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Abstract. Let I be a finite interval and r ∈ N. Denote by ∆s
+Lq the subset of all functions

y ∈ Lq such that the s-difference ∆s
τ y(·) is nonnegative on I, ∀τ > 0. Further, denote by

∆s
+W r

p , the class of functions x on I with the seminorm ‖x(r)‖Lp ≤ 1, such that ∆s
τ x ≥ 0,

τ > 0. For s = 3, . . . , r + 1, we obtain two-sided estimates of the shape preserving widths

dn
�
∆s

+W r
p , ∆s

+Lq
�
Lq

:= inf
Mn∈Mn

sup
x∈∆s

+W r
p

inf
y∈Mn∩∆s

+Lq

‖x− y‖Lq ,

whereMn is the set of all linear manifolds Mn in Lq , dim Mn ≤ n, such that Mn∩∆s
+Lq 6= ∅.

§1. Introduction and statement of the main results

Let X be a real linear space of vectors x with a norm ‖x‖X , W ⊂ X, W 6= ∅ and

V ⊂ X, V 6= ∅. Let Ln be a subspace in X of dimension dim Ln ≤ n, n ≥ 0 and

Mn = Mn(z) := z + Ln be a shift of the subspace Ln by an arbitrary vector z ∈ X. If

Mn ∩ V 6= ∅, then we denote by

E(x, Mn ∩ V )X := inf
y∈Mn∩V

‖x− y‖X ,

the best approximation of the vector x ∈ X by Mn ∩ V , and by

E(W,Mn ∩ V )X := sup
x∈W

E(x,Mn ∩ V )X ,
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the deviation of the set W from Mn ∩ V .

Let Mn = Mn(X, V ) be the set of all linear manifolds Mn, dim Mn ≤ n such that

Mn ∩ V 6= ∅. The quantity

dn(W,V )X := inf
Mn∈Mn

E(W,Mn ∩ V )X , n ≥ 0

is called the relative n-width of W with the constraint V in X. These widths were intro-

duced by the first author in [1].

Evidently, if V = X, then the relative n-width dn(W,V )X coincides with the Kol-

mogorov n-width dn(W )X . Clearly, dn(W,V )X ≥ dn(W )X .

Let I be a finite interval in R, and let r ∈ N. We will take I = [−1, 1] as the generic

interval and we will omit referring to it in the notation whenever the interval we deal

with is I, for instance we write ‖ · ‖Lp for ‖ · ‖Lp(I). We will use other intervals and the

whole real line R and we will make clear in the notation whenever we deal with them. For

1 ≤ p ≤ ∞, we denote

W r
p := W r

p (I) := {x : I → R | x(r−1) ∈ ACloc(I), ‖x(r)‖Lp ≤ 1},

where ACloc(I) is the collection of all functions defined on I which are absolutely contin-

uous in every closed subinterval of (−1, 1). Let

∆s
τx(t) :=

s∑

k=0

(−1)s−k

(
s

k

)
x(t + kτ), {t, t + sτ} ⊂ I, s = 0, 1, . . . ,

be the s-th difference of the function x, with step τ > 0, and denote by∆s
+W r

p = ∆s
+W r

p (I),

s = 0, 1, . . . , the subclass of functions x ∈ W r
p for which ∆s

τx(t) ≥ 0, for all τ > 0 such

that [t, t+sτ ] ⊆ I. By ∆s
+Lq = ∆s

+Lq(I) we denote the subclass of all functions y ∈ Lq(I)

such that ∆s
τy(t) ≥ 0, τ > 0. In recent years shape preserving approximation has become

a central subject especially in applications. This is due to the fact that in CAGD and

especially in questions of design, shape preservation is one of the main considerations.

Our results below show what one may expect to achieve and what is beyond reach of any

approximation process which involves approximation from linear n dimensional manifolds,

when we preserve the shape of the approximants.

In this paper we prove the following
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Theorem. Let r ∈ N, s ∈ N and 1 ≤ p, q ≤ ∞. For 3 ≤ s ≤ r, we have

(1.1) dn

(
∆s

+W r
p ,∆s

+Lq

)
Lq
³ n−r+s+ 1

p−3, n ≥ r.

Also if s = r + 1, r ≥ 2, then

(1.2) dn

(
∆r+1

+ W r
p ,∆r+1

+ Lq

)
Lq
³ n−2, n ≥ r.

Remarks. i. Note that the asymptotic relations are independent of q.

ii. The upper bounds are achieved by piecewise polynomials of degree ³ r, with n knots,

that are elements of ∆s
+Cs−2. For 3 ≤ s ≤ r, the knots are equidistant, however, if

s = r + 1, r ≥ 2, then we are unable to guarantee that, and in our construction the knots

are not equidistant.

iii. It is worthwhile noting that as a byproduct we may conclude that the lower bound

in (1.1) with s = r > 3, excludes the possibility of Jackson-type estimates involving the

fourth modulus of smoothness of x evaluated at 1/n, in s-monotone approximation of x, by

piecewise polynomials or splines with n equidistant knots and thus also not by polynomials

of degree ≤ n. Moreover, it even excludes Jackson-type estimates involving the generally

bigger Cn−3ω(x(3), n−1)p.

Recall that up until now we knew that Shvedov [6] had shown that Jackson-type estimates

of s-monotone approximation of an s-monotone x, by polynomials of degree ≤ n, cannot

be had with Cωs+2(x, n−1)p. Thus the above is somewhat unexpected to us in view of

what seemed like a pattern that we have Jackson-type estimates involving Cω2(x, n−1)p

for monotone approximation, and by Shvedov [6], it is impossible to have such estimates

with ω3(x, n−1)p, and we have Jackson-type estimates for convex approximation involving

ω3(x, n−1)p, while again by Shvedov [6], it is impossible to have such estimates with

ω4(x, n−1)p.

It is interesting to compare the above asymptotic relations with earlier results. Sur-

prisingly, they are quite different. For instance, for s = 1, 2, these relations, in general, do

depend on q as we shown in [5], namely,
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Theorem KL1. Let s = 1, 2, s ≤ r ∈ N, and 1 ≤ p, q ≤ ∞, be such that r − 1
p + 1

q > 0.

Then

dn(∆s
+W r

p , ∆s
+Lq)Lq ³ n−r+( 1

p− 1
q )+ , n ≥ r.

If, on the other hand, s = r + 1 = 2, then

dn(∆2
+W 1

p ,∆2
+Lq)Lq ³ n−1− 1

q , n ≥ 1.

It is also worthwhile to see what kind of asymptotic relations are known for the uncon-

strained widths. In this case we have shown [3]

Theorem KL2. Let r ∈ N and 1 ≤ p, q ≤ ∞, be such that r− 1
p + 1

q > 0. If (r, p) 6= (1, 1),

and if (r, p) = (1, 1) and 1 ≤ q ≤ 2, then for each s = 0, 1, . . . , r,

dn(∆s
+W r

p )Lq ³ n−r+(max{ 1
p , 1

2}−max{ 1
q , 1

2})+ , n ≥ r.

If on the other hand, (r, p) = (1, 1) and 2 < q < ∞, then for s = 0, 1,

c1n
− 1

2 ≤ dn(∆s
+W 1

1 )Lq ≤ c2n
− 1

2
(
log(n + 1)

) 3
2 , n ≥ 1,

where c1 > 0 and c2 do not depend on n. Furthermore,

dn(∆r+1
+ W r

p )Lq ³ n−r−max{ 1
q , 1

2}. n > r.

§2. Some auxiliary lemmas

In order to prove our theorem, we need a few lemmas. The first was proved by the

authors in [5, Lemma 1].

Lemma A. Let J be a finite interval, and let
{
ti

}r

i=1
be a collection of r ∈ N disjoint

points in J . Set δ1 := 1 and δr := min
{|ti − tj |, i 6= j

}
for r > 1. Then for any function

x such that x(r) ∈ L1(J),

‖x‖L∞(J) ≤
r

(r − 1)!

( |J |
δr

) r(r−1)
2

(
max
1≤i≤r

∣∣x(ti)
∣∣ +

|J |r−1

(r − 1)!

∥∥x(r)
∥∥

L1(J)

)
.

A similar result was proved by the authors in [4, Lemma 1].
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Lemma B. Let J = [a, b] and m ∈ N, and set ti = tm,i := a + im−1|J |, i = 0, . . . , m.

Then for every function x such that x′′ ∈ L∞(J),

‖x′‖L∞(J) ≤ 2m|J |−1 max
0≤i≤m

∣∣x(ti)
∣∣ +

1
4
m−1|J |∥∥x′′

∥∥
L∞(J)

.

Next we need a result concerning Jackson-type estimates of the simultaneous approx-

imation of 3-monotone function by 3-monotone quadratic splines with equidistant knots

(see [4]).

Lemma C. Let J = [a, b] and x ∈ ∆3
+W 3

p (J), 1 ≤ p ≤ ∞. For m ∈ N, let ti = tm,i :=

a + im−1|J |, i = 0, . . . , m. Then there exists a quadratic spline σ2,m(x; ·) with knots ti,

i = 0, 1, . . . , m, such that

x′′
(
ti−1

) ≤ σ
′′
2,m

(
x; t

) ≤ x′′
(
ti

)
, t ∈ (

ti−1, ti
)
, i = 1, . . . , m,

and

∥∥x(·)− σ2,m(x; ·)
∥∥

L∞(J)
≤ 3

2
m−3+ 1

p |J |3− 1
p ,

∥∥x′(·)− σ′2,m(x; ·)
∥∥

L∞(J)
≤ 7

2
m−2+ 1

p |J |2− 1
p ,

∥∥x′′(·)− σ′′2,m(x; ·)∥∥
L∞(J)

≤ m−1+ 1
p |J |1− 1

p .

Next we have

Lemma 1. Let J = [a, b] and x ∈ Cs(J), s ∈ N. If mint∈J |x(s)(t)| ≥ A > 0, then

there exists a subinterval Js ⊆ J , of length |Js| = 4−s|J |, such that mint∈Js |x(t)| ≥
2−s(s+1)|J |sA.

Proof. Denote c := 1
2 (a + b), and assume x(s−1)(c) ≥ 0. Then from

x(s−1)(t) = x(s−1)(c) +
∫ t

c

x(s)(τ)dτ, t ∈ J,

it follows that if x(s)(t) ≥ A, t ∈ J , then x(s−1)(t) ≥ A(t − c), t ∈ [c, b]. Hence for

J1 := [ 12 (c + b), b], which is of length |J |/4, we have x(s−1)(t) ≥ 4−1|J |A. If on the
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other hand, x(s)(t) ≤ −A, t ∈ J , then −x(s−1)(t) ≤ −A(c − t), t ∈ [a, c]. Hence we

have −x(s−1)(t) ≤ −4−1|J |A, in the interval J1 := [a, 1
2 (a + c)]. The proof is similar if

x(s−1)(c) ≤ 0. Thus, in all cases we have established the existence of the interval J1,

|J1| ≥ |J |/4, such that |x(s−1)(t)| ≥ 4−1|J |A, t ∈ J1. Now the rest of the proof readily

follows by induction. ¤

We apply Lemma 1 to prove

Lemma 2. For s ∈ N, denote χs(t) := 1
s! t

s
+, t ∈ R, and for s > 1 let ξ ∈ Cs[−a, a],

a > 0, be such that ξ(s) is nondecreasing and 0 ≤ ξ(s) ≤ 1 in [−a, a]. Then, if

(2.1) ‖χ(s)
s − ξ(s)‖L1[−a,a] ≥ A,

where 0 < A ≤ a, then

(2.2) ‖χs − ξ‖L1[−a,a] ≥ 2−s2−4s−3as−1A2.

Proof. Denote

δs(t) := χs(t)− ξ(t), t ∈ [−a, a].

It is clear from our assumptions that δ
(s−1)
s is decreasing and concave in [−a, 0], and it is

increasing and concave in [0, a]. Assume first that

(2.3) max{δ(s−1)
s (−a), δ(s−1)

s (a)} ≤ 2−4a−1A2.

Then by (2.1),

A ≤ ‖δ(s)
s ‖L1[−a,a]

= −
∫ 0

−a

δ(s)
s (t)dt +

∫ a

0

δ(s)
s (t)dt

= δ(s−1)
s (−a)− 2δ(s−1)

s (0) + δ(s−1)
s (a),

which by virtue of (2.3) implies

(2.4) δ(s−1)
s (0) ≤ −A

2
+ 2−4a−1A2.
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If

ζs−1(t) :=





2−4a−1A2, t ∈ [−a,−A
2

]
,

|t| − A
2 + 2−4a−1A2, t ∈ [−A

2 , A
2

]
,

2−4a−1A2, t ∈ [
A
2 , a

]
,

then it follows by (2.4) that δ
(s−1)
s (0) ≤ ζs−1(0). Since

∣∣δ(s)
s (t)

∣∣ ≤ 1, and
∣∣ζ ′s−1(t)

∣∣ = 1,

t ∈ [−A
2 , A

2

]
, t 6= 0, we conclude that the graph of δ

(s−1)
s in that interval is below that of

ζs−1, i.e.,

(2.5) δ(s−1)
s (t) ≤ ζs−1(t), t ∈ [−A

2
,
A

2
]
.

Also since δ
(s−1)
s is nonincreasing in

[−a,−A
2

]
and nondecreasing in

[
A
2 , a

]
, it follows from

(2.3) that

δ(s−1)
s (t) ≤ ζs−1(t), t ∈ [−a,−A

2
] ∪ [A

2
, a

]
,

which combined with (2.5) yields

(2.6) δ(s−1)
s (t) ≤ ζs−1(t), t ∈ [−a, a

]
.

Let

ζs−2(t) :=
∫ t

0

ζs−1(τ)dτ, t ∈ [−a, a].

Then it is an odd function, it is nondecreasing in
[−a,−A

2 + 2−4a−1A2
]
, and it is noni-

creasing in
[−A

2 + 2−4a−1A2, 0
]
. At tmax := −A

2 + 2−4a−1A2 it has a local maximum and

symmetrically, at tmin := A
2 − 2−4a−1A2 it has a local minimum. It is easy to calculate

that

ζs−2(−a) =
(
2−3 − 2−4

)
A2, ζs−2(a) = −(

2−3 − 2−4
)
A2.

Hence,

(2.7)
ζs−2(t) ≥ ζs−2(−a) = 2−4A2, t ∈ [−a

2
, tmax

]
,

ζs−2(t) ≤ ζs−2(a) = −2−4A2, t ∈ [
tmin,

a

2
]
.

Now ∫ t

0

(
ζs−1(τ)− δ(s−1)

s (τ)
)
dτ = ζs−2(t)− δ(s−2)

s (t) + δ(s−2)
s (0).
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Thus by (2.6) and (2.7),

(2.8)
δ(s−2)
s (t) ≥ δ(s−2)

s (0) + ζs−2(t)

≥ δ(s−2)
s (0) + 2−4A2, t ∈ [−a, tmax],

and

(2.9)
δ(s−2)
s (t) ≤ δ(s−2)

s (0) + ζs−2(t)

≤ δ(s−2)
s (0)− 2−4A2, t ∈ [tmin, a].

If δ
(s−2)
s (0) ≥ 0 then by (2.8) we obtain

δ(s−2)
s (t) ≥ 2−4A2, t ∈ [−a, tmax].

Otherwise, by (2.9) we get

δ(s−2)
s (t) ≤ −2−4A2, t ∈ [tmin, a].

Hence we conclude that

(2.10) min
t∈J0

∣∣δ(s−2)
s (t)

∣∣ ≥ 2−4A2,

where J0 is either
[−a, tmax] or [tmin, a]. Our assumption that A ≤ a implies that tmax =

−A
2 + 2−4a−1A2 > −a

2 and tmin = A
2 − 2−4a−1A2 < a

2 , so that

(2.11) |J0| > a

2
.

For s = 2, (2.10) and (2.11) yield (2.2). If s > 2, then we apply Lemma 1 and obtain by

(2.10) and (2.11) that there exists an interval Js−2 ⊆ J0 of length |Js−2| = 2−2s+4|J0| ≥
2−2s+3a such that

min
t∈Js−2

∣∣δs(t)
∣∣ ≥ 2−s2+2s−4as−2A2.

This in turn implies

‖χs − ξ‖L1[−a,a] ≥ ‖δs‖L1(Js−2) ≥ 2−s2+1as−1A2,
8



and (2.2) has been proved for s > 2. On the other hand, if (2.3) fails, then due to

symmetry, we may assume without loss of generality that

χ(s−1)
s (−a)− ξ(s−1)(−a) > 2−4a−1A2.

Suppose that

χ(s−1)
s

(−a

2
)− ξ(s−1)

(−a

2
)

> −2−4a−1A2.

Then by the concavity of δ
(s−1)
s in

[−a,−a
2

]
, we have

δ(s−1)
s (t) > −2−2a−2A2

(
t +

3a

4
)
, t ∈ [−a,−a

2
]
.

In particular

δ(s−1)
s (t) > 2−5a−1A2, t ∈ [−a,−7a

8
]
.

We apply Lemma 1 with J0 :=
[−a,− 7a

8

]
and obtain an interval Js−1 ⊆ J0 of length

|Js−1| ≥ 2−2s+2|J0| = 2−2s−1a, such that

min
t∈Js−1

∣∣δs(t)
∣∣ ≥ 2−s2−2s−2as−2A2.

Hence,

(2.12) ‖χs − ξ‖L1[−a,a] ≥ ‖δs‖L1(Js−1) ≥ 2−s2−4s−3as−1A2.

Otherwise

χ(s−1)
s

(−a

2
)− ξ(s−1)

(−a

2
) ≤ −2−5a−1A2,

and since δ
(s−1)
s is nonincreasing in

[−a
2 , 0

]
, we obtain

δ(s−1)
s (t) ≤ −2−4a−1A2, t ∈ [−a

2
, 0

]
.

Once more we apply Lemma 1, this time with J0 :=
[−a

2 , 0
]
, and obtain an interval

Js−1 ⊆ J0 of length |Js−1| ≥ 2−2s+2|J0| = 2−2s+1a, such that

min
t∈Js−1

∣∣δs(t)
∣∣ ≥ 2−s2−3as−2A2.
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Hence,

(2.13) ‖χs − ξ‖L1[−a,a] ≥ ‖δs‖L1(Js−1) ≥ 2−s2−2s−2as−1A2.

Combining (2.12) and (2.13), we have proved (2.2) for s > 2 in this case too. This

completes the proof of Lemma 2. ¤

An immediate consequence is

Corollary 1. For τ ∈ R and b > 0, denote

χs,τ,b(t) :=
b

s!
(t− τ)s

+, t ∈ R, s ∈ N.

Let s > 1 and ψ ∈ Cs[τ − a, τ + a], a > 0, and assume that ψ(s) is nondecreasing and

0 ≤ ψ(s)(t) ≤ b, in [τ − a, τ + a]. Then, if

‖χ(s)
s,τ,b − ψ(s)‖L1[τ−a,τ+a] ≥ A,

where 0 < A ≤ ab, then

‖χs,τ,b − ψ‖L1[τ−a,τ+a] ≥ 2−s2−4s−3as−1b−1A2.

In the sequel we use the standard notation for the unit vectors along the axes, namely,

En :=
{
e(i)

}n

i=1
, e(i) := (0, . . . , 1, . . . , 0) with the 1 is standing in the ith entry,

and also we use

Ẽn :=
{
ẽ(i)

}n

i=1
, ẽ(1) := (1, 1, . . . , 1), ẽ(2) := (0, 1, . . . , 1), . . . , ẽ(n) := (0, . . . , 0, 1).

Finally, the following was proved in [5, Lemma 4]

Lemma D. Let m ∈ Z+ and n ∈ N, be such that m + 1 < n, and let 1 ≤ p ≤ q ≤ ∞.

Denote by

S+
p

(
Ẽn

)
:=

{
v | v :=

n∑

i=1

aiẽ
(i), a = (a1, . . . , an) ∈ Rn, ai ≥ 0, i = 1, . . . , n, ‖a‖lnp

≤ 1
}
,

the positive p-sector over the system Ẽn, and by

∆1
+ := {x = (x1, . . . , xn) | x1 ≤ · · · ≤ xn} ,

the cone of vectors x with nondecreasing coordinates in Rn. Then

dm

(
S+

p

(
Ẽn

)
,∆1

+

)
lnq
≥ 1

8
.
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§3. The upper bounds

Proof of the upper bounds. First take s = r ≥ 3. It follows by Lemma C that there exists

a quadratic spline σ2,n(x(r−3); ·) with knots ti = tni := i
n , i = 0,±1 . . . ,±n, such that

x(r−1)
(
ti−1

) ≤ σ
′′
2,n

(
x(r−3); t

) ≤ x(r−1)
(
ti

)
, t ∈ (

ti−1, ti
)
, i = −n + 1, . . . , n,

and

(3.1)

∥∥x(r−3)(·)− σ2,n(x(r−3); ·)
∥∥

L∞
≤ 3

2
n−3+ 1

p ,

∥∥x(r−2)(·)− σ′2,n(x(r−3); ·)∥∥
L∞

≤ 7
2
n−2+ 1

p ,

∥∥x(r−1)(·)− σ′′2,n(x(r−3); ·)
∥∥

L∞
≤ n−1+ 1

p .

For r = 3, this spline provides us with the required upper bound. If r > 3, then by Taylor’s

formula, the spline

σr−1,n(x; t) :=
r−4∑

l=0

1
l!

x(l)(0)tl +
1

(r − 4)!

∫ t

0

σ2,n(x(r−3); τ)(t− τ)r−4dτ, t ∈ I,

yields

x(t)− σr−1,n(x; t) =
1

(r − 4)!

∫ t

0

(
x(r−3)(τ)− σ2,n(x(r−3); τ)

)
(t− τ)r−4dτ, t ∈ I,

whence by (3.1) we obtain

∥∥x(·)− σr−1,n(x; ·)∥∥
L∞

≤ 3
(r − 3)!

n−3+ 1
p .

Thus the case s = r ≥ 3 is proved.

Assume that 3 ≤ s < r. First we construct a spline σs,r,n(x(s−3); ·), which is not

necessarily in ∆s
+Lq, so that

∥∥x(s−3)(·)− σs,r,n(x(s−3); ·)
∥∥

L∞
≤ cnr−s+ 1

p−3,

where c = c(s, r, p). Then we will modify it a little so as to keep it close to x while at the

same time be in ∆s
+Lq. Denote by

Ii = Ini :=
{

[ti−1, ti], i = 1, . . . , n,

[ti, ti+1], i = −n, . . . .− 1,
11



the intervals of the partition. On each interval Ii, we define two complementary cubic

splines ϕ∗i and ϕ∗i as follows. For i = 1, . . . , n, set

ϕ
(3)
∗i (t) :=





−32n3, ti−1 < t < ti−1 + 1
4n ,

32n3, ti−1 + 1
4n < t < ti − 1

4n ,

−32n3, ti − 1
4n < t < ti,

and

ϕ∗i
(3) := −ϕ

(3)
∗i .

Now let

ϕ′′∗i(t) :=
∫ t

ti−1

ϕ
(3)
∗i (τ) dτ, ϕ∗i

′′(t) :=
∫ t

ti

ϕ∗i
(3)(τ) dτ, t ∈ Ii,

ϕ′∗i(t) :=
∫ t

ti−1

ϕ′′∗i(τ) dτ, ϕ∗i
′(t) :=

∫ t

ti

ϕ∗i
′′(τ) dτ, t ∈ Ii,

ϕ∗i(t) :=
∫ t

ti

ϕ′∗i(τ) dτ, ϕ∗i (t) :=
∫ t

ti−1

ϕ∗i
′(τ) dτ, t ∈ Ii.

For i = −n, . . . ,−1 we set

ϕ∗i(t) := ϕ∗,−i(−t), t ∈ Ii,

and

ϕ∗i (t) := ϕ∗−i(−t), t ∈ Ii.

All the above functions are piecewise cubic polynomials on the respective intervals, and it

is readily seen that

(3.2)

ϕ∗i(ti−1) = ϕ∗i (ti) = 1, ϕ∗i(ti) = ϕ∗i (ti−1) = 0, i = 1, . . . , n,

ϕ∗i(ti+1) = ϕ∗i (ti) = 1, ϕ∗i(ti) = ϕ∗i (ti+1) = 0, i = −n, . . . ,−1,

ϕ′∗i(ti−1) = ϕ∗i
′(ti) = 0, ϕ′∗i(ti) = ϕ∗i

′(ti−1) = 0, i = 1, . . . , n,

ϕ′∗i(ti+1) = ϕ∗i
′(ti) = 0, ϕ′∗i(ti) = ϕ∗i

′(ti+1) = 0, i = −n, . . . ,−1,

ϕ′′∗i(ti−1) = ϕ∗i
′′(ti) = 0, ϕ′′∗i(ti) = ϕ∗i

′′(ti−1) = 0, i = 1, . . . , n,

ϕ′′∗i(ti+1) = ϕ∗i
′′(ti) = 0, ϕ′′∗i(ti) = ϕ∗i

′′(ti+1) = 0, i = −n, . . . ,−1.
12



Furthermore for all i = ±1, . . . ,±n,

(3.3) 0 ≤ ϕ∗i(t) ≤ 1, 0 ≤ ϕ∗i (t) ≤ 1, and ϕ∗i(t) + ϕ∗i (t) ≡ 1, t ∈ Ii.

Thus in particular,

(3.4) ‖ϕ∗i‖L∞(Ii) = ‖ϕ∗i ‖L∞(Ii) = 1, i = ±1, . . . ,±n.

Also

(3.5)

‖ϕ′∗i‖L∞(Ii) = ‖ϕ∗i ′‖L∞(Ii) = 2n,

‖ϕ′′∗i‖L∞(Ii) = ‖ϕ∗i ′′‖L∞(Ii) = 8n2,

‖ϕ(3)
∗i ‖L∞(Ii) = ‖ϕ∗i (3)‖L∞(Ii) = 32n3, i = ±1, . . . ,±n.

Let 0 ≤ k < r and assume y ∈ Ck(I). For 1 ≤ i ≤ n, let π∗,k(y; i; t) and π∗k(y; i; t), denote

the Taylor polynomials of degree k of y, expanded respectively, about to the left-hand and

the right-hand endpoints of the interval Ii, that is,

π∗,k(y; i; t) :=
k∑

l=0

1
l!

y(l)(tn,i−1)(t− tn,i−1)l, i = 1, . . . , n,

π∗k(y; i; t) :=
k∑

l=0

1
l!

y(l)(ti)(t− ti)l, i = 1, . . . , n.

Symmetrically, for −n ≤ i ≤ −1, let π∗,k(y; i; t), and π∗k(y; i; t), i = −n, . . . ,−1 denote the

Taylor polynomials of degree k of y, expanded respectively, about to the right-hand and

the left-hand endpoints of the interval Ii.

We are ready to define the approximating splines for x ∈ ∆s
+W r

p , namely, for i =

±1, . . . ,±n, set

σs,r,n(x(s−3); t) := π∗,r−s+2(x(s−3); i; t)ϕ∗i(t) + π∗r−s+2(x
(s−3); i; t)ϕ∗i (t), t ∈ Ii.

Evidently, σs,r,n(x(s−3); ·) ∈ C2(I), and it is a polynomial of degree ≤ r − s + 5 on each

interval of the refined partition. We are going to prove that

(3.6)
∥∥x(s−3)(·)− σs,r,n(x(s−3); ·)∥∥

L∞(Ii)
≤ 1

(r − s + 2)!
n−r+s+ 1

p−3.

13



Indeed, it follows by (3.3) that for each 1 ≤ i ≤ n,
∥∥x(s−3)(·)− σr,n(x(s−3); ·)

∥∥
L∞(Ini)

=
∥∥x(s−3)(·)− (

π∗,r−s+2(x(s−3); i; ·)ϕ∗i(·) + π∗r−s+2(x
(s−3); i; ·)ϕ∗i (·)

)∥∥
L∞(Ii)

=
∥∥(

x(s−3)(·)− π∗,r−s+2(x(s−2); i; ·))ϕ∗i(·) +
(
x(s−3)(·)− π∗r−s+2(x; i; ·))ϕ∗i (·)

∥∥
L∞(Ii)

≤ max
{∥∥x(s−3) − π∗,r−s+2(x(s−3); i)

∥∥
L∞(Ii)

,
∥∥x(s−3) − π∗r−s+2(x

(s−3); i)
∥∥

L∞(Ii)

}
.

Now, by Taylor’s formula and Hölder’s inequality, we obtain for t ∈ Ii, 1 ≤ i ≤ n,

∣∣x(s−3)(t)− π∗,r−s+2(x(s−3); i; t)| ≤ 1
(r − s + 2)!

∫ t

ti−1

|x(r)(τ)|(t− τ)r−s+2dτ

≤ 1
(r − s + 2)!

‖x(r)(·)‖Lp(Ii)|Ii|r−s− 1
p +3

≤ 1
(r − s + 2)!

n−r+s+ 1
p−3.

Similarly

|x(s−3)(t)− π∗r−s+2(x
(s−3); i; t)| ≤ 1

(r − s + 2)!

∫ ti

t

|x(r)(τ)|(τ − t)r−s+2dτ

≤ 1
(r − s + 2)!

n−r+s+ 1
p−3.

Therefore

(3.7)
∥∥x(s−3)(·)− π∗,r−s+2(x(s−3); i; ·)‖L∞(Ii) ≤

1
(r − s + 2)!

n−r+s+ 1
p−3,

and

(3.8)
∥∥x(s−3)(·)− π∗r−s+2(x

(s−3); i; ·)‖L∞(Ii) ≤
1

(r − s + 2)!
n−r+s+ 1

p−3,

and (3.6) is established for i = 1, . . . , n. For i = −1, . . . ,−n the proof is similar.

In the same way we have for i = ±1, . . . ,±n,

(3.9)

∥∥x(s−3+m)(·)− π
(m)
∗,r−s+2(x

(s−3); i; ·)
∥∥

L∞(Ii)

=
∥∥x(s−3+m)(·)− π∗,r−s+2−m(x(s−3+m); i; ·)

∥∥
L∞(Ii)

≤ 1
(r − s + 2−m)!

n−r+s+ 1
p−3+m, m = 1, 2, 3,
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and

(3.10)

∥∥x(s−3+m)(·)− π∗r−s+2
(m)(x(s−3); i; ·)∥∥

L∞(Ii)

=
∥∥x(s−3+m)(·)− π∗r−s+2−m(x(s−3+m); i; ·)∥∥

L∞(Ii)

≤ 1
(r − s + 2−m)!

n−r+s+ 1
p−3+m, m = 1, 2, 3.

Now, for the third derivative of σs,r,n, which exists a.e. in Ii, 1 ≤ |i| ≤ n, we obtain by

(3.3) through (3.5),

σ(3)
s,r,n(x(s−3); t)

=
3∑

m=0

(
3
m

)(
π

(m)
∗,r−s+2(x

(s−3); i; t)ϕ(3−m)
∗i (t) + π∗r−s+2

(m)(x(s−3); i; t)ϕ∗i
(3−m)(t)

)

= x(s)(t)−
3∑

m=0

(
3
m

)(
x(s−3+m)(t)− π

(m)
∗,r−s+2(x

(s−3); i; t)
)
ϕ

(3−m)
∗i (t)

−
3∑

m=0

(
3
m

)(
x(s−3+m)(t)− π∗r−s+2

(m)(x(s−3); i; t)
)
ϕ∗i

(3−m)(t)

= x(s)(t)−
3∑

m=0

(
3
m

)(
x(s−3+m)(t)− π∗,r−s+2−m(x(s−3+m); i; t)

)
ϕ

(3−m)
∗i (t)

−
3∑

m=0

(
3
m

)(
x(s−3+m)(t)− π∗r−s+2−m(x(s−3+m); i; t)

)
ϕ∗i

(3−m)(t).

This together with (3.7) through (3.10) yields,

(3.11)
∥∥x(s)(·)− σ(3)

s,r,n(x(s−3); ·)
∥∥

L∞(Ii)
≤ ĉn−r+s+ 1

p , a.e. t ∈ Ii, 1 ≤ |i| ≤ n,

where

ĉ :=
64

(r − s + 2)!
+

48
(r − s + 1)!

+
12

(r − s)!
+

1
(r − s− 1)!

.

We have to modify the spline σs,r,n(x(s−3); ·) so that its second derivative be monotone.

To this end, we take

(3.12) m̂ = m̂(s, r) := 928(r − s),
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and set

ti,k = tn,i,k :=
{

ti−1 + k(m̂n)−1, k = 0, 1, . . . , m̂, i = 1, . . . , n,

ti+1 − k(m̂n)−1, k = 0, 1, . . . , m̂, i = −1, . . . ,−n.

Let

Ii,k = In,i,k :=
{

[ti,k−1, ti,k], k = 1, . . . , m̂, i = 1, . . . , n,

[ti,k, ti,k−1], k = 1, . . . , m̂, i = −1, . . . ,−n.

The sth derivative x(s) is called small in Ii, 1 ≤ |i| ≤ n if there exist at least 2(r−s)(≤ m̂)

subintervals Ii,kj , and points τi,kj ∈ Ii,kj , such that

(3.13) x(s)(τi,kj
) ≤ 2ĉn−r+s+ 1

p .

Otherwise x(s) is called big in Ii.

If x(s)(·) is small in Ii∗ , let J∗ := [tν∗ , tν∗ ], −n ≤ ν∗ < ν∗ ≤ n, be the biggest interval

containing Ii∗ , so that x(s) is small in Iν , ν∗ ≤ ν ≤ ν∗ − 1. Since in Iν there are at least

r − s disjoint points τν,kj , any two of which are at distance of at least (m̂n)−1. Applying

Lemma A and (3.13), we obtain by Hölder’s inequality,

‖x(s)‖L∞(Iν)

≤ r − s

(r − s− 1)!
m̂

(r−s)(r−s−1)
2

(
max

∣∣x(s)(τν,kj )
∣∣ +

1
(r − s− 1)!

n−r+s−1
∥∥x(r)

∥∥
L1(Iν)

)

≤ r − s

(r − s− 1)!
m̂

(r−s)(r−s−1)
2

(
2ĉn−r+s+ 1

p +
1

(r − s− 1)!
n−r+s+ 1

p

∥∥x(r)
∥∥

Lp(In,ν)

)

≤ r − s

(r − s− 1)!
m̂

(r−s)(r−s−1)
2

(
2ĉ +

1
(r − s− 1)!

)
n−r+s+ 1

p .

Hence,

(3.14) ‖x(s)‖L∞(J∗) ≤ c∗n
−r+s+ 1

p ,

where

c∗ :=
r − s

(r − s− 1)!
m̂

(r−s)(r−s−1)
2 3ĉ.

We divide J∗ into subintervals J∗j := [τ∗,j−1, τ∗,j ], 1 ≤ j ≤ J = J(n,m∗, J∗), of length
∣∣J∗j

∣∣ = (m∗n)−1, where

(3.15) m∗ := 2784(r − s)m̂
(r−s)(r−s−1)

2 .
16



By virtue of Lemma 2 there exists a quadratic spline σ2,n(x(s−3); ·;J∗) with knots τ∗j ,

such that

x(s−1)
(
τ∗,j−1

) ≤ σ
′′
2,n

(
x(s−3); t; J∗

) ≤ x(s−1)
(
τ∗j

)
, t ∈ (

τ∗,j−1, τ∗j
)
,

for all j = 1, . . . , J(n,m∗, J∗), and

∥∥x(s−3)(·)− σ2,m∗n(x(s−3); ·; J∗)
∥∥

L∞(J∗)
≤ 3

2
(m∗n)−3‖x(s)‖L∞(J∗),

∥∥x(s−2)(·)− σ′2,m∗n(x(s−3); ·; J∗)
∥∥

L∞(J∗)
≤ 7

2
(m∗n)−2‖x(s)‖L∞(J∗),

∥∥x(s−1)(·)− σ′′2,m∗n(x(s−3); ·; J∗)
∥∥

L∞(J∗)
≤ (m∗n)−1‖x(s)‖L∞(J∗).

This in turn yields by (3.14),

(3.16)

∥∥x(s−3)(·)− σ2,m∗n(x(s−3); ·;J∗)
∥∥

L∞(J∗)
≤ m−3

∗
3
2
c∗n

−r+s+ 1
p−3,

∥∥x(s−2)(·)− σ′2,m∗n(x(s−3); ·;J∗)
∥∥

L∞(J∗)
≤ m−2

∗
7
2
c∗n

−r+s+ 1
p−2,

∥∥x(s−1)(·)− σ′′2,m∗n(x(s−3); ·;J∗)
∥∥

L∞(J∗)
≤ m−1

∗ c∗n
−r+s+ 1

p−1.

We replace σs,r,n

(
x(s−3); t

)
on J∗ with σ2,n

(
x(s−3); ·; J∗

)
, and set

σ̄s,r,n(x(s−3); t) := σ2,n(x(s−3); t;J∗), t ∈ J∗.

There may be a few intervals of the type J∗, all of course are mutually distjoint. In the

extreme case it may be that J∗ = I, then of course we are done. Otherwise x(s)(·) is big in

some subintervals Ii, so let Ii0 be such an interval. Let {Ii0,kj ⊂ Ii0}, be the collections of

all 0 ≤ m = m(Ii0) < 2(r − s) subintervals each of which contains a point τi0,kj such that

(3.17) x(s)(τi0,kj
) ≤ 2ĉn−r+s+ 1

p .

Define

(3.18)

ξ
(3)
i0

(x(s−3); t) :=

{
2ĉn−r+s+ 1

p , t ∈ Ii0,kj ,

0, otherwise,
and

ξi0(x
(s−3); t) :=

1
2

∫ t

t̄i0

ξ
(3)
i0

(x(s−3); τ)(t− τ)2dτ,
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where t̄i0 := 1
2 (ti0−1 + ti0). It follows by (3.17) that

(3.19)
∣∣ξ(l)

i (ti)
∣∣,

∣∣ξ(l)
i (ti−1)

∣∣ ≤ m̂−12(r − s)2ĉn−r+s+ 1
p−3+l, l = 0, 1, 2,

Also note that on all other subintervals of Ii0 we have

(3.20) x(s)(t) > 2ĉn−r+s+ 1
p .

Now set

σ̄s,r,n(x(s−3); t) := σs,r,n(x(s−3); t) + ξi0(x
(s−3); t), t ∈ Ii0 .

This defines spline pieces with possible discontinuities at the points ti and we need to join

them smoothly together. To this end, write

φ∗0i(t) := ϕ∗i(t), φ∗0i(t) := ϕ∗i (t), t ∈ Ii, i = ±1, . . . ,±n,

and let

φ∗1i(t) := − 1
n

ϕ∗i
(1
2
(t− ti) + ti

)
, φ∗1i(t) :=

1
n

ϕ∗i
(1
2
(t− ti−1) + ti−1

)
,

φ∗2i(t) :=
2
n2

ϕ∗i
(1
4
(t− ti) + ti

)
, φ∗2i(t) :=

2
n2

ϕ∗i
(1
4
(t− ti−1) + ti−1

)
,

t ∈ Ii, 1 ≤ i ≤ n,

and

φ∗li(t) := φ∗l,−i(−t), φ∗li(t) := φ∗l,−i(−t), l = 0, 1, 2, −n ≤ i ≤ −1.

Let 1 ≤ i ≤ n. Straightforward computations yield

(3.21)

φ∗1i(ti−1) = −(2n)−1, φ∗1i(ti) = 0,
∥∥φ∗1i

∥∥
L∞(Ii)

= (2n)−1,

φ∗1i(ti−1) = 0, φ∗1i(ti) = (2n)−1,
∥∥φ∗1i

∥∥
L∞(Ii)

= (2n)−1,

φ′∗1i(ti−1) = 1, φ′∗1i(ti) = 0,
∥∥φ′∗1i

∥∥
L∞(Ii)

= 1,

φ∗1i
′(ti−1) = 0, φ∗1i

′(ti) = 1,
∥∥φ∗1i

′∥∥
L∞(Ii)

= 1,

φ′′∗1i(ti−1) = 0, φ′′∗1i(ti) = 0,
∥∥φ′′∗1i

∥∥
L∞(Ii)

= 2n,

φ∗1i
′′(ti−1) = 0, φ∗1i

′′(ti) = 0,
∥∥φ∗1i

′′∥∥
L∞(Ii)

= 2n,
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and

(3.22)

φ∗2i(ti−1) =
1
6
n−2, φ∗2i(ti) = 0,

∥∥φ∗2i

∥∥
L∞(Ii)

=
1
6
n−2,

φ∗2i(ti−1) = 0, φ∗2i(ti) =
1
6
n−2,

∥∥φ∗2i

∥∥
L∞(Ii)

=
1
6
n−2,

φ′∗2i(ti−1) = −(2n)−1, φ′∗2i(ti) = 0,
∥∥φ′∗2i

∥∥
L∞(Ii)

= (2n)−1,

φ∗2i
′(ti−1) = 0, φ∗2i

′(ti) = (2n)−1,
∥∥φ∗2i

′∥∥
L∞(Ii)

= (2n)−1,

φ′′∗2i(ti−1) = 1, φ′′∗2i(ti) = 0,
∥∥φ′′∗2i

∥∥
L∞(Ii)

= 1,

φ∗2i
′′(ti−1) = 0, φ∗2i

′′(ti) = 1,
∥∥φ∗2i

′′∥∥
L∞(Ii)

= 1.

Also,

(3.23)

∥∥φ
(3)
∗1i

∥∥
L∞(Ii)

= 4n2,
∥∥φ

(3)
∗2i

∥∥
L∞(Ii)

= n,

∥∥φ∗1i
(3)

∥∥
L∞(Ii)

= 4n2,
∥∥φ∗2i

(3)
∥∥

L∞(Ii)
= n.

Since σ̄s,r,n(x(s−3), ·) may have jumps at the points ti, let

δki :=





limt→ti+ σ̄
(k)
s,r,n(x(s−3); t)− limt→ti− σ̄

(k)
s,r,n(x(s−3); t),

k = 0, 1, 2, −n + 1 ≤ i ≤ n− 1,

0, k = 0, 1, 2, i = ±n,

and define a correcting cubic spline on the intervals where x(s) is big. (In view of the

different indices ascribed to the endpoints of the intervals, we only describe how we deal

with Ii0 , i0 ≥ 0, where x(s) is big. The other intervals are handled in a similar way.) Thus,

suppose x(s) is big also in Ii0−1, then set

(3.24) ζi0

(
x(s−3); t

)
:=

2∑

l=0

(
λ∗li0φ∗li0(t) + λ∗li0φ

∗
li0(t)

)
,

to be so that

(3.25) ζ
(k)
i0

(
x(s−3); ti0−1

)
= 0, and ζ

(k)
i0

(
x(s−3); ti0

)
= δk,i0 , k = 0, 1, 2.

If, on the other hand, x(s) is big in Ii0 but small in Ii0−1, then set ζi0 as in (3.24) to be so

that

(3.26) ζ
(k)
i0

(
x(s−3); ti0−1

)
= −δk,i0−1, and ζ

(k)
i0

(
x(s−3); ti0

)
= δk,i0 , k = 0, 1, 2.
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The existence of ζi0

(
x(s−3); ·) in both above cases is guaranteed by (3.2), (3.21) and (3.22).

In fact solving the system of linear equations (3.25) in the former case we obtain λ∗li0 = 0,

l = 0, 1, 2, and solving equations (3.26) in the latter case we obtain

(3.27)

λ∗0,i0 = −δ0,i0−1 − (2n)−1δ1,i0−1 − 1
3
(2n)−2δ2,i0−1,

λ∗1,i0 = −δ1,i0−1 − (2n)−1δ2,i0−1,

λ∗2,i0 = −δ2,i0−1.

In both cases

(3.28)

λ∗0,i0 = δ0,i0 − (2n)−1δ1,i0 +
1
3
(2n)−2δ2,i0 ,

λ∗1,i0 = δ1,i0 − (2n)−1δ2,i0 ,

λ∗2,i0 = δ2,i0 .

Denote

σ̃s,r,n(x(s−3); t) := σ̄s,r,n(x(s−3); t) + ζi0

(
x(s−3); t

)
, t ∈ Ii0 .

Clearly σ̃s,r,n(x(s−3); ·) ∈ C1(I). Furthermore, σ̃′′s,r,n(x(s−3); ·) exists and is continuous

except perhaps at the points τ∗j of the intervals J∗, and in particular it is continuous at

all points ti, 1 ≤ i < n. We will show that σ̃′′s,r,n(x(s−3); ·) is nondecreasing on I. Indeed,

it suffices to prove that σ̃
(3)
s,r,n(x(s−3); ·), which exists a.e. in Ii0 , is nonnegative there. By

our construction,

σ̃(3)
s,r,n(x(s−3); t) = σ(3)

s,r,n(x(s−3); t) + ξ
(3)
i0

(x(s−3); t) + ζ
(3)
i0

(x(s−3); t)

= x(s)(t) + ξ
(3)
i0

(x(s−3); t)− (
x(s)(t)− σ(3)

s,r,n(x(s−3); t)
)

+ ζ
(3)
i0

(x(s−3); t),

t ∈ Ii0 .

By (3.18) and (3.20) we are guaranteed that

x(s)(t) + ξ
(3)
i0

(
x(s−3); t

) ≥ 2ĉn−r+s+ 1
p , a.e. in Ii0 .

Hence (3.11) yields,

(3.29)
σ̃(3)

s,r,n(x(s−3); t)

≥ 2ĉn−r+s+ 1
p − ĉn−r+s+ 1

p −
∥∥ζ

(3)
i0

(
x(s−3); ·)

∥∥
L∞(Ii0 )

.
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Thus it remains to estimate the third term. Now by (3.24), (3.27) and (3.28), in the worst

case,

∥∥ζ
(3)
i0

(
x(s−3); ·)

∥∥
L∞(Ii0 )

≤ (|δ0,i0−1|+ (2n)−1|δ1,i0−1|+ 1
3
(2n)−2|δ2,i0−1|

)∥∥φ
(3)
∗0,i0

(·)
∥∥

L∞(Ii0 )

+
(|δ0,i0 |+ (2n)−1|δ1,i0 |+

1
3
(2n)−2|δ2,i0 |

)∥∥φ∗0,i0
(3)(·)∥∥

L∞(Ii0 )

+
(|δ1,i0−1|+ (2n)−1|δ2,i0−1|

)∥∥φ
(3)
∗1i0

(·)
∥∥

L∞(Ii0 )

+
(|δ1,i0 |+ (2n)−1|δ2,i0 |

)∥∥φ∗1,i0
(3)(·)

∥∥
L∞(Ii0 )

+ |δ2,i0−1|
∥∥φ

(3)
∗2,i0

(·)
∥∥

L∞(Ii0 )

+ |δ2,i0 |
∥∥φ∗2,i0

(3)(·)
∥∥

L∞(Ii0 )
.

By virtue of (3.5) and (3.23) we obtain

(3.30)

∥∥ζ
(3)
i0

(
x(s−3); ·)∥∥

L∞(Ii0 )

≤ 32n3
(|δ0,i0−1|+ |δ0,i0 |

)
+ 20n2

(|δ1,i0−1|+ |δ1,i0 |
)

+
17
3

n
(|δ2,i0−1|+ |δ2,i0 |

)
.

In order to estimate the jumps at ti, we observe that the original spline σr,s,n

(
x(s−3); ·) ∈

C2(I) thus contributes nothing to the jumps. Moreover

(3.31) lim
t→ti

σ(k)
r,s,n

(
x(s−3); t

)
= x(k)(ti), k = 0, 1, 2.

Hence, if x(s) is big both in Ii0 and in Ii0+1, then by (3.19),

(3.32)
∣∣δl,i0

∣∣ ≤
∣∣ξ(l)

i0
(ti0)

∣∣ +
∣∣ξ(l)

i0+1(ti0)
∣∣ ≤ m̂−14(r − s)2ĉn−r+s+ 1

p−3+l, l = 0, 1, 2.

If, on the other hand, x(s) is big in Ii0 and small either in Ii0+1, or in Ii0−1, or in both,

then by (3.31) we have

|δl,i0 | ≤
∥∥x(s−l)(·)− σ

(l)
2,n(x(s−3); ·;J1

∗ )
∥∥

L∞(J1∗)
+

∣∣ξ(l)
i0

(ti0)
∣∣, l = 0, 1, 2,

or

|δl,i0−1| ≤
∥∥x(s−l)(·)− σ

(l)
2,n(x(s−3); ·;J2

∗ )
∥∥

L∞(J2∗)
+

∣∣ξ(l)
i0

(ti0−1)
∣∣, l = 0, 1, 2,
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respectively, or both, where J1
∗ ⊃ Ii0+1 or J2

∗ ⊃ Ii0−1, respectively. By (3.16) and again

(3.19), we obtain

|δl,i0 |, |δl,i0−1| ≤
(
m−3+l
∗ 4c∗ + m̂−12(r − s)2ĉ

)
n−r+s+ 1

p−3+l,

which together with (3.32) yields that in all cases,

|δl,i0 |, |δl,i0−1| ≤
(
m−3+l
∗ 4c∗ + m̂−18(r − s)ĉ

)
n−r+s+ 1

p−3+l, l = 0, 1, 2.

Our choice of m∗ and m̂ (see (3.12) and (3.15)) gives

|δl,i0−1|, |δl,i0 | ≤
ĉ

116
n−r+s+ 1

p−3+l,

and combined with (3.29) and (3.30) proves that σ̃
(3)
s,r,n(x(s−3); t) ≥ 0, t ∈ Ii0 , as we have

asserted.

Finally, the same computations yield

(3.33)
∥∥x(s−3)(·)− σ̃s,r,n(x(s−3); ·)

∥∥
L∞

≤ cn−r+s+ 1
p−3,

where c = c(s, r, p).

If 3 = s < r, then we set

σs,r,n(x; t) := σ̃s,r,n(x(s−3); t), t ∈ I.

If 3 < s < r then we set

σs,r,n(x; t) :=
s−4∑

k=0

1
k!

x(k)(0)tk +
1

(s− 3)!

∫ t

0

σ̃s,r,n(x(s−3); τ)(t− τ)s−3dτ, t ∈ I.

Then

x(t)− σs,r,n(x; t) =
1

(s− 3)!

∫ t

0

(
x(s−3)(τ)− σ̃s,r,n(x(s−3); τ)

)
(t− τ)s−3dτ, t ∈ I,

and by (3.33),

∥∥x(·)− σs,r,n(x; ·)∥∥
L∞(I)

≤ 1
(s− 3)!

∥∥x(s−3)(·)− σ̃s,r,n(x(s−3); ·)∥∥
L∞

≤ cn−r+s+ 1
p−3,
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where c = c(s, r, p). Evidently σ
(s−2)
s,r,n (x; ·) ∈ C(I) and its derivative σ

(s−1)
s,r,n (x; ·) is nonde-

creasing in I. Thus σs,r,n(x; ·) ∈ ∆s
+Lq, 1 ≤ q ≤ ∞, and the upper bounds are proved for

all 3 ≤ s ≤ r.

If s = r + 1, r ≥ 2, then x(r−1) ∈ ∆2
+W 1

1 . It was proved in [KL2] that there exists a

convex piecewise linear function σ(x(r−1); ·) with 2n + 1 knots, such that

‖x(r−1)(·)− σ1,n(x(r−1); ·)‖L1 ≤ cn−2,

where c is an absolute constant. Set

σr,n(x; t) :=
r−2∑

k=0

1
k!

x(k)(0)tk +
1

(r − 2)!

∫ t

0

σ1,n(x(r−1); τ)(t− τ)r−2dτ, t ∈ I,

which evidently σr,n(x; ·) ∈ ∆r+1
+ Lq. Then

x(t)− σr,n(x; t) =
1

(r − 2)!

∫ t

0

(
x(r−1)(τ)− σ1,n(x; τ)

)
(t− τ)r−2dτ, t ∈ I.

Hence,

‖x(·)− σr,n(x; ·)‖L∞ ≤ 1
(r − 2)!

‖x(r−1)(·)− σ1,n(x(r−1); ·)‖L1 ≤ cn−2,

and the proof of the upper bounds is complete. ¤

§4. The lower bounds

Proof of the lower bounds. In order to prove the lower bound, we let

φ0(t) :=
{

1, t ∈ [−1, 1]
0, t ∈ R \ [−1, 1]

,

and define by induction

φs(t) :=
∫ t

t−1

φs−1(2τ + 1) dτ, t ∈ R, s ∈ N.

It follows that for all s ∈ Z+, φs is even, φs ≥ 0, φs(t) = 0, t ∈ R \ [−1, 1], |φ(s)
s (t)| = 2s−1,

in [−1, 1] except for a few dyadic points with denominator 2−s+1, and

φs(0) = ‖φs‖L∞ =
∫ 1

−1

φs(t) dt = 2−s+1, s ∈ N.
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For N ∈ N, write φs,N (t) := N−sφs(Nt), and for

τN,i := −1
4

+
i

2N
, i = 0, 1, . . . , N,

τ̄N,i := −1
4

+
2i− 1
4N

, i = 1, . . . , N,

let

φs,N,i(t) := φs,N

(
t− τ̄N,i

)
, i = 1, . . . , N, s ∈ Z+.

Finally for 1 ≤ p ≤ ∞, set

φp,s,N,i(t) := 2−s+1− 1
p N

1
p φs,N,i(t), s ∈ Z+.

Clearly, φp,s,N,i(t) is symmetric about τ̄N,i, φp,s,N,i(t) = 0, t 6∈ [τN,i−1, τN,i], and

(4.1) φp,0,N,i(τ̄N,i) = 21− 1
p N

1
p , φp,s,N,i(τ̄N,i) = 2−2s+2− 1

p N−s+ 1
p .

Also

(4.2)
∥∥φ

(s)
p,s,N,i

∥∥
Lp

= 1, s ∈ Z+.

We are ready to construct the system of vectors that will yield the lower bound. We fix

some k ∈ N, k > 2 to be prescribed, and set

(4.3)
ψp,r,s,k,N,i(t) :=

∫ t

−1

∫ t1

−1

· · ·
∫ ts−1

−1

φp,r−s,kN,k(i−1)+1(ts)dts . . . dt1,

i = 1, . . . , N, t ∈ [−1, 1].

Then it is s-convex in I = [−1, 1], and by (4.2), belongs to ∆s
+W r

p . Denote the system

ΨN
p,r,s,k :=

{
ψp,r,s,k,N,i(·)

}N

i=1
, and let

S+
p

(
ΨN

p,r,s,k

)
:= {x =

N∑

i=1

aiψp,r,s,k,N,i | ai ≥ 0,

N∑

i=1

ap
i ≤ 1},

be the positive p-sector over this system. Then S+
p

(
ΨN

p,r,s,k

) ⊂ ∆s
+W r

p , which implies

(4.4)
dm

(
∆s

+W r
p , ∆s

+Lq

)
Lq
≥ dm

(
S+

p

(
ΨN

p,r,s,k

)
, ∆s

+Lq

)
Lq

≥ 2−1+ 1
q dm

(
S+

1

(
ΨN

p,r,s,k

)
, ∆s

+L1

)
L1

,
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where in the second inequality we used the facts that S+
p

(
ΨN

p,r,s,k

) ⊆ S+
1

(
ΨN

p,r,s,k

)
, ∆s

+Lq ⊆
∆s

+L1, and ‖x‖Lq
≥ 2−1+ 1

q ‖x‖L1 .

Fix some ε > 0 to be prescribed and let Mm
ε ⊂ L1, of dimension m < N − 2, be so that

(4.5) dm

(
S+

1

(
ΨN

p,r,s,k

)
,∆s

+L1

)
L1
≥ E

(
S+

1

(
ΨN

p,r,s,k

)
,Mm

ε ∩∆s
+L1

)
L1
− ε.

If Lm+1
ε ⊃ Mm

ε , is a subspace of L1 of dim Lm+1
ε = m + 1, then it follows that

dm

(
S+

1

(
ΨN

p,r,s,k

)
, ∆s

+L1

)
L1
≥ E

(
S+

1

(
ΨN

p,r,s,k

)
, Lm+1

ε ∩∆s
+L1

)
L1
− ε.

We take ξε,i ∈ Lm+1
ε ∩∆s

+L1, i = 1, . . . , N , such that

max
1≤i≤N

∥∥ψp,r,s,k,N,i − ξε,i

∥∥
L1
≤ E

(
S+

1

(
ΨN

p,r,s,k

)
, Lm+1

ε ∩∆s
+L1

)
L1

+ ε,

and extend them by ξε,i(t) = 0, t ∈ R\I, i = 1, . . . , N , in order to define the Steklov mean

ξs,η,ε,i(t) := η−s−1

∫ η

0

· · ·
∫ η

0

ξε,i(t + t1 + · · ·+ ts+1)dts+1 . . . dt1, t ∈ R, i = 1, . . . , N.

It is well known that ξs,η,ε,i ∈ Cs(R), and

ξ
(s)
s,η,ε,i(t) = ε−s−1

∫ ε

0

∆s
εξε,i(t + τ)dτ, t ∈ [−7

8
,
7
8
]
, i = 1, . . . , N.

We conclude that ξ
(s)
s,η,ε,i, 1 ≤ i ≤ N , is continuous and nonnegative in

[− 7
8 , 7

8

]
, and ξ

(s−1)
s,η,ε,i,

1 ≤ i ≤ N , is continuous and nondecreasing there. Also

lim
η→+0

∥∥ξε,i − ξs,η,ε,i

∥∥
L1(R)

= 0, i = 1, . . . , N.

Thus we fix 0 < η ≤ (8(s + 1))−1, so that

max
1≤i≤N

∥∥ξε,i − ξs,η,ε,i

∥∥
L1(R)

≤ ε,

and it follows that

(4.6) max
1≤i≤N

∥∥ψp,r,s,k,N,i − ξs,η,ε,i

∥∥
L1
≤ E

(
S+

1

(
ΨN

p,r,s,k

)
, Lm+1

ε ∩∆s
+L1

)
L1(I)

+ 2ε.
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Let {ζε,j}m+1
j=1 be a basis of Lm+1

ε , and extend ζε,j(t) = 0, t ∈ R \ I, j = 1, . . . ,m + 1.

Again, let

ζs,η,ε,j(t) := η−s−1

∫ η

0

· · ·
∫ η

0

ζε,j(t+ t1 + · · ·+ ts+1)dts+1 . . . dt1, t ∈ R, j = 1, . . . , m+1,

and denote their span by Lm+1
s,η,ε . Also let ∆+Ds−1Lm+1

s,η,ε denote the set of all elements

ξ ∈ Lm+1
s,η,ε such that ξ(s−1) is continuous and nondecreasing in [− 7

8 , 7
8 ]. It follows from the

above that ξs,η,ε,i ∈ ∆+Ds−1Lm+1
s,η,ε . Therefore (4.6) implies

(4.7)
E

(
S+

1

(
ΨN

p,r,s,k

)
, Lm+1

ε ∩∆s
+L1

)
L1

≥ E
(
S+

1

(
ΨN

p,r,s,k

)
, ∆+Ds−1Lm+1

s,η,ε

)
L1[− 7

8 , 7
8 ]
− 2ε,

and we will show that for an appropriate k,

(4.8)
E

(
S+

1

(
ΨN

p,r,s,k

)
,∆+Ds−1Lm+1

s,η,ε

)
L1[− 7

8 , 7
8 ]

≥ (
2s2+s − 2s−9

)
c(p, r, s)(kN)−r+s+ 1

p−3.

Indeed, by virtue of (4.1) and (4.3), we obtain for each i = 1, . . . , N ,

ψ
(s−1)
p,r,s,k,N,i(t) : =

∫ t

−1

φp,r−s,4kN,4k(i−1)+1(ts)dts

= c(p, r, s)(kN)−r+s+ 1
p−1, t ≥ τkN,k(i−1)+1,

where

c(p, r, s) :=

{
21− 1

p , s = r,

2−2r+2s+2− 1
p , s < r.

Set

χp,r,s,k,N,i(t) =
1

(s− 1)!
c(p, r, s)(kN)−r+s+ 1

p−1
(
t− τ̄kN,k(i−1)+1

)s−1

+
.

Then

χ
(s−1)
p,r,s,k,N,i(t) = ψ

(s−1)
p,r,s,k,N,i(t), t < τkN,k(i−1) and t > τkN,k(i−1)+1,

while for t ∈ (τ̄kN,k(i−1)+1, τkN,k(i−1)+1], it follows from (4.1) that

χ
(s−1)
p,r,s,k,N,i(t)− ψ

(s−1)
p,r,s,k,N,i(t) ≤ c(p, r, s)(kN)−r+s+ 1

p
(
τkN,k(i−1)+1 − t

)
.
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Finally, by the symmetry of φp,r−s,kN,k(i−1)+1 about τ̄kN,k(i−1)+1, it is readily seen that

χ
(s−1)
p,r,s,k,N,i(t− τ̄kN,k(i−1)+1)− ψ

(s−1)
p,r,s,k,N,i(t− τ̄kN,k(i−1)+1)

= −(
χ

(s−1)
p,r,s,k,N,i(−t + τ̄kN,k(i−1)+1)− ψ

(s−1)
p,r,s,k,N,i(−t + τ̄kN,k(i−1)+1)

)
.

The last two relations imply that χ
(s−2)
p,r,s,k,N,i(t)−ψ

(s−2)
p,r,s,k,N,i(t) = 0, if t < τkN,k(i−1) and if

t > τkN,k(i−1)+1, and this in turn yields

∥∥ψ
(s−3)
p,r,s,k,N,i − χ

(s−3)
p,r,s,k,N,i

∥∥
L∞(R)

≤ 1
3
2−6c(p, r, s)(kN)−r+s+ 1

p−3.

Hence, we have for i = 1, . . . , N ,

∥∥ψp,r,s,k,N,i − χp,r,s,k,N,i

∥∥
L1[− 7

8 , 7
8 ]
≤ (7

4
)s−2 1

3
2−6c(p, r, s)(kN)−r+s+ 1

p−3

≤ 2s−9c(p, r, s)(kN)−r+s+ 1
p−3.

If χN
p,r,s,k :=

{
χp,r,s,k,N,i

}N

i=1
, then the above implies that

E
(
S+

1

(
ΨN

p,r,s,k

)
,∆+Ds−1Lm+1

s,η,ε

)
L1[− 7

8 , 7
8 ]

≥ E
(
S+

1

(
χN

p,r,s,k

)
, ∆+Ds−1Lm+1

s,η,ε

)
L1[− 7

8 , 7
8 ]
− 2s−9c(p, r, s)(kN)−r+s+ 1

p−3.

Thus (4.8) follows if we show that for an appropriate k,

(4.9) E
(
S+

1

(
χN

p,r,s,k

)
, ∆+Ds−1Lm+1

s,η,ε

)
L1[− 7

8 , 7
8 ]
≥ 2s2+sc(p, r, s)(kN)−r+s+ 1

p−3.

To this end, we first prove that

(4.10)
E

(
ds−1S+

1

(
χN

p,r,s,k

)
, ds−1∆+Ds−1Lm+1

s,η,ε

)
L1[− 1

4 , 1
4 ]

≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2,

where for a subset U ⊂ X, we use the notation

ds−1U := {x(s−1) | x ∈ U}.
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Indeed let Ik,N,i := [τ̄kN,k(i−1)+1, τkN,ki], i = 1, . . . , N and define the discretization oper-

ator Ak,N : L1 3 x → Ak,Nx ∈ lN1 by

Ak,Nx :=

(∫

Ik,N,1

x(t)dt, . . . ,

∫

Ik,N,N

x(t)dt

)
.

Then it is easy to see that

‖Ak,Nx‖lN1
≤ ‖x‖L1[− 1

4 , 1
4 ].

Hence

(4.11)

E
(
ds−1S+

1

(
χN

p,r,s,k

)
, ds−1∆+Ds−1Lm+1

s,η,ε

)
L1[− 1

4 , 1
4 ]

≥ E
(
Ak,Nds−1S+

1

(
χN

p,r,s,k

)
, Ak,Nds−1∆+Ds−1Lm+1

s,η,ε

)
lN1

≥ dm+1

(
Ak,NS+

1

(
Ds−1χN

p,r,s,k

)
,∆1

+

)
lN1

,

since

Ak,Nds−1∆+Ds−1Lm+1
s,η,ε ⊆ ∆1

+ ⊂ RN ,

where ∆1
+, defined in Lemma D with n replaced by N .

Now

Ak,Nχ
(s−1)
p,r,s,k,N,i = 2−1(k − 1)c(p, r, s)(kN)−r+s+ 1

p−2ẽ(i), i = 1, . . . , N,

where ẽ(i) are the N -tuples from (4.4) (with n replaced by N). Hence

Ak,Nds−1S+
1

(
χN

p,r,s,k

)
= 2−1(k − 1)c(p, r, s)(kN)−r+s+ 1

p−2S+
1

(
ẼN

)
,

where ẼN := {ẽ(i)}N
i=1. Therefore

(4.12)
dm+1

(
Ak,Nds−1S+

1

(
χN

p,r,s,k

)
,∆1

+

)
lN1

= 2−1(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2dm+1

(
S+

1

(
ẼN

))
, ∆1

+

)
lN1

.

For m < N − 2, it follows by Lemma D that

dm+1

(
S+

1

(
ẼN

))
, ∆1

+

)
lN1
≥ 1

8
,

and combining with (4.11) we obtain (4.10).
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Now, by (4.10) there exists an 1 ≤ i0 ≤ N , so that

∥∥χ
(s−1)
p,r,s,k,N,i0

− ξ(s−1)
∥∥

L1[− 1
4 , 1

4 ]
≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1

p−2,

for all ξ ∈ ∆+Ds−1Lm+1
s,ε,ε . Denote Ii0 := [− 1

2 + τ̄kN,k(i0−1)+1, τ̄kN,k(i0−1)+1 + 1
2 ]. Then for

each ξ ∈ ∆+Ds−1Lm+1
s,ε,ε ,

(4.13)
∥∥χ

(s−1)
p,r,s,k,N,i0

− ξ(s−1)
∥∥

L1(Ii0 )
≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1

p−2.

Recall that ξ(s−1) is continuous and nondecreasing in [− 7
8 , 7

8 ], thus in Ii0 ⊆ [− 3
4 , 3

4 ]. So if

(4.14) 0 ≤ ξ(s−1)(t) ≤ c(p, r, s)(kN)−r+s+ 1
p−1, t ∈ Ii0 ,

then we may apply Corollary 1 (with s replaced by s − 1) with τ = τ̄kN,k(i0−1)+1, b =

c(p, r, s)(kN)−r+s+ 1
p−1, a = 1

2 , and A = 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2, to obtain

∥∥χp,r,s,k,N,i0 − ξ
∥∥

L1(Ii0 )
≥ 2−s2−5s−10(k − 1)2c(p, r, s)(kN)−r+s+ 1

p−3.

We conclude that

(4.15)
∥∥χp,r,s,k,N,i0 − ξ

∥∥
L1[− 7

8 , 7
8 ]
≥ 2−s2−5s−10(k − 1)2c(p, r, s)(kN)−r+s+ 1

p−3.

If (4.14) does not hold, then we may have that

ξ(s−1)(−1
2

+ τ̄kN,k(i0−1)+1) ≤ −2−1CN−2c(p, r, s)(kN)−r+s+ 1
p−1,

or

ξ(s−1)(τ̄kN,k(i0−1)+1 +
1
2
) ≥ (1 + 2−1CN−2)c(p, r, s)(kN)−r+s+ 1

p−1

for some C > 0, to be prescribed. In view of the monotonicity of ξ(s−1) in [− 7
8 , 7

8 ], we

have

∣∣χ(s−1)
p,r,s,k,N,i0

(t)− ξ(s−1)(t)
∣∣ ≥ 2−1CN−2c(p, r, s)(kN)−r+s+ 1

p−1 t ∈ J0,
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where J0 = [− 7
8 ,− 3

4 ] in the former case, and J0 = [ 34 , 7
8 ] in the latter. Lemma 1 then

implies the existence of an Js−1 ⊂ J0, of length |Js−1| ≥ 2−2s−1 such that

|χp,r,s,k,N,i0(t)− ξ(t)| ≥ 2−s2−2s−1CN−2c(p, r, s)(kN)−r+s+ 1
p−1 t ∈ Js−1,

which in turn yields,

∥∥χp,r,s,k,N,i0 − ξ
∥∥

L1(Js−1)
≥ 2−s2−4s−2CN−2c(p, r, s)(kN)−r+s+ 1

p−1.

We conclude that in either case

(4.16)
∥∥χp,r,s,k,N,i0 − ξ

∥∥
L1[− 7

8 , 7
8 ]
≥ 2−s2−4s−2Ck2c(p, r, s)(kN)−r+s+ 1

p−3.

Otherwise, again due to the monotonicity of ξ(s−1) in [− 7
8 , 7

8 ], we have

(4.17)
− 2−1CN−2c(p, r, s)(kN)−r+s+ 1

p−1 < ξ(s−1)(t)

< (1 + 2−1CN−2)c(p, r, s)(kN)−r+s+ 1
p−1, t ∈ Ii0 .

Denote

ζs−1(t) := (1 + CN−2)−1
(
ξ(s−1)(t) + 2−1CN−2c(p, r, s)(kN)−r+s+ 1

p−1
)
,

and it readily follows by (4.17) that 0 < ζs−1(t) < c(p, r, s)(kN)−r+s+ 1
p−1, t ∈ Ii0 . Also

by virtue of (4.13)

(4.18)

∥∥χ
(s−1)
p,r,s,k,N,i0

− ζs−1

∥∥
L1(Ii0 )

≥
∥∥χ

(s−1)
p,r,s,k,N,i0

− ξ(s−1)
∥∥

L1(Ii0 )
−

∥∥ξ(s−1) − ζs−1

∥∥
L1(Ii0 )

≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2 −

∥∥ξ(s−1) − ζs−1

∥∥
C(Ii0 )

|I0|
≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1

p−2

− (1 + CN−2)−1CN−2
(‖ξ(s−1)‖C(Ii0 ) + 2−1c(p, r, s)(kN)−r+s+ 1

p−1
)

≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2

− (1 + CN−2)−1CN−2
(
1 + 2−1CN−2 + 2−1

)
c(p, r, s)(kN)−r+s+ 1

p−1

≥ 2−4(k − 1)c(p, r, s)(kN)−r+s+ 1
p−2 − 2CN−2c(p, r, s)(kN)−r+s+ 1

p−1

=
(
2−4k−1(k − 1)− 2CN−1

)
c(p, r, s)(kN)−r+s+ 1

p−1N−1.
30



(Observe that N ≥ 3 and k ≥ 2, so taking C < 2−5 guarantees that the last quantity is

positive.) Set

ζ(t) :=
s−2∑
ν=0

ξ(ν)(τ̄kN,k(i0−1)+1)(t− τ̄kN,k(i0−1)+1)ν

+
1

(s− 2)!

∫ t

τ̄kN,k(i0−1)+1

ζs−1(τ)(t− τ)s−2dτ.

Then we note that ζ(s−1) = ζs−1, is nondecreasing in Ii0 , so applying Corollary 1 (with

s replaced by s− 1) for τ = τ̄kN,k(i0−1)+1, b = c(p, r, s)(kN)−r+s+ 1
p−1, A =

(
2−4k−1(k −

1)− 2CN−1
)
c(p, r, s)(kN)−r+s+ 1

p−1N−1 and a = 1
2 , we obtain

(4.19)
∥∥χp,r,s,k,N,i0 − ζ

∥∥
L1(Ii0 )

≥ 2−s2−5s−10
(
k− 1− 25CkN−1

)2
c(p, r, s)(kN)−r+s+ 1

p−3.

Now, by Taylor’s formula we have

ζ(t)− ξ(t) =
1

(s− 2)!

∫ t

τ̄kN,k(i0−1)+1

(
ζs−1(τ)− ξ(s−1)(τ)

)
(t− τ)s−2dτ, t ∈ Ii0 .

Hence, as in (4.18),

∥∥ζ − ξ
∥∥

L1(Ii0 )
≤ 2−s+1

s!

∥∥ζs−1 − ξ(s−1)
∥∥

C(Ii0 )

≤ 2−s+2

s!
CN−2c(p, r, s)(kN)−r+s+ 1

p−1

=
2−s+2

s!
Ck2c(p, r, s)(kN)−r+s+ 1

p−3,

which by (4.19) yields
∥∥χp,r,s,k,N,i0 − ξ

∥∥
L1(Ii0 )

≥
∥∥χp,r,s,k,N,i0 − ζ

∥∥
L1(Ii0 )

−
∥∥ζ − ξ

∥∥
L1(Ii0 )

≥ 2−s2−5s−10
((

k − 1− 25CkN−1
)2 − 2s2+4s+12Ck2

)
c(p, r, s)(kN)−r+s+ 1

p−3.

So we conclude that

(4.20)

∥∥χp,r,s,k,N,i0 − ξ
∥∥

L1[− 7
8 , 7

8 ]

≥ 2−s2−5s−10
((

k − 1− 25CkN−1
)2 − 2s2+4s+12Ck2

)
c(p, r, s)(kN)−r+s+ 1

p−3.
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If we take

c(s, k, C) := min
{

2−s2−5s−10(k − 1)2, 2−s2−4s−2Ck2,

2−s2−5s−10
((

k − 1− 25CkN−1
)2 − 2s2+4s+12Ck2

)}

then by combining (4.15), (4.16) and (4.20) we have for each ξ ∈ ∆+Ds−1Lm+1
s,η,ε,,

∥∥χp,r,s,k,N,i0 − ξ
∥∥

L1[− 7
8 , 7

8 ]
≥ c(s, k, C)c(p, r, s)(kN)−r+s+ 1

p−3.

Now, straightforward computations show that if we take C := 2−s2−4s−14, then c(s, k, C) ≥
2−2k2, so that taking k = 2s2+3s+6 yields (4.9), and in turn proves (4.8). By virtue of

(4.4) through (4.7) we conclude that

dm

(
∆s

+W r
p , ∆s

+Lq

)
Lq

≥ 2−1+ 1
q
(
2s2+s − 2s−9

)
2(s2+3s+6)(−r+s+ 1

p−3)c(p, r, s)N−r+s+ 1
p−3 − 3ε,

for every ε > 0, whence without ε too, and for m = n, N = n + 3 we obtain

dn

(
∆s

+W r
p , ∆s

+Lq

)
Lq
≥ cn−r+s+ 1

p−3,

where c = c(r, s, p, q) > 0. This completes the proof of the lower bounds in (1.1) for

s = 3, . . . , r.

For s = r + 1, we observe that the lower bounds in (1.2) are independent of 1 ≤
p ≤ ∞, so it suffices to establish them for the smallest class, namely, for ∆r+1

+ W r
∞, since

∆r+1
+ W r

∞ ⊆ ∆r+1
+ W r

p , 1 ≤ p ≤ ∞. We also note that

χ∞,r,k,N,i(t) =
1
r!

(
t− τ̄kN,k(i−1)+1

)r
, i = 1, . . . , N,

is differentiable r times and χ∞,r,k,N,i ∈ ∆r+1
+ W r

∞, 1 ≤ i ≤ N . Thus we do not need the

elaborate construction we had before and can work directly with χ∞,r,k,N,i, 1 ≤ i ≤ N .

Therefore if we denote χN
∞,r,k :=

{
χ∞,r,k,N,i

}N

i=1
, then S+

1

(
χN
∞,r,k

) ⊂ ∆r+1
+ W r

∞. Using the

discretization operator Ak,N , defined above, we prove as before (see (4.12)) that

dm+1

(
Ak,NdrS+

1

(
χN
∞,r,k

)
,∆1

+

)
lN1
≥ 2−1(k − 1)kN−1dm+1

(
S+

1

(
ẼN

))
, ∆1

+

)
lN1

≥ 2−4(k − 1)kN−1.
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Then, we proceed as before to conclude that

dn

(
∆r+1

+ W r
∞,∆1

+Lq

)
Lq
≥ cn−2,

where c = c(r, q) > 0. This completes the proof of the lower bound in (1.2), and concludes

the proof of our theorem. ¤
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