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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS *
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We introduce the moduli of smoothness with Jacobi weights (1 —)*(1 +2)? for functions in the Jacobi weighted spaces
Lp[~1,1}, 0 < p < oo. These moduli are used to characterize the smoothness of (the derivatives of) functions in the
weighted spaces Ly. If 1 < p < oc, then these moduli are equivalent to certain weighted K -functionals (and so they are
equivalent 1o certain weighted Ditzian - Totik moduli of smoothness for these p), while for 0 < p < 1 they are equivalent
to certain “Realization functionals™.

Bsexeno momysi rnaxgkocti 3 paramu Hxofi (1 — 2)* (1 + .I‘}q onst yHRUH, o HaEKaTh BaroBkM npocropan SxoGi
Lp[~1.1], 0 < p < oo. L Mo#yri BHKOPHCTOBYIOTHCA, WIOO OXApAKTSPU3yBaTH INAAKICTL QyHKiMil T3 ix BOXIHHX Y
sarosux apocropax Lp. Mpu 1 < p < oo ui momyai exsipancyrrl Keskum sarosum K -QyHxuionatam (TAKHM HHHOM,
CKBIRANEHTHI ASAKUM BATOBHM MOAVIM rmajxocti Hintana-Torika ans uux p). Bommouwac npu 0 < p < 1wl Moayu
exsiBaneHTH JeskuM ,byHxiionanay peanizaniii”,

1. Introduction and main results, The main purpose of this paper is to introduce moduli of
smoothness with Jacobi weights (1 — 2)%(1 4- x)? for functions in the Jacobi weighted L,[~1,1],
0 < p < oo, spaces. These moduli generalize the moduli that were recently introduced by the authors
in [9, 10] in order to characterize the smoothness of (the derivatives of) functions in the crdinary
(unweighted) L, spaces.

For a measurable function f:[-1,1] = R and an interval I C [-1,1}, we use the usual

- ]pr -
notation || f|i; = (] (f(x)P da:) L0 < p <o, and ||fllp. ) = esssup,ey [f(2z)]. Fora
(1) ; |
weight function w, we let Ly ,(I) == {f | if’:/;f”LP([) < oo}, and, for f € Ly p(l), we denote
by En(f, Duwyp = infp ep, flw(f — paillp, . the ervor of best weighted approximation of f by
polynomials in P, the set of algebraic polynomials of degree strictly less than n. For I = —1,1],
Lp[—1,1} Ly 7= Lw,p["”l: 1], En(flwyp = E.(f -1, 1])1”,? etc. Finally,

we denote ||-|,, = |-
denote

wlx) = \V1-—

7

Definition 1.1. Forr € Ny and 0 < p < o0, denote E’.i’\g(w) i= Ly p and

By{w) = {f

where AC\.(—1,1) denotes the set of functions which are locally absolutely continuous in (—1,1).
Now, define

FOD € ACLL~1,1) and ¢ fO € Lu} r>,

.(-—1/p, oc), if p<ioo,
Jp 1=
[0, o0}, if p= oo,
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380 ‘ K. A. KOPOTUN, D. LEVIATAN, 1. A. SHEVCHUK

let
wa;ﬂ(m) = (1 - ’E>a(1 + Z)Bﬁ «Q, 6 € ‘]P?

be the Jacobi weights, and denote L&* := Lo g.p-
Also denote

WES(z) o= (1 = x - 8p(z)/2)¢ (1 + & — bo(z) /2)C.

Note that Wg”g(:ﬁ) = Wo,z(%), Wolm’l/z(x) = () and, if §,{ > 0, ng(f) < we ().
For k€ Nand h > 0, let

. ek k) bomi kh . o kh khl _
o) E g -zt C.
M) o= | i <z’,( ) f(”" 7" Zh)’ S 2J P

0, otherwise,

be the kth symmetric difference, and AF(f, z} = AF(f, z; [-1,1]).

We introduce the following definition, which for «, 8 = 0, was given in [10] (Definition 2.2) (for
o, = 0 and p = oc see the earlier [2] (Chapter 3.10)).

Definition 1.2. For k,r € N and f € B} (wa3), 0 < p < o0, define

fy a7/ 20 24 : (
W (PO, ey = sup WP 0AL L0 )] (1
O<h<t Bt ¥y
For § > 0, denote (see [10])
Ds = {z | 1-8p(x)/2 > |a} \ {£1} = {m e ﬁé—} = [~1+pu(8),1 - u(d)];

where
w(8) = 26 /(4 + 6%).

Observe that D5, C D, if (52 < 61 < 2, and that D5 = @ if § > 2. Also note that Aﬁp(z)(f, x) is

defined to be identically 0 if « € Dy, and that )/V;/ Har/28 5o well defined on D (except perhaps
at the endpoints where it may be infinite).
Hence,
o (F) Dapp = su uw’"/z*'“'r/z*ﬁ JAF (ry . (1.2)
wk’,‘(f a8 o<h§t kh () hg{)(-)(f ) (D)
and
Wl (F Dapp = (7, 2/k)ap,  for  t22/k (1.3)

In a forthcoming paper [11], we will prove Whitney-, Jackson- and Bernstein-type theorems for
the Jacobi weighted approximation of functions in the above spaces by algebraic polynomials. Thus,
we get a constructive characterization of the smoothness classes with respect to these moduli by
means of the degrees of approximation. This implies, in particular, that these moduli are the right
measure of smoothness to be used while investigating constrained weighted approximation (see, €. g.,
[3, 7, 8]).

We will show that, for /24, 7/2+ 3 > 0, our modali are equivalent to the following weighted
averaged moduli.
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ON MODUL] OF SMOOTHNESS WITH JACOB! WEIGHTS 381

Definition 1.3. For k € N, r € Ng and f € Bp(wag), 0 < p < 00, the kth weighted averaged
modulus of smoothness of f is defined as

\1/37
wi o () Dogp = / / H/V,:/”“ /2 ‘3(L)Aw( )(f(” x){P dx dr
0 Dy,
If p=ccand [ € B (wa,z), we write
"")Zf(./‘(’)w 'l:)a.ﬁ:oo == w}f’,r(j(r), i)a'g,oo .
Clearly.
W Dapp Sl (F 7 Depp, >0, 0<p< oo, (1.4)

We now define the weighted K -functional as well as the “Realization functional” as follows.
Definition 1.4. For k € N, r € Ny and f € Bj(wa ), 0 < p < o0, define

KL (f7, )app = g@r,f}% };wa,mﬁ (=g M +t’ wa, g0 g (}‘*”” }
and
RY (fT 0 F)app = Pn}f {} wa,pp" (f7 = P b k Hu; e P(“”‘ip} .
Clearly, A’,‘f7 (f“‘) n” ')a sp < R* (f(” i(xdp, n € N. Note that, as is rather well known,
K -functionals are pot the right measure of smocthness if 0 < p < 1, since they may become

identically zero.

Throughout this paper, all constants ¢ may depend only on k, 7, p, o and 3, but are independent
of the function as well as the important parameters ¢ and n. The constants ¢ may be different even
if they appear in the same line.

Our first main result in this paper is the following theorem. It is a corollary of Lemma 3.2 and
the sequence of estimates (4.3).

Theorem 1.1. If k € N, r & Ny, 7‘/2 +a> U, r/2+820,1<p< oo, and f e Bylwyg),
then there exists N € N depending on k, v, p, « .znd B, such that for all 0 < t < 2/k and n €N
satisfying max{N, c1/t} <n < ca/t,

I{}ir(f(r)= tk)cfﬁm = CR;‘E’T(f(r), T :)a B.p < C\Uk r(f t}(x,,@,p <
< ewf (F7 Basp < KL, ), (1.5)

where constants ¢ may depend only on 'k, v, p, o, [ as well as ¢; and cs.

Remark 1.1. Cleatly, K (j(r *apsp < t‘“ad‘r/ [ )ll < oo, for all f € Bj(wa,p), and it
follows from Theorem 2.1 that it /2 4+ o < 0 cr/and r/2 + B < 0, then there cx1sts a function
f € Bp(ws. ) such that w,fﬂ.(j(’ J)a.ﬂ’p = oo, for all ¢ > 0. Hence, Theorem 1.1 is not valid if

r/2+a<0or/and r/2 + 5 < 0.
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We can somewhat simplify the statement of Theorem 1.1 if we remove the realization functional
Ry from (L.5). : ~

Corollaiyll IfkeN reNg r/24+a20, 7‘/2+6>0 1 <p< oo, and f € Bylwyg),
then, for all 0 <t < 2/k,

CP {fw tk)a 8p = ;ﬁ(f(r)»ﬂa,ﬁ,p < Cw/f,r(f(r)at)a,ﬁ,p < CKKT(f(T):t )o,B,p-

In the case 0 < p < 1, we have the following result on the equivalence of the meduli and
Realization functionals. It is a corollary of Theorem 4.3 that will be proved in Section 4.

Theorem 1.2. LetkeN,reNp, 0<p <1, v/24+a>0,7/2+ 820, and f € By (wap)-
Then there exist N € N and ¥ > 0 depending on k, p, o and B, such that, for any 91 € (0,9,
n> N, 91/n <t <3/n, we have

RL r(f’ >c Bp ™ Wy r(f( ") t)aﬁp ;fr(f(r)? t)o:ﬁ,p-

Here, as usual, by a(t) ~ b(t), t € T, we mean that there exists a positive constant cg buch that
ta(t) < b(t) < coa(t), forall ¢ € T.
Note that it follows from Theorem 1.2 that, for sufficiently small ¢y, ¢; > 0 such that £; ~ &9,

"JZﬁ(f(r)’tl)a,ﬁ,p ~wf (ST 1) app ~ wi (f(7 t2)afp ~ Wiy (1 t2) .-

If1 < p < oc, we can say a bit more. Theorem 1.1 and the (obvious) monotonicity of w}l - (f) a8p
with respect to £, immediately yield the following quite useful property which is not easily seen from
Definition 1.2.

Corollary 1.2. Letk e N, r €Ny, r/2+a>0.7/24+53>0,1<p < oo, f€Bj(wap) and
A > 1. Then, for all t > 0,

wf (£, M)agp < X0 (10, D)o g (16

By virtue of (5.2) the following result is an immediate consequence of Corollary 1.1.
Theorem 1.3. Letk € N, r € Ny, 7/2+a > 0,7/2+8 > 0,and 1 < p < o0 If f € By (wa.8),
then, for some to > 0 independent of f,

Wy, ,r(f( " ’L) B ™ Wy (f( [)wmgap’”sp, 0 <t <y, \ (1.7
where the weighted DT moduli w; % (g, wyp are defined in (5.1).
It was shown in [9] (Theorem 5.1) that, for £, ¢ > 0 and g € B, (we ),

k41 k N
wtp* (gv L)wEVC'p S th(p(g/: t)wg‘(ip,lh t -2 O

Letting £ :=r/2 4+, { :==7/2+ 0, g == = f() using the fact that f) € Bl('wr/2+a,,rl/2+g) if
and only if f € BH l(wa 3). by virtue of (1.7), as well as (1 6) if t is “large” (i.e., if t > 1g), we
immediately get the followmg result.

Lemma 1.1. Letk € N, r € Ny, 1/2+a >0,r/2+8>0,and 1 <p<occ.lff€ Brﬂ(wa,g)
then

w1 (F Dapp < ctwf (P app >0,
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ON MODULI OF SMOOTEHNESS WITH JACOBI WEIGHTS 383

Finally; the following lemma follows from [1] (Theorem 6.1.4) using (1.7).
Lemma 1.2. Letke N, r€Ng, 7/2+a>0.r/2+8>0,and 1 <p< oo If f € J'B;;(wa,;g)}
then ’

w;f"f‘l’(f(r)’ [';)C‘:.j',?) S Cu);i‘i?“(f(r)’ t)aaﬁwp? t> O'

2. Hierarchy of B;(waﬁ), {(an)boundedness of the meduli and their convergence to 0.
Without special references we use the following evident inequalities:

(1-2)<2(1—uw) and (14 z) <2(1+w), if w € [min{0, 2}, max{0, z}],

and
olz) Splu), f ju <zl <L

Also (see [10], Proposition 3.1(iv)),
I (x)] £1/6 for z €Dy (2.1)

First we show the hierarchy between the B} (w,.p), 7 = 0, spaces. Namely, the following lemma
holds.
Lemma 2.1, Letr €Ny, 1<p<ocoandr/s+a,r/2+ 3 € J, Then

Bg+l(wrx,f3) . B;(wu,ﬁ)' (2.2)
Moreover, in the case p = oo, if /2 + o > 0 and v/2 + 3 > 0, then, additionally,

fEB (wap) = I wap(e)e’(2)f () =0. (23)

Remark 2.1. Note that we may not relax the cendition 7/2+a,7/2+ 8 > 0 in order to guarantee
(2.3). Indeed, if & = —/2, for example, then the function g(x) := x” is certainly m EB%”’"“(wa 3)
but limg,1 we g(2)e” (a:)g(")(’z:) # 0.

The same example shows that we may not relax the condition r/2 + a,7/2+ 8 € J, in order to
guarantee (2.2), since ;|wa 3" g(f)! = oc if this condition is not satisfied, so that g ¢ B} (wqg)-

Remark 2.2. For any v € Ny and cv,,{} e K. (2.2) is not valid if 0 < p < 1. For example,

suppose that f is such that
o0

f(“ x) = ‘ ‘Jn(l)

7-—]

where, for each n € N,

H, 1 1 1
LR N (S if — < z4+1< ———+4gp,
En <VL+ n%—l) n-+1 n+l
1 1
H,, i tEp < T+ 1< — — &g,
gn(x) 1= n+1 7
H, /1 1 1
—-"n’/"‘—.’E"l)/ 1i"""‘€n<$+1§’:‘,
En \ 1 7 7
0. otherwise,
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H, = ‘nT_/ 2B/ o= cgn“Q/ (1-P) and ¢ > 0 is a constant depending only on p that guarantees
that 4e,n(n -+ 1) < 1, forall n € N. Then f(” € ACoo(—1,1) and

o
Zhwa,m gnup_cz mmm n?=cY a7l = oo
n=1

=

!lu 50 f(r

_Hencc{; f ¢ Bl (wq,p). At the same time,

i o0

: , 13 1P >, n 1
;wa,‘wr*lf(”“’;lp=Zlﬂwa,w’ Yanlly < ¢ —myeray (Haen') en =
-

n=1

&.9] o0
=c g ntP/2elP — ¢ E n~1P2 < o,
n=1 n=1

so that f € BT (wq,g)-

Proof of Lemma 2.1. The proof follows along the lines of [10] (Lemma 3.4) with some
modifications, we bring it here for the sake of completeness. Let g € IE;“(wa,g)., and assume,
without loss of generality, that ¢")(0) = 0 and that 8 > «. For convenience, denote Ay
= Hwaﬂ({)r—{—lg(r—ﬂ) Hp .

First, if p = o0, then A, < oo and

| z

A I

was (@) @)]ge)] = wap(@)s ()| [ o w)du] <
0

| =z

/w;g(u)qf'r’l(u) du| <

0

< Asowa g{z)p" ()

< P A T () ] T 2"(u)dui =
0

ot
= 28-0 4 o2 () / o T2 du <
0
|
<25 AL / go"l(u) du <
0

1
<2824, / o M) du = 7287 1A
0

Hence, g € Bl (wq ), and (2.2) is proved if p = oc.
In order to prove (2.3) we need to show that, if /2 + a,r/2+ 3 > 0, then
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hm UQJ(L)Y iz)g )y () == Q.

ol

(Note that we are still not losing generality by assuming that gt{0) = 0.) We put ¢

+ 2a, 1} > 0 and note that

ol 1, i+
/—v,,—,—,-—du::—lni ‘

i {u) 2 1--xz

Therefore,

o s @) @Ng () < 2 e (@) [
5

|

. o 1
<27 At (a f o T
J ©*(u)

and (2.4) is proved.
Now let 1 < p < > and ¢ := p/(p — 1). Ther, denoting

> (179

,;/ |G{w)idu

‘6

= sup |G (w)]

wcimin{0,x},max{0,2}}

if ¢ = oo, we have by Hélder’s inequality

|

1 P
i

AP -
U}Q,ﬁQPTgO)Hp:/u/ 3( £)ie P () f { Il)(u)du
0

-1
" p/a

1
< [t s [wihit M
=1

10

dr <

x iu}a:g(u)go’r'H(‘u,)g(”"i)(u)}p du| dz <

> plq

/ a5 (%) "”“"/ e ) du] e <
-1 §]

<9 (83— a)pA,)/ rr+_mu ) (r 1jg— ?cyq( .)d-u do =:

} P/q
1
|

DK.

=1
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=: 2~2P 420 (q, p).

Note that
‘ 1
e, 1) = /go’”;’z"‘(m) sup e T2 ) ) de.
4 u&[min{0,x},max{0,x}]
Recall that /2 + o € J, so that rp + 2ap > —2. We consider two cases.
Case 1. Suppose that rp + 2ap > —1. If p =1, then r + 2o + 1 > O implies that O(w, 1) =

1 .
= / o Ha)de =7, and if 1 < p < oo, then ((r +1)g — 1 + 2aq)p/q =rp+2ap+1>0, and
-1

hence
1 x p/q
‘ [ - s0(7‘—%—])q—l+2aq(zﬁ) h
O(a,p) = 2/ g (/ STy du dz <
g 0
1 @ Co\P/q v 1 1 p/q
SQ/-—l— /——}—du d;vﬁQ/—ii£~ /—di =
o(z) e (u) p(z) p(u)
0 0 0 0
= 2(w/2)P.

Case 2. Suppose now that —2 < rp + 2ap < —1. If p =1, then
1
oo, 1) = /gp””o‘(a;)dm < 0.
~1

If 1 <p<oo,then (r+ 1)+ 2aq¢ < 1. Hence
1 1
/ap”(ﬂ'l)q"zaq(u)du < /Q"l(u)du =m/2,
0 0
and so

1
O(a,p) < 2(7r/2)7’-/‘1/gorp”ap(;v)dx < 00.
0

Lemma 2.1 is proved.

We now show that, for a function f € Bj(wa,g), if 7/2+ a > 0 and 7/2+ 5 2> 0, then the
modulus wf (f), )45, p is bounded.

Lemma22. LetkeN,reNy r/2+a>0,7/24+8>0,and 0 < p < oco. If f € B(wa,z3),
then
Qll

f (F7 Dapp < ol|wape” FO) 220, (2.5)

,
where ¢ depends only on k and p.
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ON MODULI OF SMOOTHNESS WITH JACOBI WEIGHTS 387

Proof. In view of (1.3), we may limit curselves to ¢ < 2/k, and s0 D # G if 0 < h <t We
set
ui{z) =+ (i~ k/2hep(x), 0x4<k,

and note that, for & € Dy,

2 /2
Bp(z) = Wi -”/ HjU) .-
) R e (wile)

(1= w(@) — (k- Dhe(n) P (1 + ug(x) - ‘hv(f)\{/, 7 <1
B ( 1= u, () ) A N J o
Therefore,
[y /2ear/208 o) {] -
h /\/z’:’h () (sl ) Lo {Dyp)
{
::liB {: 'uag<u ()) ( ))f(’)(u\ )lL «"QH‘<
S %lu‘a ['?(U,L( 5" ( ? i ) fi“(u“ :‘ < {il”(’ '3‘7; IJ(TW\ !
’[ THL \cl h} h “OO

that yields (2.5) for z = ¢,
To apply the same arguments to the case § < p < 50 we note that (2.1) yields I/ (z)] < 1/(kh)
for x € Dyp, so that
W) 2 1 i = k/2hi ()] 2 1 - i @)]/2 2 1/2, @ € D,

}

which implies

i
/ [ F{ug(2))de < Q/E‘F(u){du
Din -1

for each F' € Ly[—1,1].

Hence,
i 7/‘>~ar/2;,/ <i’3 s ) <
“1\/ )f )”Lp(Dm < !lu‘a’;g(u?,( o (g (N (e 10 ilj,, o =
1
; -
<2 [ (el @) de =2 s 7))
)
Thus,
w;ir(f(T)vI’) BpSC max ”W [Frour/2Hh \f‘ﬂ(uz )“ D) <c !waﬁvQ f(r)
i ‘;1 nh

Lemma 2.2 is proved.
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Remark 2.3. The same proof yields a local version of (2.5) as well. Namely, for each A > 0
and [a,b] € D,

! ‘7‘/2”{"(/\',7‘/24‘—,6/\ k _'c(’r‘) R [ ' I! \ T (r)k
[‘th OBty Py S Ell W )

Ly(8)’

where S := [a — khe(a)/2,b + khe(b)/2].

‘We now show that the modulus "'Jlf,r( f (”,t)a,;j’p may be infinite for a function f € B;(wa,g) if
either r/2 +a < Oorr/2+ 8 <0.

When p = oo. this is obvious. Indeed, suppose that /2 4+ 3 > 0 and -k < r/2+a <
< 0, and let f(x) = (x — 1)**". Then f € Bl (wq,z) and Aﬁ¢($)(f(r),$) = ch¥¢*(z). Hence,
W,:}/l%a"r/%ﬁ(x)Aﬁw(m)(f("’),;c) — oo for x such that 1 — z — khe(z)/2 — 0. This implies that
ijsr(f(r),t)a’ﬁ’w = oo for all ¢ > 0. Note also that, by considering f € C"[-1,1] such that
f(@) = (L— jaDk*7, & ¢ [~1/2,1/2], one can easily see that the same conclusion holds if both
r/2 4+« and /2 + 3 are in [k, 0).

When p < oo, the arguments are not so obvious, but the conclusion is the same. The following
theorem is valid.

Theorem 2.1. Suppose that k € N, r € Ng, « € B, 0 < p < oo, and 7/2+ 8 < 0. If
0<p<1andr > 1, we additionally assume that 7/2 + 3 < 1 — 1/p. Then there exists a function
f € By{we,p), such that, for all t > 0,

W T s = o0

Proof. Let {c,}22, be a decreasing sequence of positive numbers, tending to zero, such that
go < 1/(2k) and
(2 "‘}_ k)571 < En_1~ n e N-

Define

‘J'

Jo=[=1+en, —1+ea(1+27")]
Now, let f be such that

(c+1- sn)"r‘/z"'gwl/p, if xe.J, forsome né€N,

FO () =
0, otherwise.
p
Note that, in the case r > 1, since —r/2— - 1/p+1 > 0, the function f(‘r”'l)(z) = / f\r)(u)du
0

is locally absolutely continuous on (—1,1).
Now,

.
<Y el [ 10 s =
n=1

In
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- o0 En'Z""
=D el/aow / /261y <
‘ ne=zl B

oo
< CZ /2B £ o,

7=l
Hence, f € B;(U)a,ﬂ>.
We now let
k € .
Ty == 1 -2—en, by = 99(;;71)) and I 1= [Zn, Tn + En)s

so that A
Dih, = [Bn, —2n] and  hy <2, 20, n— o0

Since () > p(xy), || < |zn], we conclude that, for any z € Ign C [Zn, —Tnl,
T (5 - z) hnp(2) = & = Shap(ar) + 2hap(z) 2 ~1+ 2hnp(z) 2

2 —1+42hpo(zn) = -1+ en > —1+ ea(1+277).
Now, since ¢ is concave and ¢(--1) = 0, we have

Tn+ En+1

2
Y1 = foo o (1.3,
P ¢(zn) <1+ k) P{zn),

w(an +en) <
and so, for all z € Iy,
T+ g—hnw(l‘) < T+ En + ._;:.hn(p(mn +én) L Tp+En+ (1 + —;E) hntp(zTn) =
=-1+2+k)en < ~1+¢en-1.
If k > 2, this implies that, forall 2 <7 < k and o < Iy,
| fON (@ + (i = k/2)hni(2)) = 0.

Now, denote ‘
' y(@) =z + (L k/2)hnp(2)

and observe that
1, 3 .
'}5 <y (.’L’) < 5) T e *_mm _xn]) (2'6)
since, if |z| < |zn]. then it follows from (2.1) that
hale'(2)] < 1/k @7
and so '
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k 1
[y (2) = 1] < Shale'(@)] < 5-
Forall k£ € N, using || f; + fgnp < max{1,2"/P"1} (”flnp + “fgllp) , We obtain
2 2
getr /2l Wi k()| >

> 2Ea+r/2[ Hw]if/l,zfa’rﬂ—{"ﬁ(')Aﬁnw(f(r)’ )

Lp(lk,n) -

LP(Ik,n) -

2 |1+ 00) = g ()2 (FO0) = apl) = BF D ()

> min{L, 22} 1400 = hag O PR, e s O 2

Lp(lk,u)

—C

['P(Ik,n.)

> kmin{1, 21717} i L y() = &) /2 F 0 (y()

waﬁ(/;‘rf(r) ,

where, in the second last inequality, we used the fact that y'(z) — hny'(z) = 1 — khp¢'(2)/2 ~ 1
that follows from (2.7), and in the last inequality, we used that /2 + 8 < 0 and that &, < hap()
for all z € [z, —xp).

In order to complete the proof, we show that

H o= || (L () = 2) 210 ()

LP(II«:,TL)

Assume to the contrary that H < co. Since
.‘/(xn) =-1+4¢ep, < y(a‘») <~1+ep-1, TE Ik,n:
there is a positive number a,, < &,. such that

f(T) (y(x)) =l —en+ y(x))—-’r‘/Qw,B-—l/p’ T € [Zn, Zn + an)-

Therefore,
:cn—j:an
HP > / (1 —en+ylx))” Yz,
In .
Using the change of variable () == 1-—g, + y(z) and (2.6) we get
In+an u(x'ﬂr—"afﬂ
P> 2 (u(z)) ' (z)de = 2 / 2=
-3 J ! ‘ 3 v
Zn 0

that contradicts our assumption H < co.
Thus, we have found a sequence {h,}2, of positive numbers, tending to zero, such that

”W;,/li+a’r/2+'BAﬁnw(f(r), )”p = oo for ail n € N. This means that wZi»T(f(T),t)a,B,p = oo for all
t>0.

Theorem 2.1 is proved.
We now state some properties of the Jacobi weights that we need in several proofs below.
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Propesition 2.1. Forany o, f € R, = € Dy and u € [z — Sp(x)/2, % + dp(x)/2],

9~ led=1Blyy, (1) < wa plz) < 210HPy, 5(u), , (2.8)
in particular,
p(u)/2 < plz; < 2p(u). : 29
Also,
Z—IO‘Hmwa‘é(x) < Wg‘”g(a:) < gialﬂﬁiwaﬁ(x)) z € Das. (2.10)

Proof. For z € Dys and u € [z — dp(z)/2,z - 0p(x)/2], we have
(1=w)/2 < (L-a+6p(2)/2)/2 < 1-2 < 21—z — Gp(2)/2) < 2(1 )
and ‘ ‘
(14+u)/2 < (1+2+8p(z)/2)/2 < 1+z <2(1 42— dp(x)/2) < 2(1 +u).
This immediately vields (2.8). Now, ’ ‘
WP (2) = wao(z + 6ip(2)/ 2)wo,s(e — d0(2)/2) <
< 23“*wa,o($)25mwo,g(z) = glaiﬂlﬂwaﬁ(m)
and
Wa,5(z) = wa,0(2)w0 p(x) < 2w (@ + p(w)/2)2P w0 p(z — dp(2)/2) =
= Zla!+!5|y\7§f»ﬁ($)'
Proposition 2.1 is proved.
Lemma23. [fkeN reNy, r/24+a>0,7/2+8>0,0<p<co,and f € By (Wa6),
then
tgrélJr w;f,r(f(r)s't)a,ﬁ,p = 0.
Proof. Let ¢ > 0. For convenience, denote (p:= max{1,2"/?71}. Since f € By(wa,g), there

is 6 > 0 such that .

< PR
Lo(i-111\0s) 2600y’

!
[waae s
where ¢g is the constant ¢ from the statement of Lemma 2.2, Set
[ £ (), if =z eDs

&£y
1 0, otherwise,

and note that, since g{") € L,[—1,1], there exists tp > 0 such that
Wwl(gM,b)p < e/ (2PITIC,), 0 <t<to
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Using Lemma 2.2 and the fact that, if /24 a,7/2+ 8 > 0 and z € @kh}, then W,:,’/LHQ’T/Z“"B(@‘) <
- < 21078l we have

‘”;f,r(f(r):t)a,ﬁ,p < pr;‘:, (9 " s tasp + pr (fh 9(7‘)775)&/,:3,? <

< 207PICLw? (g7, 8)p + coCy ‘ Wa, 59" (f V=g (T)) ”p <

<€/2+ coCy ’ waﬂgorf(r)

Lp(I-LINDs) —

if 0 <t <t
Lemma 2.3 is proved.
We now turn our attention to the case p = oo. It is clear that, in order for

TN ), =
i £, ), 5 =0

to hold we certainly need that f € C7(—1,1), but this condition is not sufficient. If fe Bl (wa,3) N
NrC"(-1,1) and /2 4+ a,7/2+ 3 > O then we can only conclude that wm(f‘r DaBioo < OO
for t > 0. For example, if at least one of /2 + a and 7/2 + § is not zero, and f is such that
FTN (@) = w} h(2)e ™" (x), 7 € Ng, then f € BY(wa,3) NCT(—1,1) and wf . (f7, )apo0 = 1.

Lemma24. [fkeN re Ny, r/2+a >0, 7/‘7+[3’ >0, and f € B (wag;ﬂcr( 1,1),
then

hmw (P Do =0 (2.11)
if and only if
Casel. r/2+a>0andr/2+4+ 3> 0
") fT(z) = 0. 2.12
Jm wop(z)¢" () f7(3) = 0 2.12)

Case2. rv/2+a>0andr/2+ 3 =0:

lim we,p(2)¢" () /(@) =0, and 7)€ C[-1,1). (2.13)

Case3. r/24+a=0and7r/2+ 3> 0:

lim was(z)e (2)/(z) =0,  and e o(-1,1). (2.14)

-1

Cased. 7/24+a=0andr/24+3=0:
e cl-1,1]. (2.15)

Note that since, for f € Bl {(weu3), fU) may not be defined at +1, when we write f n ¢
€ C[—1,1}, for example, we mean that F() can be defined at —1 so that it becomes continuous
there.

Proof.  Since wk (F7 Dapoo = Wlo(gt)r/2sar/2t8,00 With g = = ), without loss of
generality, we may assume that 7 = 0 throughout this proof. Note also that Case 4 is trivial since

ISSN 1027-3190.  Vrp. mam. ocypu., 2018, m. 70, Ne 3



ON MODUL] OF SMOOTHNESS WITH JACOBI WEIGHTS 393

w,‘io( Fitloooe = uuf;(f .t)oc, the regular DT mocdulus, tends to 0 as ¢t — 0 if and only if f is
uniformly continunous (= continuous) on [—1,1].

We now prove the lemma in Case 2, all other cases being similar.

Given € > 0, assume that (2.13) holds, and let § = &(g) € (0, 1) be such that

was(@f @) < 27Fe, me[1-81).

Denote
w(ty == we(fo 1 ]-1,1 = 6/3)),

the regular kth modulus of smoothness of f on the interval [—1,1—4§/3], and note that limy g w(t) =
= 0 because of the continuity of f on this interval.. Thus, there exists t; > 0 such that ty < 26/(3k)
and w(tp) < /2%, and we fix 0 < h < tp.
For & € Dyp, denote J, = [z — khe(2)/2, 2+ khp(z)/2) C [-1,1]. If 2 < 1—24/3, then
Jr C©[~1,1—4/3]. Hence,
WS (@) AL oy ()] £ 29148 (FLa)] < e (2.16)

kh hiplx)

If, on the other hand, z > 1 — 2§/3, then J, C [1 — ¢, 1]. Hence, for some 0§ € Jq,
Wi (2)Af IS PWEZ ) F(0)] < 2Fwas(0)1F(0)] < e (2.17)

Combining (2.16) and (2.17), we get (2.11).

Conversely, assume that @ > 0, 3 = 0 and (2.17) holds. Observing that lim¢_,0 wi(f,t;[~1,0}) =
= (J, we conclude that f is uniformly continuous an [~1,0], ie, f € C[~1,1). Also, given £ > 0,
fix 0 < h < 1/(2k) such that wf (f, h)apee < & Letx € (3/4,1), and let § € (1/2,x) be such
that & + khy(0)/2 = z. Then

\f(z) - hwa)(f )] < ( )“fﬂ(*m R2/4) = Ah

which yields

, Wa 5(T) |\ 08,
lwe g(z) fz)] < WS}WICAJ(G) ,w)(g\(j )| + was(z)Ap <

<w, ol R)a.B.0n + Wa,5(x) Ap-

Hence, limsup,_,; jwe3(@)f(2)] < &, and so lim,y we g(@)(z)f(z) = 0.

Lemma 2.4 is proved.

3. Proof of the upper estimate in Theorein 1.1. We devote this section to proving that
the moduli defined by (1.1) can be estimated from above by the appropriate K -functionals from
Definition 1.4.

First, we need the following lemma.

Lemma 3.1. Letk € N, r € Ny, 7/24a > 0,7/2+8 2> 0,and 1 < p < oo Ifg € By (we,p),
then

ke (ktr)

wfgr(g(r)’ t}a,;ﬁ,p < Ctk Hw(x,BSO g (3.1)

4
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Proof. We follow the lines of the proof of [10] (Lemma 4.1) and rely on the calculatmns there,
modified to accommodate the additional weight w, g.
We begin with the well known identity

R/2 h/2
AMFx) = / / FE 4w+ +we)duy . dug (3.2)
~h/2 ~h/2
and write
- 2 244 :
wk ( () ")aBp _ Sup HW’:}/: 24,24 AI‘ ( T),,)' —
O<h<t ‘ Lp\qkh)
’ he/2 hp/2 |
= sup W /2 m?,/2+5 / . / g(k—w)(. +ur ..+ ugduy ... dug <
O<h<t l
| ~hp/2 ~hip/2 ULy (@en)
hol/2  hof2 !
< sup / / UJY 3\,’) }g('“L”]) 4+ uy ”“ + Uk)dul du Uk
O<h<t
hi/2 —hp/2 : Lp(®in)

where, in the last inequality, we used the fact that 7/2 + « > 0 and r/2 + 3 > (0 implies
Wil 2B (2) < wag(0)e(v), i @~ khp(c)/2 < v < 2+ khp(2) /2.

| By Hélder’s inequality (with 1/p+1/q = 1) for each z € Dy, and |u| < (k— 1)he(x)/2, we have

he() /2 ‘ wtuthie(r) /2
(wa,ﬁsﬁr!g(kw)l)(w + u + up)duy, = / (wa,5¢"|g lg®+T)) (v)de <
~ho(z)/2 z4-u—hp(z)/2
k —k
< Mo s 05 e |90 L A <
q sl

< G2 (@9, k1) 07|

Lol Al,u))
where

Az, u) = [.z: +u - g-ap(l) x4+ u+ gnp(m)}

and
k-l—'rg(k—!-r)

coB g k.r) = i. .
p (T’ A ) Wa B Lylz—kho(z)/2,2+khe(x) /2]

Thus, the proof is complete, once we show that

Ik ) < o e, 79+ (3.3)

b’

where
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. "
I(k, p) = G (; Fo )
( 7[)) E"p ( )g’ t} (j( ’ } iL;)(kah)
. hip{} /2 Pup(2}/2
) ol i p

(2, k) = / . ! o duy .. dug1. if k=2

gy ) ’!%/ ”L;(A Ty Ut 1) ) B : ,
—~hep(z)/2 —he{x)/2

and Fy(z,1) = [l

t

] Lg{Af{z.0) "
To this end, we wrife

@) < e + Pz @emoamno T 1li@w@amnt-10)
=: Ii{p}+ L) + B3{p).
In order to estimate I1{p), using (2.9), for T & Doy, We have
Folz, k) < 2 (hp(2))e o (@) (ip(@)) 9 = 254 VPp™ P (w).

Exactly the same sequence of inequalities as in [10,'p. 141, 142] with o+ g'kF7) there replaced by
We s g7 yields the estimate

Ii(p) < ch® (k’”)i‘

’ll_la [‘ r"

We now estimate I2(p), the estimate of I3(p) being; analogous. Denoting
Exn = (Den \ Lakn) N[0, 1]

we note that, since Qﬁv’ﬂ(fb‘;g, ko) < H W ”@\yk'ﬂ g(k ”)] z € Dyn , we are done if we show that

N A AYL k

l;}q‘\‘3 /‘l)’!!Lgp(a:};) _"“/_\_ Ch . (3.4)
It remains tc observe thaf the estimates

/ (Fg(z, k))‘ dx < ch*? an? sup Fi(z,+5) < ch®
P c€En
kh

which are, tespectively, inequalities (4.19) and (4.10) from [10], imply the validity of (3.4).
Lemma 3.1 is proved.
Lemma3.2. LetkeN,reNo, r/2+a>0, 1/24820,and 1< p < oo If f € By(wap),

then
Wi (F7 g gcffz.,‘(f‘”,tk)a.ﬁ ;o >0 (3.5)

‘ Pmof Take any g € B’T"(wm ;). Then, by Lemma 2.1, g € Bj(wa,p). and using Lemmas 2.2
and 3.1 we have

RPN o) () i () " <
wkr(\o". :L)a,ﬁ,p iw,l”« I L}a &, p T vka,-(g s, p 2

< c“w 5" (f(r)__g )“ £tk ”w ﬁ‘f’HTg(H')II

which lmmedlately yields {3.5).
Lemma 3.2 is proved.
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4. Equivalence of the moduli and Realization functionals and proof of the lower estimate
in Theorem 1.1. In this section, using some general results for special classes of doubling and A*
weights, we prove that, for all 0 < p < oo, the wf, moduli are equivalent to certain Realization
functionals. This, in turn, provides lower estimates of Lu}i,r by means of the appropriate /X -functionals,
thus proving the lower estimate in Theorem 1.1. This, of course, is meaningful only for 1 < p < o0,
as we recall that, for 0 < p < 1, the K -functionals may vanish while the moduli do not.

For general definitions of doubling weights, A* weights, W(Z) and W*(Z) see [5, 6]. We only
mentioned that the Jacobi weights with nonnegative exponents belong to all of these classes (see [6]
(Remark 3.3) and [S5] (Example 2.7)). We now restate some definitions from [5, 6], adapting them to
the weights w, g with o, 8 > 0, and state corresponding theorems for these weights only.

Let 2}, = [~1,~1+Ah?, 2%, =1 - Ah?, 1} and Ty := [-1 + AR® 1 - AR%].

The main part weighted modulus of smoothness and the averaged main part weighted modulus
are defined, respectively as o

Q’ (f:A t)pw 1= Ssup ,]w hcp\ (f= \IAIZ)I

O<h<t HLp(Za,n)
and ,
¢ 1/p
~ 1
k . ‘o
ng(f7A7 t)p,w = ”t‘o/ gw( Ahw()(f 3 4}1)‘ Lo(Ta W) dh

The (complete) weighted modulus of smoothness and the (complete) averaged weighted modulus
are defined as

(f 1t) ufl"Q (va L)pu, Zrk(f ZQAr)wp

j=1
and
o~ 2 .
SES, A = OE(F, A Dpw + Y Ee(Fs 234 Jwps
j=1
respectively.

The following is an immediate corollary of [5] (Theorem 5.2) in the case U < p < oo and [6]
(Theorem 6.1) if p = co.

Theorem 4.1. Let ki €N, g >k, 0<p<oo,. 20,820, A>0, andf«cLa’ﬁ Then,
there exists N € N depending on k, vy, p, « and ﬁ such that for every n > N and ¥ > 0, there is
a polvnomial P, € P, satisfying

”u”a,ﬂ(f - P’n)”p S C(:}fo(f* A’ 0./77')}) Wy, 3 S Cl (f) A7 19/71’)}),‘11)0",3
and

n—-'l/

W3 péu){}p < TE(f, A9/ pony € Wl (fy A9 M) paesr SV S v,

where constants ¢ depend only on k, vg, p, A, o, 8 and 9.
The following theorem is proved in [11]}.
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Theorem 4.2. Letk e N, >0, 820, A>0,0<p< oo, and f € L“’ Then, for any
<t </2 A, we have

Ey(f. ZA,t)wa,,e,p < C“’;%(f asp < Cw}io(f: Ba.sps 4.1)

where the interval Z 4, is either [1 — At?, 1 or [-1,-1+ At?), and ¢ depends oniy on k, p, o, 3,
and A.
In particular, if A =2 and t = 1, then

Ek(f)wa,g,p = CW;\ ()(f 1)& Bp > < (’“- (f 1)&,,6,;)- (4.2)

We now show that the moduli au‘.’;(f? A t)pa, , and ﬁi( [ A t)pa, , may be estimated from
above by the moduli wy (f,t)a,s, and wig(fyt)a s p, respectively.
Lemmad.l. Let ke N, >0, 8>0, A>2k>and f € '3, 0 < p < 0. Then, for
0<t<1/VA,
B (f A ey < b o(fi)asm
and
‘:}fa(f A, t)p Wa,8 = (’Wk ()(j t}a B.p»

where constants ¢ depend only on k, p, o, 3 and A.
Proof. Recall that T p, = [—1 + AR% 1 — Ah? and note that, if A > 2k?, then
LZap € Dopn C Dia forall h > 0.

Since, by Proposition 2.1, wq g(2) ~ Wuﬂ(~ ), ¢ € Dopp, we have

resOabor s Tanll, o, <[P OM )

{Zanr) p(Dien) l

so that

Q’”(f A Dpavg s < cwka(f D)o
and

Q5 A Dpinp < iy (Fr Dapp-
Now, Theorem 4.2 yields that, for 0 < ¢ < 1/ \/Z

max { Ex(f, [1 = 2483, Wwppr Be(f, (=1, =1+ 248wy, g p} <

< cw;:f)(f; Hasp < WZAO(J Da,Bp-

Lemma 4.1 is proved.

The following is an immediate corollary of Theorem 4.1 and Lemma 4.1.

Corollary 41. Letk € N, r € No, r/2+a >0, 7/2+ 8> 0,and [ € B;,’{wa,gL 0 <p< o0
Then, there exists N € N depending on k, v, p, o and 3. such that for every n 2 Nand 0 <9 <1,
there is & polynomial P, € P satisfying

Hwa)ggﬁr(f(r) - P,ET)) 1 < cw*‘p(jm 3/ 1)app < cwkr(j(’) I/n)asp

and

nk Hwa,ﬁ@k"”Pﬁm

I %40 ¥ w pe(r) g
|, = w2 (0, 9 M)agp < el (] T, 9/n)a,8.p:

where constants ¢ depend only on k, v, p, o, 8 and 9.
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Suppose now that 0 < t < 2/k, and n € N is such that n > N and ¢1/t < n < co/t. Then,
denoting 4 := max{1, ¢y}, Corollary 4.1 with ¢ = min{l, ¢} implies that

Ef (£ 0 pp < KL, (/1) )app < W RE (I 0 )app <
< w2 (F, ﬂ/n)aeps(:wkru( Daugp < Wl (F7, s (4.3)

Note that (4.3) is valid for all 0 < p < oco. However, we remind the reader that, for 0 < p < 1,
the K -functional may become identically equal to zero. .

Together with Lemma 3.2, the sequence of estimates (4.3) immediately yields Theorem 1.1.

We now show that the estimates in Lemma 4.1 may be reversed in some sense, i.e., there exists
0 < & < 1 such that moduli wy 7o, 0t)a,/Jp and wj, 0(/ 0t)a,pp may be estimated from above,

respectively, by uu@(f A t)paw, 5 and w (f A D) pwa g+
Lemmad2. LetkeN a>0,8>0, A>0and f € Lg‘ﬂ, 0 <p < o0. Then, there exists
0 < 8 <1 depending only on k and A, such that for all 0 < ¢ < \/_17A,

w/fo(f gt)a,ﬁ,p < Cw!\p‘(-f: A, t)p,’wq,g 4.4)

and

b (fi08)app < BG4 Dpwe s 4.5)
where constants ¢ depend only on k, p, o; [ and A. , .
Proof. Let B = max{A® 4K}, 0 = min {1,\/A/(kB)}, 0 <t < /I/Aand 0 < h < 61,

Note that b < /1/B and, if x € Ig, then = = khp(z)/2 € Lap. Also, I C Dogp, and so
Proposition 2.1 implies that we, g(z) ~ V\}?’f(m), forall z € Zp . Hence,

N

: |
S C’ (LUO,[;(')A;;@()(]', .;IA,h)i

“46)

Ve k()

Lo(Ip.h) Ly(Zan)

Now, let 5y := [0,1] N (Dgn \ Zpp) - Then, denoting zg = 1 — Bh?, we have

Sy = U [ — kho(2)/2, 2 + kho(z) /2] = {z0 - khe(z0)/2,1] C [1 - 2417 1).
eS8
It now follows by Remark 2.3 that, for a polynomial of best weighted approximation py € Py to !
on [1 — 24t2 1],

ot

< cliwes(f —p)ll; 5y <
Lo(Sy) = I o, (f = px) le(sl)

S CEk*(fz {1 - 2At2; 1])11.’5,49,})) (47)

where we used the fact that any kth difference of py, is identically zero.
Similarly, for Sy := [—1,0] N (Dgn \ Ip,) and

Spi= | [o— khg(a)/2, 3 + khop()/2] C [-1, -1 + 2487,
€Sy
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we have

Wl a0, ) S BRI L =1 248 (“-8)

Lp(S2)

Therefore, noting that Dy, = T, U Sy U Sy and combining (4.6) through (4.8), we have, for all
0 < h <0t

+Czbk(j *’)At)wp

<cl )3

”th (Hay o

wa,5() A%y (fr 1 Zan) ’L (Tan)

1}Lp(®}\h)

Estimates (4.4) and (4.5) now follow, respectively, by taking supremum and by integrating with
respect to h over (0, 0t], and using the fact that & < 1.

Lemma 4.2 is proved.

Using Lemmas 4.1 and 4.2 we immediately get Theorem 1.2 as a corollary of the following result
that follows from [5] (Corollary 11.2).

Theorem 4.3. Let ke N, 0<p<1, A>0,a>0,82>0,and f € Lf,”’ Then there exist
N € N depending on k, p, o and 3, and ¥ > 0 depending on A, p, A, o and B, such that, for any
%1 € (0,9], n > N, 191/71 <t< é‘/n we have

Rif,()(\f’ n—k)a1f3~p ~ a}i‘;(f7 A’ t)pru'la,i}? ~ wi’;(jl? A’ t)??:wa,ﬂ'

5. Weighted DT moduli and alternative proof of the lower estimate via K -functionals. In
this section we provide an a’tumative proof, in the case 1 < p < oo, of the lower estimate of the
moduli wy ( £ app and wy (f ) 1), sp by appropriate K -functionals, using certain weighted
DT moduh

We denote the kth forward and the Ath backward differences by A (fox) = A;‘;_( fox+ kh/2)
and Ah\f @) = AF(f,z — kh/2), respectively.

Adapting the weighted DT moduli which were defined in [1] ((8.2.10)) for a weight w on
D :=[-1,1], weset for f € Ly p,

ft)wp = sup Hw )Aiup\f )ij [~1-4t7,1=2]
Lpl— - LD

b sup |{w(->2&"¢;<.ﬁ->'

1 Lp[~1,~1+12¢*]

O<h<t®
: | 5.1
. UCLMER! A D

where t* := 2k2t2. The first term on the right in the above equation is called the main-part modulus
and denoted by QF o(fst)w,p. Obviously, we have S’Zk(f, Jwp < (f, t)w,p-
Next, the wexghted K -functional was defined in 1, p. 55] ((6 1 1)) as

K o(fs tk)w,ﬁ = inf {llw(f - 9)”7) + tkHw‘PkQ(k)“])}’
geBE(w)

and we note that
‘Kk‘ip(fv tk)wa,,ﬁ,ﬂ = KY()(f t )a A.p:
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It was shown in [1] (Theorem 6.1.1) thar, given an appropriate weight w (all Jacobi weights with
nonnegative exponents are included), the weighted K -functional is equivalent to the weighted DT
modulus of f. Namely, by [1] (Theorem 6.1.1), for 1 < » < ¢,

M7 b (f, ) wp < Keo(F 1) wp < Mwl(f, thwp, 0 <t <o,
where tp is some sufficiently small constant. Hence, in particular, if a, 8 > 0, then
WE(F, D wapp ~ Ko (£t )wa gy 0 <t < o (5.2)

Note that, if o < 0 or # < 0, then there are functions f in Lp’ %8 for which w ( J. 6)w, o0 =
Indeed, the following example was given in [4} (see also {1, p. 56] (Remark 6 1.2)) and, in fact
it was the starting point for our counterexample in Theorem 2.1. Suppose that 1 < p < oo and
that 6 > 0 is fixed. If f(z) = (z+1— &) # Py 110 _j10q(z) with < O and 0 < & <
< t*, then Hwa,ﬁf”p S c(a,ﬁ,p) (and so f € Lg’ﬂ)a “wa,ﬁ(')f(' +€)”Lp[“1x"1+12t*] = oo, and
lwag()f(+ is)]]p =0, 2 <1 < k, and therefore

wa (Y AE(S, |l

| Lp[—1,~1+12t%]

sup

was (OBRG, >
O<h<t*

[~1,-1412¢%]

= llwa,g(:) [f() — kf(+ 5)]“1,_,,[—1.,—11'-12&] = oo

Also, if f € Ly’ then (choosing g = 0) we have Ky o(f,t*)u, »p < llwasfl, < oo. Hence, (5.2)
is not valid if & < 0 or B < 0O (see also Theorem 2.1 with r = 0).
An equivalent averaged weighted DT modulus

1—1* e
W (f wp = //m (w(z) AL ()P dadr | +
t* —1+AL 1/p
x| woilgapda) +
0 ~1
1 ‘ 1/p
w5 [ weBiopdd) 53)
0 1-At*

where 1 < p < oo, t* := 2k%?, and A is some sufﬁciently large absolute constant, was defined
i [1] ((6.1.9)). For p = oo, set w;‘;"”(f, Dwoo = W, (f )w,co- It was shown in [1, p. 57] that,
for an appropriate weight w (again, all Jacobi wexghts with nonnegative exponents are included),
1 € p € o¢ and sufficiently small 3 > 0,

Ko (f, t* )u:p<‘/w (f»f)uup 0 <t <t (54)

We now provide an alternative proof of the inverse estimate to (3.5) independent of the results in
Section 4. First, we need the following lemma.
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Lemma 5.1, Letke N reNg /24 a>0,7/2+32>0,1<p< o0, and f € B(wag)

Then
WEF )y porp < el 0, B2 (F7 e eppe 0 <t < clk).

Proof. The proof of this lemma is very similar to that of Lemma 6.1 in [10], but we still provide
all details here for completeness. The three terms in the definition (5.3) are to be estimated separately,
but the second and third are similar, so we will estimate the first two. Since w‘j;l\( f ("},i;)wa‘wr,p =
= W9 D, jorerans o A0 Wi (f") .ty = W9y Oz prpar/aesp With g := 10 without loss
of generality, we may assume that r = ( throughout this proof.

Note that t* = 2k?t? implies that [—1 +¢*, 1 — #*] C Dagy C Dogr, 0 < 7 < ¢, s0 that by (2.10)
we have

t 1-t"
1
[ ] as@al o dar <

0 —151v

ola+8)p t 3 L
< ———lm/ / W ()AL oy (fo )P dwdr <

4 Do
< et ’”Lu (f t)fi:,_;?,p

In order to estimate the second ferm we follow the proof of {10] (Lemma 6.1) and assume that
t < (2k\/A+k/2)"1. Then

1 1AL
t]”/ / lwa () Au(/,ﬂlpfiz du =
0
IR B T
= ;l; f / lwe s ()AL (f, 2z + Fuf2) d.z du <
0o -1

1 ( Atk /2t

L

1 e ¥

<o / / o s(y — ku/2)AL(f,0)P dy du <
0 ~1+ku/2

—1H{ATR/ 2 2y 1 /k

<3 / / (o sy — ku/DAR(FLy)P dudy =
1 0
—1H(ALE/1 2y +1) /(R (W)
- 751: / _ P(y)lwa sy — klo(y) /2Dl ()P dhdy <
e 3
— L4 (A+k/ 20 2y+1)/ (ko(y))
= Ci—l'; _/ / ©(y) I}/VI?};B(y)[&}]ggg(y) (f.y)Pdhdy <
-1 0
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~ 14 ( Ak 2)t 2(y-+1) /(koly))

— o3 k : p
= C\/F !Wk:h (y)AhQP(y)(f, y)|F dhdy <
-1 0
1 Vi
/3 k ;
Sc_ﬁ ; Wi (?/)Ahg_,(y)(fy Y dydh <

0 Dipnl=1,—L+(A+k/2)t7]
< S e®E 4
where for the third inequality we used the fact that, for y < —1/2 and 0 < h < 2(y + 1)/(ko(y)),
1—y+kho(y)/2 <2(1 -y~ kho(y)/2),

and so
A
we,5(y — khp(y)/2) < 2290 (y).

Lermma 5.1 is proved.
A similar proof yields (see [10], Lemma 6.2) an analogous result in the case p = cc.
Lemma 5.2, Letke N, reNg, 7/2+a>0,7/2+ 8>0, and f € Bl (wa,3). Then

W (1 g gm0 < b,y 0, B (£, e(k)t) 5 e O <t S (k).

We are now ready to prove the inverse of the estimate (3.5).
Lemma53. Letke N, re€No, 7/2+a>0,7/24+820,and 1 < p < oo If f € By (weap),
then

K'}i?'(*f(r)’tk)arﬁ!p S Cw;i(f(r). t)o"qu’p S (:wl(ng(f.(r>? t)ay.va'/ O < t S Z/k' (55)

Proof. Combining (5.4) with the weight w = w, gi" with Lemmas 5.1 and 5.2, we obtain, for
I<p=s oo

[{]‘f,r(f(r), tk)oz,i?,p = Rr};,g;(f('r}s tk)wa,ﬁspr,p <
. - * ) .
< C‘U;A(f(“,t)wa.ﬁwr,p < ka?:-(f(r‘»c(k)t)a,ﬁ,p? O<t=e.
Hence, we have

Klf,r(f(r): tk)a,ﬁ,p < Cw:ﬁ(f(r)* at)esp 0<t=Zca (5.6)

where ¢; and ¢ are some positive constants that may depend only on k. -
Suppose now that 0 < ¢ < 2/k. Then, denoting x := max{1,c1,2/(kcp)} and using (5.6) we
obtain

KE.(fD, 1580 < KL (F7, (0/0)F) 0, <
< cw;':f,(f("'), at/iapp < CWZi(,f(T), tab,p:

which is the first inequality in (5.5). Finally, the second inequality in (5.5) follows from (1.4).
Lemma 5.3 is proved.
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