SHAPE PRESERVING WIDTHS OF WEIGHTED
SOBOLEV-TYPE CLASSES OF POSITIVE, MONOTONE
AND CONVEX FUNCTIONS ON A FINITE INTERVAL

V. N. KONOVALOV AND D. LEVIATAN!

Abstract. Let I be a finite interval, r € N and p(t) = dist{t,01}, ¢t € I. Denote by A3 Lq
the subset of all functions y € Lg4 such that the s-difference Afy(¢) is nonnegative on I,
V7 > 0. Further, denote by AiWZ’;a, 0 < a < oo the classes of functions x on I with the
seminorm ||ac(’")pa\|Lp < 1, such that A%z > 0, 7 > 0. For s = 0,1, 2, we obtain two-sided
estimates of the shape preserving widths

dn ASWI

poon AL L = inf sup nf lz —vlL,,

i
1 Lg M"EM"meAiwprayeM”ﬁAiLq

where M™ is the set of all linear manifolds M™ in Ly, such that dim M™ < n, and satisfying
M™ N A8 Lg # 0.

§1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let X be a real linear space of vectors x with a norm ||z|x, W C X, W # () and
V Cc X,V # 0. Let L™ be a subspace in X of dimension dimL" < n, n > 0 and
M™ = M™(z) := z+ L™ be a shift of the subspace L™ by an arbitrary vector z € X. If
M™NV # (), then we denote by

Ex,M"NV)x := inf —
(0. M7 OV)x = _inf o~ ylx.
the best approximation of the vector x € X by M" NV, and by

EW,M"NV)x :=sup E(x, M"NV)x,
zeW
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the deviation of W from M™ NV.
Let M™ = M"(X,V) be the set of all linear manifolds M", dim M™ < n such that
M™NV # (. The quantity

(W, V)x :=  inf BW,M"NV)x, n>0

is called the relative n-width of W with the constraint V' in X. These widths were intro-
duced by the first author in [9].

Evidently, if V' = X, then the relative n-width d,,(W,V)x coincides with the Kol-
mogorov n-width d,,(W)x. Clearly, d,,(W,V)x > d,,(W)x.

Let I be a finite interval in R, and let » € N and 0 < o < 0o. For 1 < p < oo, and
p(t) := dist{t,0I}, t € I, we denote

Wr =W (1) :={z: 1 ->R|z"Y e AC1o.(1), |z p*|| 1, 1) < 1}.

Let
Asz(t) = ];_%(—1)811g (Z)x(t +k7), {t,t+st}CI, s=0,1,...,
be the s-th difference of the function x, with step 7 > 0, and denote by ALW] , =

ASW) (I), s =0,1,..., the subclasses of functions = € W, for which AJx(t) > 0, for
all 7 > 0 such that [t,t 4+ s7] C I. By A3 L, = A% Ly(I) we denote the subclass of all

functions y € Ly(I) such that Ay(t) > 0, 7 > 0. If a = 0, then we write W} := W

»0 and

AS W) = ATW) o(I). Throughout this paper we will work with the generic finite interval
I=[-1,1].

The behavior of the Kolmogorov and linear widths in the case a = 0, i.e., for the
classes W[, = W], has been thoroughly investigated. We refer the reader to the list

of references for earlier results. Recently, in [10], we have obtained two-sided estimates
lin

of the Kolmogorov widths d,, (W]f,a) ;,and of the linear widths d, (W;)"’a) ;. in the case

0 < a < oo, and in [11] we have investigated the behaviour of the Kolmogorov widths
dn (ALW; ), and of the linear widths d, (Aiwgﬂ)fj, s=0,1,....,r+1,0 < a < co.
In particular, in [11] we have obtained the following results.
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Theorem KL1. Letr € N, 1 <p,qg <00 and0 < a < 0o, be such thatr—oz—%—k% > 0.
If (r,p) # (1,1) and if (r,p) = (1,1) and 1 < q < 2, then for each s =0,1,...,r,

— 1 1y 11
dn(AiW;:a)Lq ~n r+(max{ 3,3} max{q:z})+7 n>r,

where (u)y := max{u,0} and a,, < b, means that there exist two constants 0 < C; < Cy,
such that Cra, < b, < Csay, Yn. If on the other hand, (r,p) = (1,1) and 2 < q < 0,
then for s = 0,1,

lw

enz < dn(AiWia)Lq < con”2 (log(n+1))%, n>1,

where ¢y > 0 and co do not depend on n.

Theorem KL2. Letr e N, 1 <p,q < o0 and 0 < a < oo, be such thatr—oz—%—k% > 0.
Then

+1 - o —T— l7l
dn(A:_ W;,a)l/q =N " max{q 2. n>r.

For X = Ly, W = A5W) , and V = A5 L, we call d,, (A5 W)

p7a’

AiLq)Lq, the relative
n-width, the shape preserving n-width of the class AW | in L,. In recent years shape
preserving approximation has become a central subject especially in application. This is
due to the fact that in CAGD and especially in questions of design, shape preservation is
one of the main considerations. Our results below show what one may expect to achieve
and what is beyond reach of any approximation process which involves approximation
from linear n dimensional manifolds, when we preserve the most important shape features
of the approximants, namely, positivity, monotonicity and convexity. We are aware of only
one previous attempt to consider such widths. The question of the behavior of the widths

dy (AW, Al Loo)

;_» was considered in [18]. We are indebted to A. Pinkus for bringing

[18] to our attention.
The main results of this paper are the following three theorems. For positivity preserv-

ing widths we have



Theorem 1. Letr € N, 1 <p,g< o0 and 0 < a < oo, besuchthatr—a—%+%>0.
Then

(1.1) ey~ Hmaxty gt -max{g gy < d (AW

P,

1 1
AE]FL(I)Lq S CQH_T+(;_E)+7 n > T,

and in particular if 1 < q <p < o0, and if 1 < p < q < 2, then this implies

(1.2) d (AW

0 - o, —T+(max l,l —max l,l
:D,OHA—i-LQ)Lq ~n (maxty, 2 K 2})+> n=>r.

Furthermore, (1.2) holds for all other cases of p and q, if we actually have the (stronger)
nequality r — o — % > 0. (Note that under our assumptions, the latter always holds when
q = 00.) Finally, if (r,a,p) = (1,0,1) and 2 < g < oo, then

3

(1.3) cn~3 < dn (AW o, AS L), < con”? (In(n+1))2, n>1,

where ¢c1 > 0 and ¢y do not depend on n.

Remarks. i. In view of (1.2) one might be tempted to conjecture that in (1.1) the left-hand
quantity is the correct asymptotic order of the positivity preserving widths in all the re-
maining cases as well. However, this is not supported by the asymptotics we have obtained
for the monotonicity and the convexity preserving widths (see Theorems 2 and 3 below).
We don’t know whether the left-hand quantity always provides the exact asymptotics for
positivity preserving widths.

ii. An upper bound in (1.1) can be had if one knew the one-sided width of W , in L, that

is, when the width is measured by approximation of the elements in W/ ., from above.

p.as
For then if one approximates a nonnegative element, then the approximant from above is
nonnegative too. We are aware of very few estimates for one-sided widths. In fact the only
result we are aware of is the asymptotics of the one-sided width dj{(Wg )L,, 1 <p < oo of
the periodic Sobolev class W; in L,. From this one can easily obtain the asymptotics of
dI(W;")Lq for 1 < g <p < oo (see [1]). The asymptotics dI(W;)Lq =n~", is exactly the
upper bound in (1.1) for 1 < ¢ < p < co. (In fact it is exactly the asymptotics in (1.1)

for 1 < ¢ < p < o0, but even in the periodic case we could conclude nothing from it on
4



the lower bound in (1.1).) It should be emphasized that the proof of this estimate relies
heavily on the periodicity of the functions.

For monotonicity preserving widths we show

Theorem 2. Letr e N, 1 <p,g< o0 and 0 < a < o0, besuchthatr—a—%+é>0.
Then

(1.4) dn (AL W

p,a’

1 1
A}qu)L = n*”(ﬁfa)ﬂ n>r.

q

And for convexity preserving widths we obtain

Theorem 3. Letr e N, 1 <p,g< o0 and 0 < a < o0, besuchthatr—a—%+%>0.
If r > 1, then

1

(1.5) Ay (A2WT A2 L)), =n TG0 >

p7a7

and if r =1, then

(1.6) dn (AW,

p,a?

—1-1
AiLq)qun ! a, n > 1.

§2. POSITIVITY PRESERVING WIDTHS OF THE CLASSES AS{W;G IN L,

For n € Nand 1 < p < oo, let [} denote, as usual, the spaces of vectors r =

(1,...,2,) € R" with the norms

1
ey = { (St )™ 1<p <o
p

max)<i<n |%il,  p =00,
and let B} be its unit ball. For the proof of (1.3) we need the following lemma (see [5]).

Lemma K. Let 1 < X\ < oo and m,n € N be such that m < n <m”. Then

D=

dm (BY)n <cem™ 2,



where ¢ = c(\).

Proof of Theorem 1. The lower bounds in (1.1) through (1.3) follow from Theorem KL1
since

d (AW

p?a,

0 0
ALy, = dn(ALWy )L,
Thus we only have to prove the upper bounds. First we show that

(2.1) dn (AL W)

p7a’

1_1
AE)FLQ)Lq < Cn_r+(5_5)+7 n > T,

where ¢ = ¢(r, a,p, q).
To this end we recall the construction of the continuous piecewise polynomials we had

in [10]. We take the generic interval I = (—1, 1), so that
p(t) = dist(t, {—1,1}) = min{|1 +¢|,]1 —¢|}, tel.
Fixre N, 0 < a < oo, 1§p,q§oosuchthatr—a—%—l—%>0, and write

(2.2) B :=p06(r,a,p,q):= (r—%-l——)(r—a—%—i—%)_l.

Q=

Given n € N, let

(23) tnz = tni(rvaapa Q> = {

be a partition of I. Denote by

[tn,i—htni]’ 1= 17"'7”7
Ini = Ini(r7a7p7 Q) = {

[tniytn,i+1]7 1= —7’1,,....—1,

the intervals of the partition, and let

—_ { t2n721_1, i=1,...,n,

TL'L . —

ton2i+1, 1= -—N,...,—1L
On each interval I,,;, we have defined two complementary splines ¢.,; and ¢},, with the
following properties. The functions are piecewise quadratic polynomials on the respective

intervals,

) @*ni(tn,ifl) = Soq*u(tnz) = 17 (p*ni(tni) = @Zi(tn,ifl) = 07 1= 17 sy Ny
(2.4
ani(tnit1) = Oniltni) =1, Puni(tni) = opi(tniv1) =0, i=-n,...,—1,
6



and for all —n <7 <mn,
(2.5) 0 < 0uni(t) <1, 0< (1) <1, and  @uni(t) + o (t) =1, t € L.
Thus in particular,

lsnillLo () = lonillLcry =1, i =%£1,...,%n.

Also their derivatives satisfy

@:z'/ = _SOZmz' and
(2.6)
x 1!
ni — —Pni
and
10hnill Lo (1) = HSOZ/HLOO(IM) =2|I,;|7", and
(2.7

lo¥nil ety 195" N (1) < 27 Dil 72, i = 1, Em,

Forx € W ,and 1 <i <, let 7. ,—1(z;i;t) and ), (z;4;t), be the Taylor polynomials of
degree r — 1 of x, expanded respectively, about the left-hand and the right-hand endpoints
of the interval I,,;, that is,

1
o) e - (S) ) o ) s g
et (@3ist) ==Y ok (tnic1)(t —tni1)%i=1,...,n,
s=0
* < 1 s .
mr_q(x;45t) Zy —tn)®, i=1,...,n—1.
s=0

Symmetrically, for —n < i < —1, let 7, ,_1(z;45t), ¢ = —n,...,—1, and 7}_ (z;;1), i =
—n—+1,...,—1 denote the Taylor polynomials of degree r — 1 of x, expanded respectively,

about the right-hand and the left-hand endpoints of the interval I,,;.
Then the function
T r—1 (2355 0)ani (0) + w7y (2305003 (t), T € Tni,
(2.8) orn(x;t) == i=41,...,£(n—-1),

W*,r—l(x; j:n;t), le In,:l:na
7



is in C1(I), and it is a polynomial of degree < r+1 on each interval of the refined partition
(in fact on the two end intervals it is a polynomial of degree < r — 1). Moreover, it was

proved in [10] (see [10, (2.23) and (2.9)]) that

r) « —r41-1 .
(2.9) |2(-) = Trn ()L, (1) <c|lz"p e, an TP 9, i=+1,...,4n,
where ¢ = ¢(r, a, p, q) and
(2.10) sup ||2(-) = opn(2;) |0, < enTFGTE

zeWy

where ¢ = ¢(r, a,p, q).

If r = 1, then clearly oy n(2;-) > 0 on I, for each z € AS W) . But for r > 1 we have

to somewhat modify o, ,,(x;-). Thus for i =1,. — 1, we set
(0, —1<t<tni-2,
(t - tn,i—Q) (tn,i—l - tn,i—2)_1 ) tn i—2 < t < tn i—1y
nn,i(t) = 17 tn —1 < t S tn 19 ;
(tn,i—l—l — t) (tn,i+1 — tn,i)_l ’ tnz <t < tn ,i+1,
L 0, tniv1 <t <1,
and
07 -1 S t S tn,n—l
Mn.n(t) := L
o (S e emerar )™ g <<,
where %—i—# =1. Fori=—n,...,—1 we set
Mn,i(t) 2= 1n,—i(—1).
Now define the correcting splines by
1 +(n—1)
mrn(@it) = o5 D 0%, 1,007 (i) [T ()
i=+1
1
(1) Hox (T)
o 1)!||a: L PR (O (r H 1, 1,y mn ().
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And finally set
O1n(z;t) =01 n(23t), Orn(x;t) = 0pp(z;t) + Krn(a;t), r>1, tel.

It is easy to see that the spline &, ,(z;-) is continuous on I, and it is a polynomial of
degree < r+1 in each interval [t,, ;_1,tn:] and [tpi, tni], 1 <@ <n—1, and in each interval
[tnistnit1] and [tni, tni], —n +1 < i < —1. Also, in the end intervals I, 1, it is the sum
of a polynomial of degree < r and the function 7, +,. Hence if we denote the collection
of such functions by E'Jnn? then dim ZWL <A4(r+ 1)n.

We will show that &,.,,(z;t) > 0, t € I and that

1

(211) sup  [|lz() = Grn(@;-)lL,0) < en TG+
TEAL W o (1)

where ¢ = ¢(r, a, p, q).
Indeed, on each interval I,,;, i = £1,...,£(n — 1)
Orn (@51) = o123 45 1) Puni (1) + 7y (23858) 00 (1) + Krn (23 1)

Z 77*,7‘—1(37; i; t)go*nz (t) + 7T:_1(£L’; i; t)(p;km(t)

1 r_1

+ (7« _ 1)! Hx(r)paHLP([M)p_a(tn,i)‘In,i} pnn,i(t)

>0,
since by (2.5), Taylor’s formula and Hélder’s inequality we get for t € I,,;,
T —1(@5 85 ) @uni (1) + 771 (@545 8) 07, (2)
= a(t) = (2(t) = T p1(2;35)) Pani(t) — (2(t) — w7y (23451)) @5 (L)

—l2(t) = 1 (@) @ani(t) — [2(t) — 'y (23351) ] p(t)
1
(r—1)!

Here we have used the fact that z(t) >0, ¢t € I.

v

1
p

Z_

Hx(r)pa HLP(Im)p_a<tn,i) ‘In,i|

Similarly, on the interval I,,,, we have

Orn(T5t) = T po1(x; 6 1) + Ky (25 1)

1

1 t , v’
> Tor—1(z;4t) + 2" p® / (p(r)) =D g
(T— 1)‘“ ||LP(Inn) PR

>0

— Y



since by Taylor’s formula and Holder’s inequality we get for t € I,,,,

Tar—1(x;0;t) = x(t) — (x(t) — Tupo1(z;038)) > —|2(t) — To o1 (395 2)|

1 t A\
— (r) o (r—a-—1)
= (r — 1) =" p ||Lp(lnn) (/t (p(7)) P dT) :

n,n—1

The proof for I,, _,, is the same.

The proof of (2.10) (see the proof of [10, (2.9)]) readily yields

sup  |#rnl@s )Mo,y < en TG
zeAYWr  (I)

and this in turn together with (2.9) implies (2.11). This completes the proof of (1.1).

If the inequality r — a — % > 0 is valid, then we can improve (2.1) for the cases
2<p<g<ooandl <p<2<gq<oo. Indeed, under this condition W , C Lo, S0
given z € AYW) ,, let M™ = M™(I) be any linear manifold in Lo, such that dim M™ <n

and

. — 1_1
Jinf [l —ylr. < en HETE

where ¢ = ¢(r,a,p). Such a linear manifold is guaranteed by [10, Theorem 1] (and we
actually know that it may be taken as a subspace of continuous splines). Then there

exists C' = C(r,a,p) and y, € M™ such that
|2 = YzllL., < On~ "G —2)+,

If we set 9, (t) := y.(t) + Cn~"tG=3)+ t €1, then clearly, ¢,(t) > 0, t € I, and

1

|z = gl <20n TG,

Hence we have proved the existence of a linear manifold M™*! in L., such that dim M+ <

n+1, M"" T NAY L, # 0 and

E (AW,

n+1 0 —r+ l_%
o MM AL L), <2Cn (G=3)+,

L

This completes the proof of (1.2).
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In order to conclude the proof of Theorem 1 we take (7, c,p) = (1,0,1) and 2 < ¢ < 0.
If x € AS WY, let 01, (2; -) be the spline defined in (2.7) which, as we recall, is nonnegative

and satisfies (2.10), namely,
(2.12) |2(-) = o1 n(@; )L, <en™ 7, 2<g< oo

where ¢ = ¢(q).

Forn > 1 let E%n be the space of continuous piecewise quadratic polynomials ( € C(1),
on the refined partition. Then dim 2(1),71 =8n+ 1. For n =1 we take 2(1)71 to be the space
of constants. We are going to prove that for each n > 1 and 2 < ¢ < oo there is an integer
a = a(q) > 0 such that a subspace X 4on C Ziy%nw of dimension dim¥; gon < a2",
exists, for which

. 3,_n
sup inf |lo (@;:) =o)Ly < enz272,

> 1 2’—%"]
€AW, TEH1a2n )

where ¢ = ¢(q) and [u] denotes the integer ceiling of w.

The space XY ,, was considered in [10] as one of the spaces of splines X0,, r € N. A

one-to-one correspondence between the spaces X2, and R27M+L n(r) := 2n(r + 1) was

given by the invertible discretization operator

Argan 20, 3C=Y= Yon()r s Y=1,Y0s Yls - - s Yn(r)) € RZITL
where
(2.13) i =n(r) " () = [+ 1) Cltapy,), J=0,%1,...,£n(r).
The inverse operator is

Al o tREOT Sy = (Y Y1 Y0, Y - Yn) — € S0,

where ( is uniquely defined by the interpolation equations

Q@

. _B=1 .
(n(r) — il + 1)~ T y;, j=0,%1,... %n(r).
11

C(tngr),j) = n(r)



It was proved that the norms [[A; .4 Cll,2nc+1 and ||C]|, are equivalent, the equivalence
q
constants depending only on p, ¢, r and a.
Ifr=1,a=0and p=1, then n(1) = 4n and B = 1, so that (2.13) becomes the much

simpler

Y = n(r)_EQ(tn(r),j), j=0,%£1,...,£n(r),

and following the above mentioned proof, it is readily seen that there exist absolute con-

stants ¢; > 0 and ¢y such that
1 1
(2.14) cine|[A11,gnCllgner < Il < con@ A1, gnCllgne

for all ¢ € 2(1),”.

Fix n € N. Then each oy o~ (7;t) can be written as
N
(2.15) o1on(x3t) = o1 (23 t) + Z(O'Lgu (z;t) — g1 (z;t)), tel

v=1

We proved in [10] that for every x € Wi, the mapping A; 1 492+ maps (0’1’21/ (x;-) —
o1,v-1(x;+)) into the ball 02*%”Bf2u+1.
Let my := 1 and the integers m, < 82 4+ 1, v = 1,2,..., N, be prescribed and let

L™ v =1,2,...,N be any subspaces of R32"*! dim L™ =m,,. Set
x=%0,, L™ i=Ary L™, v=12,..N.
Then clearly X" C Z?’QV and dimX"™ =m,, v =0,1,2,..., N. Denote
30N span(UfLoZmu).

Then X0+ € 29, and dim %708 < mg + -+ my.

Now take L™ to be such that

E(BY +17Lmy)l§§"“ < 2d,,, (B} H)ziﬁ”“’ v=1,...,N.
12



Then by (2.14) and (2.15),
sup  E(o gn (x;-), Xm0 N)Loo < ch 382 1) 182”“’
r€AG W]
where ¢ = ¢(q).
If we put N := (%nw, and set
m,:=8"+1, v=1,...,n—1,

my, = (n_12nw, v=mn,...,N,

then mg +my + -+ +mpy < a2, where a = a(q) € N. We apply Lemma K and obtain

E 2 : 82% 1

sup ( 12rqn1( )Zmo’ ,mN < d B + 182”“
0 /1

x€A+W1

N
=Y (B

v=n

N
1 n
SCZTﬁZ_?Scn 272,
v=n

[N][94)
3

where ¢ = ¢(q).

Given z € AY W7, let o(z;-) € ™0™~ be such that

3,1
HO’LZ(%M (.CC, ) — O'(,jC7 ~)HLOO < 2cnz22 g,

and set

o(x;t) == o(x;t) + 2en22"%
Then we have 6 (x;t) > ) y1§m (x;t) > 0,te I, and

. 3 n
HO-I,Q(%”] (-CC; ) - O'(ill'; .)HLOO < 4cnz22 g

Combining this with (2.12), yields
() = oz )e, < 2() =0y yrgm (@)L, + o) Hrgm (z5) = a2,

< 27 + cn%2*% < cn%2*5

where ¢ = ¢(q). Now, the upper bound in (1.3) follows by standard technique.

concludes the proof of Theorem 1. [
13
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§3. MONOTONICITY PRESERVING WIDTHS OF THE CLASSES AL W) | IN L,
We begin with

Lemma 1. Let J be a finite interval, and let {ti}:zl be a collection of r € N disjoint
points in J. Set 61 := 1 and 9, := min{|ti —tj],i # j}, if r > 1. Then for any function x
such that (") € Li(J),

(r=1)
2

) I
(3.1) [zl L) < =) (|5_J>

Proof. Fix t € J. Then integration by parts yields the system of r equations for the r

mass (1) + 17|20
1<i<r (’I" — 1)' Li(J) )~

unknowns 2(%)(¢), s =0,...,r — 1,

t;
Zx(s) )t — )" =a(t;) —/ .Qi(r)(T)<ti —T)T_ldr, i=1,...,m
t

which readily yields (3.1) for r = 1. For r > 1, we are interested in the solution of the

system only for s = 0, that is,

(3.2) a(t) = W Z; Wi <:U(ti) - /t ) 2 (1) (t; - T)r‘ldT) ,

where W, is the determinant of this system and W,.; are the co-factors. Evidently, W, is

the Vandermonde determinant,

1<i<y<r
and
Weo=(D" I G-t [T (t—te)
1<5<r 1<k<i<r
j#i ki I
Therefore,

'I"(?" r(r—1)

(W | > (r - 6,7, and (W] < 1]

so that (3.1) readily follows from (3.2). O
14



It is well known (see, e.g., [24]) that the distance E(z, L)x, between a vector x € X

and a linear subspace L C X, is given by

E(x,L)x = sup <x*, x>,
z*eX*,||lz*||x*=1,2*LL

where X* denotes the dual of X. Also the distance E(z*, L*) x«, between z* € X* and a

linear subspace L* C X* is given by

E(x*, L") x~ = sup <z*,x>.
zeX,||lz||x=1,zLL*

This immediately implies the following well known result which we quote for the sake of

reference later on.

Lemma 2. Let v be a nonzero vector in R™, n > 1 and let R*~1(v) denote the (n — 1)-
dimensional hyperplane, perpendicular to v. If M™" (v;2) := z + R""Y(v), then for each
r € R" and any 1 < q < o0,

B(w; M" ™ (v52)) = o]l | <@ =20 >,
where % + % =1.

In the sequel we need the standard notation for the unit vectors along the axes, namely,
(3.3) E"i={e®}" | e i=(0,...,1,...,0),
where the 1 is standing in the ith entry, and

(3.4) Em:={eW}" . &M =(1,1,...,1),e® :=(0,1,...,1),...,é™ :=(0,...,0,1).

Finally, we denote

e® =& .=0:=(0,...,0).

We need the following lemma of Tikhomirov [23] (see also [12] or [19]).
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Lemma T. Letn € N, and let X be a real linear normed space of dimension dim X > n

and B C X its unit ball. Then d,(B)x = 1.

Lemma 3. Let n > 1 and denote 6B} := {x | x € R™, ||z|\;n < &}. Then for any d.,6* >

0 one has

(35) dp—1 (5*3?’(5*B?)l" = max {5* — %’i_*}

Proof. The sets 0, BT and 6* BT are centrally symmetric convex sets. Therefore

dp—1 (0:B7,0*B}),, = inf su inf z — 1yl
w1t (081, " By L"—ICI’;Ome(s*%{lyeL”—lﬂé*B?H iz

where L™ ! is a subspace of dimension n — 1, in I .

We begin with the lower bound. Suppose to the contrary, that for some nonzero vector

v?
5*
E(6.B7,R" ' (v) N6*BY),, < b — R
Let |vi,| := max;<;<yp |v;] and let * = (27, ..., 2}), be the element of best approximation

of §,¢(0) from the set R"~*(v)N6* BY, that is, ||5,e(0)—z*||;n = E (6.€(), R""(v) N 6*BY),, .

Since v is the normal, then we have —x vy, = >, ; %7 v;, so that

|25 vip | = D afoi] < i D |7,

i#i0 1740

and it follows that |z} | < > iziy |77|. At the same time

) o
Op — |25, | < [0s — a7 | < 10, et0) — T < 6y — 5
Hence
* * 5*
Z lz7| > ‘%0‘ > o
i#io
implying

n
la*ly = 3 laf| > 6,
=1

16



thus contradicting «* € §*Bf". Therefore,

6*
(3.6) dyn—1 (6+BT,0"Bl");n > 64 — 5
Evidently, the polytope 0.B7 contains the cube %*BQO. Thus, applying Lemma T to

X =17, we obtain

=9

*

)
n

* DN n 6* n
dp—1 (6. BT, 6" Bf )lgo > dy—1 (0. B )lgo 2 gdn—l (Boo)lgo -

which combined with (3.6) completes the proof of the lower bound in (3.5).

In order to prove the upper bound in (3.5), we first assume that J, — % > %*, and

note that this implies that %* > 2(3—*_1). Let £¢(®, 1 < i < n, denote the vertices of 0. BT

and take z(*) := (a:ﬁi), . .,CBS)> e R*1(eM) N §*BY, so that azl(-i) = %, x§i) = —2(3—*71),
j # 1. Then clearly
i i o o o

() ._

;= 0y — %*, and 2\ =

J
22=15, < §*, it follows that +z(9 € R"~1(¢W)) N §* B}, and

Ox

n

Otherwise, take x —%*, j # 1, 1 <7 <mn. Since in this case

n

|£e® — £z

Combining with (3.7), we conclude that
n mn—1/5(1) * PN 0* 5*
E((S*Bl,R EDyn s Bl) < maxq 6, — =, 2
I 2 n
This establishes the upper bound in (3.5) and concludes the proof of Lemma 3. [
Finally, for Y := {y(i) }?:1, a system of vectors in the space X, and for 1 < p < oo, the

set
n
SEY)={yl|y:= Zaiy(z), a=(ai,...,a,) ER", a; >0, i=1,....n, |lal» < 1},
i=1

is called the positive p-sector over the system Y in X, and

n

B,(Y) = {y |y = Zaiy(i), a=(ay,...,a,) € R" ||a||lg < 1},
=1

is called the p-ball over the system Y in X.
17



Lemma 4. Let m € Z; and n € N, be so that m+1 <n, and let 1 < p < q < 0. Let
E" be the system from (3.4), and denote by

AL i={z=(21,...,7,) |21 < -+~ < 2, },
the cone of vectors x with nondecreasing coordinates in R™ . Then

dm (S (E"),AL),, =

Proof. First note that

Sf’(E”):{x:(azl,...,xn)|O§x1,0§:L'g—xl,...,Oﬁxn—xn_l,xn§1}

={r=(21,...,2,) |0< 2y <29 <--- <, < 1},

and that the vectors é), i = 0,...,n, are the vertices of this n-dimensional pyramid.
Evidently S; (E”) C Al Also, since for 1 < p < ¢ < oo, ||z[jip > [2llin > Nzl > (|2,
it follows that S} (E”) C S;’ (E”) Hence

A (S (E"), A3), 2 din (ST (E"), A%)),

p

and it suffices to consider Sfr (E”)
Let M™ be an arbitrary m-dimensional linear manifold and let L™*! O M™ be a

subspace of dimension dim L™*! < m + 1 in R™. Then clearly
(3.8) E(ST(E"),M™NAL), > B(Sf(E"), L™ nAL), .
FiX0<e<%andlet

S:l(E") ={z=(21,...,7,) |e<a1 <22 <+ <, <1—¢} C ST (E).

Then

n
oo

(3.9) E(SF(E™), L™ nAL),, > E(SH(E™), L™ N Ai)l&.

18



Also,

(3.10) SH(E™) = (1 —2¢)Sf (E™) + eV,
and the vertices of the n-dimensional pyramid Sj’l (E”) are &) = eeM) + (1 — 2€)é,
1=0,1,...,n.

For z° € S:l (E"), we have
E(«°, L™ nAL),

(3.11)

= min { B(a%, "1 0 (AL\ ST (E7)),,, B (2, L™ 0 SF(E))),, |-

I
Therefore we may deal separately with each term on the right. We begin with the left-hand
term. By Lemma 2 with ¢ = oo, we obtain that

(3.12) E(xO,R”_l(e(l)))ln =20>¢ and E(xO,M”_l(e(”), e(”)))ln = |20 —elM| >,

where the e(?)’s are from (3.3), and

R* W) ={z = (z1,...,2,) |21 =0} and

M e™ ey = L R (e = {1z = (z1,...,2,) | 2, = 1}.
So, if we denote the half-spaces

Rﬁ_l(e(1)> = {.CC = ($17 s ;xn) ‘ T < O} and

Rﬁ_l(e(n);e(n)) ={r = (21,...,2,) | mp > 1},

then by virtue of (3.12) we have

oo

E(2° R (M) URM (e e™)),, >
Since Al \ 57 (E”) = AL N (R* 1 (eW)UR" ! (el™;e™)), this implies
B(a% L™ 0 (AL ST (E™)),y
= E(®, L™ n (AL n (RN eD)uRM (e e™)))),,
> E(aco, Rﬁ_l(e(l)) U R’i_l(e(”); e(”)))ln

> €.
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Hence by (3.11)

B, L AL, > min{e B(a%, L™ 0 5F(E),, |,

oo

n

which in turn implies

n
oo

(3813)  B(SH(E"), L™ AL, = min{e B(ST (B"), L 0 ST (E")),, }

oo

Now we consider the right-hand term in (3.13). Let the operator T), : R" 3 2 — y € R”
be defined by

Y1 =21, Y2=T2 —T1,---,Yn = Tn — Tn-1,

so that it is invertible and its inverse is given by

i
T; = g yi, 1=1,...,n.
Jj=1

It follows that T,,é(® = () and Tnégi) = eeM) 4 (1 —2¢)e® =: eg), i=0,1,...,n. There-
fore 13,57 (E”) = S7(E") =: S, where E" is from (3.3), and by (3.10), TnS:I (E”) =
eetV) + (1 —2¢)8] =: SH(E™).

Denote by Tnlgo the space R™ with the norm

1yl 7, n = max{lyal, [yr + 2l [y2 + - +ynl}-
Then
E(S5(E"), L™ NS (E")),, = B(S5 (E"), T L™ 18Tz
(3.14) > %E(S;q (E™), T, L™ n ST,

> %E(Sf,Tan“ nsH),. —e

since the unit ball of T},1, is contained in the cube 2B” and max; <;<y, || —e in. = 2e.
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Now,
E(Sf T,L™ " nS),, = E(=S{ usf T, L™ n (=SF usy)),,
= E(BY, T, L™ n (=SF ust)),.
(3.15) > B(B, T,L™ 0 BY)
> dnfl(B?7B?)lgo
{1 1} 1
=maxq=,— ¢ = =,
2'n 2

where for the last equation we applied Lemma 3 with §, = 6* = 1. Taking ¢ =

|~

combining with (3.14) we conclude that

v

E(S5(E"), L™ 0 SE(ET),,
which together with (3.8), (3.9) and (3.13), yields

> .

E(ST(E™),M™n AL,

o =

Since M™ is an arbitrary linear manifold of dimension m, it follows that
dn(SF(E"),AL),,
This completes the proof of Lemma 4. [
We are ready for the proof of Theorem 2.

Proof of Theorem 2. We begin by proving the upper bound. Let o, ,(z;-) be the spline
defined in (2.8). If r = 1, then for each 2 € AL W}

.o clearly o1, (x;-) is nondecreasing

and there is nothing to prove. If » > 1 and 2 € ALW | then we have to modify o, (z;-).

pa
Let
(3.16) m(r) =m(r,a,p,q) = [(r — 1)2ﬂ+1'|,
and set
; B

b= <m(r)n7$<%)rglfl)fk) , k=0,1,...,m(r), i=1,...,n,
(317) tn,i,k = B

—1+4 <m(r)n+ﬂrf(%)éz+1)—k> . k=0,1,...,m(r), i=-1,...,—n.



Then

PR tn,i—l, i:1,...,n—1,
0 tn,’i+17 'L':_]-a"w_n—’_l?

and

tn,i,m(r) = tn,i, t==1,...,4n,

where the points ¢,; are from (2.3). That is, the points ¢, ; 0 and t,, ; ,,(») are the endpoints

of the intervals I,;. Set

tnik—1,tnik|, k=1,...,m(r), i=1,...,n—1
(3,18) In’l"k = { |: Yy 1 ] ( ) ‘
tn,i,k,tn,i’k_l}, k=1,....,m(r), i=-1,...,—n+1
Thus the intervals I, ; x, £ = 1,...,m(r), form a partition of the interval I,,;, and it is

readily seen that

28

(3.19) W‘Iml’

1 .
(2T i= 41, t(n—1), k=1,...,m(r).

The first derivative z’ is called small on I,;, 1 < |i| < n — 1 if there exist at least

2r — 3(< m(r)) subintervals I,, ; x;, each of which contains a point ¢; x, € Iy 4x;, such that

r—1-1
P

(3:20 o (tia) <

(r

Otherwise the first derivative is called big on that interval.

D0 1,02 () |

Let 1 <7 < n—1 and assume that the first derivative 2’ is small on I,;. Then we

replace o, (z;-) on I,; by the linear function
&r,n(-x; t) = [w(tn,i—l)(tni - t) + x(tn,i)(t - tn,i—l)] ‘Inzwil, te Inz'v

which interpolates x at the endpoints of I,,;.
If on the other hand, z’ is big on I,,;, then there exist at most 2r — 4 subintervals I, ;. ks
j=1,...,m < 2r — 4 (possibly none, then m = 0), and points ¢; , in them, for which

(3.20) holds. We have to modify o, ,(z;-) on I;. Let

1
r—1-1
P

(3.21) Eni(t) ::{ Tt 0 i) o ™77 € Ty

0, otherwise,
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and set

tni

t
(322)  Rpps(wit) = / Eni(7)dr — / Emi (AT (t — tos) | Tt| )t € L.

tn,i—1 tn,i-1

It readily follows that for each 1 < g < oo,

1 1
r—=42
P+q

) 2(r +3)
(3.23) [Frmi(@ Ol L, (1) < 737 1!

(r

120, gyp ™ (i) i
Now put

5-r,n(x; t) = Ur,n(x; t) + ’%’r,n,i ({IJ, t)7
and clearly &, (2t i—1) = orpn(23tni—1) and G, 0 (25 tni) = Orn (X tni).

Finally for t € I,,,, let

1
7

=07 ‘ g ’

~ Lp Inn r—o— !

(3.24) Frnn (i) = —— Qf ) / ( / (p(6))(r—o=2p dH) dr,
r—= ) tn,nfl

tn,nfl

where ]l) + ]% =1, and again put
Grm(x;t) == 0pn(;t) + Rppn(x;t), €€ Iny.

Similarly we define &, ,(z;-) on I, i = —n, ..., —1. The spline &, ,(z;t) is then defined
on I and it is continuous there. Moreover &, ,(z;-) is nondecreasing on I. Indeed, all we
have to show is that ;. ,,(7;t) > 0, t € I,,;, for an arbitrary —n <i <n.

Assume that 2’ is small on I; for some 1 < i < n. Then &), (z;t) = (@(tn;) —
x(tn,i_l))|Im|_1 >0, t € I,;, since x is nondecreasing.

Otherwise z’ is big on I,,;. By (2.5) and (2.6) we rewrite

/

Oron(@38) = o p—2 (214 8) uni () + 7)o (2’585 ) (1)
+ 77*,7“—1(3:; Z’ t)@;m(t) + 7T:_1(£L'; Za t)sp;tnl(t)
=2/ (t) — (2/(t) = Tur—2(25458)) uni () — (2/(t) — mi_o(2'5838) )0l (£)

= (2(t) = e o1 (23651) )@l () = (2(t) = 77y (2388))or’ (1)
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Now Taylor’s formula and Hélder’s inequality yield,

r—1-2%
‘ P

b

: 1 r) —a
HQL'/() - 71‘*77“_2(1',;@; ')HLoo(Im') < m“x( )P ||Lp(1m')p (tnz>|Inz

* ; 1 r) o —« r—l—%
J9/0) = a5y € g8 Ly g )

r
Hx — Ty ,r—1 $,Z,' ﬁ”x( )

Moy < ¢ 5y 1,00 o) il

* 1 1 ) —« T—*
Hx() - 7T7~71(37§Z§')||L00(IM) < m”x( )p HLT,(IM)p ( nz)‘Inz|

Therefore by (2.7) and (4.11) we obtain,

ol (z; x'(t) — T+ o
(3.25) rl®E) 2 2] (7“—1)'H

tel,,;.

r—1-2%
| P

Y

paHLp(Im-)p_a (tni) [ Tns

Since z’ is big on I,;, there are only for 0 < m = m([ni) < 2r — 4 subintervals I, ; k;,
j=1,...,m, containing points ¢; y, € I i x,, for which (3.20) holds. On these subintervals,
it readily follows by (3.16), (3.19), (3.21) and (3.22), that

~ 2<T+3) r —a r_ _% tni -
Frnileit) = (r—1)! |70 HLp(f 0P (tni) [ Tni] 1 _/ Eni (T)dT | 1] '
n,i—1
n,4,k; 7"—}—3 . . - _%
( \‘I ||) H D2 nyp ™ (i) i
-1 ni
> (1 T ) (T+ )Hm(r) OéH —a( )‘I |r 1_,
(r—1)! P L, (1.)P ni) | Tni

(7’+3 (7.)
> .H

which together with (3.25) implies

—1-1
T P
)

PN, P (tni) [

r— 1—7

r+3 H (r)

Gy p(@st) > 2'(t) + A, 4 (25 t) — o) x

> 1'(t) > 0.

P, (1,yP™ " (tni) T

24



On the other subintervals I,, ; 1, k # k;, j =1,...,m, 1 <k <m(r), we have

tni
’%;",n,i(x;t) = _/ £ni(7)dT|Ini‘7l
t

n,i—1

. In’i’kj 2(T+3) r) o —a T—l_%
o (Z ‘ 1] ) vl LAk PR CO1 1

Jj=1

(r—2)2°2(r+3), (1 W
Z = m(r) (r—1)! = HLp(Im-)p (tn) [ i

)
(T+3) r) —a 1"717%
Lt PR CDI ST

r—1-21
| P

which together with (3.25) implies

~ ~ r + 3 ™ (0% —«
Frn(@it) 2 2/ (0) R i) = oy, =0\ 1, (P (tni) | Ini

1
r—1-1
‘ P

> '(t) -

20+3) 1 (1) o Y S
(r —1)! ||:1:( )p HLP(IM)p (tni)‘jni| >0,
since (3.20) fails there.

On I,,,, we recall the definition of o, ,(2;t) from (2.8) and apply Taylor’s formula and

Holder’s inequality to obtain

|2/ (t) = o)., (@3 t)| = |2/ (t) — T pa(a’s s t)|

1
7

Hx(T)paHL (Inn) t ' »
pUnn (r—a—2)
= (7“ - 2)! /tn,n—l (p(T)) AT '

So, together with (3.24) this yields,

Trn(st) s =2/ (t) — (' (t) — o], (231)) + Ry (25 8)
> (i t) = |2 (8) — o), (51)]

— Fe’r’n,n(x; t) — }m'(t) — Tur—o('sm; t)‘

For the intervals I, ;, ¢ = —1,..., —n the proof is similar.
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Thus we conclude that the spline 6, ,(z;-), indeed is nondecreasing in I, and what is
left is to show that it approximates well x.

If " is small on I,;, then there are r — 1 subintervals I, ; x; C Ini, j = 1,...,7—1, such
that Lnik, N Inik,, = 0, j" # j", and points t;, € Lk, j = 1,...,7 — 1, for which
(3.20) holds. Hence by (3.19)

g A" > kzl?.iﬁln(r)‘jn,i,k}

> (m(r)) “lo—pB+1 ‘Im".

mln{ |tkj/ - tkj//

By virtue of Lemma 1 and Hélder’s inequality we get

r—1 L == L) ™ %
Il tr) < gy (M) ngszk\+OT JU>MMM)

Hx ") aHLp(Inl)p a(tni)u—ni’r_l_ﬁ),

<
—0(12?35‘ [ )|+ o

which in turn, by (3.20), implies that

320 19 S lfe 0,7 )

where ¢ = ¢(r, 3). Since G, ,,(z;-) is linear and interpolates x at the endpoints of I,,;, (3.26)

yields

x(')_&rn <C xr) “ 1Y - tni |Ini|r7%+%
sany My < elle®o%l, 0™ (tar)

< [z aHLP(Im) nE

where ¢ = ¢(r, a, p, q), and where we have applied the readily seen inequalities
ptni) =n (=i, || <en™P(n =), 1<l <n-1,

which by the definition of § (see (2.2)), yield

P (tai) [Tl 70 < en”T 0,
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If 2/ is big on I,,;, then by (2.9) and (3.23),

[EIQ D] P

<|jz(-) = opn(=; ')”Lq(fm) +{|Er i (5 ')HLq(Im)

2(r +3) 1
=i

(3.28) 141

SC””’E(r) Pl (Im)n_ﬁ%_l paHLp(Ini)p_a(tm)‘I””‘r n

r) o —r+l_1
< c||x( 'p HLP(Im)n P

where ¢ = ¢(r, a, p, q).
Finally for ¢ = n, by (3.24) we have,

}l/%r,n,n(x; ) HLq(Inn)

1 q i
=01, o ' t ’ : q
(3.29) < i) / / / o | ) e
(T‘ — 2)' tnon—1 tn,n—1 tnynfl( ) '
<cfla®p?||, p T,

where ¢ = ¢(r,a,p,q). Indeed, we fix ¢4 = €1(r,a,p) > 0, e = ea(r,a,p) > 0 and
€3 = e3(r,a, p,q) > 0 so small that (r —a—2 —¢€)p’ # —1, r—a—l—%—el — €y # —1,

(r—a—%—61—62—63)q7é—1,andr—a—%+%—el—62—63>0. Then

( / (1- e)<r—a—2>P’d9>
tn,nfl

< e1(1 = tm_1)® max {(1 ) TR (1 T)T—a—l—%—q} ,

which implies

1
I

t T
/ (/ (1—@)r—o-2r d@) dr
tn7n—1 tn,n—l

< crea(l — zfq%rl_l)eﬁ62 max {(1 — tnyn_l)r_o‘_%_el_ﬁ, (1-— t)r_o‘_%_el_@} ,

and finally
1
1 t T i’ I ?
/ / / (1—0)=>=2q9 | dr| dt
tn,n—l tn,n—l tn,n—l
< ereae3(l—tppy )61+ez+ez( th nil)r—a—%+§—e1—62—63
=cicoc3(1 =ty 1) ™7 %+%
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where ¢; = ¢1(r,«, p),co = co(r,a,p,) and c3 = c3(r,a, p, q,). Now (3.29) follows since

] r—ao 1
( Kn,n ]) P E =n _B(7 —a——l_i'_l) n r 1 '

Combining (3.27), (3.28) and (3.29), we obtain

(3.30) [2() = Grn(@: )|y < en TGO+,

The functions &, ,(x;-) belong to the space f],,,n(f ) of continuous splines that are poly-
nomials of degree < r+1 on each interval I,, ; x, i = £1,...,£(n—1), k=1,...,m(r), and
that on I, 1,, are sums of polynomials of degree < r — 1 and the functions &, , 1+, (z;"),
defined in (3.24) (and analogously for i = —n). Evidently, dim¥,,,(I) < cn, where
¢ =c(r,a,p,q). Hence, (3.30) yields the upper bound in (1.4) for r > 1.

We turn now to proving the lower bound in (1.4). It suffices to establish it for the

classes ALW;’ C A}rWT

p,o

0 < a < co. Also since by Theorem KL1, for 1 < ¢ <p < o0
(and actually for 1 < p < ¢ < 2),

1

Ay (AW AL L), > da(ALWD) = n G0t

the lower bounds in these cases follow. Thus we only have to consider 1 < p < g < oo, (in

fact only for ¢ > 2). To this end let

1, tel-1,1]

%@%:{0, teR\([-1,1]"

and define by induction
t
@@y:/'¢&ﬂ%44ﬁh LER, seN
t—1

It follows that for all s € Z, ¢, is even, ¢s > 0, ¢s(t) = 0,t € R\ [=1,1], [¢5 (£)| = 251,

in [—1, 1] except for a few dyadic points with denominator 2771, and

1
64(0) = | bullL. = / od=2 e
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For N € N, write ¢ n(t) := N~ %¢5(Nt), and for

2i .
TN’i::_1+N’ 1=0,1,..., N,
B 21— 1 ,

TN = —1+ N i1=1,...,N,

let

¢37N7¢(t) = (bs,N(t_i—N,i), iZl,...,N, 8€Z+.

Finally for 1 < p < oo, set
Gp,s,N,i(t) == 2—8+1_%N%¢5,N,i(t), s$€ L.

Clearly, ¢, s n,i(t) is symmetric about Ty, ¢p s ni(t) =0, for t € Jn,i == [TNi—1, TN,

and
oni(Tni) =2 PN 7, wni(Pni) =272 2N seN.
p7 ’ ’ ) p7 ) ) )
Also
(3.31) l65hnall,, =1, s €2y

For later use we want to record the fact that by the symmetry,

1 TN,i
(3.32) / (t - %N,i)gbp,s,N,i(t) dt = / (t - %N,i)gbp,s,N,i(t) dt = 0.

-1 TN,i—1

We are ready to construct the system of vectors that will give us the lower bound. Denote

t
¢p7T7N7i(t) = / ¢p,r—1,2N,2i—1(7-)d7-3 7 = 1,...,N, t e [—1,1].
1

Then it is nondecreasing and, by (3.31), belongs to AiW; . It follows that

0, t < Ton,2i—2,
(333) 77bp,7‘,N,i(t) = {

1
2_3T+4N_T+5 7
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N
=1’

so that, in particular, it is alsoin Ly, 1 < ¢ < co. Denote the system \I/]]XT = {@Dp,r,N,i(')}
and let S;,L (\I/]]XT) be the positive p-sector over this system. Then S;’ (\If;,\f,,,) C A}FW;;,
which implies

1 1 + (o N 1
(330 (AW ALY, > dn (5] (¥5,).ALL,)
Define the discretization operator Ay 4 : Ly > 2 — Ay g7 € lév by

_ 1 _ 1
An gz = [ [Jon ol 1H / 2(O)dt, .., [T an| T / 2(t)dt | .
Jon 2 Jan 2N

Then it is easy to see that
lAngaliy < llallz,, @€ Lq.

If M™ is an arbitrary subspace in Ly of dimension < m, then the set Ay (M™ N AL L)

consists of vectors with nondecreasing coordinates, i.e.,
Ang(M™NnALL) C AL CcRY,
where Afr was defined in Lemma 4. Hence

(3.35) A (S5 (W31r), A3 L), 2 i (Ang Sy (T55), AL) -

Lq
Now by (3.33)

AN qVprNi = c(r,p)N*”%*%é(i), i=1,... N,
where é(V) are the N-tuples from (3.4) (with n replaced by N). Hence

ANqu;(\IJN ) = c(r,p)N_T+%_%S; (EN),

p7r

where EN := {£D}N . Therefore

(3.36) i (An,g ST (D), Ai)léV = c(r,p)N—r+%—%dm(5+(EN)),Ai)lév.

p

Taking m = n and N = n + 2, we obtain by Lemma 4,

4a(S) (B72)),AL) s > 0> 0

where ¢ is an absolute constant. So finally combining (3.34), (3.35) and (3.36) we conclude
-r+3-1

dn (ALW] AL L), >cn

where ¢ = ¢(r,p,q). This proves the lower bounds for 1 < p < ¢ < oo and completes the

proof of Theorem 2. [J
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§4. CONVEXITY PRESERVING WIDTHS OF THE CLASSES A2 W] | IN L,

We begin by denoting
(4.1)
Em = {eD}" o M i=(1,2,...,n),6® = (0,1,...,n—1),...,e" = (0,...,0,1).

We need the following result the proof of which is similar to that of Lemma 4.

Lemma 5. Let m,n € N, be so that m <n+1, and let 1 <p < q < o0. Denote by
Ai ={r=(z1,...,2p) |22 —21 < <wp—Tp_1},

the cone of vectors x € R™, with convex coordinates. Then

. 1
n 2
(4.2) i (S, (E ),A+)l2 > 56
Proof. First note that
ST(EV”) ={z=(z1,...,2,) | 21 > 0,290 — 221 > 0,23 — 229 + 21 > 0,...,

Tp — 2mn—1 + Tp—2 Z O,IL'n —Tn—-1 S 1}

={r=(21,...,20) | 0< 21 <29 —21 <23 —22 < -+ - <2y —p_1 <1},

and that the vectors ¢(© := ¢ 4 =1,...,n are the vertices of this n-dimensional

0,
pyramid. Evidently S (E™) C A%, and S; (E™) 2 S{ (E™), so that
1 (S (E7). A1), > d,0(ST(E7).A2),,.
Thus again, we may consider just SfL (E”) Let M™ be an arbitrary m-dimensional linear

manifold and let L™*! be a subspace of R", of dimension dim L™*! < m + 1 so that

L™t D M™. Then we have

n
oo

(4.3) E(S{(E"), M™NAY),, = B(ST(E"), L™ NAL),, .
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Fixe:0<e<%and denote
Sil(Ev”) ={r=(r1,...,2,) |26 <21 +e<a0—21 <23 —29< - <xp —Tp_1 <1—¢€}.

Then clearly S:l (E™) C ST (E™), and its vertices are the vectors 6 = 6™ 4 6@ 4
(1—-3€)¢™, i=0,1,...,n. Hence,
S:l (E™) = e +ec® 4 (1 - 36)5;“1 (E™).
Also
(4.4) E(Sf(E"), L™ nAY), > B(SH(E"), L™ AT, .
For 20 € 5:1 (E”), we have
E(2°, L™ N AT,
(4.5) N . .
— min { B(a", L 1 (A3 \ 87 (E"))),,, (2%, L™ 0 SF(B"))),, b,
and we are going to treat separately each of the terms on the right. We begin with the
left-hand term and denote é := (—2,1,0,...,0) and € := (0,...,0,—1,1). By Lemma 2

with ¢ = oo, we obtain
(4.6) E(z°,R""1(e)),, >

where the e(?)’s are from (3.3), and
R Y eM) = {2 = (21,...,2,) | 1 = 0},
R"1(¢) = {z =(21,...,2,) | x2 — 221 =0}, and
M ™) =e™ + R (&) ={z = (x1,...,2n) | &n — Tp_1 = 1}.
So, if we (again) denote the half-spaces
R M) = {z = (x1,...,2,) | 21 <O},
R™ &) := {x = (x1,...,2,) | 2o — 221 <0}, and

Rﬁ_l(é;e(”)) ={x=(x1,...,2p) | Tp — Tp—1 > 1},
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then we get by virtue of (4.6),

E(@® R eM)UR He) URM H(ge™)), >

€
! 3"
Observing that A2 \ S (E") = A2 0 (R* ' (eW)UR™ (&)U R™ (e e(™)), we conclude

that

n
oo

E(2%, L™ 0 (A3 S (E™))),,

=E(2%, L™ n (AT 0 R HeM)URM ) URM (& e™)))),,
> B(2%, R™HeM)URY () URY (g el™)),,

oo

v

€
3
Therefore by (4.5),
0 m—1 2 . € 0 m-+1 rn
E(2°, L™ N AY),, Zmln{g,E(iU LM NSy (B ))lgo}’
which becomes

4.7 E(SH(E™),L™'nA2),, >min {g B(SH (E"), L™ 0 ST ("), |-

oo oo

Now we have to take care of the right-hand term in (4.7). Let T, : R® > 2 — y € R", be
defined by

Y1 =21, Y2 =T —2T1, Y3 =3 2T2+T1,...,Yp = Tp — 2Tp—1 + Tp_2,

so that it is invertible and its inverse is given by

i

ri=Y (i—j+1)y;, i=1...,n
j=1

It is readily seen that 7,6 = e(9) and Tnégi) = ece + ee@ + (1 - 36)6(7;) =: ég),
i=0,1,...,n. Hence T},S] (E”) =57 (E") = S, and TnS:l (E”) =ee) 4 ee® + (1 -
30)SF = S+, (E").

Denote by Tnlgo the space R™ with the norm

A
1Yllz,m = lrgggnlzl(i —j + Dy;l.
J:
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Then
E(SH(E™), L™ nST(E™)),, = E(S;1 (E™), T, L™ n S (E™))

Tpln,
1 . .
(43) > JE(SH(B"). LU 0 SE(EY),,
1 .
> Z(E(Sf,Tan+1 N Sf)lgo — 3e),

since the unit ball of 7,17, is contained in the cube 4B”, and max;<;<, || — el [in. = 3e.
Now, as in (3.15)

5 1

E(ST,T,L™ nsT),, > 3

n
oo

which by virtue of (4.7) and (4.8) implies

B(S30(E"). L7 08 (E)),, > min {5,539}

oo

Taking € = % we obtain,

which combined with (4.3) and (4.4) yields

1

+(m m 2
E(Sl (E )7M ﬂAJr)zgo = 2%
Since M™ was an arbitrary linear manifold of dimension m, we conclude that that (4.2)

is valid, and the proof of Lemma 5 is complete. [
We are ready to prove Theorem 3.

Proof of Theorem 3. We begin with the upper bounds. First we observe that the upper
bound in (1.6) follows by the proof of Theorem KL2 in [11]. Indeed, we note that in that
proof, o1, (x;-) is piecewise linear, and it is convex whenever z is, thus the upper in (1.6)
follows by [11, (4.6)]. Therefore only the upper bound in (1.5) has to be proved. To this
end, we first take r = 2, § = 3(2,,p,q) from (2.2) and the points ¢,; defined by (2.3).
Let

Gon(zit) == £ (2(tnsgio1)) (tnai — ) + 2(tns) (t — tnsi—1))) Insl ="

tEIn’ii, 1<:<n—1,
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and let

62,”('7:; t) = 7T*’1(.I‘; :i:n7t)7 te In,:l:na

where we recall that 7, ;(x; £n;-) are the Taylor polynomials of degree 1 of z, expanded
about the points t,, 1+(,—1). Evidently, &2 ,(z;-) is piecewise linear and interpolates x
at the points {t,;}, 1 < |i| < n — 1. So obviously it is convex and it follows that for
i=+1,...,+(n—1),

91
P

Ini| < cHx”paHLpUm)(p(tm))_aUm‘ ;

Hx() — 2. (; ’>HLOO(IM) < C”:BHHLl(Im-)
where ¢ = ¢(a, p, q), whence

~2+3-3

(4.9) Hx() — 2.0 (2; ')HLQ(IM) = C”xﬁpaHLp(]m)n
Also, as in the proof of (3.29), we obtain

410) o)~ mealasns

[N
)HLQ(IH,in) < cllz"p ||Lp(In,in)
where ¢ = ¢(a, p, q¢). Combining (4.9) and (4.10), it now follows that

|2() = Gan(m; )], < en~ G+
proving (1.5) for r = 2.

For r > 3, let o, ,(x;-) be the spline defined in (2.8). We have to modify it so that it
be convex whenever x € AT W/

».a» DUt stay close to x in the Ly-norm. Let § be defined in
(2.2) and set

(4.11) m(r) = m(r,a,p, q) = [(r —2)2°F1 (27 + 1)].

Let the points ¢,, ; ;, and the subintervals I, ; ; be respectively defined, by (3.17) and (3.18),
for this m(r), and finally write

1 8 20+2

=3 =2 o
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The second derivative x” is called small on I,;, 1 < |i] < n — 1, if there exist at least

2r — 5(< m(r)) subintervals I, ; x,, and points t; x, € Iy i k,, such that

r—2—21
P

(4.13) o (tin,) < 2C(r, ﬁ)Hm(”) aHL o (Ini)P “(tm)(fml

Otherwise z” is called big on the interval I,,;.
If 2" is small on I,,;, 1 <4 < n—1, then replace o, ,(x;-) on that interval by the linear

interpolant

5-7“,77,(56; t) = (x(tn,ifl) (tni - t) + x(tn,z’) (t - tn,ifl)) ’Inz"_l» te Inz'-

If on the other hand, z” is big on I,;, 1 < i < n — 1, then there are at most 2r — 6
subintervals I, ;,, j = 1,...,m (0 < m < 2r — 6), such that each contains a point #;_,
for which (4.13) holds. Let

r—2

_1
(4.14)  Gult) = { 200 &0 1 1™ ) [Tl € i
0, otherwise,

and define
t’fLZ
Krnz xZ; t / / fnz dng— _/ gnz( )d@( ni—1)2|Ini}_1
nz 1 n'L 1 tnz 1

i ( [ e L[ 5m<e>de|fm»> oralt)

where ¢ () is from (2.4). We immediately obtain,

(4.15)

1,1
‘7“ i

Y

(4.16) ”’%Tvnl HL o(Ini) < cHa:(T) a”Lp(Im)p a(fm')|fm'

where ¢ = ¢(r, a, p, q). Finally, for ¢t € I,,,, let

xmp
(4.17) Rpnn(x;t) = | ”L (IM)/ /

tnnl nnl(

(4.18) Grm(x;t) == 0ppn(x;t) + Rppa(xst), te€ly, i=1,...,n.
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/ (p(u))“—a—?’)p’du) dodr,
tnn 1

where £ + L = 1. Now set
p ' p



Similarly we define &, ,(x;-) on I, i = —1,..., —n.

It is readily seen that &, ,,(x; t) is continuous on I, and in order to prove that it is convex,
it suffices to show that &, (z;-) > 0 in I,; for all —n < i < n, and that )., (z;tni—) <
Gy n(Titni+), forall =n +1<i<n—1

If 2 is small on I,;, then for all t € I,;, &, ,,(7;t) = 0, and &, ,,(z;t) = 2"(0,;), where
Oni € Ly, hence 2'(t), i—1) < 2'(0n:) < 2'(tn:), thus satisfying the requirements.

Suppose that z” is big on I,,;. First by (2.5), (2.6) and (2.8), if ¢t € I,,;, then

0y (@3t) = Tor 3 (2365 8) Quni (t) + 77 _5(2”; 83 ) 073 (1)
+ 2(m 22315 )i (8) + 7o (285 ) 07, (1)
+ 1 (@385 8) 0 (1) + 7 (w3850 (1)
= 2" (t) = (¢ (1) = Tur—s(@"555)) uni(t) — (2" (8) — mr_5(2";351) )@y (8)
= 2((2(t) = M2 (@ 85) ) 0lni (8) + (7(8) — 7o (2" 35) )07 (1)
= ((2(t) = mum1 (23358)) 0l () + (2(t) — w7y (235)) 07" (1))
Now by the Taylor remainder formula and Holder’s inequality we get

- 1 r a — = _%
Hx”(-)—w*,T,3<x";z;-)||Lw(,m)s(T_3)!||a:<> (Yl (20 12

* . 1 r) « e 7‘—2—%
2" () = 77 s (255 ) ||, gy < m”ﬂc( 0N ™ (ta) [ ] :

- 1 r) « —a 7"_1_%
2" (-) — 7T*,r—2(37/31;')||L00(1m) < m”x( 'p HLP(IM)P (tni) | i ;

)

* . r a —« r—1-2
Hx’(-)—wrfz(x’;z;-)||Loo<zm>Smﬂx” Iz, P (tni) [ ni|

r—=

. 1 r) o —« 11,
Hx() _W*,r—l(x;Z;')||Loo(Im) < m”»’ﬂ( 'p HLP(IM)P (tnz)‘jnz’ ;

ol

* - 1 r) -«
o) = 72aCai5 S gy a0 )
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Therefore by (2.7) and (4.12),

& ) o o 7"*2*%
(4.19) Falwst) = 2" (8) = C @) e p? g o™ () [ a7 € L
Since z” is big on I,;, there exist 0 < m = m(Im-) < 27 — 6, subintervals I, ;x,, j =
1,...,m, and points #; x, in them, for which (4.13) holds. Then (4.18) and (4.19)imply

Grn(@it) = oy, (23t) + R (23 t)
(4.20)

r_o_1
Zw”(t)+f%if,n,i(x;t)—C(T,B)Hw(’") PN L, gy (tni) T 77,

Now, for t € Ik, j = 1,...,m, combining (2.6), (3.16), (4.11), (4.14) and (4.15), we

obtain
Fopm,i (T51)
t/ni o _
:2O(T,ﬁ)HIL'(T) alle(Im)p_a(tm‘)|Ini|r_2_5 —/t | 1€n7,(7_)d7_|1nz| !
ni tni
(/ / gnz dedT— _/ f’m( )d6|I’M|> *m( )
tn,i—1 Jtn,i—1 tn,i—1
tnz - _
> 20(r, A) |27 %I, g.yp~ (ti) [T 7277 _/ Eni(7)dr | Los
tn,i-1
(421) 1 tni .
tn,i—1
Inz r_o_1
> (1-ae Z‘ R A I
1—'_26 r) « e r—2—=
[

C(r. B)|J="p a”L o (Ini)P a(tm)um‘r_%;'

Similarly it follows for all other t € I,,;, that
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g (xt)

sM,T tni
—— [ Gutrydrltl
tn,i—l
tnz T . 1 tnz .
- ( [ o3 | fmw)deum\) B0
trn,i—1 Jtni-1 2 tn,i-1
(4.22) -
n,4,k; r) « —a 7"—2—%
> _(1 + 26) ; |Inz| 20(T7 6)||IE( )p HL;D(Inz)p (t'm') ’I”Z|

- 3198 8
S0 o)

_C(Ta ﬁ) ||x(1")pa HLP(IM)P_a (tnz) ’Ini’r_Q_%'

- (tnz) |Inz |r—2—%

HL,,(Im)p

v

Combining (4.20) through (4.22), we conclude that
oy (25t) >0, t€ I

On I,,,, we have by (2.8),

Grp(@st) =0, (x5t) + A, (251

=a"(t) — (2"(t) — o7 (231)) + KL (31)
(4.23)
> R;“/,n,n(x; t) - ‘ill‘”(t) - O-vl"l,n(x; t)}

— /%;fm’n(m; t) — ‘:U”(t) — 7T*,7~_3($N;’I”L;t)|.

We apply the Taylor remainder formula and Holder’s inequality to obtain

Hf’:(r)paHL Inn !
‘ill'//(t) - 7T>x<,7’—3($//; n; t)’ S (T‘ — 3;'( ) /

tn,nfl
||$(r)paHL (Inn) ¢
~ 1 . _ p\inn
Kr,n,n(xv t) - (7, . 3)' /t

n,n—1

1
Y

(p(r)) e dT) ,

while )
»’

(pv))“—a—gm’w)

Together with (4.23) these imply that &,/ (x;t) > 0 for t € I,,. For the intervals I, ;,

i=—n,...,—1, the proof is similar.
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Also if 2" is big on I,;, 1 < |i] < n—1 then we our construction guarantees that ;. ,, (z; )
coincides with 2'(-) at the endpoints of I,,;, and &;.,,(7;t, +(n—1)£) = 2’ (tn, +(n—1)). Thus
we have proved that &, ,(z;-) is convex on 1.

We have to show that &, ,(z;-) approximates x well. To this end, if 2” is small on I,,;,

then by Lemma 1 we obtain exactly as in the proof of Lemma 4, that

12" by < ello @2, 7,7 (i) a7
where ¢ = C(Ira a, P, Q), which in turn implies
) = ) 1, < O, 1,07 (o) i34

SCHI(T) aHL o (Ini) " AL %

(4.24)

where ¢ = ¢(r, a,p, q).
On the other hand, if #” is big on I,,;, then there exist at most 2r — 6 subintervals I, ;, k;

and points t; x, in them for which (4.13) holds. It follows by (2.9) and (4.16) that

HJI() — T (T ')HLq(Im)
< ||2(-) = ornla i

")HL o(Ins) ")HL a(Ini)

< cf|2 P, AR + ¢l Pl SI)P (m')lfm'lr_%’L%

p(Tni)"

< CHI(T) a“L o (L) RAES

where ¢ = ¢(r,a,p,q). Finally, for t € I,,, we apply the same computations as in the

proof of (3.29) and obtain that

H/‘Lrnin HL o(Inn) = cHx(T) aHL u —r+%_%7

)"

where ¢ = ¢(r, o, p, q), and a similar result for ¢ € I,, _,,. Therefore by (2.9),

< s, 5,

HZC() _ov-r7n(x’.)HLq(In,in) - p(UIn, :t")

where ¢ = ¢(r, o, p, q). Combining this with (4.24) and (4.25) we get

(4.26) |2() = &rn@s )y, gy < en TG

40



Note that &, ,(x;-) belongs to the space Ev],w of continuous splines that are polynomials
of degree < r+ 1 on each interval I, ; 1, ¢ = £1,...,£(n—1), k =1,...,m(r), while on
I,, 1+, they are sums of polynomials of degree < r — 1 and functions &, ,, 4, (2;-) defined
in (4.17). Clearly dim>.,, < en, where ¢ = ¢(r, @, p, q). Hence the upper bound in (1.5)
follows by (4.26).

Next we prove the lower bound in (1.5). Since r > 2 and
dn (AW, AT L)L, > dn(AZW)) L,

then (1.5) follows from Theorem KL1 for 1 < ¢ < p < oo and for 1 < p < g < 2. Also
since AiW;; C AiW;}a for all 0 < a < oo, it suffices to prove (1.5) for the former class
and 1 < p < g < oo. To this end we take the points 7y ;, the intervals Jy,; and the
functions ¢, s n,i(-) as defined in the proof of Theorem 2, and we fix some k € N, k > 1

to be prescribed. Denote
. t T
Up,rke,N,i (1) 1:/ / Pp.r—2,kN, k(i—1)+1(0)dOdT
-1J-1
t
:/ brromv iy (0 —0)d0, i=1,....N, te[-1,1]
—1

Then it is nondecreasing and convex and by (3.31) it follows that J’p,r,k, N,i € A%rW;; . We
note that

Uprde,v,i(t) =0, ¢ < Ton k(i)

and that like in (3.33), we have
Crdial
/ ¢p,r72,kzN,kz(i71)+1(0)d0 = C(Ta p)(kN) +1+p7 t=1,... 7N7
JEN, k(i—1)+1

where c(r,p) > 0 depends only on r and p. Hence, for ¢t > 7y k(i—1)4+1, We obtain by

(3.32),

- _r 1 B
(4.27) porte,Ni(t) = c(r,p) (kN) "0 (8 = By ggionya1)s

so,in particular, ﬁp,r,k,N,i € L.
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N .
Denote \I/p rk

{¢p,rk Nz} ,» and let S+ (\I;N

p,r.k
this system. Evidently, S +( o k) C A3 W, Therefore

) denote the positive p-sector over

(4.28) A (ATW) AT Ly), > de (ST (), 1), A% L),

q q

Again define the discretization operator Ay nq: Lq 2 — Ag Nt € lflv, by

/ x(t)dt,...,|JkN,kN|—1+é/ 2(t)dt )
JeN & JEN, kN

(4.29) Ak N, = <|Jk:N,k: N
and it is easy to see that
2z, = [[Ak,nglliy, € L.

Let M™ be an arbitrary linear manifold in L, of dimension < m. Then the set Ay n ,(M™N
A3 L,) consists of vectors with convex coordinates, i.e., Ap n,q(M™ NA3L,) C AZ. By
virtue of (4.28) we thus conclude that

dn (S5 (]

) AiLq>Lq 2 dm(Akaqu (qu'r'k) Ai) 2’1\7

de(AhN,qSl ( prk) AQ)I ’

p,r.k

(4.30)

since 1 < p < g < oo. By (4.27), straightforward computations yield for j > 4,

a1 .
| TN ] Hq/ Yp.re,N,i(t)dE
JEN, kj

TkN, kj

(4.31) = 2_1+%c(r, p)(kN)_HH%_% / (t = Tenk(i—1)+1)dt

kN, kj—1

— 2 ae(r,p)k T A TINTT T A (=i 4+ 1) — k).

Also, for j < i we have

(4.32) IJkN,kj|_1+3/ Vp,rk,N,i(t)dt = 0.
JEN, k)

Let EV, be the system from (4.1), and recall {}¥ | from (3.4) (with N replacing n).
Then by (4.31) and (4.32), it is readily seen that

: 14l bl 1 el 1, »
A NqUprieng =2 Fac(r,p)k™ e TN TS 7 (&) — ke())’
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whence

p,r,k

dM(Ak,N,qur(@N )7Ai)lgo
> Z_H%c(r,p)k_ﬂr%_%HN_TJF%_%(alm(sfr (EN)’A%r)lN - 7).

Applying Lemma 5 with m =n and N = n + 2, we have
1

A (ST (E™2), A7) o0 > %

So, prescribing k = 27 yields,

dn (Ak’”+2’qsi’_ (qj;,t,%c)7Ai)lgo+2 > CnirJr%*%’

where ¢ = ¢(r, p,q) > 0. Finally combining this with (4.28) and (4.30) completes the proof
of the lower bound in (1.5).

We conclude with the proof of the lower bound in (1.6). In view of the inclusion
ATWL C AW, ,,

(4.33) dn (AW, AL L)

1<p<o0,0<a< oo, it suffices to prove that

1
, > Ta, 1< g< oo
q

Set
Voo eNi(t) = (t — Tenki—1)+, i=1,....,N, tel,
which clearly are convex and belong to Aino NLg, 1 < g < oo. Again denote \ifévo’l,k =

. N . .
so,1,k,N,i } ;- Since Si (U2 C AZWL | we have
yLylvy ) 1=1 1 OO,l,k —+ o0

din (ATWoo, A Ly) | > din (ST (W5 1) AT Ly)

L L,

>d,, (Ak;,N,qur (‘i’ivo,l,k)a Ai)

N »
loo

where Ay n , was defined in (4.29). Now, for j > i we have

1

| Jin g e / Yp ok, Ni(t)dE
JuN,kj

1a1 11 TkN,kj
=2 +‘1(kiN) _q/ (t_TkN,k(i—l))dt

TEN,kj—1)

_ 1 _ 1
=27y (EN) (ThN,kj — TEN,kj—1)

X (ThNkj—1 + ThN kG — 2ThN k(i—1))
1
=M apTaNT T (- 4+ 1) - o).
2k
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Also for j < i we have

_ 1
| ke ks 1+q/ Vp.rk,N,i(L)dt = 0,
JEN kj

and (4.33) follows as before, with the prescribed k = 14. This completes the proof of
Theorem 3. [
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o
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