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Abstract We estimate the degree of comonotone polynomial approximation of con-
tinuous functions f, on [—1, 1], that change monotonicity s > 1 times in the in-
terval, when the degree of unconstrained polynomial approximation E, (f) <n™%,
n > 1. We ask whether the degree of comonotone approximation is necessarily
<c(a,s)n™®, n > 1, and if not, what can be said. It turns out that for each s > 1,

there is an exceptional set A of «’s for which the above estimate cannot be achieved.

Keywords Comonotone polynomial approximation - Degree of approximation -
Degree of comonotone approximation - Constants in constrained approximation
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1 Introduction

Let P, be the space of algebraic polynomials of degree < n. For f € Cla, b], set

’

I fllfa,py := max |f(x)
x€la,b]
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and let

En(Piapy:= b [I.f = Pullia.b)

denote its degree of best approximation. In particular, for f € C[—1, 1], denote

1A= f =11y and E,(f) := Ex(f)-1.1]-
Denote by A! the set of monotone, say, nondecreasing functions f € C[—1, 1],
and, as usual, for f € Al let

EN(H = inf If =Pl
A

)lEPnﬁ

be the degree of best monotone approximation of f. Clearly,

E.(f) < EP (). (1.1)

The inverse inequality, in general, cannot be had, since Lorentz and Zeller [12] con-
structed a function f € A' such that

o ()
st En(f)

The first result we have is that in certain cases one may still achieve a kind of inverse
to (1.1), in the sense that one may obtain information on the degree of best monotone
approximation from knowledge of the degree of best unconstrained approximation.
We have:

Theorem 1 Let o > 0. Then there exists c(c), a constant depending only on o such
that, if f € C[—1, 1] is a monotone function and

n“E,(f) <1, n=1,

then

n®EV(f)<c@), n=>1.

For o < 2, Theorem 1 follows from [8]; for o > 2, it follows from [5]; and for
o =2, itis proved in [9].

We wish to extend Theorem 1 to functions that have a finite number changes of
monotonicity in [—1, 1]. It turns out that if « is not an integer, we can always do that,
whereas for integer «’s it is not always so.

2 Definitions and Formulation of the Main Results
Given s > 1, let Y[a, b] denote the set of all collections Yy = {y;};_,, of points
yi such that a < y; < --- < y; < b. For a collection Yy = {y;}{_, € Y,[a, b], we

write f € ALYy [a, b)) if f € Cla, b] is nondecreasing on [ys, b], nonincreasing
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on [ys—1, ys], and so on, and, finally, (—1)° f is nondecreasing on [a, y{]. Clearly, if
f eCl(a,b), then f € A'(Y; [a, b)) if and only if

fO]Jex=y =0, xe@,b). @.1)

i=1
For f € Al(Yy; [a, b]), we define by

EV(f, Y = inf I = Pallia.p), 2.2)
PILEPHOAI (YS;[a’b])

the degree of best comonotone approximation of f, relative to Y;. In the formulations
of some of the theorems below, we do not wish to specify Yy; rather, f is such that
fe AV (Y,: [a, b)) for some Y, € Y. In this case, we write fe A;([a, b)) and put

EX(Pap = sup EV(f Y an (2.3)
YseYS[a,b]:feAl(YS;[a,b])

Again, in the case [a, b] = [—1, 1], we suppress reference to the interval; namely, we
write Al(Yy) := A'(Ys; [—1,1]) and Al := Al([—1, 1]).

In order to formulate the main negative result, we define exceptional sets of inte-
gers Ag, where s > 1 is going to be the number of changes of monotonicity of the
function f.

Definition Set A := {2}, and for each s > 2, let
Ag={jl1<j<s—1,0rj=2i1<i<s}.
E.g.,
Ay =1{1,2,4}, Az ={1,2,4,6},
As={1,2,3,4,6,8]}, As=1{1,2,3,4,6,8,10}, etc.

Theorem 2 Given s € N, let o € Ag. Then there is a constant c(s) > 0, which de-
pends only on s, such that for each m € N, there exists a function f € C'(—=1,1)N A}

satisfying
n“Ey(f) <1, nx=1, 24
while

m*ELS (f) = c(s) Inm.

We now formulate the positive results. In particular, we show that all exceptional
cases are covered by Theorem 2.

Theorem 3 Given s € N, let o > 0 be such that o ¢ Ag. Then there exists c(«, s),
a constant which depends only on a and s such that, if f € A sl and satisfies

n“En(f) <1, n=1, 2.5
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then
n“ENS(f) <clas), n=l. 2.6)

Note that if « > 1, then (2.5) implies f € C'(—1, 1). If @ < 1, then Theorem 3 is
[9, Theorem 1]. Therefore, in the proofs, we will concentrate on the case o > 1; thus
the definition of A!(Y;) given by (2.1) will apply.

For the sake of completeness, we emphasize that, Theorem 2 notwithstanding, all
is not lost for o € Ay, since we still have:

Theorem 4 Let s € N and o € A;. Then there exist constants c(s) and N (Yy), de-
pending only on s and Yy, respectively, such that for each function f € A'(Yy) satis-
Jying

n“E (f) <1, nx=1,

we have

naEr(ll)(f’ YS)SC(S)v n> N(Yy).

For o # 2, Theorem 4 follows from [10, Theorem 4], and for a = 2, it follows
from [11, Corollary 2].

It is worth mentioning that similar investigation for coconvex approximation is
done in [7]. However, in coconvex approximation, there are no results analogous to
those of Theorem 3 for s > 2.

In Sect. 3, we give some auxiliary notation and known results. Then we prove
Theorem 2 in Sect. 4, and in Sect. 5 we prove Theorem 3.

Above and subsequently, we have positive constants ¢, depending on certain pa-
rameters and only on those parameters. We indicate this dependence by c(-, ..., ).
The constants may differ from one another even when they look exactly the same and
appear on the same line. Sometimes we will need to single out a constant which we
will need to return to. Such a constant will have a subscript, i.e., ¢k (-, ..., -). Finally,
it is obvious that some of the constants below depend on the function ¥, defined be-
low, which we keep fixed throughout the paper. Thus, we suppress reference to this
dependence.

3 Auxiliary Results
Let g € C[a, b], and recall that

g+ —gx -1, x+lela,bn,
0, otherwise, 3.1
Ak(g,x) = A (AF (g 1), k> 1,

An(g.x) = {

and denote by

w(g. 1. [a,b]) = oil;l}it |An(g, | (a.b]
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and

wk(g.1,a, b)) ::05121;” Afg, )| wpr k=1
<n=

respectively, its modulus of continuity and its kth modulus of smoothness. (Note that
w(g,t,[a,b]) = wi(g,t,[a,b]) and that wi(g, 1, [a, b]) = wi(g, (b — a)/k, [a, b])
fort>b—a)/k.)

Again, when [a, b] = [—1, 1], we suppress the interval in all moduli; i.e., we write

a)k(ga t) = a)k(ga t, [_13 1])
We write f € Z[a, b], the Zygmund class, if f € C[a, b] and

wr(fot,la,b]) <t, t>0.
It is well known that if f € C"[a,b], r >0, and f) € Z[a, b], then

b— r+1
En(f)[a,b]f%, n>r+1. 3.2)
n

We write f € B"[a, b], r > 1, the Babenko class (first introduced by Babenko [1]), if
f € Cla, b] has a locally absolutely continuous (r — 1)st derivative in (a, b) and

((x—a)b—x)fPw)| <1, ae., ina,bl.

It is well known (see, e.g., [2, Theorems 2.2.1 and 7.2.1]) that, if f € B"[a, b], then
wf (f,t,[a,b]) <ct”, so that

c(r)

n"’

En(f)[a,b] = nzr. 3.3)

Next we state Dzyadyk’s inequality for the derivatives of polynomials (see, e.g., [3,
Chap. 7, Lemma 2.1 (p. 384)], see also [6, Lemma 5.2] for a short proof).

Lemma 1 Given xg € [a, b, assume that a polynomial P, € P, satisfies

|x — xo
Pn(x0)

|Pn(x)|51+( ) , x€la,bl,

for some m € N, where

bZ;f G ‘;)(b —%) (3.4)

Pn(x) ==

Then for each j € N,
j c(j,m)
P (o) | = =
P (xo)

Recall that the (k — 1)st divided difference of g, at the distinct points {uy, ..., u},
is defined by

gu;)
@' (u;)’

k
[ui,uz, ..o gli=»
i=1
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where

k
w(x):= l_[(x —uj),
j=1
and that if [a, b] := [minu ;, maxu ], and g € C[a, b] possesses a (k — 1)st derivative
in (a, b), then
(k—1)
.8 ()
[ul,ug,...,uk,g]—m 3.5

for some ¢ € (a, b).
The Lagrange polynomial interpolating g at {u1, ..., ux} is defined by

k
Le(x) =) gpl;(x), (3.6)
j=1
where
_ Mgy —ui)

The following Newton representation of the Lagrange polynomial is well known:

Li(x):=Ly(g;uy,...,ux;x)
i=guy) + [ug, uz; gl(x —uy) +---
+lur, o ug gl —up) - (6 —ug—q). 3.7

It is also well known that
gx)—Li(x)=1Ix,u1,...,ug; glx —uy) - (x —ug). 3.8)
Hence,

g(x)—Li(x) = g(x) — Li—1(g;u1,...,uk_1;X)

—lur, o ug; gl —up) - (X — ug—1)
= —up) =) (xur, o uger gl — L. g g1)
(k—1) (k—1)
g () —g" (%)
= *— D (x—wup) - (6 —up—1)
=: 7(]{?1)!()6—u1)~~(x—uk—1), (3.9

where ¢1, &> € (a.b), and we note that
ol =% V(@) —g* V)| <0(g*".b—a,la,b]) (3.10)

if g € Cka, b].
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Finally, for the proof of Theorem 3, we need two propositions and a lemma. Both
propositions are immediate consequences of [4, Corollary 3.1]; however, since this
paper is not easily accessible, we provide short proofs.

Proposition 1 Given a collection {y;};_, of distinct points y; € (a, b), if a function
g€ c! [a, b] satisfies

g [Jer—y) =0, xe,b),

i=1

then there is a polynomial P41 € Pi41 such that

lg = Prillcian < b —a) (g, b —a,la, b)) (3.11)
and
N
P [ =y) =0, xea,b),
i=1
Proof Forl < s, we take Pj+1(x) := L;+1(g; ¥1, ..., Yi+1; x) =0, and Proposition 1

follows by (3.9) and (3.10). Similarly, for [ = s, we take

X =i
b—y;

N
Piy1(x) == Lit1(g: y1.. ..y bix) =g [ |

i=1

Otherwise [ > s. We take uj, j =s +1,...,1 + 1, to be arbitrary distinct points in
(a, b), different from y;, 1 <i <s. Finally, we set

Pry1(e) :=Lig1(8 Y1s ey Vso Ushlysovny W13 X)

S

(e, b—a,la,b]) [ [x — ).

i=1

(b _a)l—s
+ TR 1)

By virtue of (3.9) and (3.10), it readily follows that

P [Je—-yw=zem][[e-y =0

i=1 i=1

and that (3.11) holds. O
An immediate consequence is:
Corollary 1 If g € Al[a, b N C"[a, b], then

E}jl(g)[a,,,] <tb-a)o(g",b—a,la,bl). (3.12)
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Proof Note that g’ satisfies the conditions of Proposition 1 with / =r — 1. Hence,
there exists P, such that P,(x)g’(x) >0, x € (a, b), and

le" = Prllcpupy < b —a) 'o(e",b—a,la,bl).
The polynomial P, 1(x) := / ; P, (t)dt + g(a) readily yields (3.12). Il

Proposition 2 Given a collection {y;};_, of distinct points y; € (a,b) andl > s — 1,
if a function g € C'la, b] satisfies

gyi)=0, i=1,...,s,
then there is a polynomial P> € Py such that

lg — Priallcians < )b —a)'wr(gV, b —a,[a, b])
and

Pa(yi) =0, i=1,...,s.
Furthermore, if
N
g [[e-y =0, xe@.b), (3.13)

i=1

then we may take the polynomial to satisfy
s
Po@ [ [x—y) =0, xe(ab). (3.14)
i=1

Proof We begin by noting that it follows by [3, p. 239, Theorem 3.6.4] that if a <
Vg <Vl <--- <42 < b, then

w2 (g, b —a,la, b))
(V42 — v1) (V41 — Vo)

I[vo. - w42 81| < ) (3.15)

Forl =5 — 1, we take

3

N
X —Yi
Pria(x) i= Li42(8 Y0, i -5 y3 ) =g (o) | | — y’
i=1 !

)

where yg = a, if y1 —a > b — y1, and yg = b otherwise. Then substituting (3.15)
in (3.8) and applying simple calculations according to the various possibilities for
the locations of yg and x yields the desired estimate. If [ > s, then we take u;, j =
s+ 1,...,1, to be arbitrary distinct points in (a, b), different from y;, 1 <i <, and
set

Liga(x) :=Li12(g; Y1, .-+, Vs, Us1,- .., U, a, by x).
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Again substituting (3.15) in (3.8) and applying simple calculations yields

N

8() = Lipa(@)] < e (b — ) (V. b —a.[a. b)) [ [1x — yil.  x €la.bl.
i=1

Hence, we take
.
Pia(x) i= Lip2(x) + e« (Db — @) (¢V. b —a. [a. bY) [ [(x — y0)
i=1

and obtain the desired estimate with c(l) = 2c¢4 (/). Furthermore, if g satisfies (3.13),
then we also obtain (3.14). Il

An immediate consequence is:
Corollary 2 If g € Alla,b)N C"[a,b], r > s, then
E}y(9an) < c(r)(b—a) wn(g" . b —a.[a,b). (3.16)

Proof Again, g’ satisfies the conditions of Proposition 2 with [ = r — 1. Hence we
proceed as in the proof of Corollary 1. g

We also need a similar result for r =s — 1.

Lemma2 Letr=0—1landa <y <--- <Yy, <b, and take
1 1
§(b—a)<a—a1 <9(b —a) and §(b—a)<b1—b<9(b—a). 3.17)

Ifg € A'(Yy; [ar, b1]) N C"[ay, by, then

ES@as < EV (@an < ¢ —a) w2(g b —alar, br]).  (3.18)

Proof First assume that r > 0. Since g’(y;) =0,1 <i <o —1,and g’ € C" '[ay, b1],
it follows by Proposition 2 with/ = r — 1 and s = o — 1 that there exists a polynomial
P.+1 € P41 =P, such that

I8 = Pro]l g < Vb1 —ar) (s b1 —ar. [ar, br]) (3.19)
and
Pry1(yi)=0, 1<i<o-—1
As P, is of degree o — 1, it is

o—1

P =A@ =y

i=1
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Now, g’ changes its sign once more in [aj, b{] (at y, ), whereas P,,| cannot change
its sign again. Hence, with either J := [ay, a] or J := [b, b1], we have

§X)P1(x) <0, xel.
This, in turn, implies (applying (3.19))

||Pr+1 ”J S ”g/ - PI‘+1 ”J S ||g/ - Pr-H ||[a],b|]
<c() b1 —a)) " 'wy (g, b1 —ai. [a1, b1)). (3.20)
Now, by (3.19),

||g/||[a1,b,] < ¢ - Pr+1H[al,b1] F 1 Prt1lltar 1)

(b1 —a))°!

<cr)br—an) " oa(g", b1 —ar, [ar, bil) + TP

| Pryills
<cr)b—a) (g, b—a,la1.bi]),

where we used the fact that |J| ~ by — a1 ~ b — a (see (3.17)), and applied (3.20).
Thus,

b
||g — g(a)H[u,b] S/ |g’(t)‘dt <c(r)(®b —a)’a)z(g(’),b —a, [al,bl]),

whence the required polynomial may be taken to be P;(x) = g(a). This completes
the proof for r > 0.

If r =0, then o = 1. Without loss of generality, we may assume that g(a;) <
g(b1). Then the linear P;(x) = g(a1) (which clearly is comonotone with g) interpo-
lates g at two points the distance between which is > y; —a; >a —a; ~b; — a
(where y; is the point of monotonicity change of g, and see (3.17)). Hence, by Whit-
ney’s theorem (see, e.g., [3, Chap. 3, (6.2) (p. 230)]),

g = Pillfa.p) < can(g.b—a,lar, bi]),

as b —a ~ by — ay, again by (3.17). This concludes the proof of Lemma 1. g

4 Proof of Theorem 2

Our strategy is to construct, for each o € Ay, a function which is well approximated
by algebraic polynomials when no constraints are imposed on the polynomials, but
if certain derivatives of these polynomials have to vanish, then they yield weaker
approximation rate. Then by adding an oscillating polynomial to the function, we will
guarantee that we have an element with s changes of monotonicity without destroying
the above two properties. We will have to deal separately with even «’s and with odd
ones, because even though the ideas are similar, the functions for even « are defined
on [0, 2], while those for odd « are defined on [—2, 2].
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Let ¥ be an infinitely differentiable function on R, decreasing on [1, 2], and sat-
isfying

1, if x<1,

-1, if x=>2,

2
/ llf(u)d—u =0.
1 u

x u\du
8a(x) = vl—)—, x>0,
22 a) u

2a(a) = {ln ;—2 if x € (0,al],
() =

v (x) =!

and

For each a € (0, %], set

and note that
In%, ifx>2a.
It is readily seen that
(x —a?)ga(x) 20, x€(0,2],
and that

max x|g.(x)| < 1. 4.1)
x€(0,2]

Also, evidently, g, is infinitely differentiable for x > 0, and for each j € N,
c(j)
j 9

129 ()| <
X

x> 0. (4.2)

Fix m > 2 throughout this section.
Given an even r > 0, let f € C[0, 2] be the function defined by

x r 2 du
fr(x)zf 4(x—u)ZlI/(um )7, x €10,2]. 4.3)
1

/m

If r > 1 is odd, then let f. € C[—2, 2] be the function defined by

fr(x)z/o u " grym(lul)du, x €[-2,21. (4.4)

Note that g, (]x]) is integrable in [—2, 2], so that f] is well defined, it is continuous
at x =0, and f1(0) =0.
For the sake of simplifying notation, we set

1
le

{% if r is odd,
a =

if r is even.

We begin with two lemmas.
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Lemma 3 Ifr > 0 is even, then

C(V)
En(fon <= nzl. 4.5)
Proof Set p = 5. By (4.3) and (4.2),
H0@] = pllg ] = PEP = S0 s

Therefore, C(l—r) fr € B"[0, 1], where B" is the Babenko class. Hence, (3.3) implies
(4.5) forn > r. Forn < r, (4.5) follows from the estimate

Il frlloy<p+1

Indeed, we get for x € (0, 1],

* u\ du
!ﬁ&ﬁ!=-ﬂka@)+1/ Hx—wﬂp—x”yp<—>__
2 a) u
. d
<xP71 4 / (xP —(x = u)P)—”
a? u
<xP'+p<p+1,
where for the first inequality we have applied (4.1). O

Lemma 4 Ifr is odd, then

n>1. (4.6)

En(fr)-

c(r)

Proof Tt follows by (4.4) that £" ™" is continuous in [0, 1], and (4.2) yields
C(r)

x> 0.

| 0] <

This implies that o] f(r De B?[0, 1], which, in turn, yields f(r De Z[0,1].
Indeed, it is well known (see, e.g., [3, p. 272 (9.9)]) that g e B2[O, 1] implies
(g, 1) 5w§<g Vi) <t. (Here ¢(x) := /x (1= x).)

Since f,(r_ is odd, we have ﬂf(r De Z[—1, 1]. Hence (3.2) implies (4.6) for
n>r+1.Forn <r, (4.6) follows from the estimate

I filli=1, < 1.

This completes the proof. g

Next we show that some constrained polynomials do not approximate f, so well.
First for even r, we have:
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Lemma S If r > 0 is even, then there exists a constant c(r) > 0 such that for any

polynomial Py, € P, satisfying Pn(F) (0) = 0 for some point 6 € [0, #], we have

”fr_

Proof Let p = 5, and set
a du
L(x) ::/ (x —u)P —
2 u

where we recall that a = # and, by (4.3),

du
u

G(x) = fr(x) — L(X)—/ (x—u)”‘lf< )
For x > a, we have

‘G(x)} < x”/ d_u :x”ln(mzx)
P

L(me)P“

< xPHp? = 5
m4pP

IA

c(fp) 67+ 4 (x — )P+ m2P+D
m

c(p) x—0\""!
Sm<1+<pm(9)> >7

since by (3.4), for the interval [0, 1], 5 < pu(0) = L5 + L /BT —0) < %
If, on the other hand, x € [0, a], then

1
G| =[6O] = .

Now let
A:=m*P||f, — Pullo.1].

It follows that for all x € [0, 1],
A
L) = Pu@)| = [/r(0) = Pu ()] + L) = fr(0)] = —2 + |G ()|

c(p)max{A, 1} lx — o]\ H!
=T <1+<pm<e>) )

By virtue of Lemma 1, we obtain
2(phlnm = [LP0)| = |LP©) — P 0))|
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- c(p)max{A, 1}

P
< = 0)

< c(p)max{A, 1},

whence
A>c(r)lnm.

This concludes our proof. g
Next, for odd r, we have:

Lemma 6 Ifr is odd, then there exists a constant ¢(r) > 0 such that for any polyno-
mial Py, € Py, satisfying P,;’)(e) =0 for some point 6 € -1, L

s 1 we have
Inm

I fr = Pulli—1,11 = c(r)—.
m

Proof Let
* “dr 1
L(x) :=/ u’—ldu/ — =-x"Inl/a,
0 a r

2t

where we recall that a = % and, by (4.4),

x [ul
G ¢=fr<x>—L(x)=/ ur—1</ w<£)£>du'
0 1/m alt

For |x| > a, we have

|G(x)| < Ix|" In(m]x])

c(r) x—0 r+1>
1 )
= m" ( * (pm(0)>

since by (3.4), for the interval [—1, 1], 1+ < p,,(8) = # +iV1-02< 2.
If, on the other hand, |x| < %, then
a r
1
G| <[G (@) =/ Wl du=5 = —.
0 u r rem’”

We now proceed just as in the proof of Lemma 6, to obtain

(r—Dlnm =|LO@®)| = [L"©) — PO )|
- c(rymax{A, 1}

P (0)

mr

< c(r)max{A, 1},
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whence
A>c(r)Inm.

This completes the proof. g

We set

MUy 1= min fr/('x)ﬂ
x€la,1]

and it is readily seen that u, > 0.
We proceed with two lemmas for an even r > 0.

Lemma 7 Let r > 0 be even. Then there exists a function f € AL[0, 1], satisfying
2
n"E,(Hio <1, n>1, 4.7
and

m" Ew? (o) = c(r) Inm, 4.8)

where c¢(r) > 0.

Proof Let p:=15. Since £’ (a?) =0 forall 0 < j < p, it follows that there is § > 0
such that % + 8 < a and

159020 <L inin ,Lr,i . j=1,....p. (4.9)
[a*,a*+38] e m’
Take a collection of p distinct points

a2<y1<~~~<yp<a2+8,

and denote by L, (x) := L(f/; y1,...,yp; x) the Lagrange polynomial interpolating
f; at these points. By virtue of (3.7) and (3.5), (4.9) yields

(p)
£ o202 I a2.02
’ r Wa*,a*+6] [a*,a*+35]
1pli01 = [ gz + =7 o T
| { 1 }
<mmyUr, — -
m}’
Now, set
F':=f/—L,,
and define

F(x):= /2 F'(t)dt, x€l0,1].
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By virtue of (3.8) and (3.5), we have for x € (0, a],
F'(x) = f](x) = Lp() =[x, 31,0, yps fl](& =y -+ (x = yp)

(p+1)
— %(x_yl)...(x_yp)

=%(x—y1)~--(x—yp),

where ¢ = ¢(x) € (0, a), and we used the fact that fr(p+1)(x) =plg (x) = %‘ X €
(0, a). Applying the estimate || L ||{0,1] < i, We conclude that F € A},[O, 1] and, by
virtue of Lemma 3, that

n"E,(F)p,11 < c1(r). (4.10)
Finally, if P,,(x)F’(x) >0, x € (0, a), then P,flp)(é) = 0 for some point 0 € (0, a).
Hence, by Lemma 5,

Inm

Ifr = Pulljo,1) = ¢(r) ol

This implies

1
I F — Pullo,11 = 1 fr — Paullio,n — v

1 1
> c(r)— — —, @.11)
m m
where for the first inequality we have applied the estimate || L 0,17 < #
Clearly, by (4.10), f := % satisfies (4.7), and (4.8) follows from (4.11). [l

Lemma8 Letr > 0 be evenand s > 5, and let b := % + (s — 5)7. Then there exists
a function f € A}. [0, b] satisfying

W Ey(Pop <1, n>1, (4.12)

and
m"E,* (Po.p) = c(r,s)Inm, (4.13)

where c(r,s) > 0.

Proof Let

. (x) = (1+l1/(x))fr’(x)+%(1—lI/(x))sinx, x €[0,b],

N =

and set

hy(x) = /‘x hl.(u)du.
az
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Note that
h.(x)= fl(x), xel0,1], (4.14)

that A/.(x) = sinx for x > 2, and that

rer[linz] hl.(x) =:v, > 0. (4.15)

X
By virtue of Lemma 3, it follows that c(7, s)h, € B"[0, b], whence
n"E,(hy)o,p < c2(r, s). (4.16)

Let L), be defined as in the proof of Lemma 7, but with § so small that, in addition
to (4.9), it guarantees that the polynomial L, on [0, b] satisfies

ILpli2y <ves NILple <sinl, and |}L’,3||[Lb]<cos1.

This together with (4.15) guarantees that L, does not intersect k). in [1, 2] and inter-
sects it exactly s — % times in [2, b] (exactly once in each interval (wk — %, Tk + %],

k=1,...,5s — %,Where |sinx| < sin1). If we set F’ :=h). — L, and define

F(x):=(=1)*""/2 f: F'(u)du,

a

then we conclude that F € ASI[O, b]. Finally, since by (4.14), F(x)=(=1)*"2F(x),
for x € [0, 1], where F is the function from the Proof of Lemma 7, we obtain

~ LL
m"EyS (Fjop) =m" En > (F)po,1)

> c(r)Inm. “4.17)
Again, taking f = %, (4.12) follows from (4.16), and (4.13) follows
from (4.17). O

We now proceed to discuss the odd r’s.
Lemma 9 Let r > 3 be odd. Then there exists a function f € A} 11[=1, 1] satisfying
n"E,(f)<1, nx1, (4.18)

and
m"ENLY ) = e(r) Inm, (4.19)

where c(r) > 0.
Proof Recall that a = %, and take p := % Define
F (0= fi(VD =1"g.(Vn), 1€[0,1],
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and observe that,
1 t
e _ 4P o 2
F.(t) = 5t lna4, t€[0,a”].
For 6 € (0, %), write z; :=j8,1 < j < p,and zp41 := a*, and let (see (3.6))

p+1

Lps1() =Lpy1(Frizt,....2ppi) = Y Fr(@)li(0)
i=1

be the Lagrange polynomial interpolating F; at the z;’s. Since F;(zp+1) =0, and for
alll <i<p,

87 a*
’Fr(Zi)li(t)| < C(P)m ln?
s at
=< C(p)?ln 3 L€ [0, 11,
we may take § so small that
|1 .
IL p+1ll{o,17 < min —, min F.(t); <1. (4.20)
m’ tela?,1]

Again, by virtue of (3.8) and (3.5), we have for ¢ € (0, a?),

Fo(t)—Lpp()=1[t,21,....2p4+1: Bt —21) - - - (t — 2p41)
FP V@)
= W(t —z1) (= Zp+1)
= m(f —z1) (T —2p41),

where ¢ = ¢(t) € (0, az). Thus, we set
F'(x) = Fr(x*) = Lps1(x?) = f{(x) = Lpt1 (x?),  xe[~1,1],
and define
F(x):= /Ox F'(uwdu, xe[-1,1].
It follows that
F/(x)()c2 — zl) . (x2 - zp+1) >0, xe[—a,al;
thatis, F € Ay, ,[—a,al = A, [~a, al. By (4.20), we obtain

Ly ()| < fl0),  Ix|ela, 1],
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which, in turn, implies that
FeAl  [-1,11=4,,.
At the same time, Lemma 4 and (4.20) yield
n"Ey(F)-1,1) < c3(r). (4.21)
Finally, if P,,(x)F'(x) > 0, x € (=1, 1), then there is a point 6 € (—a, a) such that
P (H) =0.

(In fact, there are at least two such points.) By Lemma 6,

Inm
I fr = Pmlli—1,1 = c(r)——,
m

whence, by (4.20), we get

1 1
am_ L (4.22)

m' om"

1
|F — Pulli—1,0 = I1fr — Pulli=1,11 — o > c(r)

Once again, taking f := ;L. (4.18) follows from (4.21), and (4.19) follows
from (4.22). ‘ O

We need an analogous result for r = 1.
Lemma 10 There is a function f € Aé[—l, 1] satisfying
nE,(f) <1, nx=1,

and
mEN2(f) > clnm,

where ¢ > 0.
Proof We would have liked to have used fj to prove this lemma the way we did
in Lemma 9 (using f;, r > 3). However, f] is not differentiable at x = 0. Thus, we
modify it a little. Let /1 be the tangent to f] at x = a?, and let [, be the tangent to fi
at x = —a?. Then 4(0) = (0) = —1. Set

fitx) ifa® <|x| <1,

f)=1h&x) if —a®<x <0,
L(x) if0<x< a2,

and define

fx):= /O f(u) du.
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Now f is continuously differentiable in [—1, 1], and the proof follows, repeating the
arguments of Lemmas 3 and 5 with f replacing fi, and those of Lemma 9 with f
replacing f,, r > 3. g

We are ready for the r odd analogue of Lemma 8.

Lemma 11 Let r > 0 be odd and s > r + 1, and let b := 7 + (s —r — 1)w. Then
there exists a function f € A}. [—b, b] satisfying

W Ey(Pi—bpy <1, n>1,

and
m" ELS(F)ppy = c(r,s) Inm,

where c(r,s) > 0.

Proof Let

. fr ifr =3,
" Foitr=1,

where f is from Lemma 10. We extend F! to [1, b] just as we did in the proof of
Lemma 7, and we extend it to [—b, —1] by putting F/(x) = F/(—1), x € [-b, —1].
Then we repeat the arguments in the proof of Lemma 8. We omit the details. |

We are ready with the completion of the proof of Theorem 2.

Fix s > 0.

If @ € Ay is odd, then by the definition of A, we have to deal with o + 1 < s if
sisodd and o + 1 < s if 5 is even. Hence, Theorem 2 follows from Lemmas 9, 10,
and 11, taking r = «.

If @ € Ay is even, then o = 2¢ < 2s. Hence, Theorem 2 follows from Lemmas 7
and 8, taking r = «, so that s > % This completes the proof. O

5 Proof of Theorem 3

Let x; := cos(jn/n),0 < j < n, be the Chebyshev knots, and denote J;, :=
[xjt1,xj-1]and |Jjul=x; 1 —xjy1, 1 <j<n-—1

The proof of (2.6) follows the lines of the paper [7]. First we observe that (2.6)
readily follows from the inequalities

cle,s)
EN (), < e =l (5.1)

o

for 0 <o <s,suchthat f e A},[xjﬂ,xj,l], and
r:=la]>1.

We provide a detailed proof of this observation in the Appendix.
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To prove (5.1), we use the fact that, by virtue of [7, Theorems 2.1 and 2.2], (2.5)
together with inequalities [6, (3.4) and (3.5)], imply, for each n:

(@ feC™'(~1,1)and

_ c(e) .
o2 (fO VNl Tjn) £ ———. 2<j<n-2 (5.2)
|Jj,n| n
(b) ifa ¢ N, then f € C"(—1, 1) and
) c(a) .
a)(f »|Jj,n|,-]j,n)§7ra, 2<j<n-12 (5.3)
[Tl n

(c) if o is not an even number, then f € C[%][—l, 1],

15D c(@) , :
o(fOED Tl Jjg) < ———, 1<j<n—1; 5.4
(f | ],ﬂ' ]Jl) |Jj’n|[i]}’la J ( )

and
(d) if «@ is an even number, then f € C%_l[—l, 1],

(L—1) c(a) .
or(FED Tl Ti) < —S2  i<j<n—1. 5.5
Z(f | J,n| J,n) |Jj,n|7_1n°‘ J (5.5)

We combine (5.2) through (5.5) with the inequalities (3.12), (3.16), and (3.18), and
get (5.1) for each o ¢ Ay. Specifically, for o ¢ N, we have (5.1) for all j by virtue
of Corollary 1 and inequalities (5.3) and (5.4). For odd « € N, such that « > s, we
observe that > s + 1 so thatr — 1 > s. Hence, for 2 < j <n — 2, we obtain (5.1) by
virtue of Corollary 2 and inequality (5.2), while for j = 1, n — 1, we apply Corollary 1
and inequality (5.4). Finally, for even o > 25 +2, we have r — 1 >r/2 — 1 > s, and
(5.1) follows by virtue of Corollary 2 and inequality (5.5). We have one remaining
case where ¢ = s is odd. For j =1,2 and j =n —2,n — 1, (5.1) follows from
Corollary 1 and (5.4),and for3 < j <n—3and o < s, (5.1) follows from Corollary 2
and (5.2). Thus, we only need to prove (5.1) for 3 < j <n—3 and ¢ = s. To this end,
the proof follows from Lemma 1, [ay, b1]:=J; 1, U Jj11,, and [a, b] := J; ,,. This
completes the proof. g

Acknowledgements The authors are grateful to the referees for improving the presentation of the paper.

Appendix

For the sake of completeness, we include the proof of the fact that the inequali-
ties (5.1) imply (2.6).

Let ¢(x) :=+/1 — x2, and write Cg :=C[—1, 1]; for r > 1, we say that f € C;) if
feC®(=1,1)and limy_ 11 ¢" (x) f(x) =0.
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Finally, for f € C!, we write

kh
(f(’) t):= sup sup K’( )|A,w(x)(f(’),x),

O0<h=<t x:|x|+2 Fe(x)<1

where K(x, ) := ¢(|Jx| + ne(x)) and the symmetric difference A’; is defined
in (3.1).
Note that for r =0,

wp o(fs ) = 0l (f. 1),

the kth Ditzian—Totik modulus of smoothness.

Recall the Chebyshev knots x; := cos(jm/n),0 < j < n, and denote I; :=
[xj,xj—1], 1 < j <n. Note that J; =1; Ulj;1, 1 <j <n— 1. Let X}, be the
collection of all continuous piecewise polynomials of degree < k, on the Chebyshev
partition {x j}7=o- Also, denote by Xy ,(Ys) C X% n, the set of all piecewise polyno-
mials S with the following property. Let j(i), 1 <i <, be such that y; € I;;); then
§ € Xyn(Yy) if for every 1 <i <'s, the restriction of § to (x;()41,%@)—2) =: O; is
a polynomial, where x,,4; := —1, x_; := 1. Finally, write O := Ule 0;.

Proposition 3 ([10]) For every k > 1 and s > 0, there are constants ¢ = c(k, s) and
cx = cCx(k,s) such thatif Yy € Y5 and S € Xy ,(Ys) N AI(YY), n>1, then

E(N (S, Yy) < col (S, 1/n).

Cxll

Theorem 5 Given s € N, let o > 1. Suppose that [ € Asl is such that (2.4) holds for
n >r + 1 and the inequalities (5.1) are satisfied. Then

n®Ey*(f) <ci(a,s), n=ca(e,s)No. (A.1)

Proof Let f € AW (yy). Evidently, it suffices to prove (A.1) for E,(Zl)( f, Ys) instead

of E}*(f) (recall that ES” (£, Yy) and E}*(f) are defined in (2.2) and (2.3)). First,
let

0 V1, () i=inf{Ilf = SII: S € Drrra(¥) N AN X)),

and assume that (the analog of (A.1)),

n“s)) (f) <cse.s), n=Ny

Take S € Zy11,,(Y;) N A1 (Yy), so that || f — S|| <20, ,(f. Y,). Then by Proposi-
tion 3, we conclude that

1
EMN(S,Yy) < co? | (S, ;>, n=cs,

which, in turn, implies
) M 1 1 M
E,’(f,Ys) < E, (S,Ys)+2ar+1n(fY)<ca)r+l f +car+1n(f, Ys)
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for all n > c,. Since (2.4) implies that a)fH (f,1/n) <cn™“, we only need to verify
(A.1) for N1 > max{cy, c3(a, s)No}, c3(, s) to be prescribed.

Let n > c3(a, s)Np, and let O,, = Uf/=1 O] be a partition of O, into connected
intervals. First we prove that there is an m > n/c> such that:

(i) foreach 1 <i <s', O] C Jj(i)m» and
(1) for iy # i, we have that either j(i1) = j(i2) or {j(i1), j(i1) + 1} N {j(i2),
Jj@) +1}=0.

To this end, we proceed by induction on s’ < s. If s’ = 1, then there is just one
block O] of length < 2s + 1, so that we may take m = (ﬁ}. Ifs'>1,letn =
n

[ 5547 |- then property (i) holds for m = n. If property (ii) is also valid, then we are

done. Otherwise,

s/ s/ s”
on=J 0o clJJiom=1J 0}
i=1 i=1 i=1

is a new partition into connected intervals, where s” < s’. We apply the induction
step to s” to get the desired value of m. It is readily seen that we may take c3(a, s) >
2s + 1)".

By virtue of (5.1), for the appropriate m, for every 1 <i < s’, there is a poly-
nomial p;, of degree r, comonotone with f on Jj) m, satisfying p; (xjiy41,m) =
f(x]-(,-)+1’m) and such that

c(a,s) - c3(a, s)

1f = pillsm <

mY n“

For j # j(i), j(i)+ 1,1 <i <s', f is monotone on /; ,, so that, by (5.1), we have
a polynomial g, of degree r, comonotone with it there, such that

. ca(a, s)
If=qjli;,, < ot

Adding the linear

- X —Xi—1
j—1,m

1(x) == (f Xjum) = §j (Xjum)) ——————

Xjim —Xj—1,m

X —Xj
~ J.m
+ (f@jmtm) = G (xjm1m) ——E—,
Xj—1,m —Xjm

we obtain ¢; that is comonotone with f on /; ;,, interpolates f at endpoints of I ,,
and satisfies

3cq(a, s)
I f _‘Ij||1_,~,m < T

Now we take piecewise polynomial s, to be defined p; on Jj ), and g; on I} , for
the other intervals. Then s, is comonotone with f and satisfies

c(a,s)

If = sull < :

nO[
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It may have discontinuities at the points x()—1,,, but there are no more than s
such points, so if we make it continuous by moving from left to right and making
sn(Xjiy—1,m+) == 8su(Xj(@i)~1,m—), then our estimate is still valid with ¢ (e, s) :=
sc(a, s). This completes the proof. g
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