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Abstract. We study nonlinear m-term approximation with regard to a redundant dictionary
D in a Hilbert space H. It is known that the Pure Greedy Algorithm (or, more generally, the
Weak Greedy Algorithm) provides for each f ∈ H and any dictionary D an expansion into a
series

f =
∞X

j=1

cj(f)ϕj(f), ϕj(f) ∈ D, j = 1, 2, . . .

with the Parseval property: ‖f‖2 =
P

j |cj(f)|2. Following the paper of A. Lutoborski and

the second author [30] we study analogs of the above expansions for a given finite number of
functions f1, . . . , fN with a requirement that the dictionary elements ϕj of these expansions

are the same for all f i, i = 1, . . . , N . We study convergence and rate of convergence of such
expansions which we call simultaneous expansions.

1. Introduction

In this paper we study nonlinear approximation. The basic idea behind nonlinear ap-
proximation is that the elements used in the approximation do not come from a fixed linear
space but are allowed to depend on the function being approximated. The classical problem
in this regard is the problem of m-term approximation where one fixes a basis in the space,
and seeks to approximate a target function f by a linear combination of m terms from that
basis. When the basis is a wavelet basis or a basis of other waveforms, then this type of
approximation is the starting point for compression algorithms. An important feature of
approximation using a basis Ψ := {ψk}∞k=1 of a Banach space X is that each function f ∈ X
has a unique representation

(1.1) f =
∞∑

k=1

ck(f)ψk

and we can identify f with the set of its coefficients {ck(f)}∞k=1. The problem of m-term
approximation with regard to a basis has been studied thoroughly and rather complete
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2This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant
N00014-96-1-1003.

1



2 D. LEVIATAN AND V. N. TEMLYAKOV

results have been established (see [2], [4]–[6], [9]–[11], [15], [19]–[23], [25]–[27], [31], [34]–[37],
[42], [43]). In particular, it was established that the greedy type algorithm which forms a
sum of m terms with the largest ‖ck(f)ψk‖X out of expansion (1.1), in many cases almost
realizes the best m-term approximation for function classes ([5]), and even for individual
functions ([35], [23]).

Recently, there has emerged another more complicated form of nonlinear approximation
which we call highly nonlinear approximation. It takes many forms but has the basic
ingredient that the basis is replaced by a larger system of functions that is usually redundant.
We call such systems dictionaries. Redundancy on the one hand offers much promise for
greater efficiency in terms of approximation rate, but on the other hand gives rise to highly
nontrivial theoretical and practical problems. Approximation with regard to a redundant
dictionary has been studied in [1], [3], [4], [7], [8], [12]–[14], [16]–[18], [24], [28]–[30], [32],
[33], [38]–[42] and other papers. We refer the reader to surveys [4] and [42] for a discussion
of approximation results for redundant dictionaries.

We recall some notations and definitions from the theory of approximation with regard
to redundant systems. Let H be a real Hilbert space with an inner product 〈·, ·〉 and the
norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements) from H is a dictionary if
each g ∈ D has norm one (‖g‖ = 1) and spanD = H. In [7], the second author and DeVore
studied the following greedy algorithm. If f ∈ H, one lets g = g(f) ∈ D be the element
from D which maximizes |〈f, g〉| (of course for this one makes an additional assumption that
such a maximizer always exists), and defines

(1.2) G(f) := G(f,D) := 〈f, g〉g,

and

(1.3) R(f) := R(f,D) := f −G(f).

Pure Greedy Algorithm (PGA). Let R0(f) := R0(f,D) := f and G0(f) := 0. Then,
for each m ≥ 1, we inductively define

Gm(f) : = Gm(f,D) := Gm−1(f) + G(Rm−1(f))

Rm(f) : = Rm(f,D) := f −Gm(f) = R(Rm−1(f)).

For a given dictionary D we can introduce a norm associated with D as

‖f‖D := sup
g∈D

|〈f, g〉|.

The Weak Greedy Algorithm (see [39]) is defined as follows. Let the sequence τ = {tk}∞k=1,
0 < tk < 1, be given.

Weak Greedy Algorithm (WGA). Let fτ
0 := f . Then for each m ≥ 1, we inductively

define:
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1. Let ϕτ
m ∈ D be any element satisfying

|〈fτ
m−1, ϕ

τ
m〉| ≥ tm‖fτ

m−1‖D;

2.
fτ

m := fτ
m−1 − 〈fτ

m−1, ϕ
τ
m〉ϕτ

m;

3.

Gτ
m(f,D) :=

m∑

j=1

〈fτ
j−1, ϕ

τ
j 〉ϕτ

j .

We note that in a particular case tk = t, k = 1, 2, . . . , this algorithm was considered in
[17]. Thus, the WGA is a generalization of the PGA in the direction of making it easier
to construct an element ϕτ

m at the m-th greedy step. Note that the WGA includes, in
addition to the first (greedy) step, a second step (see 2., 3. in the above definition) where
we update the approximant by adding to it, the orthogonal projection of the residual fτ

m−1

onto ϕτ
m. Therefore, the WGA provides for each f ∈ H an expansion into a series (a greedy

expansion)

(1.4) f ∼
∞∑

j=1

cj(f)ϕτ
j , cj(f) := 〈fτ

j−1, ϕ
τ
j 〉.

In general it is not an expansion into orthogonal series but it has some similar properties.
The coefficients cj(f) of an expansion are obtained by the Fourier formulas with f replaced
by the residuals fτ

j−1. It is easy to see that

(1.5) ‖fτ
m‖2 = ‖fτ

m−1‖2 − |cm(f)|2.
Therefore, for a convergent greedy expansion we get an analogue of the Parseval formula
for orthogonal expansions:

‖f‖2 =
∞∑

j=1

|cj(f)|2.

The problem of convergence of the WGA is now settled in the following sense. In [40], a
class V of sequences has been introduced, such that the condition τ /∈ V is necessary and
sufficient for the convergence of a Weak Greedy Algorithm with weakness sequence τ for
each f ∈ H, and all Hilbert spaces H and dictionaries D (see [40] for the history of this
problem). For a general dictionary D, we define the class of functions

Ao
1(D,M) := {f ∈ H : f =

∑

k∈Λ

ckwk, wk ∈ D, #Λ < ∞ and
∑

k∈Λ

|ck| ≤ M}

and we define A1(D,M) as the closure (in H) of Ao
1(D,M). Furthermore, we define

A1(D,∞) as the union of the classes A1(D,M) over all M > 0. For f ∈ A1(D,∞), we
define the norm |f |A1(D,∞), as the smallest M such that f ∈ A1(D,M).

For M = 1 we denote A1(D) := A1(D, 1). The rate of convergence of the PGA and the
WGA for elements from A1(D) has been studied in [7], [24], [39], [28], [41]. The following
result has been obtained in [39].
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Theorem 1.1. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1 is a nonin-
creasing sequence. Then for f ∈ A1(D) we have

(1.6) ‖f −Gτ
m(f,D)‖ ≤ (1 +

m∑

k=1

t2k)−tm/2(2+tm).

While Theorem 1.1 is valid for nonincreasing weakness sequences, we obtain in Section 2
an upper estimate for the rate of convergence of the WGA for a class of weakness sequences
which includes nonmonotone sequences.

Theorem 1.2. Assume a weakness sequence τ = {tk}∞k=1 has the property that there are a
natural number n, and a real number 0 < t ≤ 1, such that the inequality

(1.7) n−1

(l+1)n∑

k=ln+1

t2k ≥ t2,

holds for all l = 0, 1, 2, . . . . Then if f ∈ A1(D), then for any 0 < δ < 1 we have

‖fτ
ln‖2 ≤

(
3n/δ2

) α
2+α

(
1 + lt2)−

α
2+α

with α := t(1− δ).

We also prove in Section 2 that Theorem 1.2 is sharp in a certain sense.
The main purpose of this paper is to construct greedy type (1.4) expansions for a given

finite set of elements f1, . . . , fN , simultaneously with the same sequence {ϕτ
j } for all f i,

i = 1, . . . , N . The first result in this direction has recently been obtained in [30]. The
Vector Greedy Algorithms that are designed for the purpose of constructing mth greedy
approximants, simultaneously for a given finite number of elements, have been introduced
and studied in [30]. Namely,

Vector Weak Greedy Algorithm (VWGA). Let a vector of elements f i ∈ H, i =
1, . . . , N be given. We write f i,v,τ

0 := f i. Then for each m ≥ 1, we inductively define:

1. Let ϕv,τ
m ∈ D be any element satisfying

(1.8) max
i
|〈f i,v,τ

m−1, ϕ
v,τ
m 〉| ≥ tm max

i
‖f i,v,τ

m−1‖D,

2.

f i,v,τ
m := f i,v,τ

m−1 − 〈f i,v,τ
m−1, ϕ

v,τ
m 〉ϕv,τ

m , i = 1, . . . , N,

3.

Gv,τ
m (f i,D) :=

m∑

j=1

〈f i,v,τ
j−1 , ϕv,τ

j 〉ϕv,τ
j , i = 1, . . . , N.
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It was proved in [30] that under certain conditions on τ the VWGA converges. Therefore
VWGA provides the convergent expansions

f i =
∞∑

j=1

bi
jgj , gj ∈ D,

with the property

‖f i‖2 =
∞∑

j=1

|bi
j |2, i = 1, . . . , N.

The following estimate of the rate of convergence of VWGA has been obtained in [30].

Theorem 1.3. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1, tk = t, k =
1, . . . , 0 < t < 1. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N ,
we have

(1.9)
N∑

i=1

‖f i,v,τ
m ‖2 ≤ (

N + mt2
)−t/(2N+t)

N
2N+3t
2N+t .

We will improve this estimate in Section 3, proving

Theorem 1.4. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1, tk = t, k ≥ 1,
0 < t ≤ 1. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have

(1.10)
N∑

i=1

‖f i,v,τ
m ‖2 ≤ N2(1 + mt2/N)

−t

2N1/2+t .

Note that the improvement in the estimates (1.10) over the estimates (1.9), is in the
exponent of m, the only variable in the process, the number of steps needed until we reduce
the sums on the lefthand sides of (1.9) and (1.10) to a pre-assigned size. We are paying a
small price by having the fixed constant N , the number of elements to be approximated,
raised to an exponent that is a little bigger.

In addition to the VWGA we will consider in Section 3 two modifications of the VWGA.
The modifications differ from the VWGA only in the first step. We modify this step in
the following two ways. In the first step of the Simultaneous Weak Greedy Algorithm 1
(SWGA1)

1.(SWGA1) We look for any ϕs1,τ
m ∈ D satisfying

(1.11)
( N∑

i=1

|〈f i
m−1, ϕ

s1,τ
m 〉|2)1/2 ≥ tm max

i
‖f i

m−1‖D, f i
m−1 := f i,s1,τ

m−1 .

In the first step of the Simultaneous Weak Greedy Algorithm 2 (SWGA2)
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1.(SWGA2) We look for any ϕs2,τ
m ∈ D satisfying

(1.12)
( N∑

i=1

|〈f i
m−1, ϕ

s2,τ
m 〉|2)1/2 ≥ tm sup

g∈D
(

N∑

i=1

|〈f i
m−1, g〉|2

)1/2
, f i

m−1 := f i,s2,τ
m−1 .

Clearly, any ϕm satisfying either (1.8) or (1.12) also satisfies (1.11). Thus, any upper
estimate for the SWGA1 yields an upper estimate for both the VWGA and the SWGA2.
We prove in Section 3 an extension of Theorem 1.4 which holds for both variants of the
Simultaneous Weak Greedy Algorithm (see Theorem 3.1).

2. Rate of convergence of WGA

The following lemma in [39].

Lemma 2.1. Let {am}∞m=0 be a sequence of nonnegative numbers satisfying the inequalities

a0 ≤ A, am ≤ am−1(1− t2mam−1/A), m = 1, 2, . . . ,

with 0 ≤ tk ≤ 1, k = 1, 2, . . . . Then for each m we have

am ≤ A(1 +
m∑

k=1

t2k)−1.

We need the following modification of this lemma.

Lemma 2.2. Let A ≥ 2 and 0 ≤ βn ≤ 1, n = 1, 2, . . . . Suppose 1 ≥ x0 ≥ x1 ≥ · · · ≥ 0,
satisfy the recurrent inequalities

(2.1) xn ≤ xn−1 − βn

A
x2

n.

Then we have

(2.2) xm ≤ 3
2
A(1 +

m∑
n=1

βn)−1, m = 1, 2, . . . .

Proof. We will use the following simple inequality

(2.3) (1 + x)−1 ≤ 1− 2
3
x, 0 ≤ x ≤ 1/2.

We rewrite (2.1) in the form

(2.4) xn(1 +
βn

A
xn) ≤ xn−1.
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Clearly xn−1 = 0 implies xn = 0. Thus it suffices to prove (2.2) for nonzero xm. Using
(2.3), we get from (2.4)

x−1
n−1 ≤ x−1

n (1 +
βn

A
xn)−1 ≤ x−1

n − 2
3

βn

A
,

or
x−1

n ≥ x−1
n−1 +

2
3

βn

A
.

This implies

x−1
m ≥ x−1

0 +
2

3A

m∑
n=1

βn ≥ 1 +
2

3A

m∑
n=1

βn ≥ 2
3A

(1 +
m∑

n=1

βn).

Finally

xm ≤ 3
2
A(1 +

m∑
n=1

βn)−1. ¤

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Denote

am := ‖fτ
m‖2, ym := |〈fτ

m−1, ϕ
τ
m〉|, m = 1, 2, . . . , y0 := 0.

Recalling (1.5)
‖fτ

m‖2 = ‖fτ
m−1‖2 − 〈fτ

m−1, ϕ
τ
m〉2,

which can be rewritten as

(2.5) am = am−1 − y2
m,

we conclude that ym ≤ 1, m ≥ 0. Let the sequence {bn} be defined by

(2.6) b0 := n/δ, bm := bm−1 + ym, m = 1, 2, . . . .

Then, evidently, fτ
m ∈ A1(D, bm). By Lemma 3.5 of [7], we get

sup
g∈D

|〈fτ
m−1, g〉| ≥ ‖fτ

m−1‖2/bm−1,

which in turn implies (by the definition of ϕτ
m)

(2.7) ym ≥ tmam−1/bm−1.

Denote

xl := aln, zl := (
(l+1)n∑

k=ln+1

y2
k)1/2 ≤ n1/2, and wl := n−1/2bln.
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Then (2.5) and (2.6) imply

(E1) xl+1 = xl − z2
l ,

(E2) wl+1 ≤ wl + zl,

and (2.7) together with (1.7) and the fact that {xl} is decreasing and {wl} is increasing,
yields

(E3) zl ≥ t
xl+1

wl+1
.

Now, combining (E1) and (E3) it follows that

xl+1 ≤ xl − t2
(

xl+1

wl+1

)2

,

or

xl+1

(
1 + t2

xl+1

w2
l+1

)
≤ xl.

Again by the monotonicity of {wl} we obtain

xl+1

w2
l+1

(
1 + t2

xl+1

w2
l+1

)
≤ xl

w2
l

.

Hence, by Lemma 2.2 with A = 2, βn = t2, n = 1, 2, . . . , we have

(2.8)
xl

w2
l

≤ 3(1 + lt2)−1.

Also, (E1) and (E3) imply
xl+1 ≤ xl − zlt

xl+1

wl+1
,

or

(2.9) xl+1

(
1 + t

zl

wl+1

)
≤ xl.

At the same time (E2) implies

(2.10) wl+1 ≤ wl(1 + zl/wl).

Thus, combining (2.9) and (2.10) we conclude that

(2.11) xl+1

(
1 + t

zl/wl

1 + zl/wl

)
≤ xl.
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Since zl ≤ n1/2 and wl ≥ w0 := n1/2/δ, it follows that zl/wl ≤ δ for all l. For α := t(1− δ)
we apply (2.10) and the inequality

(1 + x)α ≤ 1 + αx ≤ 1 + t
x

1 + x
, 0 ≤ x ≤ δ,

to obtain

xl+1w
α
l+1 ≤ xl+1w

α
l (1 + zl/wl)α

≤ xl+1

(
1 + t

zl/wl

1 + zl/wl

)
wα

l

≤ xlw
α
l ≤ x0w

α
0

≤ (n1/2/δ)α,

where in the third inequality we applied (2.11). Hence, by (2.8) we obtain

x2+α
l ≤ 3α(1 + lt2)−αx2w2α

l

≤ (3n/δ2)α(1 + lt2)−α,

and
xl ≤ (3n/δ2)

α
2+α (1 + lt2)−

α
2+α .

This completes the proof of Theorem 1.2. ¤
An immediate consequence of Theorem 1.2 is

Corollary 2.1. Let n ≥ 2 and 1 ≤ i ≤ n be given, and set

(2.12) tk =
{

1, k = ln + i, l = 0, 1, 2, . . . ,

0 otherwise.

Then if f ∈ A1(D), we have the upper estimate for the error of the WGA

(2.13) ‖fln‖2 ≤ (3n/δ2)
α

2+α (1 + ln−1)−
α

2+α = (3n2/δ2)
α

2+α (l + 1)−
α

2+α , 0 < δ < 1,

with α = (1− δ)n−1/2.

Thus, we see that the exponent α
2+α in (2.13) decreases with n at the rate n−1/2. We will

show that for the particular case of a weakness sequence of the form (2.12) the dependence
of the exponent ξn in

‖fln‖2 ≤ C(n)(l + 1)−ξn

is indeed of order ξn ≤ Cn−1/2.
To this end we use the construction of a special dictionary Dt from Section 2 of [29]. This

dictionary which we describe below depends on a prescribed parameter 0 < t ≤ 1/3. Once
we have constructed the dictionary Dt, we apply the WGA with respect to it. We begin
with the Equalizer procedure. Namely, let H be a Hilbert space with an orthonormal basis
{ej}∞j=1. For two elements ei, ej , i 6= j, and for a positive number t ≤ 1/3 the following
procedure is called ”equalizer” and is denoted E(ei, ej , t).
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Equalizer E(ei, ej , t). Set f0 := ei and g1 := α1ei − (1 − α2
1)

1/2ej with α1 := t. Clearly,
‖g1‖ = 1 and 〈f0, g1〉 = t. We define inductively the sequences f1, . . . , fN ; g2, . . . , gN ; and
α2 ≥ 0, . . . , αN ≥ 0, with N determined by the process. Let

fn := fn−1 − 〈fn−1, gn〉gn, and gn+1 := αn+1ei − (1− α2
n+1)

1/2ej ,

where αn+1 ≥ 0 satisfies
〈fn, gn+1〉 = t, n = 1, 2, . . . .

Note that

(2.14) ‖fn‖2 = ‖fn−1‖2 − t2,

so that we can solve for αn+1 ≥ 0 as long as N ≤ [t−2]. Writing fn =: anei + bnej , it follows
that

(2.15)
an = an−1 − tαn, bn = bn−1 + t(1− α2

n)1/2, n ≥ 2,

an − bn = an−1 − bn−1 − t(αn + (1− α2
n)1/2), n ≥ 2,

so that, in particular, an − bn in decreasing. Also by virtue of the inequality
1 ≤ x + (1− x2)1/2 ≤ 21/2, 0 ≤ x ≤ 1, we see that

(2.16) an−1 − bn−1 ≤ an − bn +
√

2t.

We proceed this way as long as
an − bn ≥

√
2t,

arriving at N = Nt, such that

aN−1 − bN−1 ≥
√

2t and aN − bN <
√

2t.

Note that by (2.15) and (2.16),

(2.17)
1√
2t
− 1 < Nt ≤ 1

t
.

At this stage we modify the Nth step as follows. We take gN := 2−1/2(ei − ej) and define

fN = fN−1 − 〈fN−1, gN 〉gN .

It is clear that aN = bN , and by virtue of (2.16),

(2.18) t ≤ 〈fN−1, gN 〉 ≤ 2t.

It follows from (2.14) and (2.17) that

‖fN−1‖2 ≥ 1− t + t2,
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and, in turn, by (2.18), we have

‖fN‖2 ≥ ‖fN−1‖2 − 4t2 ≥ ‖f‖2 − t− 3t2.

Evidently, E(ei, ej , t) is a WGA with respect to the dictionary D(i, j) := {ei, g1, g2, . . . , gN},
with the ”weakness” parameter t. It is worthwhile to note that the values {αk}, {ak} and
{bk}, k = 1, . . . , Nt, and the stopping stage Nt, depend only on t, and are independent of
the choice of ei and ej . Also, Nt increases as t decreases, it is constant for a while and then
jumps up by 1. Thus, we take µ ≥ 3, and t = tµ, 2−µ−1 ≤ tµ ≤ 2−µ, such that Nt = 2µ.
This can be done since by virtue of (2.17), if t = 2−µ, then Nt ≤ 2µ, and if t = 2−µ−1, then
Nt > 2µ+1/2 − 1 ≥ 2µ.

We define a WGA with respect to the dictionary Dt := ∪(i,j)∈SD(i, j) where S is de-
termined by the equalizer procedures {E(ei, ej , t)}∞(i,j)∈S defined above that will be used in
the construction that follows. We begin with f := e1 and apply E(e1, e2, t), t := tµ. After
Nt = 2µ steps we obtain g0

1 , . . . , g0
Nt

, and

f1 := c1(e1 + e2), h := 2c2
1,

with the property
‖f1‖2 = h, h ≥ 1− t− 3t2.

We now obtain g1
1 , . . . , g1

2Nt
, by applying the equalizers E(e1, e3, t) and E(e2, e4, t). Thus

after 2Nt additional steps of the WGA, we have

f2 := c2(e1 + · · ·+ e4), c2 = c2
1,

with the property
‖f2‖2 = 4c2

2 = h2.

After µ iterations we have made Mµ steps, where

Mµ = Nt

µ−1∑

k=0

2k = 2µ(2µ − 1) =: n− 1,

and obtained
fµ := cµ(e1 + · · ·+ e2µ), cµ = cµ−1c1.

At the nth step (n = 22µ − 2µ + 1), we remove cµe2µ by the PGA step

fn : = fµ − 〈fµ, e2µ〉e2µ

= cµ(e1 + · · ·+ e2µ−1), c2
µ = hµ2−µ.

Indeed,
sup
g∈D

〈fµ, g〉 = cµ = 〈fµ, e2µ〉.
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We proceed as follows to obtain fµ+1. We apply the equalizer procedure E(e1, e2µ+1, tµ),
. . . , E(e2µ−1, e2µ+2µ−1, tµ), thus, we perform 2µ(2µ − 1) = n − 1 additional steps of the
WGA. We get

fµ+1 := cµ+1(e1 + · · ·+ e2µ−1 + e2µ+1 + · · ·+ e2µ+1−1),

and we remove cµ+1e2µ−1, to obtain f2n.
Suppose that at the νth iteration, (ν ≥ µ + 1), we have arrived at

fMν
:= cν

∑

i∈Λν

ei, c2
ν = hν2−ν , Λν = {i1 < i2 < · · · < iLν

} ⊆ [1, 2ν ].

We begin performing the (ν + 1)st iteration by applying the equalizer procedure
E(ei1 , e2ν+1, tµ), . . . , E(ei2µ−1 , e2ν+2µ−1, tµ). Thus, we have performed 2µ(2µ − 1) = n − 1
steps of the WGA. Since i2µ−1 < iLν , we remove cνeiLν

by a PGA as in the nth step. We
now apply E(ei2µ , e2ν+2µ , tµ), . . . , E(ei2µ+1−2

, e2ν+2µ+1−2, tµ), and if i2µ+1−2 < iLν−1, we
remove cνeiLν−1 , and keep going until we can no longer continue. This means that either
the n−1 st equalizer is applied to the last remaining element in Λν , or that we are left with
less than n− 1 elements. In the former case we have arrived at

(2.19) fν+1 := cν+1

∑

i∈Λ

ei, c2
ν+1 = hν+12−ν−1, Λ ⊆ [1, 2ν+1],

With λ := max Λ, we then remove cν+1eλ in the nth step, and denote Λν+1 := Λ \ {λ} ⊆
[1, 2ν+1]. In the latter case we form equalizers for the remaining elements, and obtain (2.19).
We now perform as many WGA steps of the form

fν+1 − 0〈fν+1, ei〉ei, i < λ,

as needed in order to have a total of n− 1 steps and in the nth step we remove cν+1eλ. As
a result in both cases, after Mν+1 steps, we have

fMν+1 := cν+1

∑

i∈Λν+1

ei, c2
ν+1 = hν+12−ν−1, Λν+1 ⊆ [1, 2ν+1], |Λν+1| =: Lν+1.

It is clear that we have removed at most dLν/(2µ − 1)e elements ei. Therefore,

(2.20) Lν+1 ≥ 2(Lν − Lν/(2µ − 1)− 1) = 2Lν

(
2µ − 2
2µ − 1

− 1
Lν

)
≥ 2Lν(1− 2−µ+1),

and

(2.21) ‖fMν+1‖2 = c2
ν+1Lν+1 ≥ hν+12−νLν(1− 2−µ+1) = h(1− 2−µ+1)‖fMν‖2.
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Also

Mν+1 ≥ Mν + (Lν − (dLν/(2µ − 1)e))2µ + dLν/(2µ − 1)e
≥ Mν + Lν2µ − dLν/(2µ − 1)e(2µ − 1) ≥ Mν + Lν(2µ − 2).

Taking into account that

Mµ = 22µ − 2µ + 1, and Lµ = 2µ − 1,

we get by (2.20)

(2.22) Mν ≥
(
2(1− 2−µ+1)

)ν−µ2−µ(2µ − 2) ≥ C(µ)2cν , ν ≥ µ,

with absolute constant c > 0, since µ ≥ 3. After Mν steps we have by (2.21)

‖fMν‖2 ≥ hν−µ(1− 2−µ+1)ν−µ‖fMµ‖2 ≥ (1− 2−µ+1)2ν−µ+1

≥ C(µ)2−C1ν2−µ ≥ C(µ)M−C22
−µ

ν ,

where we have applied the fact that ‖fMµ‖2 = hµ(1 − 2−µ), and for the last inequality we
used (2.22). Observing that n−1/2 ≤ √

22−µ, we conclude that the exponent of the power
rate of decrease of ‖fMν‖2 is of order of n−1/2.

3. Simultaneous approximation by greedy algorithms

Given are a Hilbert space H and a dictionary D. For N ≥ 2, let HN := H × · · · ×H, N
times, i.e., the general element in HN is F := (f1, . . . , fN ), fk ∈ H. It is a Hilbert space
with the inner product

〈F1, F2〉 :=
N∑

k=1

〈fk
1 , fk

2 〉.

Let

DN := {(α1g1, . . . , αNgN ) | gk ∈ D,

N∑

k=1

α2
k = 1}.

Then it is easy to see that spanDN = HN . (Actually, HN is spanned even by linear
combinations of elements of the form (0, . . . , 0, g, 0, . . . , 0), where g ∈ D is arbitrary and is
in arbitrary position.) Also, all elements in DN are normalized.

We begin with F0 := (f1
0 , . . . , fN

0 ) and a sequence 0 ≤ tm ≤ 1 and we want to construct
weak greedy approximation from D, simultaneously to all N functions. For a given F we
are looking for an element G ∈ DN of a special form

(3.1) G := G(F, g) := (β1g, β2g, . . . , βNg), g ∈ D,
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βi := 〈f i, g〉(
N∑

i=1

|〈f i, g〉|2)−1/2
, i = 1, . . . , N.

For G of the form (3.1) the operation

F1 := F − 〈F, G〉G

means the same operation performed coordinatewise

f i
1 := f i − 〈f i, g〉g, i = 1, . . . , N.

We note that

(3.2) ‖F‖DN = sup
α:=(α1,...,αN )

‖α‖2=1
g1,...,gN∈D

∣∣
N∑

i=1

〈f i, gi〉αi

∣∣ =
( N∑

i=1

‖f i‖2D
)1/2

.

Lemma 3.1. For any F ∈ HN we have

sup
g∈D

|〈F,G(F, g)〉| ≥ max
i
‖f i‖D ≥ N−1/2‖F‖DN

.

Proof. On the one hand,

(3.3)
sup
g∈D

|〈F, G(F, g)〉| = sup
g∈D

( N∑

i=1

|〈f i, g〉|2)1/2

≥ max
i

sup
g∈D

|〈f i, g〉| = max
i
‖f i‖D,

and on the other, by (3.2),

(3.4) ‖F‖DN =
( N∑

i=1

‖f i‖2D
)1/2 ≤ N1/2 max

i
‖f i‖D.

Combining (3.3) and (3.4), completes the proof of Lemma 3.1. ¤

Given a weakness sequence τ = {tk}∞k=1. The upper estimate for the VWGA, namely,
for

∑N
i=1 ‖f i,v,τ

m ‖2, can be obtained by Lemma 3.1 from the corresponding upper estimate
for the WGA with the weakness sequence τ ′ := {tkN−1/2}∞k=1. Actually we do better, we
formulate two theorems which are valid for VWGA and for both SWGA1 and SWGA2.
Thus let s stand for either v or s1 or s2.
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Theorem 3.1. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1 is a nonin-
creasing sequence. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N ,
we have

N∑

i=1

‖f i,s,τ
m ‖2 ≤ N2

(
1 +

1
N

m∑

k=1

t2k

) −tm

2N1/2+tm

.

Corollary 3.1. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1, tk = t,
k ≥ 1, 0 < t ≤ 1. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N ,
we have

N∑

i=1

‖f i,s,τ
m ‖2 ≤ N2(1 + mt2/N)

−t

2N1/2+t .

Note that for s = v, Corollary 3.1 coincides with Theorem 1.4.

Proof. The proof follows from Theorem 1.1 and Lemma 3.1, when we observe that f i ∈
A1(D), i = 1, . . . , N implies (f1, . . . , fN ) ∈ A1(DN , N). ¤

A similar proof yields

Theorem 3.2. Assume that for the weakness sequence τ = {tk}∞k=1 there are a natural
number n and a real number 0 < t ≤ 1 such that

n−1

(l+1)n∑

k=ln+1

t2k ≥ t2, l = 0, 1, 2, . . . .

Then for any 0 < δ < 1 and all f i ∈ A1(D), i = 1, . . . , N ,

N∑

i=1

‖f i,s,τ
ln ‖2 ≤ N2

(
3n/δ2

) r
2+r

(
1 + lt2

)− r
2+r

with r := t(1− δ)N−1/2.

We are in a position to discuss the convergence of the VWGA, SWGA1, and SWGA2.
We denote by V the class of all sequences x = {xk}∞k=1, xk ≥ 0, k = 1, 2, . . . , for which there
exists a sequence 0 = q0 < q1 < . . . such that,

∞∑
s=1

2s

∆qs
< ∞,

where ∆qs := qs − qs−1, and
∞∑

s=1

2−s

qs∑

k=1

x2
k < ∞.
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Remark 3.1. It is clear from this definition that if x ∈ V and for some K ≥ 1 and c we
have 0 ≤ yk ≤ cxk, k ≥ K, then y := {yk}∞k=1 ∈ V. The following theorem has been proved
in [40].

Theorem 3.3. The condition τ /∈ V is necessary and sufficient for the convergence of the
Weak Greedy Algorithm with a weakness sequence τ , for each f and all Hilbert spaces H
and dictionaries D.

It is clear from Theorem 3.3 that the condition τ /∈ V is also necessary for convergence
of the VWGA, SWGA1, and SWGA2 with the weakness sequence τ . It has been proved in
[30] that this condition (τ /∈ V) is also sufficient for the convergence of the VWGA. We note
that τ = {tk} /∈ V implies τ ′ := {tkN−1/2} /∈ V. Thus Theorem 3.3 combined with Lemma
3.1 implies the following generalization of Theorem 3.3.

Theorem 3.4. The condition τ /∈ V is necessary and sufficient for the convergence of each
of the algorithms VWGA, SWGA1, SWGA2 with a weakness sequence τ , for each vector of
elements f1, . . . , fN , N arbitrary, and all Hilbert spaces H and dictionaries D.

Theorems 3.1 and 3.2 give estimates for the `N
2 -norm of the residual vector (‖f1

m‖, . . . , ‖fN
m ‖).

We wish to introduce greedy type algorithms that yield estimates for the `N
∞-norm of the

residual vector. We define the Alternating Weak Greedy Algorithm for N elements (AWGA).
Again, it differs from the VWGA only at the first step (out of three) of each iteration. Let
t ∈ (0, 1]. At the mth iteration, m = lN + i, in the first step of the AWGA

1.(AWGA) We look for any ϕa,τ
m ∈ D satisfying

|〈f i,a,τ
m−1, ϕ

a,τ
m 〉| ≥ t‖f i,a,τ

m−1‖D.

It is clear that for each i any realization of the AWGA for the ith component f i can be
viewed as a realization of the WGA with the weakness sequence τ i := {tik}∞k=1,

tik =
{

1, k = lN + i, l = 0, 1, 2, . . . ,

0 otherwise.

Theorem 3.5. Given f i ∈ A1(D), i = 1, . . . , N , the AWGA yields the estimates

‖f i
lN‖2 ≤ (3N2/δ2)

α
2+α (1 + l)−

α
2+α , 0 < δ < 1, 1 ≤ i ≤ N,

with α = (1− δ)N−1/2.
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[32] L. Rejtö and G.G. Walter, Remarks on projection pursuit regression and density estimation, Stochastic
Analysis and Application 10 (1992), 213–222.



18 D. LEVIATAN AND V. N. TEMLYAKOV

[33] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I, Math. Annalen 63
(1906-1907), 433–476.

[34] V.N. Temlyakov, Greedy algorithm and m-term trigonometric approximation, Constr. Approx. 14
(1998), 569–587.

[35] V.N. Temlyakov, The best m-term approximation and Greedy Algorithms, Advances in Comp. Math.
8 (1998), 249–265.

[36] V.N. Temlyakov, Nonlinear m-term approximation with regard to the multivariate Haar system, East
J. Approx. 4 (1998), 87–106.

[37] V.N. Temlyakov, Greedy algorithms with regard to the multivariate systems with a special structure,
Constr. Approx. 16 (2000), 399–425.

[38] V.N. Temlyakov, Greedy algorithms and m-term approximation with regard to redundant dictionaries,
J. Approx. Theory 98 (1999), 117–145.

[39] V.N. Temlyakov, Weak greedy algorithms, Advances in Comp. Math. 12 (2000), 213–227.
[40] V.N. Temlyakov, A criterion for convergence of Weak Greedy Algorithms, Advances in Comp. Math.

17 (2002), 269–280.
[41] V.N. Temlyakov, Two lower estimates in greedy approximation, IMI-Preprint series 07 (2001), 1–12.
[42] V.N. Temlyakov, Nonlinear Methods of Approximation, IMI-Preprint series 09 (2001), 1–57.
[43] P. Wojtaszczyk, Greedy algorithms for general systems, J. Approx. Theory 107 (2000), 293–314.

School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel
leviatan@math.tau.ac.il

Department of Mathematics, University of South Carolina, Columbia, SC 29208 USA
temlyak@math.sc.edu


