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Abstract We estimate the degree of comonotone polynomial approximation of con-
tinuous functions f , on [−1,1], that change monotonicity s ≥ 1 times in the in-
terval, when the degree of unconstrained polynomial approximation En(f ) ≤ n−α ,
n ≥ 1. We ask whether the degree of comonotone approximation is necessarily
≤ c(α, s)n−α , n ≥ 1, and if not, what can be said. It turns out that for each s ≥ 1,
there is an exceptional set As of α’s for which the above estimate cannot be achieved.

Keywords Comonotone polynomial approximation · Degree of approximation ·
Degree of comonotone approximation · Constants in constrained approximation
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1 Introduction

Let Pn be the space of algebraic polynomials of degree < n. For f ∈ C[a, b], set

‖f ‖[a,b] := max
x∈[a,b]

∣
∣f (x)

∣
∣,
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and let

En(f )[a,b] := inf
Pn∈Pn

‖f − Pn‖[a,b]

denote its degree of best approximation. In particular, for f ∈ C[−1,1], denote
‖f ‖ := ‖f ‖[−1,1] and En(f ) := En(f )[−1,1].

Denote by Δ1 the set of monotone, say, nondecreasing functions f ∈ C[−1,1],
and, as usual, for f ∈ Δ1, let

E(1)
n (f ) = inf

Pn∈Pn∩Δ1
‖f − Pn‖

be the degree of best monotone approximation of f . Clearly,

En(f ) ≤ E(1)
n (f ). (1.1)

The inverse inequality, in general, cannot be had, since Lorentz and Zeller [12] con-
structed a function f ∈ Δ1 such that

lim sup
n→∞

E
(1)
n (f )

En(f )
= ∞.

The first result we have is that in certain cases one may still achieve a kind of inverse
to (1.1), in the sense that one may obtain information on the degree of best monotone
approximation from knowledge of the degree of best unconstrained approximation.
We have:

Theorem 1 Let α > 0. Then there exists c(α), a constant depending only on α such
that, if f ∈ C[−1,1] is a monotone function and

nαEn(f ) ≤ 1, n ≥ 1,

then

nαE(1)
n (f ) ≤ c(α), n ≥ 1.

For α < 2, Theorem 1 follows from [8]; for α > 2, it follows from [5]; and for
α = 2, it is proved in [9].

We wish to extend Theorem 1 to functions that have a finite number changes of
monotonicity in [−1,1]. It turns out that if α is not an integer, we can always do that,
whereas for integer α’s it is not always so.

2 Definitions and Formulation of the Main Results

Given s ≥ 1, let Ys[a, b] denote the set of all collections Ys = {yi}si=1, of points
yi such that a < y1 < · · · < ys < b. For a collection Ys = {yi}si=1 ∈ Ys[a, b], we
write f ∈ Δ1(Ys; [a, b]) if f ∈ C[a, b] is nondecreasing on [ys, b], nonincreasing
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on [ys−1, ys], and so on, and, finally, (−1)sf is nondecreasing on [a, y1]. Clearly, if
f ∈ C1(a, b), then f ∈ Δ1(Ys; [a, b]) if and only if

f ′(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ (a, b). (2.1)

For f ∈ Δ1(Ys; [a, b]), we define by

E(1)
n (f,Ys)[a,b] := inf

Pn∈Pn∩Δ1(Ys ;[a,b])
‖f − Pn‖[a,b], (2.2)

the degree of best comonotone approximation of f , relative to Ys . In the formulations
of some of the theorems below, we do not wish to specify Ys ; rather, f is such that
f ∈ Δ1(Ys; [a, b]) for some Ys ∈ Ys . In this case, we write f ∈ Δ1

s ([a, b]) and put

E1,s
n (f )[a,b] := sup

Ys∈Ys [a,b]:f ∈Δ1(Ys ;[a,b])
E(1)

n (f,Ys)[a,b]. (2.3)

Again, in the case [a, b] = [−1,1], we suppress reference to the interval; namely, we
write Δ1(Ys) := Δ1(Ys; [−1,1]) and Δ1

s := Δ1
s ([−1,1]).

In order to formulate the main negative result, we define exceptional sets of inte-
gers As , where s ≥ 1 is going to be the number of changes of monotonicity of the
function f .

Definition Set A1 := {2}, and for each s ≥ 2, let

As := {j | 1 ≤ j ≤ s − 1, or j = 2i,1 ≤ i ≤ s}.
E.g.,

A2 = {1,2,4}, A3 = {1,2,4,6},
A4 = {1,2,3,4,6,8}, A5 = {1,2,3,4,6,8,10}, etc.

Theorem 2 Given s ∈ N, let α ∈ As . Then there is a constant c(s) > 0, which de-
pends only on s, such that for each m ∈ N, there exists a function f ∈ C1(−1,1)∩Δ1

s

satisfying

nαEn(f ) ≤ 1, n ≥ 1, (2.4)

while

mαE1,s
m (f ) ≥ c(s) lnm.

We now formulate the positive results. In particular, we show that all exceptional
cases are covered by Theorem 2.

Theorem 3 Given s ∈ N, let α > 0 be such that α /∈ As . Then there exists c(α, s),
a constant which depends only on α and s such that, if f ∈ Δ1

s and satisfies

nαEn(f ) ≤ 1, n ≥ 1, (2.5)
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then

nαE1,s
n (f ) ≤ c(α, s), n ≥ 1. (2.6)

Note that if α > 1, then (2.5) implies f ∈ C1(−1,1). If α < 1, then Theorem 3 is
[9, Theorem 1]. Therefore, in the proofs, we will concentrate on the case α > 1; thus
the definition of Δ1(Ys) given by (2.1) will apply.

For the sake of completeness, we emphasize that, Theorem 2 notwithstanding, all
is not lost for α ∈ As , since we still have:

Theorem 4 Let s ∈ N and α ∈ As . Then there exist constants c(s) and N(Ys), de-
pending only on s and Ys , respectively, such that for each function f ∈ Δ1(Ys) satis-
fying

nαEn(f ) ≤ 1, n ≥ 1,

we have

nαE(1)
n (f,Ys) ≤ c(s), n ≥ N(Ys).

For α 
= 2, Theorem 4 follows from [10, Theorem 4], and for α = 2, it follows
from [11, Corollary 2].

It is worth mentioning that similar investigation for coconvex approximation is
done in [7]. However, in coconvex approximation, there are no results analogous to
those of Theorem 3 for s ≥ 2.

In Sect. 3, we give some auxiliary notation and known results. Then we prove
Theorem 2 in Sect. 4, and in Sect. 5 we prove Theorem 3.

Above and subsequently, we have positive constants c, depending on certain pa-
rameters and only on those parameters. We indicate this dependence by c(·, . . . , ·).
The constants may differ from one another even when they look exactly the same and
appear on the same line. Sometimes we will need to single out a constant which we
will need to return to. Such a constant will have a subscript, i.e., ck(·, . . . , ·). Finally,
it is obvious that some of the constants below depend on the function Ψ , defined be-
low, which we keep fixed throughout the paper. Thus, we suppress reference to this
dependence.

3 Auxiliary Results

Let g ∈ C[a, b], and recall that

Δh(g, x) :=
{

g(x + h
2 ) − g(x − h

2 ), x ± h
2 ∈ [a, b],

0, otherwise,

Δk
h(g, x) := Δh

(

Δk−1
h (g, x)

)

, k > 1,

(3.1)

and denote by

ω
(

g, t, [a, b]) := sup
0<h≤t

∥
∥Δh(g, ·)∥∥[a,b]
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and

ωk

(

g, t, [a, b]) := sup
0<h≤t

∥
∥Δk

h(g, ·)∥∥[a,b], k ≥ 1,

respectively, its modulus of continuity and its kth modulus of smoothness. (Note that
ω(g, t, [a, b]) ≡ ω1(g, t, [a, b]) and that ωk(g, t, [a, b]) ≡ ωk(g, (b − a)/k, [a, b])
for t ≥ (b − a)/k.)

Again, when [a, b] = [−1,1], we suppress the interval in all moduli; i.e., we write
ωk(g, t) := ωk(g, t, [−1,1]).

We write f ∈ Z[a, b], the Zygmund class, if f ∈ C[a, b] and

ω2
(

f, t, [a, b]) ≤ t, t ≥ 0.

It is well known that if f ∈ Cr [a, b], r ≥ 0, and f (r) ∈ Z[a, b], then

En(f )[a,b] ≤ c(r)(b − a)r+1

nr+1
, n ≥ r + 1. (3.2)

We write f ∈ Br [a, b], r ≥ 1, the Babenko class (first introduced by Babenko [1]), if
f ∈ C[a, b] has a locally absolutely continuous (r − 1)st derivative in (a, b) and

∣
∣
(

(x − a)(b − x)
)r/2

f (r)(x)
∣
∣ ≤ 1, a.e., in [a, b].

It is well known (see, e.g., [2, Theorems 2.2.1 and 7.2.1]) that, if f ∈ Br [a, b], then
ω

ϕ
r (f, t, [a, b]) ≤ ctr , so that

En(f )[a,b] ≤ c(r)

nr
, n ≥ r. (3.3)

Next we state Dzyadyk’s inequality for the derivatives of polynomials (see, e.g., [3,
Chap. 7, Lemma 2.1 (p. 384)], see also [6, Lemma 5.2] for a short proof).

Lemma 1 Given x0 ∈ [a, b], assume that a polynomial Pn ∈ Pn satisfies

∣
∣Pn(x)

∣
∣ ≤ 1 +

( |x − x0|
ρn(x0)

)m

, x ∈ [a, b],

for some m ∈ N, where

ρn(x) := b − a

2n2
+

√
(x − a)(b − x)

n
. (3.4)

Then for each j ∈ N,

∣
∣P

(j)
n (x0)

∣
∣ ≤ c(j,m)

ρ
j
n(x0)

.

Recall that the (k −1)st divided difference of g, at the distinct points {u1, . . . , uk},
is defined by

[u1, u2, . . . , uk;g] :=
k

∑

i=1

g(ui)

� ′(ui)
,
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where

�(x) :=
k

∏

j=1

(x − uj ),

and that if [a, b] := [minuj ,maxuj ], and g ∈ C[a, b] possesses a (k−1)st derivative
in (a, b), then

[u1, u2, . . . , uk;g] = g(k−1)(ζ )

(k − 1)! (3.5)

for some ζ ∈ (a, b).
The Lagrange polynomial interpolating g at {u1, . . . , uk} is defined by

Lk(x) =
k

∑

j=1

g(uj )lj (x), (3.6)

where

lj (x) :=
∏

i 
=j (x − ui)

� ′(uj )
.

The following Newton representation of the Lagrange polynomial is well known:

Lk(x) := Lk(g;u1, . . . , uk;x)

:= g(u1) + [u1, u2;g](x − u1) + · · ·
+ [u1, . . . , uk;g](x − u1) · · · (x − uk−1). (3.7)

It is also well known that

g(x) − Lk(x) = [x,u1, . . . , uk;g](x − u1) · · · (x − uk). (3.8)

Hence,

g(x) − Lk(x) = g(x) − Lk−1(g;u1, . . . , uk−1;x)

− [u1, . . . , uk;g](x − u1) · · · (x − uk−1)

= (x − u1) · · · (x − uk−1)
([x,u1, . . . , uk−1;g] − [u1, . . . , uk;g])

= g(k−1)(ζ1) − g(k−1)(ζ2)

(k − 1)! (x − u1) · · · (x − uk−1)

=: ω

(k − 1)! (x − u1) · · · (x − uk−1), (3.9)

where ζ1, ζ2 ∈ (a.b), and we note that

|ω| = ∣
∣g(k−1)(ζ1) − g(k−1)(ζ2)

∣
∣ ≤ ω

(

g(k−1), b − a, [a, b]) (3.10)

if g ∈ Ck−1[a, b].
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Finally, for the proof of Theorem 3, we need two propositions and a lemma. Both
propositions are immediate consequences of [4, Corollary 3.1]; however, since this
paper is not easily accessible, we provide short proofs.

Proposition 1 Given a collection {yi}si=1 of distinct points yi ∈ (a, b), if a function
g ∈ Cl[a, b] satisfies

g(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ (a, b),

then there is a polynomial Pl+1 ∈ Pl+1 such that

‖g − Pl+1‖C[a,b] ≤ (b − a)lω
(

g(l), b − a, [a, b]) (3.11)

and

Pl+1(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ (a, b).

Proof For l < s, we take Pl+1(x) := Ll+1(g;y1, . . . , yl+1;x) ≡ 0, and Proposition 1
follows by (3.9) and (3.10). Similarly, for l = s, we take

Pl+1(x) := Ll+1(g;y1, . . . , ys, b;x) = g(b)

s
∏

i=1

x − yi

b − yi

.

Otherwise l > s. We take uj , j = s + 1, . . . , l + 1, to be arbitrary distinct points in
(a, b), different from yi , 1 ≤ i ≤ s. Finally, we set

Pl+1(x) := Ll+1(g;y1, . . . , ys, us+1, . . . , ul+1;x)

+ (b − a)l−s

l! ω
(

g(l), b − a, [a, b])
s

∏

i=1

(x − yi).

By virtue of (3.9) and (3.10), it readily follows that

Pl+1(x)

s
∏

i=1

(x − yi) ≥ g(x)

s
∏

i=1

(x − yi) ≥ 0

and that (3.11) holds. �

An immediate consequence is:

Corollary 1 If g ∈ Δ1
s [a, b] ∩ Cr [a, b], then

E
1,s
r+1(g)[a,b] ≤ (b − a)rω

(

g(r), b − a, [a, b]). (3.12)

Author's personal copy



250 Constr Approx (2012) 36:243–266

Proof Note that g′ satisfies the conditions of Proposition 1 with l = r − 1. Hence,
there exists Pr such that Pr(x)g′(x) ≥ 0, x ∈ (a, b), and

∥
∥g′ − Pr

∥
∥

C[a,b] ≤ (b − a)r−1ω
(

g(r), b − a, [a, b]).

The polynomial Pr+1(x) := ∫ x

a
Pr(t) dt + g(a) readily yields (3.12). �

Proposition 2 Given a collection {yi}si=1 of distinct points yi ∈ (a, b) and l ≥ s − 1,
if a function g ∈ Cl[a, b] satisfies

g(yi) = 0, i = 1, . . . , s,

then there is a polynomial Pl+2 ∈ Pl+2 such that

‖g − Pl+2‖C[a,b] ≤ c(l)(b − a)lω2
(

g(l), b − a, [a, b])

and

Pl+2(yi) = 0, i = 1, . . . , s.

Furthermore, if

g(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ (a, b), (3.13)

then we may take the polynomial to satisfy

Pl+2(x)

s
∏

i=1

(x − yi) ≥ 0, x ∈ (a, b). (3.14)

Proof We begin by noting that it follows by [3, p. 239, Theorem 3.6.4] that if a ≤
v0 < v1 < · · · < vl+2 ≤ b, then

∣
∣[v0, . . . , vl+2;g]∣∣ ≤ c(l)

ω2(g
(l), b − a, [a, b])

(vl+2 − v1)(vl+1 − v0)
. (3.15)

For l = s − 1, we take

Pl+2(x) := Ll+2(g;y0, y1, . . . , ys;x) = g(y0)

s
∏

i=1

x − yi

y0 − yi

,

where y0 = a, if y1 − a > b − y1, and y0 = b otherwise. Then substituting (3.15)
in (3.8) and applying simple calculations according to the various possibilities for
the locations of y0 and x yields the desired estimate. If l ≥ s, then we take uj , j =
s + 1, . . . , l, to be arbitrary distinct points in (a, b), different from yi , 1 ≤ i ≤ s, and
set

Ll+2(x) := Ll+2(g;y1, . . . , ys, us+1, . . . , ul, a, b;x).

Author's personal copy



Constr Approx (2012) 36:243–266 251

Again substituting (3.15) in (3.8) and applying simple calculations yields

∣
∣g(x) − Ll+2(x)

∣
∣ ≤ c∗(l)(b − a)l−sω2

(

g(l), b − a, [a, b])
s

∏

i=1

|x − yi |, x ∈ [a, b].

Hence, we take

Pl+2(x) := Ll+2(x) + c∗(l)(b − a)l−sω2
(

g(l), b − a, [a, b])
s

∏

i=1

(x − yi)

and obtain the desired estimate with c(l) = 2c∗(l). Furthermore, if g satisfies (3.13),
then we also obtain (3.14). �

An immediate consequence is:

Corollary 2 If g ∈ Δ1
s [a, b] ∩ Cr [a, b], r ≥ s, then

E
1,s
r+2(g)[a,b] ≤ c(r)(b − a)rω2

(

g(r), b − a, [a, b]). (3.16)

Proof Again, g′ satisfies the conditions of Proposition 2 with l = r − 1. Hence we
proceed as in the proof of Corollary 1. �

We also need a similar result for r = s − 1.

Lemma 2 Let r = σ − 1 and a < y1 < · · · < yσ < b, and take

1

9
(b − a) < a − a1 < 9(b − a) and

1

9
(b − a) < b1 − b < 9(b − a). (3.17)

If g ∈ Δ1(Yσ ; [a1, b1]) ∩ Cr [a1, b1], then

E
1,σ
r+2(g)[a,b] ≤ E

1,σ
1 (g)[a,b] ≤ c(r)(b − a)rω2

(

g(r), b − a, [a1, b1]
)

. (3.18)

Proof First assume that r > 0. Since g′(yi) = 0, 1 ≤ i ≤ σ −1, and g′ ∈ Cr−1[a1, b1],
it follows by Proposition 2 with l = r −1 and s = σ −1 that there exists a polynomial
Pr+1 ∈ Pr+1 = Pσ such that

∥
∥g′ − Pr+1

∥
∥[a1,b1] ≤ c(r)(b1 − a1)

r−1ω2
(

g(r), b1 − a1, [a1, b1]
)

(3.19)

and

Pr+1(yi) = 0, 1 ≤ i ≤ σ − 1.

As Pr+1 is of degree σ − 1, it is

Pr+1(x) = A

σ−1
∏

i=1

(x − yi).
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Now, g′ changes its sign once more in [a1, b1] (at yσ ), whereas Pr+1 cannot change
its sign again. Hence, with either J := [a1, a] or J := [b, b1], we have

g′(x)Pr+1(x) ≤ 0, x ∈ J.

This, in turn, implies (applying (3.19))

‖Pr+1‖J ≤ ∥
∥g′ − Pr+1

∥
∥

J
≤ ∥

∥g′ − Pr+1
∥
∥[a1,b1]

≤ c(r)(b1 − a1)
r−1ω2

(

g(r), b1 − a1, [a1, b1]
)

. (3.20)

Now, by (3.19),
∥
∥g′∥∥[a1,b1] ≤ ∥

∥g′ − Pr+1
∥
∥[a1,b1] + ‖Pr+1‖[a1,b1]

≤ c(r)(b1 − a1)
r−1ω2

(

g(r), b1 − a1, [a1, b1]
) + (b1 − a1)

σ−1

|J |σ−1
‖Pr+1‖J

≤ c(r)(b − a)r−1ω2
(

g(r), b − a, [a1, b1]
)

,

where we used the fact that |J | ∼ b1 − a1 ∼ b − a (see (3.17)), and applied (3.20).
Thus,

∥
∥g − g(a)

∥
∥[a,b] ≤

∫ b

a

∣
∣g′(t)

∣
∣dt ≤ c(r)(b − a)rω2

(

g(r), b − a, [a1, b1]
)

,

whence the required polynomial may be taken to be P1(x) ≡ g(a). This completes
the proof for r > 0.

If r = 0, then σ = 1. Without loss of generality, we may assume that g(a1) ≤
g(b1). Then the linear P1(x) ≡ g(a1) (which clearly is comonotone with g) interpo-
lates g at two points the distance between which is ≥ y1 − a1 > a − a1 ∼ b1 − a1
(where y1 is the point of monotonicity change of g, and see (3.17)). Hence, by Whit-
ney’s theorem (see, e.g., [3, Chap. 3, (6.2) (p. 230)]),

‖g − P1‖[a,b] ≤ cω2
(

g,b − a, [a1, b1]
)

,

as b − a ∼ b1 − a1, again by (3.17). This concludes the proof of Lemma 1. �

4 Proof of Theorem 2

Our strategy is to construct, for each α ∈ As , a function which is well approximated
by algebraic polynomials when no constraints are imposed on the polynomials, but
if certain derivatives of these polynomials have to vanish, then they yield weaker
approximation rate. Then by adding an oscillating polynomial to the function, we will
guarantee that we have an element with s changes of monotonicity without destroying
the above two properties. We will have to deal separately with even α’s and with odd
ones, because even though the ideas are similar, the functions for even α are defined
on [0,2], while those for odd α are defined on [−2,2].
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Let Ψ be an infinitely differentiable function on R, decreasing on [1,2], and sat-
isfying

Ψ (x) =
{

1, if x ≤ 1,

−1, if x ≥ 2,

and
∫ 2

1
Ψ (u)

du

u
= 0.

For each a ∈ (0, 1
2 ], set

ga(x) :=
∫ x

a2
Ψ

(
u

a

)
du

u
, x > 0,

and note that

ga(x) =
{

ln x

a2 , if x ∈ (0, a],
ln 2

x
, if x ≥ 2a.

It is readily seen that
(

x − a2)ga(x) ≥ 0, x ∈ (0,2],
and that

max
x∈(0,2]

x
∣
∣ga(x)

∣
∣ < 1. (4.1)

Also, evidently, ga is infinitely differentiable for x > 0, and for each j ∈ N,

∣
∣g

(j)
a (x)

∣
∣ ≤ c(j)

xj
, x > 0. (4.2)

Fix m ≥ 2 throughout this section.
Given an even r > 0, let fr ∈ C[0,2] be the function defined by

fr(x) =
∫ x

1/m4
(x − u)

r
2 Ψ

(

um2)du

u
, x ∈ [0,2]. (4.3)

If r ≥ 1 is odd, then let fr ∈ C[−2,2] be the function defined by

fr(x) =
∫ x

0
ur−1g1/m

(|u|)du, x ∈ [−2,2]. (4.4)

Note that ga(|x|) is integrable in [−2,2], so that f1 is well defined, it is continuous
at x = 0, and f1(0) = 0.

For the sake of simplifying notation, we set

a :=
{

1
m

if r is odd,

1
m2 if r is even.

We begin with two lemmas.
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Lemma 3 If r > 0 is even, then

En(fr)[0,1] ≤ c(r)

nr
, n ≥ 1. (4.5)

Proof Set p = r
2 . By (4.3) and (4.2),

∣
∣f (r)

r (x)
∣
∣ = p!∣∣g(p)

a (x)
∣
∣ ≤ p!c(p)

xp
=: c(r)

xr/2
, x > 0.

Therefore, 1
c(r)

fr ∈ Br [0,1], where Br is the Babenko class. Hence, (3.3) implies
(4.5) for n ≥ r . For n < r , (4.5) follows from the estimate

‖fr‖[0,1] ≤ p + 1.

Indeed, we get for x ∈ (0,1],
∣
∣fr(x)

∣
∣ =

∣
∣
∣
∣
xpga(x) +

∫ x

a2

(

(x − u)p − xp
)

Ψ

(
u

a

)
du

u

∣
∣
∣
∣

≤ xp−1 +
∣
∣
∣
∣

∫ x

a2

(

xp − (x − u)p
)du

u

∣
∣
∣
∣

≤ xp−1 + p ≤ p + 1,

where for the first inequality we have applied (4.1). �

Lemma 4 If r is odd, then

En(fr)[−1,1] ≤ c(r)

nr
, n ≥ 1. (4.6)

Proof It follows by (4.4) that f
(r−1)
r is continuous in [0,1], and (4.2) yields

∣
∣f (r+1)

r (x)
∣
∣ ≤ c(r)

x
, x > 0.

This implies that 1
c(r)

f
(r−1)
r ∈ B2[0,1], which, in turn, yields 1

c(r)
f

(r−1)
r ∈ Z[0,1].

Indeed, it is well known (see, e.g., [3, p. 272 (9.9)]) that g ∈ B2[0,1] implies
ω2(g, t) ≤ ω

ϕ
2 (g,

√
t) ≤ t . (Here ϕ(x) := √

x(1 − x).)

Since f
(r−1)
r is odd, we have 1

c(r)
f

(r−1)
r ∈ Z[−1,1]. Hence (3.2) implies (4.6) for

n ≥ r + 1. For n ≤ r , (4.6) follows from the estimate

‖fr‖[−1,1] < 1.

This completes the proof. �

Next we show that some constrained polynomials do not approximate fr so well.
First for even r , we have:
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Lemma 5 If r > 0 is even, then there exists a constant c(r) > 0 such that for any

polynomial Pm ∈ Pm satisfying P
( r

2 )
m (θ) = 0 for some point θ ∈ [0, 1

m2 ], we have

‖fr − Pm‖[0,1] ≥ c(r)
lnm

mr
.

Proof Let p = r
2 , and set

L(x) :=
∫ a

a2
(x − u)p

du

u
,

where we recall that a = 1
m2 and, by (4.3),

G(x) := fr(x) − L(x) =
∫ x

a

(x − u)pΨ

(
u

a

)
du

u
.

For x ≥ a, we have

∣
∣G(x)

∣
∣ ≤ xp

∫ x

a

du

u
= xp ln

(

m2x
)

< xp+1m2 = 1

m2p

(

xm2)p+1

≤ c(p)

m2p

(

θp+1 + (x − θ)p+1)m2(p+1)

≤ c(p)

m2p

(

1 +
(

x − θ

ρm(θ)

)p+1)

,

since by (3.4), for the interval [0,1], 1
m2 ≤ ρm(θ) = 1

m2 + 1
m

√
θ(1 − θ) < 2

m2 .
If, on the other hand, x ∈ [0, a], then

∣
∣G(x)

∣
∣ ≤ ∣

∣G(0)
∣
∣ = 1

pm2p
.

Now let

A := m2p‖fr − Pm‖[0,1].

It follows that for all x ∈ [0,1],
∣
∣L(x) − Pm(x)

∣
∣ ≤ ∣

∣fr(x) − Pm(x)
∣
∣ + ∣

∣L(x) − fr(x)
∣
∣ ≤ A

m2p
+ ∣

∣G(x)
∣
∣

≤ c(p)max{A,1}
m2p

(

1 +
( |x − θ |

ρm(θ)

)p+1)

.

By virtue of Lemma 1, we obtain

2(p!) lnm = ∣
∣L(p)(θ)

∣
∣ = ∣

∣L(p)(θ) − P
(p)
m (θ)

∣
∣
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≤ c(p)max{A,1}
m2p

ρ
−p
m (θ)

≤ c(p)max{A,1},
whence

A > c(r) lnm.

This concludes our proof. �

Next, for odd r , we have:

Lemma 6 If r is odd, then there exists a constant c(r) > 0 such that for any polyno-
mial Pm ∈ Pm satisfying P

(r)
m (θ) = 0 for some point θ ∈ [− 1

m
, 1

m
], we have

‖fr − Pm‖[−1,1] ≥ c(r)
lnm

mr
.

Proof Let

L(x) :=
∫ x

0
ur−1 du

∫ a

a2

dt

t
= 1

r
xr ln 1/a,

where we recall that a = 1
m

and, by (4.4),

G(x) := fr(x) − L(x) =
∫ x

0
ur−1

(
∫ |u|

1/m

Ψ

(
t

a

)
dt

t

)

du.

For |x| ≥ a, we have
∣
∣G(x)

∣
∣ ≤ |x|r ln

(

m|x|)

< xr+1m = 1

mr
(xm)r+1

≤ c(r)

mr

(

1 +
(

x − θ

ρm(θ)

)r+1)

,

since by (3.4), for the interval [−1,1], 1
m

< ρm(θ) = 1
m2 + 1

m

√
1 − θ2 < 2

m
.

If, on the other hand, |x| < 1
m

, then

∣
∣G(x)

∣
∣ ≤ ∣

∣G(a)
∣
∣ =

∫ a

0
ur−1 ln

a

u
du = ar

r2
= 1

r2mr
.

We now proceed just as in the proof of Lemma 6, to obtain

(r − 1)! lnm = ∣
∣L(r)(θ)

∣
∣ = ∣

∣L(r)(θ) − P (r)
m (θ)

∣
∣

≤ c(r)max{A,1}
mr

ρ−r
m (θ)

≤ c(r)max{A,1},
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whence

A ≥ c(r) lnm.

This completes the proof. �

We set

μr := min
x∈[a,1]f

′
r (x),

and it is readily seen that μr > 0.
We proceed with two lemmas for an even r > 0.

Lemma 7 Let r > 0 be even. Then there exists a function f ∈ Δ1
r
2
[0,1], satisfying

nrEn(f )[0,1] ≤ 1, n ≥ 1, (4.7)

and

mrE
1, r

2
m (f )[0,1] ≥ c(r) lnm, (4.8)

where c(r) > 0.

Proof Let p := r
2 . Since f

(j)
r (a2) = 0 for all 0 ≤ j ≤ p, it follows that there is δ > 0

such that a2 + δ < a and

∥
∥f

(j)
r

∥
∥[a2,a2+δ] <

1

e
min

{

μr,
1

mr

}

, j = 1, . . . , p. (4.9)

Take a collection of p distinct points

a2 < y1 < · · · < yp < a2 + δ,

and denote by Lp(x) := L(f ′
r ;y1, . . . , yp;x) the Lagrange polynomial interpolating

f ′
r at these points. By virtue of (3.7) and (3.5), (4.9) yields

‖Lp‖[0,1] ≤ ∥
∥f ′

r

∥
∥[a2,a2+δ] + ‖f ′′

r ‖[a2,a2+δ]
1! + · · · + ‖f (p)

r ‖[a2,a2+δ]
(p − 1)!

< min

{

μr,
1

mr

}

.

Now, set

F ′ := f ′
r − Lp,

and define

F(x) :=
∫ x

a2
F ′(t) dt, x ∈ [0,1].
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By virtue of (3.8) and (3.5), we have for x ∈ (0, a],
F ′(x) = f ′

r (x) − Lp(x) = [

x, y1, . . . , yp;f ′
r

]

(x − y1) · · · (x − yp)

= f
(p+1)
r (ζ )

p! (x − y1) · · · (x − yp)

= 1

ζ
(x − y1) · · · (x − yp),

where ζ = ζ(x) ∈ (0, a), and we used the fact that f
(p+1)
r (x) = p!g′

a(x) = p!
x

, x ∈
(0, a). Applying the estimate ‖Lp‖[0,1] < μr , we conclude that F ∈ Δ1

p[0,1] and, by
virtue of Lemma 3, that

nrEn(F )[0,1] ≤ c1(r). (4.10)

Finally, if P ′
m(x)F ′(x) ≥ 0, x ∈ (0, a), then P

(p)
m (θ) = 0 for some point θ ∈ (0, a).

Hence, by Lemma 5,

‖fr − Pm‖[0,1] ≥ c(r)
lnm

mr
.

This implies

‖F − Pm‖[0,1] ≥ ‖fr − Pm‖[0,1] − 1

mr

≥ c(r)
lnm

mr
− 1

mr
, (4.11)

where for the first inequality we have applied the estimate ‖Lp‖[0,1] < 1
mr .

Clearly, by (4.10), f := F
c1(r)

satisfies (4.7), and (4.8) follows from (4.11). �

Lemma 8 Let r > 0 be even and s > r
2 , and let b := π

2 + (s − r
2 )π . Then there exists

a function f̃ ∈ Δ1
s [0, b] satisfying

nrEn(f̃ )[0,b] ≤ 1, n ≥ 1, (4.12)

and

mrE1,s
m (f̃ )[0,b] ≥ c(r, s) lnm, (4.13)

where c(r, s) > 0.

Proof Let

h′
r (x) := 1

2

(

1 + Ψ (x)
)

f ′
r (x) + 1

2

(

1 − Ψ (x)
)

sinx, x ∈ [0, b],

and set

hr(x) :=
∫ x

a2
h′

r (u) du.
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Note that

h′
r (x) = f ′

r (x), x ∈ [0,1], (4.14)

that h′
r (x) = sinx for x ≥ 2, and that

min
x∈[1,2]h

′
r (x) =: νr > 0. (4.15)

By virtue of Lemma 3, it follows that c(r, s)hr ∈ Br [0, b], whence

nrEn(hr)[0,b] ≤ c2(r, s). (4.16)

Let Lp be defined as in the proof of Lemma 7, but with δ so small that, in addition
to (4.9), it guarantees that the polynomial Lp on [0, b] satisfies

‖Lp‖[1,2] < νr, ‖Lp‖[1,b] < sin 1, and
∥
∥L′

p

∥
∥[1,b] < cos 1.

This together with (4.15) guarantees that Lp does not intersect h′
r in [1,2] and inter-

sects it exactly s − r
2 times in [2, b] (exactly once in each interval (πk − π

2 ,πk + π
2 ],

k = 1, . . . , s − r
2 , where | sinx| < sin 1). If we set F̃ ′ := h′

r − Lp and define

F̃ (x) := (−1)s−r/2
∫ x

a2
F̃ ′(u) du,

then we conclude that F̃ ∈ Δ1
s [0, b]. Finally, since by (4.14), F̃ (x) = (−1)s−r/2F(x),

for x ∈ [0,1], where F is the function from the Proof of Lemma 7, we obtain

mrE1,s
m (F̃ )[0,b] ≥ mrE

1, r
2

m (F)[0,1]
≥ c(r) lnm. (4.17)

Again, taking f̃ := F̃
c2(r,s)

, (4.12) follows from (4.16), and (4.13) follows
from (4.17). �

We now proceed to discuss the odd r’s.

Lemma 9 Let r ≥ 3 be odd. Then there exists a function f ∈ Δ1
r+1[−1,1] satisfying

nrEn(f ) ≤ 1, n ≥ 1, (4.18)

and

mrE1,r+1
m (f ) ≥ c(r) lnm, (4.19)

where c(r) > 0.

Proof Recall that a = 1
m

, and take p := r−1
2 . Define

Fr(t) := f ′
r (

√
t) = tpga(

√
t), t ∈ [0,1],
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and observe that,

Fr(t) := 1

2
tp ln

t

a4
, t ∈ [

0, a2].

For δ ∈ (0, a4

2p
), write zj := jδ, 1 ≤ j ≤ p, and zp+1 := a4, and let (see (3.6))

Lp+1(t) = Lp+1(Fr ; z1, . . . , zp+1; t) =
p+1
∑

i=1

Fr(zi)li(t)

be the Lagrange polynomial interpolating Fr at the zj ’s. Since Fr(zp+1) = 0, and for
all 1 ≤ i ≤ p,

∣
∣Fr(zi)li(t)

∣
∣ < c(p)

δp

δp−1(a4 − pδ)
ln

a4

δ

≤ c(p)
δ

a4
ln

a4

δ
, t ∈ [0,1],

we may take δ so small that

‖Lp+1‖[0,1] < min

{
1

mr
, min
t∈[a2,1]

Fr(t)

}

< 1. (4.20)

Again, by virtue of (3.8) and (3.5), we have for t ∈ (0, a2),

Fr(t) − Lp+1(t) = [t, z1, . . . , zp+1;Fr ](t − z1) · · · (t − zp+1)

= F
(p+1)
r (ζ )

(p + 1)! (t − z1) · · · (t − zp+1)

= 1

2(p + 1)ζ
(t − z1) · · · (t − zp+1),

where ζ = ζ(t) ∈ (0, a2). Thus, we set

F ′(x) := Fr

(

x2) − Lp+1
(

x2) = f ′
r (x) − Lp+1

(

x2), x ∈ [−1,1],
and define

F(x) :=
∫ x

0
F ′(u) du, x ∈ [−1,1].

It follows that

F ′(x)
(

x2 − z1
)

. . .
(

x2 − zp+1
) ≥ 0, x ∈ [−a, a];

that is, F ∈ Δ1
2p+2[−a, a] = Δ1

r+1[−a, a]. By (4.20), we obtain

∣
∣Lp+1

(

x2)
∣
∣ < f ′

r (x), |x| ∈ [a,1],
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which, in turn, implies that

F ∈ Δ1
r+1[−1,1] = Δ1

r+1.

At the same time, Lemma 4 and (4.20) yield

nrEn(F )[−1,1] ≤ c3(r). (4.21)

Finally, if P ′
m(x)F ′(x) ≥ 0, x ∈ (−1,1), then there is a point θ ∈ (−a, a) such that

P (r)
m (θ) = 0.

(In fact, there are at least two such points.) By Lemma 6,

‖fr − Pm‖[−1,1] ≥ c(r)
lnm

mr
,

whence, by (4.20), we get

‖F − Pm‖[−1,1] ≥ ‖fr − Pm‖[−1,1] − 1

mr
≥ c(r)

lnm

mr
− 1

mr
. (4.22)

Once again, taking f := F
c3(r)

, (4.18) follows from (4.21), and (4.19) follows
from (4.22). �

We need an analogous result for r = 1.

Lemma 10 There is a function f ∈ Δ1
2[−1,1] satisfying

nEn(f ) ≤ 1, n ≥ 1,

and

mE1,2
m (f ) ≥ c lnm,

where c > 0.

Proof We would have liked to have used f1 to prove this lemma the way we did
in Lemma 9 (using fr , r ≥ 3). However, f1 is not differentiable at x = 0. Thus, we
modify it a little. Let l1 be the tangent to f ′

1 at x = a2, and let l2 be the tangent to f ′
1

at x = −a2. Then l1(0) = l2(0) = −1. Set

f̄ ′(x) :=

⎧

⎪⎨

⎪⎩

f ′
1(x) if a2 ≤ |x| ≤ 1,

l2(x) if − a2 ≤ x ≤ 0,

l1(x) if 0 ≤ x ≤ a2,

and define

f̄ (x) :=
∫ x

0
f̄ ′(u) du.
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Now f̄ is continuously differentiable in [−1,1], and the proof follows, repeating the
arguments of Lemmas 3 and 5 with f̄ replacing f1, and those of Lemma 9 with f̄

replacing fr , r ≥ 3. �

We are ready for the r odd analogue of Lemma 8.

Lemma 11 Let r > 0 be odd and s > r + 1, and let b := π
2 + (s − r − 1)π . Then

there exists a function f̃ ∈ Δ1
s [−b, b] satisfying

nrEn(f̃ )[−b,b] ≤ 1, n ≥ 1,

and

mrE1,s
m (f̃ )[−b,b] ≥ c(r, s) lnm,

where c(r, s) > 0.

Proof Let

Fr :=
{

fr if r ≥ 3,

f̄ if r = 1,

where f̄ is from Lemma 10. We extend F ′
r to [1, b] just as we did in the proof of

Lemma 7, and we extend it to [−b,−1] by putting F ′
r (x) ≡ F ′

r (−1), x ∈ [−b,−1].
Then we repeat the arguments in the proof of Lemma 8. We omit the details. �

We are ready with the completion of the proof of Theorem 2.
Fix s > 0.
If α ∈ As is odd, then by the definition of As , we have to deal with α + 1 < s if

s is odd and α + 1 ≤ s if s is even. Hence, Theorem 2 follows from Lemmas 9, 10,
and 11, taking r = α.

If α ∈ As is even, then α = 2� ≤ 2s. Hence, Theorem 2 follows from Lemmas 7
and 8, taking r = α, so that s ≥ r

2 . This completes the proof. �

5 Proof of Theorem 3

Let xj := cos(jπ/n),0 ≤ j ≤ n, be the Chebyshev knots, and denote Jj,n :=
[xj+1, xj−1] and |Jj,n| = xj−1 − xj+1, 1 ≤ j ≤ n − 1.

The proof of (2.6) follows the lines of the paper [7]. First we observe that (2.6)
readily follows from the inequalities

E
1,σ
r+1(f )Jj,n

≤ c(α, s)

nα
, j = 1, . . . , n − 1, (5.1)

for 0 ≤ σ ≤ s, such that f ∈ Δ1
σ [xj+1, xj−1], and

r := [α] ≥ 1.

We provide a detailed proof of this observation in the Appendix.
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To prove (5.1), we use the fact that, by virtue of [7, Theorems 2.1 and 2.2], (2.5)
together with inequalities [6, (3.4) and (3.5)], imply, for each n:

(a) f ∈ Cr−1(−1,1) and

ω2
(

f (r−1), |Jj,n|, Jj,n

) ≤ c(α)

|Jj,n|r−1nα
, 2 ≤ j ≤ n − 2; (5.2)

(b) if α /∈ N, then f ∈ Cr(−1,1) and

ω
(

f (r), |Jj,n|, Jj,n

) ≤ c(α)

|Jj,n|rnα
, 2 ≤ j ≤ n − 2; (5.3)

(c) if α is not an even number, then f ∈ C[ r
2 ][−1,1],

ω
(

f ([ r
2 ]), |Jj,n|, Jj,n

) ≤ c(α)

|Jj,n|[ r
2 ]nα

, 1 ≤ j ≤ n − 1; (5.4)

and
(d) if α is an even number, then f ∈ C

r
2 −1[−1,1],

ω2
(

f ( r
2 −1), |Jj,n|, Jj,n

) ≤ c(α)

|Jj,n| r
2 −1nα

, 1 ≤ j ≤ n − 1. (5.5)

We combine (5.2) through (5.5) with the inequalities (3.12), (3.16), and (3.18), and
get (5.1) for each α /∈ As . Specifically, for α /∈ N, we have (5.1) for all j by virtue
of Corollary 1 and inequalities (5.3) and (5.4). For odd α ∈ N, such that α > s, we
observe that α ≥ s + 1 so that r − 1 ≥ s. Hence, for 2 ≤ j ≤ n− 2, we obtain (5.1) by
virtue of Corollary 2 and inequality (5.2), while for j = 1, n−1, we apply Corollary 1
and inequality (5.4). Finally, for even α ≥ 2s + 2, we have r − 1 > r/2 − 1 ≥ s, and
(5.1) follows by virtue of Corollary 2 and inequality (5.5). We have one remaining
case where α = s is odd. For j = 1,2 and j = n − 2, n − 1, (5.1) follows from
Corollary 1 and (5.4), and for 3 ≤ j ≤ n−3 and σ < s, (5.1) follows from Corollary 2
and (5.2). Thus, we only need to prove (5.1) for 3 ≤ j ≤ n−3 and σ = s. To this end,
the proof follows from Lemma 1, [a1, b1] := Jj−1,n ∪ Jj+1,n and [a, b] := Jj,n. This
completes the proof. �

Acknowledgements The authors are grateful to the referees for improving the presentation of the paper.

Appendix

For the sake of completeness, we include the proof of the fact that the inequali-
ties (5.1) imply (2.6).

Let ϕ(x) := √
1 − x2, and write C0

ϕ := C[−1,1]; for r ≥ 1, we say that f ∈ Cr
ϕ if

f ∈ C(r)(−1,1) and limx→±1 ϕr(x)f (r)(x) = 0.
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Finally, for f ∈ Cr
ϕ , we write

ω
ϕ
k,r

(

f (r), t
) := sup

0≤h≤t

sup
x:|x|+ kh

2 ϕ(x)<1

Kr

(

x,
kh

2

)
∣
∣Δk

hϕ(x)

(

f (r), x
)∣
∣,

where K(x,μ) := ϕ(|x| + μϕ(x)) and the symmetric difference Δk
u is defined

in (3.1).
Note that for r = 0,

ω
ϕ
k,0(f, t) ≡ ω

ϕ
k (f, t),

the kth Ditzian–Totik modulus of smoothness.
Recall the Chebyshev knots xj := cos(jπ/n),0 ≤ j ≤ n, and denote Ij :=

[xj , xj−1], 1 ≤ j ≤ n. Note that Jj = Ij ∪ Ij+1, 1 ≤ j ≤ n − 1. Let Σk,n be the
collection of all continuous piecewise polynomials of degree < k, on the Chebyshev
partition {xj }nj=0. Also, denote by Σk,n(Ys) ⊂ Σk,n, the set of all piecewise polyno-
mials S with the following property. Let j (i), 1 ≤ i ≤ s, be such that yi ∈ Ij (i); then
S ∈ Σk,n(Ys) if for every 1 ≤ i ≤ s, the restriction of S to (xj (i)+1, xj (i)−2) =: Oi is
a polynomial, where xn+l := −1, x−l := 1. Finally, write O := ⋃s

i=1 Oi .

Proposition 3 ([10]) For every k ≥ 1 and s ≥ 0, there are constants c = c(k, s) and
c∗ = c∗(k, s) such that if Ys ∈ Ys and S ∈ Σk,n(Ys) ∩ Δ1(Ys), n ≥ 1, then

E(1)
c∗n(S,Ys) ≤ cω

ϕ
k (S,1/n).

Theorem 5 Given s ∈ N, let α ≥ 1. Suppose that f ∈ Δ1
s is such that (2.4) holds for

n ≥ r + 1 and the inequalities (5.1) are satisfied. Then

nαE1,s
n (f ) ≤ c1(α, s), n ≥ c2(α, s)N0. (A.1)

Proof Let f ∈ Δ(1)(Ys). Evidently, it suffices to prove (A.1) for E
(1)
n (f,Ys) instead

of E
1,s
n (f ) (recall that E

(1)
n (f,Ys) and E

1,s
n (f ) are defined in (2.2) and (2.3)). First,

let

σ
(1)
r+1,n(f ) := inf

{‖f − S‖ : S ∈ Σr+1,n(Ys) ∩ Δ1(Ys)
}

,

and assume that (the analog of (A.1)),

nασ
(1)
r+1,n(f ) ≤ c3(α, s), n ≥ N1.

Take S ∈ Σr+1,n(Ys) ∩ Δ1(Ys), so that ‖f − S‖ ≤ 2σ
(1)
r+1,n(f,Ys). Then by Proposi-

tion 3, we conclude that

E(1)
n (S,Ys) ≤ cω

ϕ
r+1

(

S,
1

n

)

, n ≥ c∗,

which, in turn, implies

E(1)
n (f,Ys) ≤ E(1)

n (S,Ys) + 2σ
(1)
r+1,n(f,Ys) ≤ cω

ϕ
r+1

(

f,
1

n

)

+ cσ
(1)
r+1,n(f,Ys)
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for all n ≥ c∗. Since (2.4) implies that ω
ϕ
r+1(f,1/n) ≤ cn−α , we only need to verify

(A.1) for N1 ≥ max{c∗, c3(α, s)N0}, c3(α, s) to be prescribed.
Let n ≥ c3(α, s)N0, and let On = ⋃s′

i=1 O ′
i be a partition of On into connected

intervals. First we prove that there is an m ≥ n/c2 such that:

(i) for each 1 ≤ i ≤ s′, O ′
i ⊂ Jj(i),m, and

(ii) for i1 
= i2, we have that either j (i1) = j (i2) or {j (i1), j (i1) + 1} ∩ {j (i2),

j (i2) + 1} = ∅.

To this end, we proceed by induction on s′ ≤ s. If s′ = 1, then there is just one
block O ′

1 of length ≤ 2s + 1, so that we may take m = � n
2s+1�. If s′ > 1, let n1 =

� n
2s+1�, then property (i) holds for m = n1. If property (ii) is also valid, then we are

done. Otherwise,

On =
s′

⋃

i=1

O ′
i ⊂

s′
⋃

i=1

Jj(i),m =:
s′′
⋃

i=1

O ′′
i

is a new partition into connected intervals, where s′′ < s′. We apply the induction
step to s′′ to get the desired value of m. It is readily seen that we may take c3(α, s) ≥
(2s + 1)s .

By virtue of (5.1), for the appropriate m, for every 1 ≤ i ≤ s′, there is a poly-
nomial pi , of degree r , comonotone with f on Jj(i),m, satisfying pi(xj (i)+1,m) =
f (xj (i)+1,m) and such that

‖f − pi‖Jj (i),m
≤ c(α, s)

mα
≤ c3(α, s)

nα
.

For j 
= j (i), j (i) + 1, 1 ≤ i ≤ s′, f is monotone on Ij,m, so that, by (5.1), we have
a polynomial q̃j , of degree r , comonotone with it there, such that

‖f − q̃j‖Ij,m
≤ c4(α, s)

nα
.

Adding the linear

l(x) := (

f (xj,m) − q̃j (xj,m)
) x − xj−1,m

xj,m − xj−1,m

+ (

f (xj−1,m) − q̃j (xj−1,m)
) x − xj,m

xj−1,m − xj,m

,

we obtain qj that is comonotone with f on Ij,m, interpolates f at endpoints of Ij,m,
and satisfies

‖f − qj‖Ij,m
≤ 3c4(α, s)

nα
.

Now we take piecewise polynomial sn to be defined pi on Jj(i),m and qj on Ij,m for
the other intervals. Then sn is comonotone with f and satisfies

‖f − sn‖ ≤ c(α, s)

nα
.
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It may have discontinuities at the points xj (i)−1,m, but there are no more than s

such points, so if we make it continuous by moving from left to right and making
sn(xj (i)−1,m+) := sn(xj (i)−1,m−), then our estimate is still valid with c1(α, s) :=
sc(α, s). This completes the proof. �
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