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Abstract. Let I be a finite interval and r, s ∈ N. Given a set M , of functions defined on
I, denote by ∆s

+M the subset of all functions y ∈ M such that the s-difference ∆s
τ y(·) is

nonnegative on I, ∀τ > 0. Further, denote by ∆s
+W r

p , the class of functions x on I with the

seminorm ‖x(r)‖Lp ≤ 1, such that ∆s
τ x ≥ 0, τ > 0. Let Mn(hk) :=

�Pn
i=1 cihk(wit − θi) |

ci, wi, θi ∈ R
	
, be a single hidden layer perceptron univariate model with n units in the hidden

layer, and activation functions hk(t) = tk+, t ∈ R, k ∈ N0. We give two-sided estimates both of

the best unconstrained approximation E
�
∆s

+W r
p , Mn(hk)

�
Lq

, k = r−1, r, s = 0, 1, . . . , r+1,

and of the best s-monotonicity preserving approximation E
�
∆s

+W r
p , ∆s

+Mn(hk)
�
Lq

, k =

r − 1, r, s = 0, 1, . . . , r + 1. The most significant results are contained in Theorem 2.

§1. Introduction

Let X be a real linear space of vectors x with a norm ‖x‖X , W ⊂ X, W 6= ∅, and

M ⊂ X, M 6= ∅. Let

E(x, M)X := inf
y∈M

‖x− y‖X ,

denote the best approximation of the vector x ∈ X by M and let

E(W,M)X := sup
x∈W

E(x,M)X ,

denote the deviation of the set W from M .

Let s = 0, 1, . . . , and for a function x defined on I, let

∆s
τx(t) :=

s∑

k=0

(−1)s−k

(
s

k

)
x(t + kτ), {t, t + sτ} ⊂ I, s = 0, 1, . . . ,
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be the s-th difference of the function x, with step τ > 0. Denote by ∆s
+M the subclass

of functions x ∈ M for which ∆s
τx(t) ≥ 0, for all τ > 0 such that [t, t + sτ ] ⊆ I. Further

denote by

E
(
x, ∆s

+M
)
X

:= inf
y∈∆s

+M
‖x− y‖X ,

the best approximation of the vector x ∈ X by ∆s
+M , and by

E
(
W,∆s

+M
)
X

:= sup
x∈W

E(x, ∆s
+M)X ,

the deviation of the set W from ∆s
+M .

For r ∈ N, denote as usual

W r
p := W r

p (I) := {x : I → R | x(r−1) ∈ ACloc(a, b), ‖x(r)‖Lp(I) ≤ 1}, 1 ≤ p ≤ ∞,

where I = [a, b], and where ACloc(a, b) denotes the set of absolutely continuous functions

in every compact subinterval of (a, b).

In this paper we discuss shape preserving free-knot polynomial spline approximation

which may be viewed as a single hidden layer perceptron univariate model with n units

in the hidden layer, and activation functions hk(t) := tk+, t ∈ R, k ∈ N0, where t+ :=

max{0, t}. Namely, the function

y(t) :=
n∑

i=1

cihk(wit− θi), t ∈ R,

where ci ∈ R, wi ∈ R and θi ∈ R, that is called a single hidden layer perceptron model, is

viewed as a polynomial spline σk,n(·) of degree k, belonging to Ck−1(R), with knots w−1
i θi.

The reader is referred to the survey [Pi] where various approximation-theoretic problems

that arise in the multilayer feedforward perceptron (MLP) model in neural networks are

discussed.

Thus, let

Mn(hk) :=

{
n∑

i=1

cihk(wit− θi) | ci, wi, θi ∈ R
}

, t ∈ R,
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be a 3n parameter family of polynomial splines. For k = r−1 and k = r, we are interested

in the asymptotic behavior of the best unconstrained approximation E
(
∆s

+W r
p , Mn(hk)

)
Lq

,

s = 0, 1, . . . , r + 1. Further, we obtain the asymptotic behavior of the best s-monotonicity

preserving approximation, E
(
∆s

+W r
p , ∆s

+Mn(hk)
)
Lq

, k = r − 1, r, s = 0, 1, . . . , r + 1.

§2. Main results

Our first result is

Theorem 1. Let 1 ≤ p, q ≤ ∞, r ∈ N, and 0 ≤ s ≤ r. Then

(2.1) E
(
∆s

+W r
p , Mn(hr−1)

)
Lq
³ E

(
∆s

+W r
p , ∆s

+Mn(hr−1)
)
Lq
³ n−r.

Furthermore, if s = r + 1, then

(2.2) E
(
∆r+1

+ W r
p ,Mn(hr−1)

)
Lq
³ n−r,

while

(2.3) E
(
∆r+1

+ W r
p ,∆r+1

+ Mn(hr−1)
)
Lq
³ 1.

Remarks. (i) The upper bounds in (2.1) for s = 0, 1, . . . , r − 1 are an immediate conse-

quence of [H, Theorem 1.1]. We show that in order to obtain the upper bounds in (2.1) for

s = r, we can still use the approach of [H]. What (2.1) shows as a special case, is that Hu’s

upper estimates (which are given only for 0 ≤ s < r, p = 1 and q = ∞), are best possible.

We give a simple proof of this fact. Also, the upper bound in (2.2) follows immediately

from well known estimates on the degree of approximation of elements in W r
p , by free knot

splines with n knots.

(ii) The upper bound in (2.1) for s = 1, 2, and to some extent the lower bound in those

cases, also follows from the work of Leviatan and Shadrin [LS, Theorems 1 and 2].

(iii) Note that (2.3) is not surprising as the set ∆r+1
+ Mn(hr−1) only contains polynomials

of degree ≤ r − 1.

Next we state our main result. We show that there is no improvement in (2.1), if we

replace hr−1 with hr, but that such a replacement improves significantly the orders of

approximation in (2.2) and (2.3). Namely, we prove
3



Theorem 2. Let 1 ≤ p, q ≤ ∞, r ∈ N, and 0 ≤ s ≤ r. Then

(2.4) E
(
∆s

+W r
p ,Mn(hr)

)
Lq
³ E

(
∆s

+W r
p , ∆s

+Mn(hr)
)
Lq
³ n−r.

Furthermore, if 1 < r ∈ N, and if r = 1 and either p = ∞ or 1 ≤ p, q < ∞, then

(2.5) E
(
∆r+1

+ W r
p ,Mn(hr)

)
Lq
³ E

(
∆r+1

+ W r
p ,∆r+1

+ Mn(hr)
)
Lq
³ n−r−1.

On the other hand, if r = p = 1 and q = ∞, then

(2.6) E
(
∆2

+W 1
1 , Mn(h1)

)
L∞

³ E
(
∆2

+W 1
1 , ∆2

+Mn(h1)
)
L∞

³ n−1,

and finally, if r = 1, 1 < p < ∞ and q = ∞, then there exist absolute constants c1 > 0

and c2, such that for any ε > 0,

(2.7) c1n
−2 ≤ E

(
∆2

+W 1
p ,Mn(h1)

)
L∞

≤ E
(
∆2

+W 1
p ,∆2

+Mn(h1)
)
L∞

≤ c2ε
−1n−2+ε.

Obviously in view of the lefthand inequality in (2.7), we hope that ε may be removed

from the righthand side, but we have not succeeded in that.

We prove the upper bounds in (2.5) through (2.7) by applying in a more delicate way

the basic idea of ‘balanced partition’ of Hu [H].

It is interesting to compare the above asymptotic relations with our earlier estimates of

the Kolmogorov and shape preserving widths of the sets ∆s
+W r

p , 0 ≤ s ≤ r + 1, which in

most cases are bigger (see [KL1] and [KL2]). In the theorems we quote below dn(∆s
+W r

p )Lq

denotes the usual Kolmogorov n width, and

dn(∆s
+W r

p , ∆s
+Lq)Lq = inf

Mn
E(∆s

+W r
p ,Mn ∩∆s

+Lq),

where the infimum is taken over all linear manifolds Mn, of dimension n.

Theorem KL1. Let r ∈ N and 1 ≤ p, q ≤ ∞, be so that r − 1
p + 1

q > 0. If (r, p) 6= (1, 1),

and if (r, p) = (1, 1) and 1 ≤ q ≤ 2, then for each s = 0, 1, . . . , r,

dn(∆s
+W r

p )Lq ³ n−r+(max{ 1
p , 1

2}−max{ 1
q , 1

2})+ , n ≥ r.
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If, on the other hand, (r, p) = (1, 1) and 2 < q < ∞, then for s = 0, 1,

c1n
− 1

2 ≤ dn(∆s
+W 1

1 )Lq
≤ c2n

− 1
2
(
log(n + 1)

) 3
2 , n ≥ 1,

where c1 > 0 and c2 do not depend on n. Furthermore,

dn(∆r+1
+ W r

p )Lq ³ n−r−max{ 1
q , 1

2}. n > r.

And

Theorem KL2. Let s = 1, 2, s ≤ r ∈ N, and 1 ≤ p, q ≤ ∞, be so that r − 1
p + 1

q > 0.

Then

dn(∆s
+W r

p , ∆s
+Lq)Lq ³ n−r+( 1

p− 1
q )+ , n ≥ r.

If, on the other hand, s = r + 1 = 2, then

(2.8) dn(∆2
+W 1

p ,∆2
+Lq)Lq ³ n−1− 1

q , n ≥ 1.

For 3 ≤ s ≤ r + 1 the shape preserving widths were obtained in [KL3]. Namely,

Theorem KL3. Let r ∈ N, s ∈ N and 1 ≤ p, q ≤ ∞. For 3 ≤ s ≤ r, we have

dn

(
∆s

+W r
p ,∆s

+Lq

)
Lq
³ n−r+s+ 1

p−3, n ≥ r.

Also, if s = r + 1, r ≥ 2, then

dn

(
∆r+1

+ W r
p ,∆r+1

+ Lq

)
Lq
³ n−2, n ≥ r.

§3. Approximation by free-knot splines of degree r − 1

This section contains the proof of Theorem 1. We begin with a lemma.

Lemma 1. For all n ≥ 1,

(3.1) E
(
hr,Mn(hr−1)

)
L1
≥ 2−2r(n + 1)−r.

5



Proof. Let Pr−1(J) denote the space of all algebraic polynomials of degree ≤ r− 1 on the

interval J ⊂ R, and set Pr−1 := Pr−1(I). Denote by

y(t) :=
n∑

i=1

cihr−1(wit− bi), wi ∈ R, bi ∈ R, i = 1, . . . , n,

an arbitrary function from Mn(hr−1). If Tm := {ti}m
i=1 ⊂ R, is the collection of 0 ≤ m ≤ n

distinct knots ti := w−1
i bi, t1 < · · · < tm, then Tm ∩ (0, 1) = ∅, implies y ∈ Pr−1([0, 1]).

Thus in this case

(3.2)
‖hr(·)− y(·)‖L1 ≥ inf

πr−1∈Pr−1

∫ 1

−1

∣∣tr+ − πr−1(t)
∣∣dt

≥ 2−2r,

where we have applied the well known formula (see, e.g., [T, p. 96])

(3.3) inf
πr−1∈Pr−1

∫ 1

−1

|tr − πr−1(t)|dt = 2−r+1.

Otherwise, denote Θµ :=
{
θi

}µ+1

i=0
, where 0 < θ1 < · · · < θµ < 1 are the knots Tm ∩ (0, 1),

and let S0
r−1

(
Θµ

)
:= S0

r−1

(
Θµ; [0, 1]

)
, denote the space of all polynomial splines on [0, 1] of

degree ≤ r − 1, with knots θi, i = 1, . . . , µ. If Ii :=
[
θi, θi+1

]
, i = 0, . . . , µ, where θ0 := 0,

and θµ+1 := 1, then

(3.4)

‖hr − y‖L1 ≥ ‖hr − y‖L1[0,1]

≥ E
(
hr, S

0
r−1(Θµ)

)
L1[0,1]

=
µ∑

i=0

E
(
hr, Pr−1(Ii)

)
L1(Ii)

.

By virtue of (3.3), it is easily seen that

E
(
hr, Pr−1(Ii)

)
L1(Ii)

= inf
πr−1∈Pr−1

∫

Ii

∣∣(t− θ̄i)r − πr−1(t)
∣∣dt

= 2−2r|Ii|r+1, i = 1, . . . , µ + 1,

where θ̄i := 1
2 (θi + θi+1). Hence if we write xi := |Ii|, i = 0, . . . , µ, then

∑µ
i=0 xi = 1, and

if we wish to have a lower bound to the righthand side of (3.4), then we have to consider

the extremal problem

(3.5) f(x) :=
µ∑

i=0

xr+1
i → inf; xi ≥ 0, i = 0, . . . , µ,

µ∑

i=0

xi = 1,
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We use Lagrange multipliers, namely, we let

Lλ(x; f) :=
µ∑

i=0

xr+1
i − λ

(
µ∑

i=0

xi − 1

)

and we impose that the partial derivatives vanish, i.e.,

∂

∂xi
Lλ(x; f) = (r + 1)xr

i − λ = 0, i = 0, . . . , µ.

The solution is xi = (r + 1)−
1
r λ

1
r , i = 0, . . . , µ, so that

1 =
µ+1∑

i=1

xi = (µ + 1)(r + 1)−
1
r λ

1
r .

Hence, λ = (r + 1)(µ + 1)−r and xi = (µ + 1)−1. The minimal value of f(x) in (3.5) is

obtained at x∗ :=
(
(µ + 1)−1, . . . , (µ + 1)−1

)
and

f(x∗) =
µ+1∑

i=1

(
(µ + 1)−1

)r+1
= (µ + 1)−r.

Thus we conclude by (3.4) that

‖hr(·)− y(·)‖L1 ≥ 2−r+1(µ + 1)−r ≥ 2−2r(n + 1)−r.

Combining this with (3.2) yields (3.1) and completes the proof. ¤

We are ready to prove Theorem 1.

Proof of Theorem 1. As we have remarked above (Remark (i)), the upper bounds in

(2.1) for s = 0, 1, . . . , r − 1, follows from [H, Theorem 1.1], since ‖x‖p ≤ 2‖x‖∞ and

W r
p ⊆ 21/p′W r

1 , for all 1 ≤ p ≤ ∞ ( 1
p + 1

p′ = 1). Also, since ∆r+1
+ W r

p ⊆ W r
p , the

upper bound in (2.2) follows immediately from well known estimates on the degree of

approximation of elements in W r
p , by free knot splines with n knots (see, e.g., [H, Theorem

2.1]). In order to complete the proof of the upper bound in (2.1) for s = r, we may without

loss of generality, again assume that x ∈ W r
1 , and apply Hu’s construction [H], to obtain

a balanced partition of [−1, 1], T : −1 = t0 < t1 < · · · < tn = 1, so that

(3.6) (ti+1 − ti)r−1‖x(r)‖L1[ti,ti+1] ≤ n−r.
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Due to the fact that x(r−1) is nondecreasing, for a fixed 0 ≤ i < n and r0 :=
[

r+1
2

]
, there

is a quadrature
∫ ti+1

ti

g(τ)dx(r−1)(τ) =
r0∑

k=1

Akg(uk) + R(g),

where Ak > 0 and ti =: u0 < u1 < · < ur0 < ur0+1 := ti+1, which is exact for

Pr−1([ti, ti+1]). (See Petrov [Pe] for a similar idea.) Thus we have

(3.7)
∫ ti+1

ti

(ti+1 − τ)jdx(r−1)(τ) =
r0∑

k=1

Ak(ti+1 − uk)j , j = 0, . . . , r − 1,

and, in particular, for j = 0 we have

r0∑

k=1

Ak = x(r−1)(ti+1)− x(r−1)(ti).

Hence, if S0 is defined on [ti, ti+1), 0 ≤ i ≤ n, by

S0(τ) = x(r−1)(ti) +
m∑

k=1

Ak =: sm, um ≤ τ < um+1, m = 0, . . . , r0,

then evidently, x(r−1)(ti) ≤ sm ≤ x(r−1)(ti+1), m = 0, . . . , r0 − 1. Furthermore, it follows

by (3.7) that

(3.8)
∫ ti+1

ti

(ti+1 − τ)jdx(r−1)(τ) =
∫ ti+1

ti

(ti+1 − τ)jdS0(τ), 0 ≤ j ≤ r − 1.

Now set

Sr(t) :=
r−2∑

k=0

x(k)(−1)
k!

(t + 1)k +
1

(r − 2)!

∫ t

−1

(t− τ)r−2S0(τ)dτ, −1 ≤ t ≤ 1.

Then we have

S(j)
r (ti) = x(j)(ti), j = 0, . . . , r − 1, 0 ≤ i ≤ n,
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which by virtue of (3.6) and (3.8), yields for ti ≤ t < ti+1,

|x(t)− Sr(t)| ≤ 1
(r − 2)!

∣∣∣∣
∫ t

ti

(t− τ)r−2
(
x(r−1)(τ)− S0(τ)

)
dτ

∣∣∣∣

≤ 1
(r − 2)!

(ti+1 − ti)r−2

∫ ti+1

ti

∣∣x(r−1)(τ)− S0(τ)
∣∣dτ

≤ 1
(r − 2)!

(ti+1 − ti)r−2

∫ ti+1

ti

(
x(r−1)(ti+1)− x(r−1)(ti)

)
dτ

=
1

(r − 2)!
(ti+1 − ti)r−2

∫ ti+1

ti

∫ ti+1

ti

x(r)(τ)dτ

≤ (ti+1 − ti)r−1‖x(r)‖L1[ti,ti+1] ≤ n−r,

where in the third inequality we used the fact that x(r−1) is nondecreasing and that

x(r−1)(ti) ≤ S0(τ) ≤ x(r−1)(ti+1). This completes the proof of the upper bound in (2.1).

The lower bounds in (2.1) and (2.2) readily follow from Lemma 1. Indeed, 1
r!hr ∈

∆s
+W r

p , for all s = 0, 1, . . . , r + 1, 1 ≤ p ≤ ∞, and for 1 ≤ q ≤ ∞ we have

E
(
∆s

+W r
p , ∆s

+Mn(hr−1)
)
Lq
≥ E

( 1
r!

hr,Mn(hr−1)
)
Lq

≥ 2−
1
q E

( 1
r!

hr,Mn(hr−1)
)
L1

≥ 2−
1
q

1
r!

2−2r(n + 1)−r

≥ 1
r!

2−3r−1n−r.

The upper bound in (2.3) readily follows by observing that for every x ∈ W r
1 , Taylor’s

formula yields,

∣∣∣∣∣x(t)−
r−1∑
s=0

x(s)(0)ts
∣∣∣∣∣ =

1
(r − 1)!

∣∣∣∣
∫ t

0

x(r)(τ)(t− τ)r−1dτ

∣∣∣∣ ≤
1
r!

,

and that Pr−1 ⊂ ∆r+1
+ Mn(hr−1).

For the lower bound in (2.3) we observe that x ∈ ∆r+1
+ Mn(hr−1) if and only if x(r)(t) ≡

0, t ∈ I, i.e., if and only if x ∈ Pr−1. Thus, we take xr+1 := 1
(r+1)!hr+1 ∈ ∆r+1

+ W r
p ,
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1 ≤ p ≤ ∞, and for all 1 ≤ q ≤ ∞, we obtain (see (3.2))

E
(
∆r+1

+ W r
p ,∆r+1

+ Mn(hr−1)
)
Lq
≥ E

(
∆r+1

+ W r
p , Pr−1

)
Lq

≥ E
(
∆r+1

+ W r
p , Pr

)
Lq

≥ 1
(r + 1)!

E
(
hr+1, Pr

)
Lq

≥ 2−
1
q

1
(r + 1)!

E
(
hr+1, Pr

)
L1

≥ 2−
1
q

1
(r + 1)!

E
(
hr+1, Pr

)
L1[0,1]

≥ 1
(r + 1)!

2−2r−3.

This completes the proof of the lower bound in (2.3) and thus the proof of Theorem 1. ¤

§4. Improved approximation by free-knot splines of degree r

This section contains the proof of Theorem 2. First we need

Lemma 2. For every n > 1 and each α > 1,

(4.1) sup
xi>0,i=1,...,n
x1+···+xn=1




n∑

i=1

x−α
i




n∑

j=i

xj






−1

≤
(

1− 1
α

)−α

n−α−1.

Proof. We begin with the well known inequality (see [HLP])
(

1
n

n∑

i=1

y−α
i

)− 1
α

≤
(

n∏

i=1

yi

) 1
n

≤
(

1
n

n∑

i=1

yβ
i

) 1
β

where yi > 0, 1 ≤ i ≤ n, and α, β > 0. Taking β = 1 and setting

yi := xi




n∑

j=i

xj



− 1

α

, i = 1, . . . , n,

we see that



n∑

i=1

x−α
i




n∑

j=i

xj






−1

≤ n−α−1




n∑

i=1

xi




n∑

j=i

xj



− 1

α




α

.
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Thus it remains to prove that

(4.2)
n∑

i=1

xi




n∑

j=i

xj



− 1

α

≤
(

1− 1
α

)−1

,

for all xi > 0, 1 ≤ i ≤ n, such that x1 + · · ·+ xn = 1. To this end, set

zi :=
n∑

j=i

xj , i = 1, . . . , n, and zn+1 = 0.

Then xi = zi − zi+1, i = 1, . . . , n, hence

n∑

i=1

xi




n∑

j=i

xj



− 1

α

=
n∑

i=1

(zi − zi+1)z
− 1

α
i

≤
n∑

i=1

∫ zi

zi+1

t−
1
α dt

=
∫ 1

0

t−
1
α dt

=
(

1− 1
α

)−1

.

So (4.2) is valid and Lemma 2 is proved. ¤

We are ready to prove Theorem 2.

Proof of Theorem 2. We begin with the proof of (2.4). To this end, we first observe that

E(∆s
+W r

∞, Mn(hr))L1 ≤ E(∆s
+W r

p , ∆s
+Mn(hr))Lq ≤ E(∆s

+W r
1 ,∆s

+Mn(hr))L∞ ,

for all 1 ≤ p, q ≤ ∞. Hence in order to prove (2.4), it suffices to prove the following two

inequalities.

(4.3) E(∆s
+W r

1 ,∆s
+Mn(hr))L∞ ≤ cn−r, s = 0, 1, . . . , r,

and

(4.4) E(∆s
+W r

∞,Mn(hr))L1 ≥ cn−r, s = 0, 1, . . . , r.
11



We begin with (4.3), and take x ∈ ∆s
+W r

1 .

If r = 1, then 0 ≤ s ≤ 1, and
∫ 1

−1
|x′(τ)| dτ ≤ 1. Let −1 =: τ0 < τ1 < · · · < τn+1 := 1,

be such that ∫ τj+1

τj

|x′(τ)| dτ ≤ 1
n

.

Then the piecewise linear function σ1,n(t;x) which interpolates x at t = τj , j = 0, . . . , n+1,

has n knots, and it is in ∆s
+Mn(h1). It is readily seen that

‖x− σ1,n(·; x)‖L∞ ≤ cn−1,

and (4.3) follows.

For r > 1, by Theorem 1 there is a σr−1,n(·;x) ∈ ∆s
+Mn(hr−1) such that

(4.5) ‖x− σr−1,n(·; x)‖L∞ ≤ cn−r.

The (r − 1)st derivative σ
(r−1)
r−1,n(·; x) is piecewise constant so that for an arbitrary ε > 0

to be prescribed, it is easy to see that there exists a piecewise linear function σ1,2n,ε(·; x),

with 2n knots such that

(4.6) ‖σ(r−1)
r−1,n(·; x)− σ1,2n,ε(·;x)‖L1 ≤ ε.

Moreover if r − 1 ≤ s ≤ r, then σ1,2n,ε(·;x) ∈ ∆s−r+1
+ M2n(hr). Let

σr,2n,ε(t;x) :=
r−2∑

k=0

σ
(k)
r−1,n(0; x)

1
k!

tk +
∫ t

0

∫ τr−2

0

· · ·
∫ τ1

0

σ1,2n,ε(τ ; x) dτdτ1 · · · dτr−2.

If r − 1 ≤ s ≤ r, then clearly σr,2n,ε(·;x) ∈ ∆s
+M2n(hr). However, if 0 ≤ s ≤ r − 2, then

we cannot guarantee this. Still, from (4.6), for every k = 0, . . . , r − 2

(4.7) ‖σ(k)
r−1,n(·;x)− σ

(k)
r,2n,ε(·; x)‖L∞ ≤ ε,

so that the function

σ̃r,2n,ε(t;x) := σr,2n,ε(t; x) +
ε

s!
ts ∈ ∆s

+M2n(hr), 0 ≤ s ≤ r.

12



Indeed, we have to show this only for s ≤ r − 2, but then by (4.7) with k = s, we have

σ̃
(s)
r,2n,ε(t; x) = σ

(s)
r,2n,ε(t; x) + ε

≥ σ
(s)
r−1,n(t; x)− ε + ε

≥ 0,

where we used the fact that σ
(s)
r−1,n(t; x) ≥ 0 for t ∈ I. Also, by virtue of (4.7) with k = 0,

we obtain

‖σr−1,n(·;x)− σ̃r,2n,ε(·; x)‖L∞ ≤ 2ε,

and combining with (4.5), we conclude that

‖x(·)− σ̃r,2n,ε(·;x)‖L∞ ≤ ‖x(·)− σr−1,n(·; x)‖L∞ + ‖σr−1,n(·; x)− σ̃r,2n,ε(·; x)‖L∞

≤ cn−r + 2ε.

Taking ε := n−r, yields (4.3).

In order to prove (4.4), we take tn,i := −1 + i
n , and denote Ini := [tn,i−1, tn,i], i =

1, . . . , 2n, and their midpoints t̄n,i := 1
2 (tn,i−1 + tn,i) i = 1, . . . , 2n. Now set

x0,n(t) :=
{

0, t ∈ (tn,i−1, t̄n,i), i = 1, . . . , 2n,

1, t ∈ (t̄n,i, tn,i), i = 1, . . . , 2n,

and let

xr,n(t) :=
∫ t

−1

∫ τr−1

−1

· · ·
∫ τ1

−1

x0,n(τ) dτdτ1 · · · dτr−1 t ∈ I.

Evidently, xr,n ∈ ∆s
+W r

∞ for all s = 0, 1, . . . , r. Also it easy to verify that

xr,n(t) =
1

2r!
|t− t̄n,i|r + πr,i(t), t ∈ In,i, i = 1, . . . , 2n,

where πr,i ∈ Pr.

If y ∈ Mn(hr), then there exist n subintervals In,ik
, k = 1, . . . , n (depending, of course,

13



on y), such that y|In,ik
is a polynomial of degree ≤ r. Hence,

(4.8)

‖xn,r − y‖L1 ≥
n∑

k=1

∫

In,ik

|xr,n(t)− y(t)|dt

=
n∑

k=1

∫

In,ik

∣∣∣∣
1

2r!
|t− t̄n,ik

|r + πr,ik
(t)− y(t)

∣∣∣∣ dt

≥ 1
2r!

n∑

k=1

inf
πr∈Pr

∫

In,ik

||t− t̄n,i|r − πr(t)|dt.

Denote by

cr := inf
πr∈Pr

∫ 1

−1

||t|r − πr(t)|dt > 0.

Then it follows that

inf
πr∈Pr

∫

In,ik

||t− t̄n,ik
|r − πr(t)|dt = cr(2n)−r−1, k = 1, . . . , n,

which by (4.8) yields

‖xn,r − y‖L1 ≥
1

2r!

n∑

k=1

cr(2n)−r−1

=
1

2r!
cr2−r−1n−r.

since y ∈ Mn(hr) was arbitrary, (4.4) follows.

We proceed to prove the upper bounds in (2.5) through (2.7). Let n > 1 and 1 ≤ q ≤ ∞,

be fixed and assume that x ∈ ∆r+1
+ W r

p ∩Cr, satisfies the additional assumption x(r)(0) = 0.

We remove this assumption in the second part of the proof. Then we have that x(r) is

nonnegative on [0, 1] and nonpositive on [−1, 0]. We will concentrate on the interval [0, 1],

the other interval being a symmetric case, and assume that ‖x(r)‖Lp[0,1] > 0, otherwise

there is nothing to prove.

We begin with some preparatory construction. Let t := (t1, . . . , tn−1) ∈ Sn−1 := {0 ≤
t1 ≤ · · · ≤ tn−1 ≤ 1}, and set Ii := [ti−1, ti], i = 1, . . . , n. Set

Fp,q

(
x(r); Ii

)
:=

{
|Ii|r−1+ 1

q
∫

Ii

(
x(r)(t)− x(r)(ti−1)

)
dt, 1 ≤ p < ∞,

|Ii|r+
1
q
(
x(r)(ti)− x(r)(ti−1)

)
, p = ∞.

14



Denote

Fmax
p,q

(
t; x(r)

)
:= max

1≤i≤n
Fp,q

(
x(r); Ii

)
,

Fmin
p,q

(
t; x(r)

)
:= min

1≤i≤n
Fp,q

(
x(r); Ii

)
,

and set

∆p,q

(
t; x(r)

)
:= Fmax

p,q

(
t;x(r)

)−Fmin
p,q

(
t;x(r)

)
,

which is evidently continuous on the compact set Sn−1. Let

∆min
p,q

(
x(r)

)
:= min

t∈Sn−1
∆p,q

(
t; x(r)

)
.

We will prove that ∆min
p,q

(
x(r)

)
= 0. To this end, assume to the contrary that ∆min

p,q

(
x(r)

)
>

0. Denote by T∗ the collection of all points t∗ = (t∗,1, . . . , t∗,n−1), where the minimum is

attained, and let J(t∗) := {j(t∗)}, be the set of all indices such that

Fp,q

(
x(r); [t∗,j(t∗)−1, t∗,j(t∗)]

)
= Fmax

p,q

(
t∗; x(r)

)
.

Then clearly cardJ(t∗) ≥ 1. Our assumption that ∆min
p,q

(
x(r)

)
> 0, implies that there is

an index j(t∗) ∈ J(t∗) such that either j(t∗) ± 1 is not in J(t∗). Without loss assume it

is j(t∗)− 1. Then we have

(4.9) Fp,q

(
x(r); [t∗,j(t∗)−2, t∗,j(t∗)−1]

)
< Fp,q

(
x(r); [t∗,j(t∗)−1, t∗,j(t∗)]

)
.

Observing that Fp,q

(
x(r); [ti−1, ti]

)
increases continuously when ti−1 decrease and when

ti increase, we increase t∗,j(t∗)−1 a little to, say, t′∗,j(t∗)−1, so that we still preserve the

inequality

Fp,q

(
x(r); [t∗,j(t∗)−2, t

′
∗,j(t∗)−1]

) ≤ Fp,q

(
x(r); [t′∗,j(t∗)−1, t∗,j(t∗)]

)
,

while the lefthand side is bigger and the righthand side is smaller than their counterparts

in (4.9). This provides a new point t′∗ :=
(
t∗,1, . . . , t∗,j(t∗)−2, t

′
∗,j(t∗)−1, t∗,j(t∗), . . . , t∗,n−1

)
15



in T∗, such that cardJ(t′∗) = cardJ(t′∗) − 1. Repeating this process cardJ(t∗) times, we

end up with t̂∗ ∈ T∗ such that

Fp,q

(
x(r); [t̂∗,i−1, t̂∗,i]

)− Fmin
p,q

(
t̂∗;x(r)

)
< ∆min

p,q

(
x(r)

)

for all i = 1, . . . , n, a contradiction. Thus we have shown that for every fixed 1 ≤ p, q ≤ ∞,

there exists a partition 0 =: t∗0 < t∗1 < · · · < t∗n−1 < t∗n := 1
}

of [0, 1] (for the sake of

simplicity in the notation we suppress the indices p and q) such that

(4.10) Fp,q

(
x(r); [t∗i−1, t

∗
i ]

)
= Fmax

p,q

(
t∗; x(r)

)
= Fmin

p,q

(
t∗;x(r)

)
> 0, i = 1, . . . , n.

Doing the same in [−1, 0], we end up with a partition

Tn : −1 =: t∗−n < · · · < t∗−1 < 0 = t∗0 < t∗1 · · · < t∗n,

of I, which in addition to (4.10), satisfies

(4.11) Fp,q

(
x(r); [t∗−n, t∗−n+1]

)
= · · · = Fp,q

(
x(r); [t∗−1, t

∗
0]

)
> 0.

Set I∗i := [t∗i−1, t
∗
i ], 1 ≤ i ≤ n, and I∗i := [t∗i , t

∗
i+1], −n ≤ i ≤ −1.

We are ready to proceed with the proof. Put r0 :=
[

r+2
2

]
. Then following the proof

of Theorem 1 with r replaced by r + 1, we conclude that for the above partition there

exists a spline σr(·; x), of degree r (with r0 additional knots in every interval I∗i ) the rth

derivative of which is nondecreasing in I, and such that

(4.12) σ(s)
r

(
t∗i−1;x

)
= x(s)

(
t∗i−1

)
, σ(s)

r

(
t∗i ; x

)
= x(s)

(
t∗i

)
, s = 0, . . . , r − 1,

and

(4.13) x(r)
(
t∗i−1

) ≤ σ(r)
r

(
t;x

) ≤ x(r)
(
t∗i

)
, t∗i−1 ≤ t ≤ t∗i , −n < i ≤ n.

Finally,

∣∣x(t)− σr

(
t; x

)∣∣ ≤ 1
(r − 1)!

∫ t

t∗i−1

∣∣x(r)(τ)− σ(r)
r

(
τ ; x

)∣∣(t− τ)r−1dτ,

t∗i−1 ≤ t ≤ t∗i , −n < i ≤ n,
16



whence

(4.14)
∥∥x(·)− σr

(·;x)∥∥
Lq(I∗i )

≤
∣∣I∗i

∣∣r−1+ 1
q

(r − 1)!

∫

I∗i

∣∣x(r)(t)− σ(r)
r

(
t; x

)∣∣dt.

We will restrict our discussion to [0, 1], the other case is symmetric. It follows by virtue

of (4.12) that∫

I∗i

∣∣x(r)(t)− σ(r)
r (t;x)

∣∣dt = 2
∫

I∗i

(
x(r)(t)− σ(r)

r (t; x)
)
+
dt

≤ 2
∫

I∗i

(
x(r)(t)− x(r)(t∗i−1)

)
dt

≤ 2|I∗i |
(
x(r)(t∗i )− x(r)(t∗i−1)

)
, 1 ≤ i ≤ n,

where for the first inequality we used the monotonicity of σ
(r)
r (·; x) and in the last inequality

we applied the monotonicity of x(r). This combined with (4.14) implies
∥∥x(·)− σr(·; x)

∥∥
Lq(I∗i )

≤ 2
(r − 1)!

Fmax
p,q

(
t∗; x(r)

)
, 1 ≤ p ≤ ∞,

which in turn yields

(4.15)
∥∥x(·)− σr(·;x)

∥∥
Lq[0,1]

≤ 2n
1
q

(r − 1)!
Fmax

p,q

(
t∗;x(r)

)
, 1 ≤ p ≤ ∞.

Next we wish to estimate
∥∥x(r)

∥∥
Lp[0,1]

from below and we first assume that 1 ≤ p < ∞.

Then by Hölder’s inequality we obtain,
∥∥x(r)

∥∥p

Lp[0,1]
=

n∑

i=1

∫

I∗i

(
x(r)(t)

)p
dt

=
∫

I∗1

(
x(r)(t)− x(r)(t∗0)

)p
dt

+
n∑

i=2

∫

I∗i

[(
x(r)(t)− x(r)(t∗i−1)

)
+

i−1∑

j=1

(
x(r)(t∗j )− x(r)(t∗j−1)

)]p
dt

≥ |I∗1 |−p+1

(∫

I∗1

(
x(r)(t)− x(r)(t∗0)

)
dt

)p

+
n∑

i=2

|I∗i |−p+1

(∫

I∗i

(
x(r)(t)− x(r)(t∗i−1)

)
dt

+
i−1∑

j=1

∫

I∗i

(
x(r)(t∗j )− x(r)(t∗j−1)

)
dt




p

,
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since by assumption x(r)(t∗0) = x(r)(0) = 0. Hence,

(4.16)

1 ≥ ∥∥x(r)
∥∥

Lp([0,1])

≥



n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−1

∫

I∗j

(
x(r)(t)− x(r)(t∗j−1)

)
dt




p


1
p

≥



n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−r− 1
q




p


1
p

× min
1≤i≤n

(
|I∗i |r−1+ 1

q

∫

I∗i

(
x(r)(t)− x(r)(t∗i−1)

)
dt

)

=




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−r− 1
q




p


1
p

Fmin
p,q

(
t∗; x(r)

)
,

where we applied that for all i and j,

∫

I∗i

(
x(r)(t∗j )− x(r)(t∗j−1)

)
dt ≥ |I∗i |

|I∗j |
∫

I∗j

(
x(r)(t)− x(r)(t∗j−1)

)
dt,

since x(r) is nondecreasing. In view of (4.10), we may combine (4.15) and (4.16) to obtain

(4.17)

∥∥x(·)− σr

(·; x)∥∥
Lq [0,1]

≤ 2n
1
q

(r − 1)!




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−r− 1
q




p

− 1

p

.

For p = ∞ we have

(4.18)

1 ≥ ∥∥x(r)
∥∥

L∞[0,1]

=
n∑

i=1

(
x(r)(t∗i )− x(r)(t∗i−1)

)

≥
(

n∑

i=1

∣∣I∗i
∣∣−r− 1

q

)(
min

1≤i≤n

(
|I∗i

∣∣r+ 1
q
(
x(r)(t∗i )− x(r)(t∗i−1)

))

=

(
n∑

i=1

∣∣I∗i
∣∣−r− 1

q

)
Fmin
∞,q

(
t∗; x(r)

)
.
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Again in view of (4.10), we may combine (4.15) and (4.18) to obtain

(4.19)
∥∥x(·)− σr,n

(·;x)∥∥
Lq [0,1]

≤ 2n
1
q

(r − 1)!

(
n∑

i=1

∣∣I∗i
∣∣−r− 1

q

)−1

.

Since W r
p ([0, 1]) ⊆ W r

1 ([0, 1]), 1 ≤ p ≤ ∞, for r > 1 we substitute p = 1 and q = ∞ in

(4.17), and obtain by Lemma 2 with α = r,

(4.20)

∥∥x(·)− σr,n

(·;x)∥∥
L∞[0,1]

≤ 2
(r − 1)!




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−r






−1

=
2

(r − 1)!




n∑

i=1

|I∗i |−r




n∑

j=i

|I∗j |





−1

≤ 2
(r − 1)!

(
1− 1

r

)−r

n−r−1.

If r = 1 and 1 ≤ q < ∞, then again we substitute p = 1 in (4.17) and obtain by Lemma 2

with α = 1 + 1
q ,

(4.21)

∥∥x(·)− σ1,n

(·; x)∥∥
Lq [0,1]

≤ 2n
1
q




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−1− 1
q






−1

= 2n
1
q




n∑

i=1

|I∗i |−1− 1
q




n∑

j=i

|I∗j |





−1

≤ 2(q + 1)1+
1
q n−2.

If r = 1, p = 1 and q = ∞, then by (4.17)

(4.22)

∥∥x(·)− σ1,n

(·;x)∥∥
L∞[0,1]

≤ 2




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−1






−1

≤ 2

(
n∑

i=1

|I∗i ||I∗i |−1

)−1

= 2n−1.
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Finally if r = 1 and p = q = ∞, then it follows by (4.19) that

(4.23)

∥∥x(·)− σ1,n

(·;x)∥∥
L∞[0,1]

≤
(

n∑

i=1

∣∣I∗i
∣∣−1

)−1

≤ sup
xi>0,i=1,...,n
x1+···+xn=1

(
n∑

i=1

x−1
i

)−1

= n−2,

where the last equality readily follows by induction.

So, we are left with the case r = 1, q = ∞ and 1 < p < ∞. We take 0 < ε ≤ 1− 1
p and

denote p∗ := (1 − ε)−1. Then 1 < p∗ ≤ p, so that W 1
p ([0, 1]) ⊆ W 1

p∗([0, 1]). By virtue of

(4.17)

∥∥x(·)− σ1,n

(·; x)∥∥
L∞[0,1]

≤ 2




n∑

i=1

|I∗i |



i∑

j=1

|I∗j |−1




p∗



− 1
p∗

,

where here the intervals I∗i are the ones associated with p∗. Hence we have

∥∥x(·)− σ1,n

(·;x)∥∥
L∞[0,1]

≤ 2 sup
xi>0,i=1,...,n
x1+···+xn=1




n∑

i=1

xi




i∑

j=1

x−1
j




p∗



− 1
p∗

≤



n∑

i=1

xi




i∑

j=1

x−p∗
j






− 1

p∗

=




n∑

i=1

x−p∗
i




n∑

j=i

xj






− 1

p∗

.

Now we apply Lemma 2 with α = p∗ := (1− ε)−1 to obtain

(4.24)




n∑

i=1

xi




i∑

j=1

x−1
j




p∗

− 1

p∗

≤ ε−1n−2+ε.

We have estimates similar to (4.20) through (4.24) for the interval [−1, 0] and together

they complete the proof of the upper bounds in (2.5), (2.6) and (2.7) under the additional
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assumptions that x ∈ Cr and x(r)(0) = 0. All that is left is to reduce the general case

x ∈ ∆r+1
+ W r

p , to the above.

First we extend x ∈ ∆r+1
+ W r

p to R by setting

x̃(t) :=





∑r−1
s=0

1
s!x

(s)(−1)(t + 1)s, t ∈ (−∞,−1),
x(t), t ∈ [−1, 1]
∑r−1

s=0
1
s!x

(s)(1)(t− 1)s, t ∈ (1, +∞),

so that all the derivatives x̃(s), s = 0, . . . , r− 1 are locally absolutely continuous on R and

x(r) ∈ Lp(R) with

‖x̃(r)‖Lp(R) = ‖x(r)‖Lp(I).

For 0 < δ < 1
2 , let

x̃δ(t) :=
1
δ

∫ 1
2 δ

− 1
2 δ

x̃(t + τ)dτ, t ∈ R,

be the Steklov average. Then x̃δ ∈ Cr(R), x̃
(r)
δ (t) = 0, t ∈ R \ [−1− 1

2δ, 1 + 1
2δ], and

lim
δ→0

∥∥x̃(r) − x̃
(r)
δ

∥∥
L1(R)

= 0.

Hence

lim
δ→0

∥∥x(s) − x̃
(s)
δ

∥∥
L∞(I)

= 0, s = 0, . . . , r − 1.

It is obvious that for any δ > 0, x̃
(r)
δ is nondecreasing on Iδ := [−1 + 1

2δ, 1− 1
2δ] and that

∥∥x̃
(r)
δ

∥∥
Lp(Iδ)

≤
∥∥x(r)

∥∥
Lp(I)

.

Hence x̃δ ∈ ∆r+1
+ W r

p (Iδ) and x̃
(r−1)
δ is convex on Iδ. Let πr(xδ; ·) be an rth degree

polynomial such that

π(r−1)
r (x̃δ; 0) = x̃

(r−1)
δ (0), π(r−1)

r (x̃δ; t) ≤ x̃
(r−1)
δ (t), t ∈ Iδ,

and put

x̆(t)δ := x̃δ(t)− πr(x̃δ; t), t ∈ Iδ.
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Since x̆
(r)
δ is nondecreasing on Iδ and

x̆
(r)
δ (0) = 0,

it readily follows that

∥∥x̆
(r)
δ

∥∥
Lp(Iδ)

≤ 3
∥∥x̃

(r)
δ

∥∥
Lp(Iδ)

≤ 3
∥∥x(r)

∥∥
Lp(I)

.

Indeed, if π
(r)
r (x̃δ; t) = π

(r)
r (x̃δ; 0) ≥ 0, then 0 ≤ π

(r)
r (x̃δ; t) ≤ x̃

(r)
δ (t) in [0, 1− 1

2δ]. Hence

∥∥x̆
(r)
δ

∥∥
Lp(Iδ)

≤ ∥∥x̃
(r)
δ

∥∥
Lp(Iδ)

+
∥∥π(r)

r (x̃δ; ·)
∥∥

Lp(Iδ)

≤ ∥∥x̃
(r)
δ

∥∥
Lp(Iδ)

+ 2
∥∥π(r)

r (x̃δ; ·)
∥∥

Lp[0,1− 1
2 δ]

≤ ∥∥x̃
(r)
δ

∥∥
Lp(Iδ)

+ 2
∥∥x̃

(r)
δ

∥∥
Lp[0,1− 1

2 δ]

≤ 3
∥∥x̃

(r)
δ

∥∥
Lp(Iδ)

≤ 3
∥∥x(r)(·)∥∥

Lp(I)
.

Otherwise, π
(r)
r (x̃δ; 0) < 0, so that 0 > π

(r)
r (x̃δ; t) ≥ x̃

(r)
δ (t) in [−1 + 1

2δ, 0], and the proof

is similar.

Now, by the above proof applied to the function x̆δ ∈ Cr(Iδ), an r + 1-monotone

spline σr,n

(·; x̆δ

)
exists in Iδ, which satisfies the appropriate righthand inequalities in (2.5)

through (2.7), in the interval Iδ, with constants that are independent of δ. We extend it

to I by

σr,n

(
t; x̆δ

)
:=

{ ∑r
s=0

1
s! x̆

(s)
δ (−1 + 1

2δ)(t + 1− 1
2δ)s, t ∈ [−1,−1 + 1

2δ],
∑r

s=0
1
s! x̆

(s)
δ (1− 1

2δ)(t− 1 + 1
2δ)s, t ∈ [1− 1

2δ, 1],

thus preserving the r + 1-monotonicity, and set

σr,n,δ

(
t; x

)
:= σr,n

(
t; x̆δ

)
+ πr(xδ; t), t ∈ I.

Evidently, σr,n,δ

(·;x) ∈ ∆r+1
+ Lq, and for sufficiently small δ yields the upper bounds in

(2.5) through (2.7). This completes the proof of the upper bounds.
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We proceed to prove the lower bounds. Since xr+1 := 1
(r+1)!hr+1 ∈ ∆r+1

+ W r
p , we apply

Lemma 1 and obtain for all r ∈ N, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,

E
(
∆r+1

+ W r
p , ∆r+1

+ Mn(hr)
)
Lq
≥ E

(
xr+1,Mn(hr)

)
Lq

≥ 2−
1
q E

(
xr+1,Mn(hr)

)
L1

≥ 2−
1
q

1
(r + 1)!

2−2(r+1)(n + 1)−r−1

≥ 1
(r + 1)!

2−3r−4n−r−1.

Thus the lower bounds in (2.5) and (2.7) are established.

For the remaining case r = p = 1 and q = ∞, we need another extreme function. Let

zn, be the piecewise linear function with knots τ0 = τn,0 := −1, τi = τn,i := 1 − 2−i+1,

i = 1, . . . , n + 1, and τn+2 = τn,n+2 := 1, taking the values zn(τ0) = zn(τ1) := 0, zn(τi) :=

2i−1, i = 2, . . . , n + 2. Set

yn(t) := ‖zn‖−1
L1

∫ t

−1

zn(τ)dτ, t ∈ I.

Straightforward calculations yield ‖zn‖L1 = 3n+5
4 , so that

yn(t) :=
4

3n + 5

∫ t

−1

zn(τ)dτ, t ∈ I.

Clearly ‖y′n‖L1 = 1 and yn ∈ ∆2
+L1, hence yn ∈ ∆2

+W 1
1 . Put Ji := [τi, τi+1], i =

0, 1, . . . , n + 1. Then

(4.25)
∣∣Ji

∣∣ = 2−i, i = 0, . . . , n, and
∣∣Jn+1

∣∣ = 2−n.

For every h ∈ Mn

(
h1

)
there exists an index 0 ≤ j0 ≤ n+1 for which h is a linear function

on Jj . Hence for 1 ≤ j0 ≤ n,

(4.26)

‖yn − h‖L∞ ≥ ‖yn − h‖L∞(Jj0 )

≥ inf
π1∈P1

∥∥yn − π1

∥∥
L∞(Jj0 )

≥ 4
3n + 5

22j0−2 inf
π1∈P1

max
t∈Jj0

∣∣t2 − π1(t)
∣∣,
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and if j0 = n + 1, then

(4.27) ‖yn − h‖L∞ ≥ 4
3n + 5

22n−1 inf
π1∈P1

max
t∈Jn+1

∣∣t2 − π1(t)
∣∣,

The infima on the righthand sides of (4.26) and (4.27) are of course the norm of the

Chebyshev polynomial of degree 2 associated with the respective Jj0 interval, i.e.,

inf
π1∈P1

max
t∈Jj0

∣∣(t2 − π1(t)
∣∣ = 2−3|Jj0 |2.

Thus, by virtue of (4.25), (4.26) and (4.27) we conclude that

E
(
∆2

+W 1
1 , ∆2

+Mn(h1),
)
L∞

≥ E
(
∆2

+W 1
1 ,Mn(h1)

)
L∞

≥ 4
3n + 5

2−5

≥ 1
64

n−1

and the lower bound in (2.6) follows. This completes the proof of Theorem 2. ¤

References

[HLP] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge,
London, 1934.

[H] Y. Hu, Convexity preserving approximation by free knot splines, SIAM J. Math. Anal. 22 (1991),
no. 4, 1183–1191.

[KL1] V. N. Konovalov, D. Leviatan, Kolmogorov and linear widths of weighted Sobolev-type classes on
a finite interval II, J. Approx. Theory 113 (2001), 266-297.

[KL2] V. N. Konovalov, D. Leviatan, Shape preserving widths of weighted Sobolev-type classes of positive,
monotone or convex functions on a finite interval, Constr. Approx. (2002) (to appear).

[KL3] V. N. Konovalov, D. Leviatan, Shape preserving widths of Sobolev-type classes of s-convex functions
on a finite interval, Israel J. Math. (to appear).

[LS] D. Leviatan and A. Shadrin, On monotone and convex approximation by splines with free knots,
Annals of Numer. Math. 4 (1997), 415–434.

[Pe] Petar P. Petrov, Three-convex approximation by free knot splines in C[0, 1], Constr. Approx. 14
(1998), 247–258.

[Pi] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica 8 (1999),
143–196.

[S] L. L. Schumaker, Spline Functions: Basic Theory, Wiley-Interscience, New York, 1980.
[T] V. M. Tikhomirov, Some Problems in Approximation Theory, in Russian, Moscow State University,

Moscow, 1976.

Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine

School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel

24


