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Abstract

We obtain estimates on the order of best approximation by polynomials and ridge functions in the spaces
L of classes of s-monotone radial functions which belong to the space Lp, 1 <g < p <oo.
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1. Introduction and the main results

Let I C R, be a finite interval (open, half-open, or closed). Given s > 1, a function x : [ +—
R is called s-monotone on [ if for every collection of (s + 1) distinct points fg, ..., t; € [
the corresponding divided difference [x; tg, ..., #;] is nonnegative. For s = 1,2, s-monotone
functions are nondecreasing or convex on I, respectively. Thus, the parameter s characterizes the
shape of functions. Note that if a function x is s-times differentiable on /, then x is s-monotone if
and only if x®)(r) >0 forall 7 € 1.
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It is well known (see [2,18,21]) that for s >2, if x is s-monotone, then x“~2 is convex and
locally absolutely continuous in /. Hence x “~1 exists a.e. and is monotone nondecreasing, which
in turn implies that x®) >0 a.e. in I. Actually, the usual derivative x*~1 exists except perhaps
at a denumerable set of points of 7, and the one-sided limits x~ (r4) exist everywhere. The
left and right derivatives x(_sfl) (t) and xﬂf*l)(t) exist at any interior point # € I, and at the end-
points of I the respective one-sided derivatives of order (s — 1) exist but may be infinite. The
one-sided derivatives x* ™" and xf_l) are nondecreasing on /, and at all interior points ¢, where

the s — 1th derivative does not exist, we will denote x¢=1(r) := “ D) + xf_l)(t))/Z.
Finally, for every k<s — 2 the derivative x(*) which exists in any open subinterval of I is
(s — k)-monotone.

We denote by Ai(l ), the set of all s-monotone functions on /. If W is a class of functions
defined on 7, then we set A, W(I) := A% (I) " W. By L,(I), 1< p<oo, we denote the usual
space of all Lebesgue measurable functions x : I — R with finite norm ||x || Ly and its unit
ball B, (/).

Let d>1 and let BY be the open d-dimensional unit ball in the space R?. A function x :
B? > R is called radial on the ball B? if x(r) = y(th, t = (t1,...,13) € B?, where 1| :=
(112 + -+ tg)l/z. By Ai’s(Bd) we denote the set of all radial functions x : BY — R such that
the univariate functions y(7), T € [0, 1), belong to the class Ai [0, 1) and satisfy the conditions
yﬁf) 0) =0,k =0,...,s — 1. We call these functions s-monotone radial functions. If W is a
class of functions defined on B¢, then we denote A W(BY) := AiS(Bd) N W. Again, L,(B9),
1 < p <00, denotes the space of all Lebesgue measurable functions x : B? — R with finite norm
||x(-)||Lp(Bd), and B[,(Bd) is its unit ball.

The main goal of our paper is to estimate the orders of best approximation by polynomials and
ridge functions of the classes Aﬁr’sBp(Bd) in the spaces L, ([Bd), 1<g<p<ox.

By P, (R%) we denote the space of polynomials

Py(t) = Z art®, 1 e RY,

k| <n

where k = (ki ..., kq) € Z%, |k| ==k + -+ + kq, a € Rand t* := tf‘ ...tj".
Denote by P, () and P, (BY) the restrictions of P, (R) and P, (R?) on I and B¢, respectively,
and let

E (A B,(I), P,(I) ‘= sup inf  |lx — Pullz ),
( +2p n )Lq(l) XEAi_Bp(I)PVlG,Pn(I) nllLg (1)

E (AO’SB (Bd) P (Bd)) = sup inf  |lx — Pull, (pd-
+ Pp n Lq(Bd) xeAipr(Bd) PP, (BY) MLy (B

Let S?~! := B be the unit sphere in R?. For d > 1, we denote by R, (B?) the nonlinear
manifold of ridge functions

n
Ry(t):= ) nlax-1), teB,
k=1

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
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where r; : [ — R is any univariate function, a; € s4-1 and ay - t is the usual scalar product in
R?. We also let Riq (Bd) denote the collection of all elements of R, (Bd ) such that ry € Ly (1),
k=1,...,n,and let

(0 (5) Ruy () = s - Rl
Lq(Bd) xEAi’SBp(Bd)R”ER",q(Bd) ‘7( :

For any radial function x € L ( [Bd) we denote by

E (x, P (Bd)> = inf  x—P|,
" LyBY)  pep, @) Lq®
and
E (x, R (Bd)) = inf x—R|,
" LyBY)  ReR,,(BY) Lq (B

the deviations of x in the space Lq(Bd ) from the space P, (BY), and the manifold Rn,q([Bd),
respectively.

Ridge functions have many applications in various areas of mathematics and its applications.
The question of approximation by ridge functions has been intensively investigated in recent years.
However, very little is known about the exact orders of best approximation by ridge functions
of any nontrivial function classes. The first such result was obtained in [14] for Sobolev classes
w3 (B4), namely,

E (Wzr (Bd) s Ru2 (Bd))L & = p /@D,
2

where for sequences a, and b,, n > 1, of positive numbers a,, and b, we write a, < b,, n>1,
if there exist constants 0 < ¢y <c¢p such that ¢y <a, /b, <c2, for all n>1. The interested reader
should see related results in [6,15,17,23].

Throughout the paper p’ denotes the conjugate of 1< p<oo, thatis, 1/p + 1/p’ = 1. By
c:=c(a, f,...,7) we denote various constants which depend on the given parameters, but may
differ from one another even if they appear in the same line. Finally, let I := (—1, 1) and let | J|
denote the length of the interval J C R.

We are ready to state the main results.

Theorem 1. Fors = 1,if I<g<p<ooandq # p/2,and if ¢ = p = oo, then forn > 1,

E (ALBP(I), 79,,(1)) = p~minl1/9.2/4=2/p)
Ly()

ifs =1land 1<q = p/2 < o0, then there exist constants ¢y = cx(p) > 0 and c* = ¢*(p) such
that forn > 1,

en P <E(ALBy(D.Pu(D)), <P )17

r/2

andifs > 1 and 1 <g < p<oo, then forn > 1,
X - ,—2/q+2/
E (A;Bp(l),Pn(l))Lq(” = n TP

The reader may find it interesting to compare the results of Theorem 1 with earlier estimates
of the widths of classes of s-monotone functions (see [5,9—-11]).

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
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For the classes of s-monotone radial functions we have,

Theorem 2. Letd > 1 andn > 1. Fors =1, 1<g<p<oocandq # p/2,andifq = p = o0,
then

ifs=1and 1<q = p/2 < o0, then there exist constants cs = c4(d, p) > 0 and c* = ¢*(d, p)
such that

P

and if s > 1 and 1 <q < p< oo, then
0. d d — =242/
£ (8B, (BY). P (B ))Lq(Bd) = n~2a+2p,

It is well known (see, e.g., [20, p. 169]), that for d > 1, the space P, (Bd ) can be embedded in
the manifold R ,,a—1 (Bd) where ¢ = c¢(d). Thus, an immediate consequence of Theorem 2 is,

Corollary 3. Letd > landn > 1. Fors = 1,if1<g<p<ooandq # p/2,andifq = p = oo,
then

E (Ai’l B, (Bd) R, (Bd)> < en~Minl1/(q(@=1)),2/q=2/p)/@=D)}
Lq(Bd)
ifs=1,2<p < oo,and q = p/2, then
E(A3'B, (BY), Ry (BY))  <en™/ P (tn P E-D),
L;)/Z(B )
andifs > 1 and 1 <q < p< oo, then

E (AZ’;SBP (Bd) R, (Bd>) <en~@amYp/@=D),
Ly(B)

where c = c(d, s, p,q) > 0.

Our next result generalizes to d > 2 the corresponding result by Oskolkov [17, Theorem 1],
which was obtained for d = 2. Its proof is closely related to that of error estimates of optimal
cubature formulas, in the sense of Kolmogorov—Nikolskii, for spherical harmonics (see details in
[3]). Our proof closely follows Oskolkov’s.

Theorem 4. Let n,d € N and d > 1. There exist ¢ = ¢(d) > 0, and integers ¢ = ¢(d) and
¢ = &(d), such that for any radial function x € Lo(BY),

_ d d d
cE (x, Pen (B ))Lz(Bd) SE (x, Rypa-12 (B ))LZ(B") <E (x, Pén (B ))Lz(Bd) '

Finally, we show that for ¢ = 2, in most cases the estimates of Corollary 3 are exact in order.
Since the space P, ([Bd) may be embedded in R 41 (Bd), where ¢ = c(d), the following is
an immediate consequence of Corollary 3 and Theorem 4. The problem is open for other values
of g.
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Theorem 5. Letd > 1,n > l,and2<p<oo.Ifs = 1 and p # 4, then

E (Aipr (Bd) Rya (Bd)) = - min{1/Q2@d=1).(1-2/p)/(d~1)}

Ly (B)

If s = 1 and p = 4 then there exist constants c, = c4(d) and c* = ¢*(d) such that

en~1/CE=) < g (A:LJB“ (Bd) R (Bd)>L - <t~/ QUE=D) (1 )3/GEd=1)

2

If s > 1, then

0,8 d d o —(1=2/p)/(d—1)
E (A+ By (B ) » Ron2 (B ))Lz(Bd) =N Y '

2. Auxiliary lemmas

Let
twi=cos(n+1—i)m/Qn+1), i=0%l...,xn+1) @2.1)
be a partition of / := (—1, 1), and denote I, 0 := (ty.—1, tn.1), In.i '= [tn’,-, tn,i_H),i =1,...,n,
and I, ; := (ty,i—1, tn.il, i = —1, ..., —n. Itis readily seen that
cr(n— il + D/ <Ll <ca(n — il + 1)/n?, i=0,%1,...,%n, (2.2)

where 0 < ¢ < ¢, are absolute constants, and that
ltni =t j I <7l = Q@M+ 1) —i— j)/Bn®), i, j=0%1,....£@+1). (23)
For the proof of our first lemma see [4, Chapter VII, $ 4, p. 274].

Lemma 6. For each v>1, there exist polynomials Py, (), i = 0,%1,..., £n, of degree
<2v(2n — 1) 4+ 1 and a constant ¢ = c¢(v) > 0 such that

Pl',n,*i(_t)=PV,n,i(t)7 t€I5 i=0917"‘7n7
n
Y Pai=1 tel (2.4)
i=—n
and
[Pyni®)|<c(li —jl+ D2t e Ij, i,j=0%1,..., %£n. (2.5)
Fors>1andm € Z let
m+s—2
>

(m)s = ( s—1 ) m=1,

0, m < 1.

The next result is proved in [5, Lemma 2].

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
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Lemma 7. Given a, b € R" such that b has nonzero entries. Let 1 < p <oo and M >0, and let

i
Qnpb) =0 e R" | |@lle, <M, &i:=by (i—j+Dwj, i=1,..n
j=1

Then,
n—i s
max a, o) = Mul,, u; =b! —1k aivp, 1=1,...,n,
pelx Na o)l = Mlulle,. i = b > (=D (k> i+
k=0
where 1/p + 1/p’ = 1, and where (a, ®) := Y i_, a;jw;.
Next is a lemma which was proved in [12, Lemma 3].
Lemma 8. Let I = (—1,1),s>1,and 1< p<oo. Forx € Al L,(I), let
x(t) =x() —7w(t;x;0), tel,

where
s—1 lk
e () Y
ns(r,x,oy—kzox O 1€l

is the Taylor polynomial of x about t = 0, and we recall that x~D(0) = °~"(0) +
xﬁ:_l) (0))/2. Then there exists a constant ¢ = c(s, p) such that

XNz, <cllxOlL, -

We need some Remez-type inequalities, the first of which is well known (see, e.g., [16, p. 113,
Theorem 14].

Lemma9. Lern>1,1<g<00, I = (—1,1),and
I = (—1+1/n2,1—1/n2).

Then there exists a constant ¢ = c(q) > 1 such that for any polynomial P,, € P, (I) the inequality
holds

I PullL, )y <CllPullL, -

The next Remez-type inequality is known for ¢ = oo (see, e.g., [1, p. 414, E21]. We have not
found reference for the case 1 <g < 0o so we prove it below.

Lemma 10. Letn>1, 1<g<oo, [ :=(—1,1),and
Iy := (=1/(4n), 1/(4n)) .
Then there exists ¢ = c(q) > 0 such that for any polynomial P, € P,(I) the inequality holds

I PullLy(ry <N PallLy i\t

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
s-monotone radial functions J. Approx. Theory (2007), doi: 10.1016/j.jat.2007.10.001
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1  Proof. Lemma 10 is trivial forn = 1, soletn > 1. Set

C(G—1/n i=1,...n,
Wi 1)/ P=—1,.. -,

3 andfort € R, denote by [, ;(t; 7), i = %1, ..., £n, the Lagrange fundamental polynomials of
degree (2n — 1) the points {1, ; + t}, namely,

+n
t—I’n’j—‘E .
lni(t;7) = || — i=%1,...,+n
P
5 jek i T

Evidently, every polynomial P, of degree <n may be represented as

+n
Pot) =Y Pu(tni+ Dlni(t; 1), 1E€R
7 i==+1
Now
+n |‘C |
i@ol= [] —L—
el jti |Tn,z Tn,]|
1 1=1/2)---(n—1/2) (1—=1/2)---(n—1/2)
Ci—1/2 n+i—1! (n—1i)!

1 1-3.--Q2n—=1 1-3---Qn—1)
T 2i—1 2 Ym+i—1) 2(n — i)
9 Hence, for 1 <i < n,

1-3---(2n—1) 1-3---(2n—1)
i (GOl < 5 . : .
i—1 2-4.-2n--2n+i—1) 2-4.---2(n—1)
1 1-3---2n—1) 1-3---2n—-1)
C2i—1 2:4..-2n 2:4.-2m—i)-2(m+1)---2(n+i—1)
< 1 1-3---2n—1) 3.5---2n—1)
S 2i—1 2-4-.-2n 2-4.--2m—1)-2(n—i+1)---2(m—1)
1 1-3---2n—1) 3-5---2n—-1)

T 21 2421 2-4--2m—-1)
1 2n—1’ﬁ 2j—1 2j+1
21 2n i\ 2 2j
1 2n—1n_14j2—1< 1

T 2i—-1  2n 452 T2 -1

Similarly fori = n,

1:3---Qn—=1-1-3---2n—1)
m—1 22125 — 1)!
1 13.@n-1) 3-5---@n-1)
Soan—1 2-4..-2n 2.-4.--2(n—1)
1 21421 1

- : < .
2n—1 2n i 42 2n —1

|ln,n(f; )| =

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
s-monotone radial functions J. Approx. Theory (2007), doi: 10.1016/j.jat.2007.10.001



http://dx.doi.org/10.1016/j.jat.2007.10.001

YJATH4238

8 V.N. Konovalov et al. / Journal of Approximation Theory 111 (1111) INI-111

1 Due to symmetry similar estimates are valid for i = —1, ..., —n. Thus, we conclude that
i ol < /i, i==x1,...,xn, 1€R.
3 Therefore,

+n
1Pa@| < Y 1 Pu(tni + Ol (7 1)
i=+1
+n
< D P + DIl
i==+1
+n YVa / 4n 1/q'
< (Z | Pa(tn,i +z-)|q) (Z |i|—q> . TeR
i==+1 i==%1
where for the last inequality we have applied Holder’s inequality.
5 Since g’ > 1, we have
+n ) 1/q’ 00 / 1/q' Do
(Z |i|_q) < (2/ T4 dt) = (2@ - =¢
i=+1 !
7  Hence,
+n
P <E Y | Pu(tni + DI 1€ L,
i=%1

9  and integrating both sides of the inequality over t € I, yields

In Tt/ (n)
> / |Pa(0? d.

/ | Pu(0)]? dr< et
I, i==+1 Tp,i—1/(4n)

11 Note that the intervals (1, ; — 1/(4n), 1,.i +1/(4n)),i = *£1, ..., £n, are piecewise disjoint and
are contained in 7 \ I,,. Hence,

/|Pn(r)|’fdr<éq/ Pyl dr,
I, I\,

13
so that,

15 IPallz, <@+ DY PullL, i,y = Ell PallLy iy
This completes the proof. [

17 We need a simple result for the multivariate case.

Lemma 11. Let d>1, s> 1, and 1< p<oo. There exist constants ¢, = cx(d, p) > 0 and
19 ¢* =c*(d, p) > 0 such that for any x € A5 L ,(B?) the inequalities hold

cx(d, p)”x”Lp(Bd) < ||y”L,,[O,]) <ct(d, P)||x||Lp([Egd), (2.6)

21 where x(t) = y(|t]), t € B.
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Proof. Using spherical coordinates we have

1
Il @ty = ¢(d. p) ( /0 (x4 y@1) dr

1 1/p
<c(d, p) (/O |y<r>|"dr>

=c(d, p)lIylle,o.1)-

1/p

Thus,
(e(d. p) ™" %l gy S YIz,10.1-

On the other hand,

1 1/p 1 1/p
(/ (.E(d—l)/ﬂy(r))p df> > ([ (T(d_l)/p}’(f))p d‘c)
0 1/2

1 I/p
>2@=b/p ( / () dr) .
12

Keeping in mind that y is nondecreasing on [0, 1), we conclude that

1/2 1/p 1 1/p
( / (v (@)? dr) < ( / (v(@)” dr) ,
0 12

so that

1 1/p 1 1/p
( / (y(0))? dr) <2/ ( / () dr) .
0 12

Hence,

1 1/p 1 » 1/p
(/ (y(0)? dr) < 241p ( / (<177 y) df>
0 0

<27 (etd, P Ixl, gy

This completes the proof. [J

Q2.7)

Ford e N, d > 1, we denote by G4 ,(¢), —1 <t <1, the Gegenbauer polynomials defined by

the generating function (see, e.g., [19, p. 158])

(o)
(=224 =Y "G, 2l <1
n=0

The Gegenbauer polynomials satisfy the following Rodriguez’ formula (see, e.g., [19, p. 158]):

o d\' ~
Gan(t) = (—1)"0q 5 (1 — 3)~@=1/2 <E) (1 — Hyrtd=n/z,

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
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where

L ),
= N d/2+1/2),

(d)o:=0, (@p:=dd+1)---(d+n—-1)=0Id+n)/Td).

It is well known that deg G4, = n, and the family {G4,,}7°, is a complete orthogonal system
for the weighted space Ly (1; wg), where wy(¢) := (1 — t2)@=D/2 1 e [ .= (—1, 1). Also,

2 d), T(d/2+1/2)
n+d/2nTd/2) e

/ Gi,n(t)wd(t) dt =
1

Thus, if we denote
-2
Udan(t) := Ud.n Gan(@), tel-1,1],

then |UgnllL,(1,wy) = 1, hence the family {Ud,,,};’LO:O is a complete orthonormal system for the
weighted space La(1; wg). Also Ug p(—t) = (=1)"Ug 0 (t),t € [-1, 1].

The following result is due to Petrushev [19, p. 163], where one may find comments explaining
the nature of the decomposition below (see also [3]). Also note that some ideas of the proof of
Lemma 12 are based on the paper by Logan and Schepp [13] about reconstruction of a function
from its projections. In the paper Logan and Schepp considered the special case of d = 2, and
the Chebyshev ridge polynomials of the second kind as an orthonormal set in the space Ly (B?).

Lemma 12. Ifd € N, d > 1, then each function x € Ly(B?) has the unique representation

o0
x =Y Qanl:x), (2.8)
n=0
where the convergence is in Lz(Bd), and
Qan(t; x) :=van /S”’" Agn(&EX)WUgn(E-1)dE, teB? (2.9)
with
Agn(E ) = / X(OUgn(E Ddr, Eest! (2.10)
B
and
(n+1Dg—;
= 2.11
Y = T yd T @11

Moreover, the operators Qq,(-;x), n € Ny, are orthogonal projectors from Lz(Bd) onto
P (Bd) OPu-1 (Bd), and the following Parseval identity holds:

oo oo

2 _ . 2 _ . 2

6l g, = 2 N1QanCi0NT gay = D Vaull Adn 0N gary. (2.12)
n=0 n=0

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
s-monotone radial functions J. Approx. Theory (2007), doi: 10.1016/j.jat.2007.10.001



http://dx.doi.org/10.1016/j.jat.2007.10.001

11

13

15

17

19

21

23

25

27

YJATH4238

V.N. Konovalov et al. / Journal of Approximation Theory 111 (1111) II1-111 11

Letd € Nand T? := [0, 27)4 be the d-dimensional torus. By T,,(Td) we denote the spaces of
all (real-valued) trigonometric polynomials

T,(t) = Z akei(k't), te Td,
[k|<n

where k = (ki,....kg) € 2%, |k| := |ki| + -+ + |kq|, ax € C, and a_; = dr.
The following lemma plays an important role in the proof of Theorem 4.

Lemma 13. Letd,n € N. For each constant 0 < ¢, < 1 and every subspace T, C E(T‘l) such
that dim T, >c, dim 7T, (Td), there exists a trigonometric polynomial Ty € T, such that

”T*”LOC(T/):] and ||T*||L2(I[d)>c*»

where 0 < ¢* = ¢*(d, ¢yx) < 1.

Proof. The proof is based on estimating of volumes of sets for Fourier coefficients of bounded
trigonometric polynomials, and can be found in [24] (see also [25, Chapter 2, Section 1]). Note
that the first result for d = 1 about estimating of volumes of sets for Fourier coefficients is due to
Kashin [8,7]. O

3. Proof of Theorem 1—the upper bounds

Proof. For 1<g = p< oo the upper bounds are trivial, because any x € A% B, (I) is approxi-
mated at this order by the polynomial P,(¢#) = 0. Thus we assume that 1 <g < p < oo.

We fix s > 1, n > 1, and for the sake of simplicity, we omit them in our notations whenever it is
obvious which s and n apply. Let I := (—1, 1), and lett; :==1,;,i =0, £1, ..., £n, be defined
by (2.1). Given x € AY, B, (1), denote

s—1 k
1 —1
i (t; x) == 7y i (13 x) :=§ x(k)(ti)u, trel, i=0+1,...,+n.
' k=0 k!

We fix v > (3s — 1/¢’)/2 and use the polynomials obtained in Lemma 6, to set

n
P,(t; x) := Ps,n(t;x) = Z T[s,i(t;x)Pv,n,i(t)’ tel.

i=—n

By virtue of (2.4),

X(t) = Pultix) = Y (x(t) = mi(t: %)) Pyni(0), te€L

i=—n
Hence,

n

lx () — Pu(r; )| < Z lx (@) — mi (5 [ Pypni (@], t €L (3.1

i=—n
We first assume that

xP0)y=0, k=0,...,5—1, (3.2)
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1 which in turn implies x®¥(1)>0, k = 0,...,5s — 1, ¢ € [0, 1), and (—=1)**x®()>0, k =
0,....,s —1,t € (—1,0].

3 Fix 0<j < n,and lett € I; N[0, 1), where I; := I, ; is defined after (2.1). For s = 1, and
fori =0,%1,...,£n,ifi<j, then

J
e (1) = i (1 0) 1< |x(tj1) — x(@)| = Z Ix (k1) — x (@) (3-3)

5 k=i
since x is nondecreasing on (—1, 1). If i > j, then for the same reason,
i—1

(1) = m1i (15 0| < |x (1) = x(1)] = Z Ix (t1) — x ()| - (34

7 k=j

For s > 1, by the Taylor remainder formula,

t
/ (x“*”(r) - x“*”(r,-)) t — 1) 2dx.
4

x(t) —myi(t; x) =

9 (s —2)!
Againfori =0, 1, ..., +n,ifi <,
1 _ _ _
(1) = 7o (50 < 5y G O[T
| j
= ol il O e =2 (33)
’ k=i
11 since x67D ig nondecreasing on (—1, 1). And if i > j, then for the same reason
1 - . —
() = 70001 < gy [0V = x| 1 — !
1 i—1
= ool > ]x“—”(rkm — x4 V()] (3.6)
! y—
Put
D) = xS D], k=10 —1,
ogr =1 XV + xS Dan], k=0,
13 X D) —xC D@, k=-1,....,-n+1L

Since j >0, we have forevery i =0, =1, ..., £n,
0<2n+4+2—i—j=2n—j+1)—(3G—))
<2n—j+1D+2)i —ji
<2 —j+D(i —jI+D.
15 Hence, combining (3.3)—(3.6) with (2.3) and (2.5), for every s > 1, we obtain for 0<{i < j
lx () — 7 (25 )| Py,ni|

J
Sen 2 (li = jl+ 1)@ +2—i = Y o
k=i

J
Sen (i = jl+ DP P - j+ DT o, 3.7)
k=i
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1 for—n<i<0,

1x () — 7 (25 )] Py, i |

j
Sen 2l = jl+ P a4+ DT Y o, (3.8)
k=i+1
and finally for j < i,
|x(2) — m; (t; x)||Pv,n,i|
i—1
<0n72s+2(|i _ ]| + 1)S72\’+1(2n + 2 _l _ j)S*] Zws,k
k=j
i—1
Sen 22— jl+ DF = j+ D7 Y o (3.9)
k=j
3 Clearly, similar estimates hold for —n < j < 0, and ¢ € I; N (-1, 0]. Therefore by (2.4), we
summarize that foreach —n < j <nandt € [;,

|x(#) = Pu(z; %)

n ki@, j)
Scn PPN (i—jl+ P e I+ DT Y o,
i=—n k=ko(i,j)
5  where we denote
i, 0<i < j<n,0<i=j <n,
o Ji+l, —n<i<0,i < j<n,
ko(i, j) = i, 0<j<i<n, (3.10)
j+1, —n<j<0,j<i<n,
and
J, —n<i < j,0<j <n,
o )i+l —n<i<j<0,
ki@, j) = i—1, —n<j<i0<i<n, (3.11)
i —n<j<i <0.
7  Hence, integrating over /;, —n < j < n, yields
llx = Pu(5 )L, 1)
n ki@, )
<Cn—2s+2|]j|l/q Z (i — ]| + 1)2&-217—1(n _ |]| + l)s—l Z Wk
i=—n k=ko(i,j)
oo ) ki(i,j)
Sen ™ PN (i = jl+ DF P - i+ DTV Y o (3.12)
i=—n k=ko(i,])

Finally, we have to consider the case j = +n. To thisend, lett € I, and takei = n. Then x(¢) >0,
9  and further, if s = 1, then x(¢) — 1 ,(t; x) = x(¢t) — x(t,) >0and if s > 1, then

x(t) — ns,n(t; X) =

'
(s—1) _ L= L \s—2
(s —2)! /tn (x (1) —x (M)) (t—1)"“dt=0.
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1  Hence,
0<x(t) — myn(t; ) <x (D),
3  andinturn, fori < n,

[x(t) — ms,; (t; x)| < [x(t) — 5, (£ X)| + |75, (2 X) — 75, (25 X)|

< x(t) + |7, (15 x) — 74, (2; X)|. (3.13)
So we wish to estimate
s—1 k
(t —tn)
5 ns,n(t; x) — ns,i(t; x) = Z <x(k) (ty) — Tos—k,i <tn; x(k)>> k—'n
k=0 ’

Fors > 1landk < s — 1, we have

1 o — b
; xO () = 7 (11 x©) o — / (6@ =27 1) (00 = 2,
Therefore, for i >0,
75, (25 X) — 75, (15 %))
s—2 (t ¢ )k tn
_U oW G=Dg) — 6Dy, k=2
s ;k!(s—k—Z)!/ti (<@ = x0"Na) )ty — 0P
s—1
=Dy _ =Dy &)
O ) =Pl =
s—1 n—1
< (Z I R tn|’<> > ok
k=0 k=i
n—1
el —i+ 2% 722y o, (3.14)
k=i

9  where we estimated the sum applying (2.3). Similarly for —n <i <0,

s—1 n—1
. . s—k—1 k
| (1 ) = 73, (15 2)| < (Zm — 6N =g ) > ok
k=0 k=i+1
n—1

Scln—i+2"2n 22 3" o (3.15)
k=i+1

Note that (3.14) and (3.15) trivially hold for s = 1.
11 Substituting (3.14), (3.15) into (3.13) and combining with (2.5) we get
[x (@) — 7,0 (15 )| Py,nn (D] < clx (1)1,
13 andfor0<i < n,
e (1) = 75,1 (1 )| Py i (O] < clx (@) (n — i + 172

n—1

+Cn—2s+2(n _ l + 1)2S—2V—1 Zws,]p
k=i
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Finally, for —n<i <0,
[x(#) — 75,; (t; X)[| Pypi ()] < c|lx(@)|(n —1 4+ 1)72v+1

n—1

+cn723+2(n _i+ 1)2S72V*1 Z wg,k(-x)-
k=i+1

Similar inequalities are valid for r € I_,,. Hence, for ¢t € I,,, we obtain by (3.1) that

() = Po(t: )| < clx()] Y (n—i 4 172!

i=—n
n—1 n—1
+Cn—2x+2 Z (n _ l + 1)2S—2V—l Z a)s,k,
i=—n k=ko(i,n)
and similarly fort € 1_,,

x(t) = Po(t: 0)| < clx()] Y (n+i+ 172!

i=—n

k1 (i,—n)

—2542 Z (}’l+l+ )25 —2v—1 Z (Us‘k-

i=—n+1 k=—n+1

Since2v—1 > 1,

Z(|n—l|+l) 2‘+‘<2/ 2t g = -1 =

i=—n
We conclude from (3.16) that for ¢ € I,,

n—1 n—1

() = Po(t; )| <™ 22N " =i+ DP TN o+ elx (@),
i=—n k=ko(i,n)

and by (3.17), we have forr € I_,,,

ky(i,—n)

|x(t) — Py(t; x)| <en 212 Z n+i+ 21 Z ws 1 + clx@)].

i=—n+1 k=—n+1

Now, integrating (3.18) over 7, yields

n—1
Ix = PuC: %)y (1) < LI035 Z =i+ D2 N
i=—n k=ko(i,n)

+el LV VP X L s
where we applied the inequalities
(lal? + (b4 <Ja] + [b| <27 (la|? + b]1)/1,

and for the last term we used Holder’s inequality.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

s-monotone radial functions J. Approx. Theory (2007), doi: 10.1016/j.jat.2007.10.001
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Similarly, integrating (3.19) over I_, yields

ki(i,—n)
bx = Pu s 01 < E-nl V™22 Z (n+i+DP2 N o
i=—n+1 k=—n+1
el VP x L 1) (3.21)
We combine now (3.12) with (3.20) and (3.21), to obtain
n n
Il = PuCi )L,y < en 2PN N (i — jl 4 D22
i=—n j=—n
ki (i, )
x(n—1j1+ D7V N o+ en P x| 0y, (3.22)
k=ko(i, )

where ko (i, j) and k1 (i, j) where defined in (3.10) and (3.11) for all pairs i, j except fori = j =
+n, where we put ko(n, n) = ko(—n, —n) = 1 and k1 (n, n) = k1(—n, —n) = —1, so thatitis an
empty set and thus = 0

Note that for ko (i, j) <k <ki1(i, j),

n—ljl+1=0—kl+1+kl =[jl<@— [kl +1)+ [k = j
S —=lkl+ D+ = jl+D<2(i = jl+ D@ — k[ + 1.

We first estimate the inner sum dealing with the summation on j from i >0 to n — 1. By (3.10)
and (3.11), we deal with

n—1 J
D=+ D = 1+ DTV Y g

=i k=i
n—1 j
gzs—l/q ZZ(“ _ JI + 1)35_1/4 —2V—l(n _ |k| + I)S—l/q Wg
j=i k=i

n—1 (n—1

=X | i T e

<e Y (i =kl + D20 — k4 1 g
k=i
where we used the fact that 3s — 1/¢" — 2v — 1 < —1 to obtain

n—1

Z('l_]|+1)3$ l/q —2v— 1</ (|l_T|+1)3S ]/q —2v— ]df

Jj=k
o0 ’
— f ,L_3s—1/q _Zv_ld‘f
|i—k|+1

= Qv+ 1/q' =37 (i — k| + P
c(li — k| + DP R
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1 The other part of the inner sum is dealt similarly. Thus, substituting in (3.22), we conclude that

n—1

n—1
bx = PaCi ),y < en 240 3 N (k—i| 4 DR
i=—n+1k=—n+1

x(n — k| + D™V o g+ en 2P Loy

n—1 n—1
= en~ 242 3 (Z <|k_i|+1)3"‘/”">

k=—n+1 \i=—n+1
x(n — k| + 1)V wg g+ en TP )L )
n—1
<en BTN (= k| 1) gk + en TP x|,
k=—n+1
(3.23)
where again, we used the fact that 3s — 1/¢" — 2v < —1 to obtain
n—l n—1
Do k=il + ¥V Y (ki 4 DI
i=—n+1 i=k
k
+ > k=il DT
i=—n+1

00
g 2/ ,L_3S—l/q,—2\) d'E

1
=@Bs+1/qg—2v)"' =c.

3 Therefore we should estimate how big may the sum on the right-hand side of (3.23) be, when the
only constraints on the collection {wy x}, —n 4+ 1<k <n — 1,is that x € A} B, ().
5 To this end we set

. s—1 o ;
ol ="Vl of =ou, i=1..n-1,

7 and

- . s—1 — . 3
wS,O = |x(9 )(1‘71)|, (,L)S’l. = wS,iv 1 = _1’ ) + 1’

9  and we will estimate the two sums separately. In order to estimate the first sum we write /1 :=
[0, 1), and we will estimate from below the values || x ||L,,(1+)~ Let 13' := [to, t1] and put Il.+ =1,

11 i=1,...,n. Wetake 1 < p < oo, the case p = oo is analogous. Then
n
p _ AP
(OIS _§_0ﬁ IO} - (3.24)

13 By virtue of (3.2), x(¢) >0 and 7; o(t; x) = 0, for t € I, sothatfort e If, i=0,...,n,

x(t) = (x(t) = mi(t;0) + Y (mt: x) — 7515 %))

j=1
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where for i = 0, the second sum is empty, thus = 0. For s > 1, applying the Taylor remainder
formula, we get

x(t) — my i (t; x) =

t
=Dy — 6D 52
G2 /t: (x (1) —x (t,)) (t—1)°""2dr>0,

as x“~1 is nondecreasing. Hence, we proceed with i > 1, and obtain

i
X2 Y (mj(tix) =71 (x), tell i=1..n, (3.25)
j=1

which is clearly valid for s = 1. Since nf,k]). (t;x) = my (1 x0), k =0,...,5 — 1, it follows
that

s k
(t—1tj)
T, j (5 x) — w5 j—1(t; x) = E (x(k)(tj) sk, j—1 (tj; x(k))) — e

!
= k!
Again, if s > 1 and k<s — 2, then, applying the Taylor remainder formula, we get by the

monotonicity of x¢~ D,

xO@)) = mx (tj; x(k)>
1

1j
gy k)'/ (x(s—l)(,c) _x(x—l)(tjil)> t — 1) 2% dr>0. (3.26)
—2-0! ),

Hence,

(k) (k) (t_tj)k ..
(x (tj)_nsfk,jfl(tﬁx ))T>O’ tel;, 1<j<i,

so that it follows from (3.26) that

_ _ (t _ t_).s‘—]
s, j (85 X) — 5 j1(t5 x) > (x(s D) = myjoa(ty; x© ”)) e _’1),
s—1
=1y N _ 5=, (t—1;)°
= (x (tj) —x (t.,_l)) —(s m—
(t—tj)*~1 o
N _Jl), wsf,-_l, rel;, I<j<i (3.27)

Note that (3.27) is valid for s = 1, in fact with an equality sign in that case. Denote 7; :=
(t; + ti+1)/2. Then for 1 < j <i<n — 1 the inequalities hold

1< _
—f. _E + Lt
1 t]>2k |Ik |s re [tl’tl+1]‘
=J

Combining with (3.27) and substituting in (3.25), we get
. . s—1
1 1
x@zeY DI of it el iz,

J=1 \k=j
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whence for 1 < p < oo,

s—1

i i
1
el ity 21X ey Z el YD DIRET) of )
Jj=1 \k=j
Therefore,
. . s—1 P

n 1 l

p + + +

”x”L,,(H) > CZ |77 1| Wy j—1
i=1 j=1 \k=j
YN (X ’
s—1p+ . _
Ze) [T =i+ T el
i=1 j=1
" fem—i+ 1) N g
= Z n2s=2/p' Z (i—Jj+ 1)sws,j_1 ) (3.28)
i=1 j=1
where for the second inequality we used the fact that
. s—1
1
SIIF G-+ 1< j<i<n,
k=j

which readily follows from |Il+| > |12+| > ... >|L}t|, and we applied (m); = m*~1, and the third
inequality follows by (2.2).

Going back to (3.23), but limiting for a moment the discussion to I, we see that we should
consider the extremal problem

n
Z (n—i+ 2)s—1/q’n—2s+2/4'w;‘:l__1 — sup, (3.29)

i=1
with 0, >0,i =0,...,n — 1, satisfying

1
" fn—ig 1y N
DN By ) DA G B PRCA <IIxllL, s (3.30)
j=1

i=1
and for p = oo, a similar, appropriate inequality. We thus apply Lemma 7 for 1 < p < oo, with
— (et -

0= (W5 g5 -3 O _1)s

ai=(m—i+2)/m>) YV i=1,...n
and

bii=((n—i+ /> Y i=1,... n
That is, we have to estimate the /,;-norm of u := (uy, ..., u,) where

noi s—1/q'

wi= (e —i+0) T 0 (i kv 2?)
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and we note that fori = 1,...,n —s,

N
wj = n?0724 @ — i )N (-1)"%(71 i— k42
k=0
= nP 2 — i 4 1) HPAS (n—i 2

where we note that A? | is the sth difference with the step 7 = —1. Now

1 1
/ / (n_i+2_fl_..._Ts)fl/q/dl-l...dfs
0 0

<cn—i+2 —s)fl/q/
=c(l—s/n—i+2) V' n—i42)~ V4
<c—s/Gs+1) V' @n—i+2)" V7
=cs+ DY —i+2)71,

A =i+ 21 =

so that for 1 < p<<oo,

5 AP
(Z <‘As_l(n St 2)3-71/4/) (n—i+ 1)s+1/p/)”>

i=1

n—s 1/p'
<c (Z (n—i+ 1)—(-9—1/44‘1/17)17/)

i=1
n 1/p'

<c (Zi(sl/ﬁl/p)l?’) . (3.31)
i=1

where ¢ = c(s, ¢). In order to estimate the sum on the right-hand side of (3.31) we have to separate
to various cases of s, p and g.

Fors = land 1<qg < p/2<oo,itfollowsthat (s —1/q+1/p)p' =1 —1/q+1/p)p’ <1,
so that

n 1/p'
(Zi(ll/q“/l’)p,) <cen'172P 0 1<q < p/2< 0. (3.32)
i=1
If1<qg = p/2<o0,wehave (1 —1/p)p’ = p'/p’ =1, so that

n 1/p
(Zi_(l_l/p)ﬂ) <enm!?, 1<q = pj2<oo. (3.33)
i=1

And if p/2 < g < p<oo (note that this excludes ¢ = p = 00), wehave (1 —1/qg+1/p)p’ > 1,
so that

n I/p
(Z i_(l—l/q-i-l/p)[") <e, p/2<g<p<oo, (3.34)

i=1

where, in all the above cases, ¢ = ¢(p, q).
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Fors > land 1<g<p<oo,wehave (s — 1/g+1/p)p’ > 1, except whens =2, g = 1 and
p = 00, so that

n 1/p
. (s—1/q+1/p)p’ < clnn, s=2,qg=1, p=oo,
(21 ) = {c all other cases of s > 1, 1 <g < p <00, (3.35)
=

where ¢ = ¢(s, p, g). Note that (3.34) and (3.35) are valid also for p = g = 1, where the left-hand
side is understood as the sup-norm. Thus, for a moment, we separate the case s = 2, ¢ = 1, and
p = 00, and conclude that for all other cases it follows by (3.31)—(3.35) that

1p en~ 14, s=1, 1<qg < p/2< o0,
nim.w L en a7 s =1, 1<g = p/2<00, (3.36)
P i = Cn—2/(1+2/P, S:l7 p/2<q<p<oo’ :
cn~2at2/p, s>1, 1<g<p<oo,

where ¢ = c(s, p, g), and that the last two inequalities in (3.36) are valid also for p = g = 1,
where the left-hand side is understood as the sup-norm.
Fori =n+1—s,...,n we take the crudest estimate

ui| <n¥P=20 (0 — i+ TP (0 — i 20

and we get
n 1/p' n 1/p'
( Z |u,~|”,> < cn?/P=2/4 ( Z n—i+ 1)(1/q—1/p)p’)
i=n+1-s i=n+1-s
< en?/P2a, (3.37)

where ¢ = c(s, p, q).
Therefore, combining (3.36) and (3.37), we obtain by virtue of Lemma 7,

n
n~ 22/ Z (n—i+2)y> Yyt

s,i—1
i=1

n*min{l/q,Z/qﬂ/P}, s=1,1<q < p/2<00,

=2/P(Inn)V/P =1, 1<qg = p/2<

n nn , s , 1<qg =p/2<o00,

<C||x(')||Lp(1+) n_z/q+2/p, s=1, p/2 < q<p<oo, (3.38)
n=2at2p, s> 1, 1<g< p<oo,

where ¢ = ¢(s, p, q), and again, the last two inequalities in (3.38) are valid also for p = ¢ = 1,
where the left-hand side is understood as the sup-norm.

Recall that (3.38) is yet to be established for the case s = 2, ¢ = 1, and p = oo. However,
we observe that if x € AiLoo(I), x' € A1+L1(I) and [|x||,+) = llx|lL s+ Furthermore,
wt[(x’) = w{i(x), i =0,...,n— 1. Hence, we know by the above proof that

n i
nY =i+ DY (i —j+ Do) <cld g,
i=1 j=1

and we wish to estimate

n
n*4Z n—i+ 2)2w;rl._1 — sup.
i=1
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Thus, we apply Lemma 7 with p = 1,
ai=m—i+2?%n* i=1,...,n,
bi=m—i+1)/n> i=1,...,n,
and
w; = w;,j—l’ i=1,...,n.
Therefore, we have to estimate the sup-norm of u = (uy, ..., u,), where
uj = bi_l(di+1 —a;)<en™?,

and we conclude that

n
4 . 2 -2
n E (n—i+2)7w5, | <cllxl,qon

i=1
)
= cllxllpaHyn "

This is (3.38) fors =2,¢g = 1, and p = oo.

Similar estimates for the interval /.

We thus have established Theorem 1 for functions x € A% L, (1) which satisfy the conditions
(3.2). In the general case, we consider the function

X =x—ms(;x;0), tel,

where we recall that 7;(-; x; 0) is the Taylor polynomial of degree <s — 1 about #y := 0. Clearly,
¥ € A% L,(I) and X satisfies (3.2). Since

Py p(t;X) = Py p(t;x) — (13 x;0), 1 €1,
it follows that

x(1) = Psp(t;x) =Xx() = Py p(t; %), 1€,
and by Lemma 8,

IX1z, ) <clxllL,u)s

where ¢ = c(s, p). Hence, the upper estimates are valid for all x € A% L, (I).
The degree of the polynomials P, (-; x) does not exceed 2v(2n — 1) 4+ s where v = v(s, p, q)
is fixed. So the proof of the upper bounds of Theorem 1 is complete. []

4. Proof of Theorem 1—the lower bounds

Proof. Given | <g<p<oo,lets>1andn > 1. Set

o pn () 1= Ay pat — 1), el =(=1,1), (4.1)
where

fhi=1—1/(32n%),
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and /, p » is such that

”Cys,p,n ”Lp(l) =1

Clearly, & , , € A% B, (I). It follows that

1 1/p
to=([[o-ora)
n
1/(32n2) 1/p
_ / L6=Dp g,
0

_ /
=cn 2542/ p ,

where ¢ = c(s, p). Hence

/ 1 1/q
I pallL,ay = en® 2P (/ (t — 1,6~ D4 a’t)
lll

— C*n—2/4+2/p’

where ¢, 1= c(s, p, q).

Let I, :== (—1 4+ 1/(4n)%, 1 — 1/(4n)?), and let ¢ = &(g) > 1 be the constant from Lemma 9.
Set ¢* := ¢,/(2¢), and assume to the contrary that there exists a polynomial P, € P, (I) such
that

I, pn = PallL,ay < *n2a2p, (4.2)
Taking into account that &, , , (1) = 0, ¢ € I,,, we see that

I PallL, ) < c*n= 2144217,
so that by virtue of Lemma 9 we obtain,

I Pallz, 1y <EN Pullz, 1) < Ec*n™ 24430 = (¢ /2yn=24+2/P,
Hence,

s, pon — PullLyay Z 1Ss, pnllLyay — I PallLy
- c*n—Z/q+2/p _ (C*/Z)n—2/q+2/p

= (cy/2)n~2la+2/p, “s)
Since c* <c,/2, (4.2) implies
16, pon — PallLyay < (cx/2)n= 244210,

a contradiction to (4.3).
Therefore, we have proved that for every s > 1 and 1< g < p< o0, if P, € P,(I), then

Is.pon = PallL, >c*n2/a+2/p, @.4)
This proves the lower bounds in Theorem 1 for s > 1.
Now consider

0, te(=2,0]

Np(0) 1= { I 1e0,2), @
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which is clearly in Afer(I). Let ¢ = ¢(g)>1 be the constant from Lemma 10. Set ¢* :=
27272/4¢=1 and assume to the contrary that there exists a polynomial P, € P, (1), such that

In, = Pallz,ay < c*n= /4.
Let I, := (—1/(8n), 1/(8n)), and consider the function
Cpn (@) :=m,(+1/Bn)) —n,(t —1/@8n)), 1€l
Then, the polynomial
Pr(t) :== P,(t +1/(8n)) — Py(t —1/(8n)), re€el,
obviously satisfies
1pn = PillL,ay < 2¢*n~ 14, (4.6)
Since Cp,n(l‘) =0,1 €1\ I, it follows that

-2 -1
”gp,n”Lq(l) - ”Cp,n”Lq(l,,) =2 /qn /a

and
1Py, (g, < 2c%n~ 14,
Thus, we conclude by virtue of Lemma 10 that
1Py L,y <CNPy L g,y < 26¢*n~ V4 = p=1=2/a,~1/q
Hence,
1 = PollLgy =N pali,ay = 1P,y > 27 720~ (4.7)
On the other hand, 2c* <2717%/9, 5o that (4.6) yields
1p () = PEOL, oy < 271 HP=2lap =1,

a contradiction to (4.7).
Therefore we proved that for 1 <g < p<oo,if P, € P,(I), then

7,() = PaOll L,y = n =4, (4.8)

Combining (4.4) and (4.8) we obtain the lower bounds in Theorem 1 for s = 1. This completes
the proof. [J

5. Proof of Theorem 2

Proof. Ford = 1, b' = (—1,1) =: I. Given x € AO"YBp(bl), this is exactly x € A% B, (1)

which, in addition, is an even function, satisfying x®0)=0,k=0,...,s — 1. Therefore this
is covered by Theorem 1.
Ford > 1 and x € Ai’SB,,(Bd), we recall the function y(|¢|) = x(t),t = (t1,...,1;) € BY,

which by Lemma 11 satisfies (2.6). We extend its definition to / = (—1, 1) by symmetry, so that

IyllL, ) <2c*(d, P, @) (5.1)
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From the proof of Theorem 1 we obtain the polynomials Ps ,(:; y), and we define P ,(¢; x) :=
P ,(t]; y). Applying (2.7) (note that unlike (5.1), it does not require any properties of the function
under the norm), we obtain

llx — Ps,n('; x)”Lp(Bd)<C(d, Py — Ps,n('§ Y)“Lp[O,l)-

Then by Theorem 1 and (5.1), we establish the upper bounds in Theorem 2.
We turn to the lower bounds. Let ¢ ,, ,(7) be the function of one variable defined by (4.1).

Set é;p’n(t) = als path, t € B?, where « = o(d, p) is a normalizing factor such that
“5?,p,n”L,,(B‘1) = 1. Let

[0, tel0,1/2],
0p() '_{1, e (1/2,1].

Set 0; () :=70,(t]),t € B?, wherey = y(d, p)is anormalizing factor such that || 0; ”LP(Bd) =1.
Evidently, &° 9; €AY 'p » (B?), and Lemma 7 together with (4.2) and (4.4) yield the required

s,p,n’
lower bounds. This completes the proof. [

6. Proof of Theorem 4

Proof. Itis well known that the space P, (B) can be embedded in the manifold Rinq (BY), where

I<g<ocand m = (”+Z_1). Since m = n?~!, the inequality
E( Ry (Bd)) <E( P (Bd)) 6.1
 Fnd=l2 L2 (BY) iy L2(BY) 6.1
is obvious.
Thus we will prove the lower bounds. Fix any points @; € SY~!,1 = 1,..., m, on the sphere
Sd_l, andletr;,/ = 1,..., m, be arbitrary univariate functions from L, (/) where [ := (—1, 1).

Evidently, the function

m
Ru(t) =Y ria 1), teB
=1

belongs to Rm,z([EBd). Given a radial function x € Lz(Bd) we are going to estimate the norm
lx — Ry, ||L2(B") from below.

Denote p;(t; a;) :=ri(a;-t),l =1,...,m,t € B“. Then by (2.10) we have

Ad k(& x = Rp) = Aq g (& %) — Agk(& Ru) = Ag k(&%) = Y Aar(& py( ar)).
1=1

Since x is radial on B¢, it follows that Ay k(& x) does not depend on € € S4=1 and we may write

Agx(x) i= Agp(&x), VEe sl (6.2)
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Thus,

Adr(Ex = Ry) = Agp(x) = Y Aax(& p(iap), Ees (6.3)
=1

Note that (2.10) implies that Ay 2;_1(x) = 0. For the function x is radial and the polynomial
Ug,2j-11s odd on the interval /.
If we decompose each univariate function r;(¢), t € I, into its Fourier—Gegenbauer series

o0

() =Yy F1Uaj(0),

j=1

where
71, 1=/r1(t)Ud,j(t)wd(t)dt,
I

then we obtain

Aa k(& (s an) = /Bd Pt a)(Uqg i (& - 1) dt

= [ a0V D ds

o

=Y A, / [ Uajlar- DU k(& D) d. (6.4)
j=t ’B

Now, the following are well-known properties of Uy ,, (¢ - 1).

(i) For any fixed ¢ € S9! the function Ugn(E-1),t € B4, belongs to the space P,(BY) and
is orthogonal to the space P, (Bd) (see [19, p. 162, (3.4)]), i.e.,

/d POUgx(&-1)dt =0, P eP,_1(BY).
B

(ii) Forany &, € S9! we have (see [19, p. 164, (3.10)])

Uan(-1)

L V(e 00t ar = S

(iii) Let P,i‘(IR") denote the space of all homogeneous polynomials of degree n on R?, and let
H, (S denote the space of spherical harmonics of degree n on S e, Ha(SThH
is the set of those functions on S¢~! which are the restriction to S~! of a function from
P,’Z(Rd) which is harmonic in R?. Then for each H € EBl[n:/OZ ] Hp—2i(S?1), and any fixed
ne S4=1 we have (see [19, p. 165, (3.17)])

Uan(1)

d,n

/ H(OUgn(&-ndt = Hn).
Sd_l

It follows from (i) that for any a;, & € s4-1,

/Bd Ua jlar- OUai(E- 1 dr =0, k# J.
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Hence, by (6.4),
Ag (& pyCrap) =Tk /Bd Ugi(ar-)Ugx(E-1)dT

_p Udklar- 9)
Ua (1)
which substituted into (6.3) yields

’

m

. Uaxla-9)
Ag (&G x —Rp) = Ag(x) — ) Frp———. (6.5)
" ; Ua k(1)
Since as functions of &, Ay x(&; x — Ry,) and Uy x(a; - ) belong to the space H € P, [n/2V 9 Hy—oi

(S (see [19, p- 165], for explanation), we conclude that
[Ad k(s x = Rl gd-1) = Szp /S(H Ag k(& x — Ru)H(E) dE,

where the supremum is taken over all H € @ [n/2] ’H,,_zl-(gd_l), such that ||H||L2(§d—l) <1
Therefore, by virtue of (6.5) and (iii), we get

[AgkCsx = Rl (sd-1y

U
_Sup<Adk(x) / H(&)dE — Z / ‘;]’;(“él)@ («:)d&)
sup(Adk(m f H(&)de - Z—kH<al>> (6.6)

We will prove that there exist constants k(d, m) and ¢ = c(d) > 0, such that
[Ad k(s x = Rl p,sd-1) ZclAa k)], k> k(d, m). 6.7)

To this end we note that the inequality is trivial for k = 2j — 1 since Ay 2;—1(x) = 0. Hence we
restrict ourselves to even k’s.
Let Pfl’ (S4~1) be the restriction to S?~! of the space P,}l’ (RY). 1t is well known (see, e. g., [22])
that
[n/2]
Prop(STH @@ Hu (ST, j=0.....In/2],

i=0

so that for n = 2k we have

k
Pyt c @PHu(sh, j=0,...,
i=0

&

Let Sé’ ; (S~ denote the subspace of 735’]- (S?=1), of all spherical polynomials of the form

ShO= Y oSG E=¢ g estTh (6.8)
it tid=J
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where (ji, ..., jq) € Zﬁ ando;j, ., € R,and letSé‘j (Sd_l; {a;}) beits subspace of all spherical
polynomials Sél ;€ Sél i(§d’]) which satisfy

Syia) =0, 1=1,....,m. (6.9)

By virtue of (6.6) we conclude that

: h
1Aa.2C: X = Rl (s-1) > Aa. 2 (x) max sup /SZH 55,9 dg,

SYAS Sh
2j

where the supremum is taken over the spherical polynomials Sé‘j S Sé‘j(Sd_l; {a;}), 0<j <k,

such that |85, g1, < 1.
Now,

dim 8! (59°1) = (’ et ) ,

since the collection of all monomials é%j oo éfljd, j1 4 -+ 4 ja = J, is linearly independent

on S?~!. We impose in (6.9) at most m linear restrictions on the coefficients of the spherical
polynomials in Sé’ ; (S, {a;}). Hence,

dim J,(S*": far)) > (’ e 1) —m, j =0,k (6.10)

Let ¢ := (¢4, ..., ¢, _1) be the spherical coordinates on S~ defined by &, = cos 01, & =

sin @y cos @y, ...,y = sin@q...sinQ,;_3C08 P _o, Eg_1 = sin@;...sin@,;_,co8Q,_1,
g = sing@;...sinpy_,sing,_;, where 0< ¢, <7, 1<i<d — 2, and 0< ¢,_; < 2m. With

& = &(@), the surface element d & of S9! pecomes
d¢=J(p)do,

where the Jacobian is given by

)d—3

J(p) := (sin q)l)d_z(sin P ...singy_s. (6.11)

It is easy to verify that for each ng € ng(sd—l; {a;}) the function Tzhj(q)) = sgj(g(q))),

¢ € T¢7!, belongs to the space T, (T¢!) of trigonometric polynomials on the torus T¢~!. We
denote the collection of these functions by 7;; (T4 {aq;}). Clearly,

dim 7% (T~ {ar}) = dim 83,7 {ar})

><J+?_1>—m, i=0,... .k (6.12)

where we applied (6.10). It follows from (6.8) that Tzhj (@) is even with respect to each variable
@;,i =1,...,d — 2. Hence,

1
/\%H Sy (6de = W/wfl 5 (@) (@) dg (6.13)

Please cite this article as: V.N. Konovalov, et al., Approximation by polynomials and ridge functions of classes of
s-monotone radial functions J. Approx. Theory (2007), doi: 10.1016/j.jat.2007.10.001



http://dx.doi.org/10.1016/j.jat.2007.10.001

13

15

17

19

21

23

25

YJATH4238

V.N. Konovalov et al. / Journal of Approximation Theory 111 (1111) II1-111 29

and
1 n
/S 1 SO = 2 | (D@1 (@] dg. (6.14)

By virtue of (6.11) and (6.13) we obtain

Ad,2k(x) h
.. — > .
1Ag 26 (-3 x Rm)||L2(§d 12 2d 2 OgljaékS;p i T2](¢)|](§D)|d(p, (6.15)
2j

where, by (6.14), the supremum is taken over all Tzhj € ’7'2}; (Td_l; {a;}) such that

1 .
20,—,2Ad_l<T2’;<qo>)2|J<cp)|dcp<1, j=0 k. (6.16)

Letk(d, m) € N be the smallest k satisfying k?=1>22d=1(g —1)\m, and take k >k(d, m). Denote
k" := 2[k/2], and consider the subspace

Te o= T {ar)).

Since
(k’/2+d— 1) . k=1
k'/2 T 4d=ld — 1Y
it follows by (6.12) that
kd—l

. h rd—1.
dim 7 (V) 2 S — v

However,
dim 7o, (T4 <59 1541,
Hence,
dim 7, = dim T/ (T4~ {a)}) > ¢, dim To (T4 ),

where ¢, 1= 1/(53971224=1(d — 1))).
Applying Lemma 13, it follows that there exists a trigonometric polynomial T € 7 such that

”T*”LOC(T"’I) =1 and ||T*||L2(Td—l) >c*, (6.17)
where 0 < ¢* = ¢*(d, ¢cy) < 1.

Let |®| denote the Lebesgue measure of the (measurable) subset ® € T~ and let T*(¢) :=
(T(9))?, @ € T4 Then T* € T (T~!; {@}), and by (6.17) we have

IT*ll,_ a1, =1 and /Td_. T (@) do>co| T, (6.18)

where ¢, := (c*)2/| T4
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If @ is the subset in T¢~! of all points ¢ such that 7*(¢) > ¢, /4, then it follows by (6.18) that
0¥ > / T*(p)do = / T*(@)do — / T*(@)dp>3c,| T /4. (6.19)
o* -ﬂ—d—l -ﬂ—d—l\(D*

For o € [0, 1], let ®(2x) < T9! be the subset of all points ¢ such that |J ()| > o, where the
Jacobian J (@) was given in (6.11). If d = 2, then J(¢) = 1, and if d > 2, then |D(x)| is a
continuous nonincreasing function in o assuming all values from | T4~ to 0. Hence, there exists
oy € (0, 1), such that

D)= (1= ¢o/2) [T,

which combined with (6.19) implies that |®* N ®(o,)| > co| T4 /4.
Now,

/ T* () () dop > / THO (@) d > ol N Do) |/4,

Td-1 O ND (o)

so that
[, T @@ldozT e (620)
»

Set To(¢) := c°T*(¢), ¢ € T, where

—12
¢ = <2d—2 / |J<<p>|d<p> .
Té-1

Then T, € 7'2};( (T4 {a;}), and by (6.18),

1 2
242 [ o (To (@) J ()| dp<1.

Hence T, satisfies (6.16). Moreover, it follows by (6.20) that

[, @@l doze@i T n, 16 > o
v
Thus, substituting in (6.15) we obtain
[Ag 2k ()<l Ad 2k (3 x = Rl sd-1y (6.21)
where ¢ := (¢°c2| T4 o, /(2912))~! > 0. This proves (6.7).

We are ready to conclude the proof of the lower bound in Theorem 4. By virtue of Lemma 12
we have

2
2
x()— Y Qax(5x) = D 1QaxCi0I7, g,
0< k <2k(d,m) Ly(Bd)  Kk>2kd.m)
2
= > Va kA kG0N gar)-
k>2k(d,m)
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Recall that Ay« (-; x) = Ag k(x), and that Ay 2x—1(x) = 0. Thus, we have

2

x(O)= Y. Qax(sx) =171 Y vamlAaa @I,

0<k<2k(d,m) Lo (BY) k>k(d,m)

where |S97!] is the Lebesgue measure of the sphere Sty By virtue of (6.21) we get
2

x(O) = D> Qax(sx) <@ Y vaalAaaCix = Ry qi,

0<k < 2k(d,m) Lr(B% k>k(d,m)

/N

o0
&Y vanlAdaCix = Rl7 i,
n=0

o0
=&Y 1QanCix = R)ll7 gay

n=0

=2l () = Ru O gay. (6.22)

where ¢ := ¢|S971.
It is known (see, e.g., [19, p. 163, Remark (i)]) that Q4.1 (:; x) € Pe(BY), k € Z . Therefore,

P(tix):= Y  Qaxtix), teB

0<k<2k(d,m)

is a polynomial of the degree <2k(d,m)<[4(d — 1)m1/(d’1)]. Take m = n9~! so that it is a
polynomial of the degree <4(d — 1)n, and (6.22) yields

cE (x’ Pen <Bd)>L2(Bd) S0 = Ruat Oll L, @y

where ¢ := & 1/2 and ¢ := 4(d — 1). Since this is valid for every R,i-1 € Rnd—lﬁz(Bd), and we
obtain

= d d
cE (x, Pen (B ))Lz(Bd) <E (x, Rnd—172 (B ))LZ(B“’)’

which concludes the proof of the lower bound in Theorem 4. This completes our proof. [
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