SHAPE PRESERVING WIDTHS OF SOBOLEV-TYPE CLASSES
OF s-MONOTONE FUNCTIONS ON A FINITE INTERVAL

V. N. KONOVALOV AND D. LEVIATAN!

Abstract. Let I be a finite interval and r € N. Denote by A% Lq the subset of all functions
y € Lq such that the s-difference ASy(-) is nonnegative on I, V7 > 0. Further, denote by
A% Wy, the class of functions x on I with the seminorm H:z:(T)HLP < 1, such that Afx > 0,
7>0. For s=3,...,r+ 1, we obtain two-sided estimates of the shape preserving widths

f sup inf lz —yllz,,

dn AZWI AL = in
+ » =4Hg :
p Lq MnreM™ zeAin; yGM"ﬂAj_Lq

where M™ is the set of all linear manifolds M™ in Lg, dim M™ < n, such that M"NAS Lq # 0.

§1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let X be a real linear space of vectors x with a norm |z|x, W C X, W # 0 and
V Cc X,V # 0. Let L™ be a subspace in X of dimension dim L™ < n, n > 0 and
M™ = M™(z) := z + L™ be a shift of the subspace L™ by an arbitrary vector z € X. If
M™NV # (), then we denote by

E(e,M"0V)x = _inf =z —ylx,

the best approximation of the vector x € X by M™ NV, and by

EW,M"NV)x :=sup E(x, M"NV)x,
zeW
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the deviation of the set W from M™" NV.
Let M™ = M"(X,V) be the set of all linear manifolds M", dim M™ < n such that
M™NV # (. The quantity

d(W,V)x :=  inf BW,M"NV)x, n>0

is called the relative n-width of W with the constraint V' in X. These widths were intro-
duced by the first author in [1].

Evidently, if V' = X, then the relative n-width d,,(W,V)x coincides with the Kol-
mogorov n-width d,(W)x. Clearly, d,,(W,V)x > d,(W)x.

Let I be a finite interval in R, and let » € N. We will take I = [—1,1] as the generic
interval and we will omit referring to it in the notation whenever the interval we deal
with is I, for instance we write || - ||z, for || - [z, ). We will use other intervals and the
whole real line R and we will make clear in the notation whenever we deal with them. For

1 < p < oo, we denote

Wr=Wr(I) ={z: I =Rz € AC),c(I), |z, < 1},
where AC),.(I) is the collection of all functions defined on I which are absolutely contin-
uous in every closed subinterval of (—1,1). Let

Alz(t) = i(—l)s_lC <Z>:c(t +k7), {t,t+st}CI, s=0,1,...,

k=0
be the s-th difference of the function z, with step 7 > 0, and denote by A W = A3 W/ (I),

s = 0,1,..., the subclass of functions x € W for which Az(t) > 0, for all 7 > 0 such
that [t,t4+s7] C 1. By A% L, = A% Ly(I) we denote the subclass of all functions y € L, ([)
such that A2y(t) > 0, 7 > 0. In recent years shape preserving approximation has become
a central subject especially in applications. This is due to the fact that in CAGD and
especially in questions of design, shape preservation is one of the main considerations.
Our results below show what one may expect to achieve and what is beyond reach of any
approximation process which involves approximation from linear n dimensional manifolds,
when we preserve the shape of the approximants.

In this paper we prove the following



Theorem. Letr € N, se N and1 <p,q < oo. For3 < s <r, we have

(1.1) dn (ALW),AYL,), = nTTHs T3 >

q

Also if s=r+1, r > 2, then

(1.2) d, (AV:AW;, A:_HLq)Lq =n"2, n>r
Remarks. i. Note that the asymptotic relations are independent of q.
11. The upper bounds are achieved by piecewise polynomials of degree = r, with n knots,
that are elements of A103_2. For 3 < s < r, the knots are equidistant, however, if
s =r+41,r > 2, then we are unable to guarantee that, and in our construction the knots
are not equidistant.
124. It is worthwhile noting that as a byproduct we may conclude that the lower bound
in (1.1) with s = r > 3, excludes the possibility of Jackson-type estimates involving the
fourth modulus of smoothness of x evaluated at 1/n, in s-monotone approximation of z, by
piecewise polynomials or splines with n equidistant knots and thus also not by polynomials
of degree < n. Moreover, it even excludes Jackson-type estimates involving the generally
bigger Cn3w(z®) n=1),.
Recall that up until now we knew that Shvedov [6] had shown that Jackson-type estimates
of s-monotone approximation of an s-monotone x, by polynomials of degree < n, cannot
be had with Cwsia(z,n1),. Thus the above is somewhat unexpected to us in view of
what seemed like a pattern that we have Jackson-type estimates involving Cws(z,n™1),
for monotone approximation, and by Shvedov [6], it is impossible to have such estimates
with w3(x,n~1),, and we have Jackson-type estimates for convex approximation involving
ws(z,n~1),, while again by Shvedov [6], it is impossible to have such estimates with
wy(z,n™1),.

It is interesting to compare the above asymptotic relations with earlier results. Sur-
prisingly, they are quite different. For instance, for s = 1, 2, these relations, in general, do

depend on ¢ as we shown in [5], namely,



Theorem KL1. Let s =1,2, s<r e N, and 1 < p,q < oo, be such that r — ]l) + % > 0.
Then

1

d(ALWy, AL Lg)r, <0G =
If, on the other hand, s =r +1 =2, then

dn(AiW;,AiLq)Lq =n"'"%, n>1

)

It is also worthwhile to see what kind of asymptotic relations are known for the uncon-

strained widths. In this case we have shown [3]

Theorem KL2. Letr € Nand1 < p,q < oo, be such thatr—%—i—% > 0. If (r,p) # (1,1),
and if (r,p) = (1,1) and 1 < q < 2, then for each s =0,1,...,r,

dn(AiW;;)Lq - nfr+(max{%,%}fmax{%’%})+7 n>r.

If on the other hand, (r,p) = (1,1) and 2 < g < oo, then for s = 0,1,

3
2

< dn, (ASW]), < con” 2 (log(n+1))2, n>1

c1n

=

Y

where ¢y > 0 and cy do not depend on n. Furthermore,

e 11
dp(ATWT) =G s

§2. SOME AUXILIARY LEMMAS

In order to prove our theorem, we need a few lemmas. The first was proved by the

authors in [5, Lemma 1].

Lemma A. Let J be a finite interval, and let {ti}::l be a collection of r € N disjoint
points in J. Set 61 :=1 and 6, = min{\ti —t;|,1 # j} for r > 1. Then for any function
x such that ") € Ly(J),

/I

r ]| ' T
||$||LOO(J) < rl)' (E) (fél?SXJIE(tz)‘ + r—1)! Hx( )HLl(J)) .

A similar result was proved by the authors in [4, Lemma 1].
4
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Lemma B. Let J = [a,b] and m € N, and set t; = ty,; == a+im J|, i =0,...,m.
Then for every function x such that ©'" € Loo(J),

_ 1 _
2|1y < 2m|J| [Jax |z (t:)| + m |2

Sidm HLOO(J)'

Next we need a result concerning Jackson-type estimates of the simultaneous approx-

imation of 3-monotone function by 3-monotone quadratic splines with equidistant knots

(see [4]).

Lemma C. Let J = [a,b] and = € Ain’(J), 1<p<oo. ForméeN,lett;=1n,:=
a+im~YJ|, i =0,...,m. Then there exists a quadratic spline o3, (x;-) with knots t;,

i=0,1,...,m, such that

2" (tic1) < oy (@it) <2 (t), te (timts), i=1,...,m,
and
Rl

[2() = o2 m(az )],y < om

m I,

NN W

|2 () = 0% (@) 5y <

3

|2 () = 05 ()| gy < MBI

Next we have

Lemma 1. Let J = [a,b] and x € C*(J), s € N. If mingey [z (t)] > A > 0, then
there ezists a subinterval Js C J, of length |Js| = 47°|J|, such that min.e . |z(t)] >
2_S(S+1)|J|SA.

Proof. Denote ¢ := %(a +b), and assume 2(*~Y(c) > 0. Then from
t
2CV(@) = 267 (e) + / 2O (r)dr, telJ,
it follows that if 2(*)(t) > A, t € J, then 2~V (t) > A(t —¢), t € [c,b]. Hence for

Ji = [$(c +b),b], which is of length |J|/4, we have z(s~1(t) > 471|J|A. If on the
5



other hand, z(®)(t) < —A, t € J, then —z(5~V(t) < —A(c —t), t € [a,c]. Hence we
have —z(*~Y(t) < —471|J|A, in the interval J; := [a, 3(a + ¢)]. The proof is similar if
=Y (¢) < 0. Thus, in all cases we have established the existence of the interval Jj,
|J1| > |J|/4, such that |2~V (¢)] > 471|J|A, t € J;. Now the rest of the proof readily

follows by induction. [
We apply Lemma 1 to prove

Lemma 2. For s € N, denote xs(t) := %ti, t € R, and for s > 1 let £ € C*[—a,al,

a > 0, be such that ) is nondecreasing and 0 < £€¥) < 1 in [—a,a]. Then, if
(21) ||X(8) - S(S)Hld[—a,a} > A,

S -

where 0 < A < a, then
(2.2) Ixs = EllLy—aa) =27 P01 A%
Proof. Denote

(ss(t) = Xs(t) - 5(1;)7 te [—(I, a]'

It is clear from our assumptions that 581 s decreasing and concave in [—a, 0], and it is

increasing and concave in [0, a]. Assume first that
(2.3) max{8° "V (—a), 00V (a)} < 2% 1A%
Then by (2.1),

A <6924 a0

0 a
=— | ¥ @)dt+ / 50 (t)dt
0

—a

=0V (=a) = 207 1(0) + 60V (a),
which by virtue of (2.3) implies

A
(2.4) s6=Y(0) < -5+ 274" A2,
6



If

2t e -4l
Gumalt)i= § =4 +27ta7 A% ve [4,4]
>t e [4.a)

then it follows by (2.4) that 65°~"(0) < ¢,_1(0). Since |88 ()| < 1, and |¢,_,(8)] = 1,
t e [—é, é], t # 0, we conclude that the graph of 5§8_1) in that interval is below that of
Cs—la i'e'v

A
2 9

N[

(2.5) St < G (t), te [~

.

. —1) . . . . . . .
Also since 5§s ) is nonincreasing in [—a, —g} and nondecreasing in [%, a} , it follows from

(2.3) that

A A
88 7V(t) < ¢sa(t), t € [—a, -5Ju (5.4,
which combined with (2.5) yields
(2.6) 88 7V(t) < ¢sa(t), t € [~a,al.

Let .
s— = s—1(7)dT, —a,al.

Then it is an odd function, it is nondecreasing in [—a, —é + 2_4a_1A2], and it is noni-

creasing in [—é +2 471 A%, O}. At tax := —é +27%a71 A2 it has a local maximum and
symmetrically, at ¢, := é — 274471 A2 it has a local minimum. It is easy to calculate
that

gs—Q(_a) = (2_3 o 2_4)A2, Cs—2(a) = _(2_3 o 2_4)A2'

Hence,
CS—Q(t) > <5—2(_a) = 2_4A27 te [_%atmaxL
(2.7) a
CS*Q(t) < C572(a) = _2_4A27 le [tmina 5] .
Now

/Ot(Cs—l(T) =0 D(r))dr = Goma(t) — 6072 (t) +6072(0).

7



Thus by (2.6) and (2.7),

0D (t) 2 0 P(0) + Co2(t)

(2.8)
>6072(0) + 27442, t € [—a, tmax),
and
57D (t) < 6872(0) + Co—al(t)
(2.9)

<607D(0) — 27442, L € [t al.
If 5§S_2)(0) > 0 then by (2.8) we obtain
5072 (1) > 27442, t e [—a, tmax].
Otherwise, by (2.9) we get
60D (t) < —27%A% ¢ € [tmin, al.
Hence we conclude that

2.1 in|6(s=2) (¢)| > 27442
(2.10) min|6(2) (¢)] = 27442

where Jj is either [—a, tmax) OF [tmin, a]. Our assumption that A < a implies that ¢y, =
—% +27% 1A% > —5 and tpyi, = % — 2747 14% < 5, so that

a

(2.11) [Jol > 3

For s = 2, (2.10) and (2.11) yield (2.2). If s > 2, then we apply Lemma 1 and obtain by
(2.10) and (2.11) that there exists an interval J,_o C Jy of length |J,_o| = 272574|Jy| >
27253¢ such that

min }53(25)‘ > 9 st a2 42
teJs_o

This in turn implies

J— 2 —
HXS _éHLl[—a,a] > ”58HL1(JS_2) >27° la® 1A2’
8



and (2.2) has been proved for s > 2. On the other hand, if (2.3) fails, then due to

symmetry, we may assume without loss of generality that
(s—1)(_ .\ _ ¢(s=1)(_ —4_—1 42
X3 (—a) =& (—a) > 2% A~

Suppose that
ng—1)(_g) _ 5(5—1)(_2) S 94,142

2
Then by the concavity of 5§5‘1) in [—a, —%], we have

3a a

s—1 —2 242
0TV > —22a A+ ), te [—a—o].
In particular
7
50V () > 27t A%t € [—q, —ga}.

We apply Lemma 1 with Jy := [—a, —%“} and obtain an interval J;_1 C Jy of length

| Js_1| > 2725%2|Jy| = 27257 1q, such that

min |8,(t)] > 9 25252 42

ter—l
Hence,
J— 2_ — [
(2.12) Ixs = &l Ly —aal = 0sllLy 0y =277 "4 2a” 1 4%,
Otherwise

s— a s— a -5 _ —
Xg 1)(__) _ ¢ 1)(__) < _975¢142,
2 2
and since 5§s_1) is nonincreasing in [—%, O}, we obtain
5Vt < —274a7 1A%, te [—g,o}.

Once more we apply Lemma 1, this time with Jy := [—%,O}, and obtain an interval
Js—1 C Jo of length |Js_1| > 2725T2|Jy| = 2725F g, such that

2
: S(t)| > 9—$ -3 8_2A2.
tgflr_ll‘ 8( )| - “

9



Hence,
(2.13) IXs = €l i -aval = 10sllzy (7. 0y =277 7> 2071 4%,

Combining (2.12) and (2.13), we have proved (2.2) for s > 2 in this case too. This

completes the proof of Lemma 2. [
An immediate consequence is
Corollary 1. For T € R and b > 0, denote
Xs.rb(t) == g(t -7)5, teR, sel
Let s > 1 and ¢ € C*[T — a,7 + a], a > 0, and assume that ) is nondecreasing and
0 <y (t) <b, in[r —a, T+ a]. Then, if
||x§f3,b - ¢(S)||L1[T—a,7+a] > A,
where 0 < A < ab, then
||XS,T,b . ¢||L1[T—a,T+a} > 2’52’4‘9’3@5’117’1142.
In the sequel we use the standard notation for the unit vectors along the axes, namely,
= {e(z)}z_ el = =(0,...,1,...,0) with the 1 is standing in the ith entry,
and also we use
={eW}" |, M =(1,1,...,1),e® = (0,1,...,1),...,é™ = (0,...,0,1).
Finally, the following was proved in [5, Lemma 4]

Lemma D. Let m € Zy and n € N, be such that m+1 < n, and let 1 < p < q < o0.

Denote by
SiH(E™) = {v v —Zae ,a=(a1,...,an) ER" a; >0,i=1,....n, ||, <1},

the positive p-sector over the system E”, and by
Al i={z=(z1,...,3,) |21 < -+ < 2},
the cone of vectors x with nondecreasing coordinates in R™. Then

A (S (E"), A%),, =

n
q

OOIr—\

10



§3. THE UPPER BOUNDS

Proof of the upper bounds. First take s = r > 3. It follows by Lemma C that there exists
a quadratic spline O‘Q’n(l’(r_s); -) with knots t; = t,,; := %, i =0,%£1...,%£n, such that

/

20N (61) < 05, (20 50) S 2V (), HE (hat), i=-nt Lo

and
[0 90) = a5, < 5070,
3 [ () = oI5 ), < 202,
2D C) = o (@D, <n

For r = 3, this spline provides us with the required upper bound. If » > 3, then by Taylor’s

formula, the spline

r—4 t
1 1 . .
Or—1pn(z;t) i= Z ﬁx(l)(())tl + (1] /0 O'QJL(I( 3);7)(25 — )" 4dr, tel,
1=0

yields

1 t
x(t) —or_1p(z;t) = / (IB(T_S)(T) — oo (2773 ) (t—T7)"dr, tel,

(r—4)!Jo

whence by (3.1) we obtain

H:I;() — 01 (2 ')HLOO < (r— 3)1”

Thus the case s = r > 3 is proved.
Assume that 3 < s < r. First we construct a spline asmn(x(s_?)); -), which is not

necessarily in A% Lg, so that

Hx(s_?))(') - Us,r,n(l‘(s_?’); )HL < cnr_ﬁ'%_:g7

oo

where ¢ = ¢(s,r,p). Then we will modify it a little so as to keep it close to = while at the
same time be in A% L,. Denote by

[ti,tzqu], ZZ—’I’L,....—l,

11



the intervals of the partition. On each interval I;, we define two complementary cubic

splines ¢.; and ¢; as follows. For i =1,...,n, set

—-32n%, ti <t<tii+ 4,
(1) = { 3208, b+ <t <ti— 4,

*7

—32n3, ti—ﬁ <t <ty,

and
* 3
i © = —@ii)-
Now let
(8 = / oD () dr, () = / () dr, tel,
tz—l ti
t t
oL(t) = / ir)dr, () = / Srydr, te L,
tz—l tz
t t
ou(t) = / S(r)dr, Gl(t) = / o) dr, tel
ti tz—l
For i = —n,...,—1 we set
SO*’L(t) = (IO*,*’L(_t)? t S I’Lu
and

0i(t) == p*,(—t), tel,.

All the above functions are piecewise cubic polynomials on the respective intervals, and it

is readily seen that

SO*i(ti—1> - 90: t;) = 17 Pxi t;) = @:(tZ—l) - 07 1= 17 y Ty
Pritivr) = 0 (t:) =1, wultsi) = ¢; (tix1) =0, i=-n,...,—1,
gpiz(tl—l) - (p;k/ li) = 07 gp;z li) = (p;,'k/(ti—l) =y, 1= 17 y 1L,

©Li(tiv1) = ¢
Pli(tizr) = o}

90;/1 (ti+1) = ¢



Furthermore for all i = £1,..., £n,
(3.3) 0<@.(t) <1, 0<¢i(t)<1l, and @.,t)+e;(t)=1, tel,.
Thus in particular,

(3.4) lpsill oy = 197l =1, i=£L...,%n.

Also

1%l L2y = 23 1L (20 = 27,
x//

(3.5) ||90;/¢”LOC(IZ-) = ||¢; ”Loo([i) = 8n2,
e ne i = lerPllon iy =320°, i=+1,...,4n.
Let 0 < k < r and assume y € C*(I). For 1 <i < n, let 7, x(y;4;t) and 75 (y;i;t), denote

the Taylor polynomials of degree k of y, expanded respectively, about to the left-hand and
the right-hand endpoints of the interval I;, that is,

ok
=|

T k(Y3 85t) == y(l)(tn,z‘—l)(t — tn,¢_1)l, 1=1,...,n,
=0 "~
i
Tlysist) =Y ay )t -, =10
=0 "
Symmetrically, for —n < i < —1, let m, ,(y;4;¢t), and 7} (y;4;t), i = —n, ..., —1 denote the

Taylor polynomials of degree k of y, expanded respectively, about to the right-hand and
the left-hand endpoints of the interval I;.
We are ready to define the approximating splines for x € A3W/], namely, for i =

+1,...,%n, set
0.877_7”(1.(8—3); t) = Ty r—s42 (x(s—?)); Z, t)SO*’L (t) + 7T’;'k—8+2 (33(8_3); Z, t)gO;k (t), t e I’L

Evidently, o, (2*7%);.) € C%(I), and it is a polynomial of degree < r — s + 5 on each

interval of the refined partition. We are going to prove that

s— s— 1 s+ i
<36) HI‘( 3)(')_Us,r,n('r( 3);')HLOQ(I«L)§ (T—S—|—2)!TL Tstp 3.

13



Indeed, it follows by (3.3) that for each 1 <i <mn,

||I(873)(')_UT7 (z (+=3);.. HL (Ini)

- Hx(s—S)() - (77'*,7*—5+2($(S_3);Z; )90*2<) + ﬂ-:—s—i—Z(’r(s_g); i; )901 )”LOO(I)
= [[(2® V() = a2 (@B 7P54))0ui () + (2570 = m_a(@6)) 07 Oll 1o

R NN S F Z.)HLoo(Ii)} '

Now, by Taylor’s formula and Holder’s inequality, we obtain for t € I;, 1 < i < n,

< max { H:B(S_3) — T r—sra(257;4)

I

S— S— - 1 ! ' rT—S
|:c( D(t) — Tarespa(@C75050)| < st /tz-_l |2 (7)|(t — 1) 2dr
1 r—s—1
< m”l‘( UO! PRI i
< 1 TL_T+S+%_3.
T (r—s+2)!
Similarly
(s-3) (s-3) 1 ) 2
s— t) — * s=3). 5 1) < T _tr—s+d
0 =7 i) € g [ Ol = 07
1 —r+s+L-3
“(r—s+ 2)!n '
Therefore
1 1
(s=3) () — (s=3). .. - -rhstp-3
(37) HZL‘ () 77-*,7“—34-2(*% 2 )HLOO(Ii) < (7’ — S+2)!n ’
and
1 1
s—3 * s—3). ;. —r+s+=-—3
(3.8) Hx( )() —7T7_8+2(x( ),Z,-)HLOO([i) < mn T
and (3.6) is established for i = 1,...,n. For i = —1,..., —n the proof is similar.
In the same way we have for ¢ = £1,..., +n,
s—3+m (m) s—3
Hx( )() _W*,r—s+2( !l ) HL (I;)
_ s—34+m s—34+m
(39) - Hx( )() — s, r—s+2—m ( ( ) ||L (1)

1

—r+s+1-3+m _
S(7“—54—2—771)!” ’ , m=1,23

14



and

A O e LD P
(3.10) = ||33(8_3+m)(’) — T agam (T ’)”LOO(IZ-)
1

—r+s+Li-3+m
=1,23.
_(r—8+2—m)!n ’ eSS

Now, for the third derivative of o, ,, which exists a.e. in I;, 1 < [i] < n, we obtain by

(3.3) through (3.5),

a3 ($(5—3); t)

3
3 m — . —m * m S— - *(o—mMm
= 3 (D) e i 00 4 7 i) )
m=0
3
— () - 3N (pl=3+m) ) _ ™) 63 ) B
x ( ) Z m ('T ( ) 7T>|<,r—s+2(x 2 ))90*1 ( )
m=0
& 3 (s—3+m) * (m)(, (s=3).: x(3—m)
-2 ) () = mi i (@730 )) 07 T (1)
m=0
(s) SE (s—3+m) (s—3+m). : (3—m)
=2ty = . (z (t) = Tur—st2-m(x Jiit)) e (1)
m=0

3
=30 (D)0 = w s 0) e )
m
m=0

This together with (3.7) through (3.10) yields,

(3.11) Hx(s)(-) - Ugf}’,?,n(x(s_?’);- <eén Tty ae tel, 1< il <n

)HLOO(Ii) =

where
R 64 48 12 1

- (r—s+2)!+(r—s+1)!+(T—s)!+(r—s—1)!'

We have to modify the spline asyrvn(a:(s_?’); -) so that its second derivative be monotone.

To this end, we take

(3.12) m = m(s,r) = 928(r — s),
15



and set

Let
I { [ti,kfl,t@k], k=1,...,m, i=1,...,n,
ik — ik = A .
’ o [ti,k,ti,kz—l]; kzl,...,m, Z:—l,.‘.,—n.

The sth derivative 2(%) is called smallin I;, 1 < |i| < n if there exist at least 2(r — s)(< )

subintervals I; i, and points 7; ., € I; x,, such that
(3.13) 2O (1 g,) < 2607

Otherwise z(®) is called big in I;.

If 2(9)(-) is small in I;_, let J, := [t,_,t,«], —n < v, < v* < n, be the biggest interval
containing [; , so that () is small in I, v, <v <v*—1. Since in I, there are at least
r — s disjoint points 7, x;, any two of which are at distance of at least (mn)~1. Applying

Lemma A and (3.13), we obtain by Hoélder’s inequality,

[P
r—s L (r=s)(r=s—1) s 1 s 1| (r
< i 2 (max‘x( )(Tu,kj)|+—(T_S_1)!n [ )HLI(IV)>

r—s  (Ge=e)t-s-y [ 41 1 st L) (r)
< it T (o e

r— S (r—s)(r—s—1) 1 1
< —m 2 26+ — Ty
~(r—s—1)! ( (r—s—l)!) ’

Hence,
_ 1
(3.14) 12 Loy < can” YT,
where
o r—s m(r—s)(;—s—l) :
o (r—s—1)! '

We divide J, into subintervals J,; := [7uj—1,7Ts;], 1 < j < J = J(n,my, Js), of length
| J.j| = (m.n)~t, where
L (r=s)(r—s—1)
(3.15) my = 2784(r — s)m 2
16



By virtue of Lemma 2 there exists a quadratic spline oo, (x(*7%);-; J,) with knots 7,;,

such that
x(s_l)(n,j—l) < Ulzl,n(w(s_?’);t; Je) < x(s_l)(T*j)7 t € (Tuj-1:Taj),
forall j =1,...,J(n, ms, Js), and

S— - 3 B s
|272C) = oomen (@5 Ty < 5 0men) P2,
7
2

Hl'(s_z)(')_aé,m*n( (s— 3)’ ¥ *)HLOO(J*) < (m*n)_Q”x(s)“Lm(J*)?

Hx(s—l)(.) — ol 2(5=3).

,m*n<

3 *)HLOO(J*) S (m*n)_lnx(S)HLm(J*)'

This in turn yields by (3.14),

S S— 3 —r4s+=—
o) = om0, < ST,
B16) e o ), SR
“$(8_1)('>_Ué/,m*n< (= 3)a 5 Jy HLOO(J*) <m, 1 n_r+5+%_1.

We replace o, rn(:z;(s 3). t) on J, with o9 n(a:( ), ,J*), and set
5s,r,n(x(s_3);t) = 02’n($(3_3);t; Je), te€ J,.

There may be a few intervals of the type J,, all of course are mutually distjoint. In the
extreme case it may be that J, = I, then of course we are done. Otherwise z(*)(-) is big in
some subintervals I;, so let I;, be such an interval. Let {Iio,kj C I;, }, be the collections of

all 0 <m = m(I;,) < 2(r — s) subintervals each of which contains a point 7;, 1, such that
(3:17) 2 (50 1,) < 26077
Define

Ao —rHs+1
e

0, othervvlse,
(3.18) and

£io (& ;1) 1= 2/35@@“3>)@—7Pm,

17



where #;, := 2 (t;,—1 + t;,). It follows by (3.17) that

(3.19) €D, €0 (#io0)| < mt2(r — s)2en TR T 1= 0,1,2,

Also note that on all other subintervals of I;, we have
(3.20) 29 (t) > 2en TS

Now set

6syr,n(a:(s_3); t):= asmn(x(s_?’);t) + fio(a:(s_?’); t), tel

10

This defines spline pieces with possible discontinuities at the points ¢; and we need to join

them smoothly together. To this end, write

Gx0i(t) == pui(t), &5;(t) =i (t), tel, i==1,...,%n,

and let
11 . 1.1
Pu1i(t) = —590*1'(5@ —t;) +ti), oL(t) = i (5(75 —tio1) +tic1),
2 L2 1
Pu2i(t) := ﬁ%i(z(t —t;) + 1), o5(t) = 3% (Z(t —tic1) +tic1),
tel, 1<i<n,
and

gb*lz(t) = ¢*l,—i(_t)7 ﬁbzkz(t) = qbzk,—i(_t)a l= 07 17 27 -n S l S —1.

Let 1 <17 < n. Straightforward computations yield

Gu1i(tio1) = —(2n) 71, @urilts) =0, [putill 1y = 20)7"
¢1:(ti—1) =0, ¢1:(t:) = (2n) 7Y lenll, ) = (2n)~",
3.21) Grri(tiz1) = Pori(ti) = il oy = 1o
b (tioy) = m () = Hﬂi/”Lm(Ii) =1,
Plilti-1) = Tt = [&%ill 7,y = 2n
1 (tioy) = L (t) = 61"l (r,y = 27

18
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and

1 1
Pui(ti—1) = 671-2, Pu2i(ti) =0, |’¢*2iHLOO(Ii) = 671—2,
1 1
¢;i(ti—1) =0, ¢§z(tl) = 6 _27 H¢;Z||Loo(lz) = én_Qa
(322) f'<2i(ti—1) = _(Qn)_la ¢;2z(tl) =0, H¢;21HLOC(L) = (2?1)_1,
;i/(tifl) = 07 ;i/(ti) = (2”)717 HQS;Z/”LOO(II) = 2”)717
¢:</2i(ti—1> =1, Qﬂm(tz) =0, | ¢ik/2iHLoo(Ii) =1,
5 (tic1) =0, 5 (i) =1, H¢§i”HLm(Ii) =1
Also,
(3 23) H¢i§)iHLOO(1i) = 4n2, qui?;)iHLoo(Ii) ="

H¢Ti(3)“Lm(m = 4n?, H¢3i(3)HLm(m -

Since 657T7n(3;(5_3), -) may have jumps at the points ¢;, let

limtﬂtiJr 5&{?,7;,(1'(3_3); t) - limtﬂtif 5g{?,n<x(s_3), t),
Oki 1= k=0,1,2, —n+1<i<n-—1,

0, k=0,1,2, ¢==n,
and define a correcting cubic spline on the intervals where z(®) is big. (In view of the
different indices ascribed to the endpoints of the intervals, we only describe how we deal
with I;,, 19 > 0, where 2(*) is big. The other intervals are handled in a similar way.) Thus,

suppose z(*) is big also in I;,—1, then set

2
(3.24) Cio (5 958) 1= 3 (hatig et (£) + Ny 00 (D),

1=0
to be so that

(325) Cz(f) (ZE(S_g);tio_l) = O, and Cz(f) (ZIZ'(S_S); tio) = 6k,i07 k= O, 1, 2.

If, on the other hand, z(%) is big in I;, but small in I;, 1, then set ¢;, as in (3.24) to be so
that

(326) gz(ok) (:c(s_3); tio—l) = —5k72’0_1, and gz(:) (:c(s_3); tio) = 6k,i07 k= 0, 1, 2.
19



The existence of (;, (z(*~%);+) in both above cases is guaranteed by (3.2), (3.21) and (3.22).
In fact solving the system of linear equations (3.25) in the former case we obtain A.;;, = 0,

[ =0,1,2, and solving equations (3.26) in the latter case we obtain

1

)\*O,io = _60,2'0—1 - (2/”’)_15172'0_1 - §< n)_262’7:0_1’
(327) /\*1,2‘0 = —51,z‘0—1 - (2”)_152,io—1»
)\*Q,io = _52,i0—1'

In both cases

1
Ao = 00,ip — (2n) 1015, + 5(%)*252,10:

(3.28) Al ig = 0160 — (2n) 82,40,
A3io = 02,i-
Denote

T (@CT51) 1= Gy (2C750) + Gy (2679501), te

0°

Clearly 4., (z*=%);.) € C*(I). Furthermore, &;’}r’n(x(s_g); -) exists and is continuous

except perhaps at the points 7,; of the intervals J,, and in particular it is continuous at

all points ¢;, 1 <1i < n. We will show that 6;’77,7”(&:(8*3); -) is nondecreasing on I. Indeed,

(3)

it suffices to prove that G, (z(573);.), which exists a.e. in I;,, is nonnegative there. By

0
our construction,
58 (@07V51) = 0 (2075 1) + €0 (2075 8) + (D (a5
=2 (t) + &7 @07 t) — (29(t) — 08, (2070 + (P (2s ),
t e Ii()'

By (3.18) and (3.20) we are guaranteed that
) (t) —|—£i(§’) (x(s_?’);t) >2n "ty ae. in I;,.

Hence (3.11) yields,

M)
(3.29) - A 1
> 26T — e I GP (@)
20



Thus it remains to estimate the third term. Now by (3.24), (3.27) and (3.28), in the worst

case,

1
HC(B) (873);')” 60.ig—1| + (2n) 101, i071|+—(2n)72|52i071|)|

< ( ¢5<%)¢0 : HLOO(IiO)
+(|5o7,0|+ (2n) 61,450 + = (2n) ?102,40]) Hﬁbmo(g) HLOO(LO)
+ (101,511 + (2n)~ |52,i0—1|)‘
+ (181,50 + @) 250D 16700 P Ol 1
+ 102401110223 Ol

+|52,i0|H¢;,i0 (')HLOO(IiO)'

gb,(i)io ' HLOC(IZvO)

By virtue of (3.5) and (3.23) we obtain

1657 =) | r)
(3.30) 1

S 32%3(‘(50,i0_1| + ’5011'0‘) + 20712(’5112'0_1| -+ ‘51,i0|) + §R(|52,z’0—1’ + ‘(52,i0|).

In order to estimate the jumps at ¢;, we observe that the original spline o, s (a:(s_?’); ) €

C?(I) thus contributes nothing to the jumps. Moreover

(3.31) lim a(k) e (5_3);15) =2®(t), k=0,1,2.

t—t;
Hence, if (%) is big both in I;, and in I;,,1, then by (3.19),

(3:32)  |0nio| <16 (in)| + €1, (ti)] < mTM(r — s)2en T HH R 1= 0,1,2.

If, on the other hand, ) is big in I;, and small either in I; 41, or in [;,_1, or in both,

then by (3.31) we have
01z < [o7DC) = a0 @75 I ey €0 ()], 1=0,1,2,
or

|6l,i0—1’ S Hx(s—l)() - O_gl’)n(x(s—?)); ) Jf)HLoc(Jf) + |§z'((l))(ti0—1)|7 [ = 07 17 27
21



respectively, or both, where J! D I; 11 or J2 D I;,_1, respectively. By (3.16) and again
(3.19), we obtain

101,10 |, 101,50 —1] < (M THe, +m12(r — s)26)n"”+5+%_3+l,
which together with (3.32) yields that in all cases,
166 s [G1i0—1] < (m > e, +m18(r — s)e)n " H a3 1 =0,1,2.

Our choice of m, and m (see (3.12) and (3.15)) gives

~

c —_ —_—
|6l7i071|7 |6Z,Z0| S mn 1"—|—S—|—11) 3+l,

and combined with (3.29) and (3.30) proves that 5£?27n(x(5_3); t) >0, tel,, as we have

09
asserted.

Finally, the same computations yield

(333) HI(S_S)(-) _ 55,7",71(1'(8_3); _)HLOO < Cn—r-i—s—i—%—?)’

where ¢ = ¢(s, 7, p).

If 3=s < r, then we set
) A (s—3). I
Osrn(T;t) = G pn( it), tel.

If 3 < s < r then we set

1
(s —3)!

s—4 t
1
Oorn(@it) i= Y —a® ()1 + | Gl syt =) ar, vt
k=0 0

Then

1
(s —3)!

t
z(t) — osrm(x;t) = / (:C(S_S) (1) — &Syr,n(x(s_g); T))(t — 1) 3dr, tel,
0

and by (3.33),

1 - s
l#0) = onrn@ sy < gyl 0 = Fann@ 0,

oo

_ 1_
SCTL r—l—s—i—p 37
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where ¢ = ¢(s,r,p). Evidently agsﬁf)(m; ) € C(I) and its derivative agf{%)(m; -) is nonde-

creasing in I. Thus oy, (;-) € AT Ly, 1 < ¢ < 00, and the upper bounds are proved for
all 3 < s <r.
If s =7r+1,7>2 then 2"~ € A2W]. It was proved in [KL2] that there exists a

convex piecewise linear function 0(:13(’“_1); -) with 2n + 1 knots, such that
27D () = o1 (@) L, < en?,
where ¢ is an absolute constant. Set
2 (0)¢F + 1 ! (r—1) r—2
or (1) Z e 0)t ( 1/, o1n(x ;T)(t—T1)" " %dr, tel,

which evidently o, (z;-) € ATt L,. Then

z(t) — opp(z;t) =

i | @V mn) -yt v

Hence,

() = o1n(@ Y5, < en”?,

1 -
|z(-) — opn(x; )L < (r—2)] x

and the proof of the upper bounds is complete. [

§4. THE LOWER BOUNDS

Proof of the lower bounds. In order to prove the lower bound, we let

(1, tel[-L1]
Po(®) '_{0, teR\[-1,1]"

and define by induction

t
os(t) == ¢s—1(27+1)dr, teR, seN.
t—1
It follows that for all s € Z, ¢, is even, ¢; > 0, ds(t) = 0,t € R\ [-1,1], [\ (£)| = 2571,

n [—1,1] except for a few dyadic points with denominator 275t and

1
64(0) = | bullL. = / od=2 e

23



For N € N, write ¢ n(t) := N~ %¢5(Nt), and for

P
TN, = 4 2N7 ) ) ’
1 21—-1
TN ‘= —— , 1=1,...,N,
W, it aN !

let

d)s,N,i(t) = ¢3,N(t_%N,i)7 iZl,...,N, 8€Z+.

Finally for 1 < p < oo, set
Spsni(t) =27 TN G Nt), s € s

Clearly, ¢, s n,i(t) is symmetric about Tn ;, ¢p.s.ni(t) =0, t &€ [Tni—1,7Tn,i], and

_1 1 _ 95421 g4l
(41) ¢p,O,N,i(7_-N,i):21 P L ¢p,s,N,i(TN,i):2 2542 » N +p.
Also
(4.2) 16wl =1 sezy.

We are ready to construct the system of vectors that will yield the lower bound. We fix

some k € N, k£ > 2 to be prescribed, and set

s—1
8 Z r—S, 11— dts"‘dt )
(4.3) Yp,r,s,k,N, / / / Bp,r—s, 1N,k (i—1)+1(ts) 1
1=1,. e [-1,1].

Then it is s-convex in I = [~1,1], and by (4.2), belongs to A{W}. Denote the system
N
\I[p,rsk‘ {lbprssz()}i:l,and let

N N
S;_ (\I!]I)\,’T‘,S,k‘) = {'T = Z ai/(bparaS:kJVﬂ‘ | az Z 07 Zaf S 1}7
=1

i=1
be the positive p-sector over this system. Then S+( s, k) C A W), which implies
i (AL Wy, AL Ly) | > diy (S+(\11p rek) DY Lg)
(4.4) N
> 2715 d,, (S (e
24

) AiL1>L1’

p,r,s,k)>



where in the second inequality we used the facts that S;{ (\IJN

p,r,s,k) < Si'_ (\I/;f)\,rr,s,k)u Aj—Lq C
A% Ly, and 2|z, > 27 0|z,

Fix some € > 0 to be prescribed and let M™" C Ly, of dimension m < N — 2, be so that

p7r7s7k p7r7s7k

(4.5) A (SY (Vo) AT L) > E(ST (U k), MITN AL L), — e
If L+t 5 M™ is a subspace of Ly of dim L™ = m + 1, then it follows that

A (7 (Vpirse) A3 L) > E(ST (W), o), LT NAL L), —e

p,T’,S,k vaVS’k Ly

We take & ; € L™ N A3Ly,i=1,...,N, such that

max ([ s kv = Eeill, < E(ST (W5, ok)s LT NALL)

1<i<N P78,k te

Ly

and extend them by & ;(t) =0,t € R\I,i=1,..., N, in order to define the Steklov mean

n n
fs,n,e,i(t) = 77_5_1/ / gﬁai(t—i_tl+'”+t5+1)dt5+1“'dt17 teRv 7':177N
0 0

It is well known that &, ,, c; € C*(R), and

() () = =1 [ A o
Esmeilt) =€ 1/0 A i(t+T)dr, te[-2,2], i=1,...,N.

(s—1)

We conclude that 5(5) 1 <7 < N, is continuous and nonnegative in [—%, %] cand £ 5,

57777672.,

1 < i < N, is continuous and nondecreasing there. Also

nl_i)m+0H€e,i_Ss,n,e,iHLl(R) =0, ¢=1,...,N.

Thus we fix 0 <7 < (8(s+ 1))~ !, so that

m [~ Eomenll o) <
1<I<N ge,z fs,n,e,z Li(R) =%

and it follows that

(46) lgliag}%\fuwp,r,s,k,N,i - 55,7),6,i||L1 S E(Sf— (\Iji?\ivr,&k) ) L:l—’_l A Aj‘Ll)Ll(I) T Ze.
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Let {C€7j}§-n:+11 be a basis of L™*! and extend (. ;(t) =0,t € R\ I, j=1,...,m+ 1L
Again, let

n n
Cs,n,e,j(t) = 77_8_1/ / C€7j(t+t1+' "+ts+1)dts+1 .. .dtl, t e R, j = 1, cooomA+1,
0 0

and denote their span by L™l Also let A, D !L™F1 denote the set of all elements

5,7,€ S,1,€
e Ly I such that ¢65~1 is continuous and nondecreasing in [—%, %] It follows from the
above that &, c; € Ay D*"'L7 L. Therefore (4.6) implies

E(ST (¥, on), LT NAS L),
(4.7) n s—17m+1
> B(ST (W, 00) Ay DL e 2,

and we will show that for an appropriate k,

+ s—11rm+1

(S (\ijrsk) A+D Lsne)L [-Z,1]

(4.8)
> (25 525" ¢(p, s)(kN)_r+s+5_3.

Indeed, by virtue of (4.1) and (4.3), we obtain for each i = 1,..., N,

t
djz()i:sl,)k,NJ(t) L= / ¢p,r—s,4kN,4k(z’—1)+1(ts)dts
—1

gl
= c(p, 7, s)(kN) Fot Tl U2 TEN k(i—1)+1

where
2l=% s=r
Set
Xp,rs.kN,i(t) = G _1 1)!c(p, r,s)(kN) ety ! (t — Tun k(e 1)+1)5 '
Then

s s—1
X i =0 0 (), < Tvaoy and > Ty a1

while for ¢ € (Tyn k(i—1)+1> TkN, k(i—1)+1), it follows from (4.1) that

s—1 s—1 r
Xz(ﬂ"s)sz() w(rs)sz()<c(p7rﬂS)(kN) ++ (Tk‘Nk‘(z 1)+1_t)
26



Finally, by the symmetry of ¢, ,_s kN k(i—1)+1 about Tun ki—1)41, it is readily seen that
1 _ —1 _
Xbra ot = Toni(i1y41) = 055 v it = Ten k-1 41)

s—1 _ s—1 _
(X;() . s)k: Nt TeN k-1 +1) — @/f,(),r,s,)k,zv,i(—t + TeN k(i-1)41))-

The last two relations imply that X](gsr_?k Nilt) — w;sff)k Ni(t) =0, if t < 7N -1y and if

t > TiN k(i—1)+1, and this in turn yields

(s-3) (s-3) L6 —rtstlo3
||¢p,r,s,k,N,i - Xp,r,s,k,NZHLOO(]R) — 32 (p7T S)(kN) P .
Hence, we have for i =1,..., N,
Tys—21 —r+s+1-3
H";bp,rssz Xp,rssz”Ll % %] S (Z) 32 (p,r,s)(k:N) P
< 25_96(]?, r, S)(kN>—r—|—s—|—%—3'

If Xﬁr’&k = {Xpm&k,N,i}jip then the above implies that

(S+(\ij7’s k) A"‘DS lL;n;]’_el)L[ 1,1

> E(Sii_ (Xp,r,s,k) A D~ 1Lm+1 - 28_9C(p7 T, S)(kN)_T—’_S—’_%_g"

5,1, E)Ll[—g,g]
Thus (4.8) follows if we show that for an appropriate k,

(4.9) E(ST (X ron) A DL Ll > 25 Fse(p, 7, 8)(kN) 553,

s,m,€

|~
ool~1

]

To this end, we first prove that

(4.10) B ST O 7 A DL g

> 274k — De(p, 7y ) (kN) 572,

where for a subset U C X, we use the notation

U = {27V |z e U}
27



Indeed let Iy N := [Tkn,k(i—1)+1s TkNki)s @ = 1,..., N and define the discretization oper-

ator Ay v L1 >0 — Apnx € Z{V by

Ap NT = (/ x(t)dt, . .. ,/ m(t)dt) :
Iy Nt I NN

Then it is easy to see that

[ Ak, Nalliy < llaflp, -1, 1.
Hence
E(d* 8T (Xpl s k), d° 1AL D an?;_ﬁl)Ll[—l 1
(4.11) > B(Aend 'S (Xpir o) Arvd T ALD LY
> A1 (A, ST (DS_1Xp,r,S,k)7A}|')l11V7
since

Ak Nd®™ 1A Ds—tpmtl - Al CRN

s,m,€

where A}r, defined in Lemma D with n replaced by N.
Now

A XD v =27 k= De(p,r, s)(kN) TH 0260 =1, N,
where é(V) are the N-tuples from (4.4) (with n replaced by N). Hence
Ay nd* ST (Xﬁr,s,k) =271k — 1)c(p, s)(kN)_TJFSJF%_QSfr (EN),
where EN := {&}N | Therefore

oo (A 5F (o) A1)

(412) -1 —r+s+i-2 + (N 1
=2""(k—1)c(p,r,s)(kN) ? 2 dygr (ST (B )),AJF)H\,.

For m < N — 2, it follows by Lemma D that

i (S7 (V). AL ) > 1

ool»—‘

and combining with (4.11) we obtain (4.10).
28



Now, by (4.10) there exists an 1 < iy < N, so that

s—1 S— — —r-+s 1_
g aevio = €7, g gy = 271 = Do,y ) (k) 772,
for all £ € A.,.DS_ILZ?;EI. Denote I;, := [—% + ThN k(io—1)4+1> ThN,k(io—1)+1 + %] Then for
each £ € Ay D*~ 'L HL,
s—1 s— — —r4s+i—
(413) [Gdevae =€y 2 271 0= Delpr ) (N) T

Recall that £€65~1 is continuous and nondecreasing in [—%, %], thus in I;; C [-2,3]. So if

(4.14) 0<ED@) <elp,r,s)(kN)"Ht371 tel,

0

then we may apply Corollary 1 (with s replaced by s — 1) with 7 = Tyn o—1)41, b =
c(p,r, s)(kN)_“LSJF%_l, a= 2, and A =24k —1)c(p,r, s)(kN)_T+S+%_2, to obtain

Pprsavin = Ell oy 2 270 72710k = 1)2e(p, ) (kN) 7745,
We conclude that
(4.15) || Xp s,k N0 — fSHLI[_%’%] > 9= 5= 10( _ 1)2¢(p, 7, 5)(AN) "B 3,
If (4.14) does not hold, then we may have that
5(81)(—% + TeN k(io—1)+1) < =2 TCN2¢(p,, s)(kN)_HSJF%_l,

or

1
£ Tntio- 11 +5) 2 (1427 ON2)e(p, ) (k) 451

for some C' > 0, to be prescribed. In view of the monotonicity of £*~1) in [—%, g], we

have

s§— s— — — —r4s+i—
XD v ) = €670 @) 2 27 1ON2e(p, 1, 5) (kN) TR b e gy,
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where Jo = [~Z,—2] in the former case, and Jy = [2, {] in the latter. Lemma 1 then

implies the existence of an J,_1 C Jo, of length |Js_1| > 27257 such that
‘Xp,r,S,k,N,io(t) - f(t>| > 2_82_28_10]\[_20(137 T, 5)<kN)7T+S+%71 te Js_1,

which in turn yields,

> 275" 420N "2¢(p, r, 5) (kN) T

HXp,r,s,kyNyio - gHLl(JS 1) —

We conclude that in either case

2 s+ L
(4.16) b5 3,00 = €l 1 >27" 20K e(p, 1, 8) (RN) TR,

_r
8

Otherwise, again due to the monotonicity of £~ in [— < 8] we have

(4.17) — 27 ON2e(p, v, 5) (KN) T < €60 1)
4.17
< (1427 'CN"De(p,r,s)(kN) "5t teT,

0

Denote
Coo1(t) = (1+ CN )71V (1) + 27 ON2e(p, s)(k‘N)_TJrs*%_l),

and it readily follows by (4.17) that 0 < (5—1(t) < ¢(p, 7, s)(k;N)_TJrer%_l, t e l;,. Also
by virtue of (4.13)

Ieriavio = Ss=1llu .

10)
> H p,r,s,k N,ig 6(8_1)| Ll(lio) - ||€(8_1) - gs_lHLl(I
> 9—4 (l{? _ 1)C(p, 7 S)(kN)—r—Fs*l—%—? _ Hg(s—l) — CS_IHC(IiO)|IO|

10)
> 274(k — 1)e(p, r, s) (kN) " +5+5 2

(419 — (14+ ON"2) LN (€ Dller, ) + 27 ep,r, 5)(kN) 57
> 274(k — D)e(p, r, s)(kN) 5452

—(1+CN 2 '1ON2(1427'CN"2 + 27 Ye(p, 7, s) (kN) " Het5 71

> 274k — De(p,r,5)(EN)~ sty =2 — 20N 2¢(p,r, s)(k;N)_TJFH%_l

= (27% (k= 1) — 20N e(p, r, 8) (kN) "IN
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(Observe that N > 3 and k > 2, so taking C' < 27° guarantees that the last quantity is

positive.) Set

s—2
C(t) = Z f(l’) (7_—kN7k(7:0—]_)+1)(t — 7_—kN7k(i0—1)+1>V
v=0
1 t ~
+ ML Comr (T)(t — 7)*2dr.

kN,k(ig—1)+1

Then we note that (1) = ¢,_;, is nondecreasing in I;,, so applying Corollary 1 (with
s replaced by s — 1) for 7 = Tyn k(ig—1)+1, b = c(p, T, s)(k:N)_TJFH%_l, A= (271 (k-
1) —2CN~Ye(p,r, s)(k:N)_H”%_lN_l and a = 3, we obtain

(4-19) ||Xp,r,s,k,N,io - CHLl(I > 2_82_53_10 (k N 25CkN_1)20(p, r, S)(kN)_T+S+%_3,

i0) —

Now, by Taylor’s formula we have

C(t) —&(t) = %/ (Co—1(7) — f(s_l)(T))(t — 1) %dr, tel,.

EN,k(ig—1)+1

Hence, as in (4.18),

27+ (s—1)
S THCsfl —¢ HC’(I
2784»2

HC_SHLl(IiO) ig)

CN~2¢(p,r,s) (k:]\f)_"’JFSJ’%_1

IN

s!
2—3—1—2

= ' Ckzc(p, T, 8)(]€N)7T+S+%73,
s!

which by (4.19) yields

[Xp.r 5.k, = §||L1(Ii0)

2 {Pxprsiesvio = Cllu gy =16 =€l r,)

> 97 010 (k1 — 25CKNT)? - 252082 e(p, 1, 5) (RN) TR R
So we conclude that

HXp,r,s,k,N,io - SHLl[_g,g]

> 975 010 — 1 — 25CkN )% — 25 H4H12082) o(p, 7, ) (KN) "3,
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If we take
c(s, k, C) := min {2_52_55_10(k —1)2,27 202,
9—s>—5s—10 ((k: _1_ 25C’k;N’1)2 _ 252+4s+120k2>}

then by combining (4.15), (4.16) and (4.20) we have for each ¢ € A, DS~ 1™ F!

7,’77‘:‘7,
p,T,8 [ —prts 1
HX 7 7k’N’i0 Hl 1[_,7 7] 2 C(S, k, C)C(p,?,s)(l{:N) P 3'

Now, straightforward computations show that if we take C' := 2_52_48_14, then c(s, k,C) >
272k2, so that taking k = 25" T35+6 yields (4.9), and in turn proves (4.8). By virtue of
(4.4) through (4.7) we conclude that

4 (A7, 85L,),

> 271+5 (252+s . 25—9)2(82+3s+6)(77’+s+%73)c(p, r, S)N—r+s+%—3 ~ 3e,

for every € > 0, whence without € too, and for m =n, N = n + 3 we obtain

_ 1_
do(A3WF AL L), > e

q
where ¢ = ¢(r,s,p,q) > 0. This completes the proof of the lower bounds in (1.1) for
§=3,...,7T.

For s = r + 1, we observe that the lower bounds in (1.2) are independent of 1 <
p < 00, so it suffices to establish them for the smallest class, namely, for Aflwgo, since
Aflwgo C ATIW;, 1 < p < oo. We also note that

1 _ .
Xoo,rk,N,i(t) = ﬁ(t - Tk:N,k(i—l)—i—l)ra i=1,...,N,

is differentiable 7 times and Xoo,r kN, € A’lego, 1 <4 < N. Thus we do not need the
elaborate construction we had before and can work directly with Xoo r kN, 1 <7 < N.
Therefore if we denote Xévo,r,k = {XOO,T,k,N,i}j\]:p then S} (Xévo,r,k) C ACFHW;O. Using the

discretization operator Ay n, defined above, we prove as before (see (4.12)) that

A1 (Aenvd"ST(XZ k), AY) 1y 2 271 (k = DN i (S (E7)), AL)

> 274k - 1)kN"1.
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Then, we proceed as before to conclude that

dn (AW, AV L), > oen™?,

q

where ¢ = ¢(r, q) > 0. This completes the proof of the lower bound in (1.2), and concludes

the proof of our theorem. [J
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