂ ﬂu
For i=1
h\ h\ P \ \ﬂg (.jp
O A9 (W.--uy)- g(0,u,...,u,)| du- dud£ho —(V,U,,...,uy )| dvz du,---du,
0 0 %o ﬂ 1 g

by H6lder’ s inequality
p

dul...dud,

h h
£hP)-¢ T9 (u

0o o0

Uy, Uy)

and this completes the proof for i =1. Assume (3.3) holds for all 1£ m<i. Then as above



Eh°Q):- :119(0 ..... 0,U,,....u,)| duy-duy =18 (i)
o ol Y
h h ﬂg ﬂg .
p-1pp X P T |
£27*h 0Oy, (0.....0,u...,uy) u (0. Uy, Uy Uy )| dy---dy

h h
+2PhP .- Tg 0,...,Uu .,U ,..,U
OO éﬂ( i-11 ™ d)

Notethat 1) (i-1)=27*1{)(i- 1). Hence

1) ELO (i- 1)+ 2110 (i - 1)+ 4+ 2079021 0 (1) + 2000021 0 (7).,
Now by the induction assumption for 1£ m<i
h h

1O (m)EC(p,d P& hi 9 9., .y
! ( ) (p ) el l£k1<a<k Emg) ﬂu ﬂu ﬂu ( ' d)

h
19 (1)=2~ 1hp(‘)--§%( Lolyg)

Combining (3.4) with (3.5) for m=1,...,i - 1 and (3.6), we complete the induction.

Also
p

du, -+ du, .

Lemma 3.2 Assume K satisfies (15) for some n3 1, C,e >0. Thenfordl f1 C"(R*)NwW"(R¢),

1£ p£¥

(LX)R (. X))

gch|f|, .
p ,

Proof Observethat issufficient to show that forall f1 C” (Rd)ﬂwg‘ (Rd)

Q. Kt ¥R, x,tdt” EC|f], .,
since (3.7) follows by the change of variables

O, Ki (1 X)R, (%, 1) dtH ‘

K (6 X)R, (F (3, x)(t)dt

p

First, we bound the Taylor remainder using (2 2)

10

3.4)

(3.5)

(3.6)

3.7



IR (x.t)|= gg‘)((l;]i;lm)”f (x+(t- x)u)du%(t- x)"

- 1)! P
1
£lt- ¥’ g‘ﬂ]l))”f (x+(t— x)u)"L"(]Rd i

Let p=¥ andfix xI RY.Then (15)and (2.1) yield

3. K (6 X)R, (x| £ ¢

"D (x+u (t- x))"Ln(]RdR) dtdu

£ esssup A K(t,x)||t-x|”dt

i R
£CIf|,, Q. (L+t- x)
£C|f|n'¥.

D"f(y)

|||_"(JR<" R)

For 1£ p<¥ weapply (1.5, (2.1) and twice the Minkowski inequality to obtain

. , o ¢ o
Q. K(EX)R,(x1) dtH 20 K (t.x)|t- ¥ gﬂﬂ)) f(x+u( t- x))”Ln(Rd’R)dudt; dx%
& g 6"
£0. 0. K (t.)"t- x|"paéd]D) f(x+u( t- x || du_ dx* dt
& o
& & ol/p
£0.50 (1+|y|) (d+e)e gd]ﬂ)“f X+uy || du dx+ dy
% o 5
EQd(1+|y|)'(d+e)g‘a& D" (x+w)y,.. dxo dusay
)
£Cif],, . (1)
£c|f], .

Proof of Theorem1.1 First assumethat f1 C™¢ (Rd ) Aw, (R“ ) . We generadly follow the method that
was used in [U] for the case d =1, p=2. For afixed xI R wehaveby (16)

f (x) Qh(f ,x) = Qd Rm(x, t) Kh(t,x)dt

= Qd ?mf (x2n>ft - X)m + Rnﬂ(x,t)gKh (t,x)ct

(%]

= hmémmg#!(x)qd (t- )" K (t, %t + @), Ry (38) K (1)

11



Using the notation (1.9) we obtain a bound with two terms

- Q.(1)], n" +

lf} %%,K (3] +a RO K, (t30t] (3.9)

p

First, we bound the second term in (3.8). Since we assumed that the kernel K satisfies (1.5) for n=m+1,
by Lemma 3.2

Q. Rus (3K, (1 4e] £Ch™

We now assumethat 1£ p<¥ ,sincefor p=¥ the proof follows amost immediately from the above
arguments. We proceed with the estimate of the first termin (3.8). It is easy to verify that property (14)
impliesthat for each g1 7 thefunction €, (X) is I-periodic. Therefore, for each g1

[o° £ 6@ () = & @0 1 [ (7

Q0h|% (n x)| kéd D2 f( x+hk)) "
= Qo5 (V)] 1" & [ f (hy + k) ey
kl Z

el g 1" &, [07F (e k)
4z L (=)

Since f1 c™ (R*)NW (R¢), the partial derivative Df isin C* (R*)NW¢ (R?) for each gT Z¢,
|lo| = m and thus we may apply (3.1) to get

1/ p

(e k)

m+n,p °

d
)£||Dgf||p+C§lh”|f

¥

Thus we can combine our estimates so far in the following manner

ol
"f(x)'Q“(f’X)||p£hm§}m%§ﬁ of], +C 27 1] 2O 1],
||eg,K L ([0’1111) d

|g|§n)1( gl h |f|mvP+C§1h |fm+n,p'

Thisproves (1.7) for f1 c™¢ (R" ) nw,e (Rd ) . To complete the proof for arbitrary functionsin
w (R?) we use astandard ‘regularization’ argument. Let 1 W™ (R?), then by Lemma2.1.3in[Z]

12



there exists asequence f,T C¥ (R*)NW,™ (R?), such that |f- 1,

LN;M(Rd) ®,0. Since Q, isabounded

operator in L, (Rd) we have

[F-Qfl, e]f- ] +1f- Qb+t - Qfll,

fj|

m+,p

o $ e
Q- o, +ceani,, +ea

|f|m+n,p'

d
- m ] n
®,Coxh"|f],,, +C8 ™
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