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1 Introduction 
 

Let ( )2
nΠ ¡  be the space of polynomials of total degree n  and nR , the set of all rational functions 

of degree n , i.e., 

( ){ }2
1 2 1 2 2: /  : , ,  0n nR P P P P P= = ∈ Π >¡R . 

We wish to restrict ourselves to elements of nR  that are taken from a collection of functions that can be 

described by m  parameters. We will denote this collection by ° ,m nR  (see description in t he proof of Lemma 

3.3). Thus, for ( )2
pf L∈ ¡ , 0 p< ≤ ∞  we denote 

 
( ) ° ,

, : inf
m n

m n p pR
f f Rρ

∈
= −%

R
. 

 
Whenever m n= , we will use the notations ° °

,:n n n=R R  and ( ) ( ),:n n np pf fρ ρ=% % . 

Let ( )2r
mS ¡  denote the space of all piecewise polynomial functions of degree r  over triangles, 

 

( ) ( )
1

j

m

j
j

x P x∆
=

∑1 ,                                                                 (1.1) 

 
where ( ) ( )int intj k∆ ∆ = ∅∩  for j k≠  and ( )2

j rP ∈ Π ¡ . For 0β >  we denote by ( ), 2r
mS β ¡  the subspace 

of piecewise polynomial functions over triangles whose minimal angle is β≥ . For ( )2
pf L∈ ¡ , 0 p< ≤ ∞  

we denote 
( ), : inf

r
m

m r p pS
f f

ϕ
σ ϕ

∈
= − , ( )

,, , : inf
r
m

m r p pS
f f

ββ
ϕ

σ ϕ
∈

= − . 

 
Observe that any piecewise polynomial function of degree r  of the form 
 

( ) ( )
1

k

m

k
k

x P xΩ
=

∑1
%

,                                                          (1.2) 

 
where kΩ  are compact polyhedral domains (not necessarily disjoint) can be represented in the form (1.1) by 
triangulation. If the domains are pairwise disjoint then the number of triangles m  in (1.1) is proportional to 

en m% , where m%  is the number of domains in (1.2) and en  is an upper bound on the complexity of the 

domains’ boundaries. However, we note that whenever the approximation takes place in ( )2
pL ¡ , 

1 p< < ∞ , we restrict ourselves to triangles that are not too “skinny”. For example, if the domains kΩ  are 
rectangles, then this implies that for 1 p< < ∞  we restrict ourselves to rectangles whose dimensions’ ratio is 
bounded away from 0 and ∞ . 

We have been motivated in this work by a manuscript of Pencho Petrushev [P]. We follow the 
approach in [P] that uses nested sets of rectangles and define nested sets of triangles. 

Definition 1.1 We call a sequence of sets of triangles { } 0n n≥
Λ = Λ  an almost nested sequence if it has the 

following properties 
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(i) 2n
n CΛΛ ≤ , for some 0CΛ > , 

(ii) The triangles of nΛ  have disjoint interiors, 

(iii) For each 1n+∆ ∈ Λ  and n∆∈Λ%  either ( ) ( )int int∆ ∆ = ∅%∩  or ∆ ⊆ ∆% , 

(iv) 
1n n+∆∈Λ ∆∈Λ

∆ ⊆ ∆∪ ∪ . 

 
We denote by ( )r

nS Λ  the set of piecewise polynomial functions associated with the level n  
 

( ) ( )
n

rP

x P x

∆

∆ ∆
∆∈Λ

∈Π

∑ 1 . 

 
Observe that conditions (ii)-(iv) above imply the two-scale relation ( ) ( )1

r r
n nS S +Λ ⊂ Λ , 0n ≥ . Therefore, 

whenever ( )( )inf  0minangle β
∆∈Λ

∆ = > , for any ( )r
n nSϕ ∈ Λ  and ( )1 1

r
n nSϕ + +∈ Λ , the sum 1n nϕ ϕ ++ , is in 

( )1
r

nS +Λ  and thus in ( )1
, 2

2n
r
C

S β
+

Λ
¡ . The degree of approximation by the level n  is 

 
( )

( )2 , , : minn r
n

pr pS
E f f

ϕ
ϕ

∈ Λ
Λ = − .                                                       (1.3) 

 
The following two theorems are bivariate analogues of Theorem 10.6.2 in [LGM].  Note that by restricting 
ourselves to approximation from ° 2nR , we compare two nonlinear methods of approximation with 2nC  
free parameters . We thank Pencho Petrushev for pointing out to us the importance of comparing the two 
methods with comparable number of free parameters. We consider this the proper comparison.  

Theorem 1.2 Let ( )2
pf L∈ ¡ , 0α > , 0r ≥  and let { } 0n n≥

Λ = Λ  be any almost nested sequence. 

(i) For 0 1p< ≤  and any 0n ≥  we have 

( ) ( )
1/

2 2 ,
0

2 2 ,n k

pn p pn k
p p pr

k

f C E f fα αρ −

=

  ≤ Λ +   
∑% ,                                      (1.4) 

with ( ), , ,C C p r Cα Λ= . 
 
(ii) Let 1 p< < ∞  and assume ( )( )inf  0minangle β

∆∈Λ
∆ = > . Then for any 0n ≥  we have 

 

( ) ( )2 2 ,
0

2 2 ,n k

n
n k

p p pr
k

f C E f fα αρ −

=

 ≤ Λ + 
 
∑% ,                                       (1.5) 

with ( ), , , ,C C p r Cα β Λ= . 
 
Remark Observe that when the approximation takes place in ( )2

pL ¡ , 1 p< < ∞ , we are forced to restrict 

ourselves to triangles that are not too “skinny”. This assumption is needed in the proof of Lemma 2.7 where 
we use a variant of the Hardy-Littlewood maximal function (see Section 2.2). 
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Theorem 1.3 Let ( )2
pf L∈ ¡ , 0 1p< ≤ , 0α >  and 0r ≥ . Then for any 0n ≥  we have 

( ) ( )
1/

4 2 ,
0

2 2n k

pn p pn k
p p pr

k

f C f fα αρ σ−

=

  ≤ +   
∑% ,                                           (1.6) 

with ( ), ,C C p r α= . 
 

Definition 1.4 (Piecewise polynomial approximation spaces) Let 0 p< ≤ ∞  and 0r ≥ . For 0 q< ≤ ∞  and 

0α >  we define the approximation space ( ),q p rA Lα Σ  as the set of functions ( )2
pf L∈ ¡  for which  

( )
( )( )

( )

1/

2 ,
0

,

2 ,
0

2 0 ,
:

sup2 ,

m

q p r

m

q
q

m
pr

m
A L

m
pr

m

f q
f

f q
α

α

α

σ

σ

∞

=
Σ

≥

  < < ∞ =  
 = ∞


∑
                                         (1.7) 

 

is finite. In a similar manner we use the sequence ( ){ }2 , , 0
m pr m

f
β

σ
≥

to define ( ), ,q p rA Lα βΣ  for some 

minimal angle β . Observe that if 1 2β β≤  then ( ) ( )2 1, , , ,q p r q p rA L A Lα αβ βΣ ⊆ Σ . For an almost nested 

sequence { } 0n n≥
Λ = Λ  we define ( ), ,q p rA Lα Σ Λ  by replacing in (1.7) the terms ( )2 ,m pr

fσ  with ( )2 ,
,m pr

E f Λ  

(see (1.3)). Finally, for ( )2
pf L∈ ¡  we let 

( ) ( ), , , ,
: inf

q p r q p rA L nest A L
f fα αΣ Σ ΛΛ

= , 

 

( ) ( ) ( )( ){ }, , , , ,
: inf :inf  

q p r q p rA L nest A L
f f minangleα αβ

β
Σ Σ ΛΛ ∆∈Λ

= ∆ ≥ . 

 

Definition 1.5 (Rational approximation spaces) Let 0 p< ≤ ∞ . For 0 q< ≤ ∞  and 0α >  we define the 

rational logarithmic approximation space °( ),log ,q pA Lα R  as the set of functions ( )2
pf L∈ ¡  for which  

°( )
( )( ) ( )

( ) ( )

2

,log

2

1/

2 , 2 log 2
0

,

2 , 2 log 20

2 0 ,
:

sup2 ,

nn n

q p

n n n

qq
n

p
n

A L
n

p
n

f q
f

f q

α ε

α

α

α

α

ρ

ρ

+

∞

 
 =  

 
≥  

    < < ∞  =   
 = ∞

∑ %

%
R                              (1.8) 

 

is finite for some 0ε > . We denote by °( ),q pA Lα R  the space corresponding to rational approximation where 

the terms ( )2n p
fρ%  are used in (1.8). 

The following is our main result.   

Theorem 1.6 Let 0 q< ≤ ∞  and 0α > . For 0 1p< ≤  we have  

   ( ) °( ), , ,q p r q pA L nest A Lα αΣ ⊆ R ,                                                            (1.9) 

 

( ) °( ) °( ),log, , ,q p r q p q pA L A L A Lα α γΣ ⊆ ⊆R R ,       γ α∀ < .                       (1.10) 
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For 1 p< < ∞  and any 0β >  we have  

( ) °( ), , , ,q p r q pA L nest A Lα αβΣ ⊆ R ,                                                (1.11) 

 

( ) °( ) °( ),log, , , ,q p r q p q pA L A L A Lα α γβΣ ⊆ ⊆R R ,         γ α∀ < .              (1.12) 

 

Example 1.7 Let ( ) ( )f x xΩ= 1  with ( ){ }2 2 2
1 2 1 2,  : 1x x x xΩ = ∈ + ≤¡ . By using the rational functions  

( ) ( )2 2
1 2 1 22 2 ,
,n nR x x Q x x

υ
= + , 3n ≥ , 

 
where 

2 ,nQ
υ

 is the rational function of Lemma 3.1 below with parameters ( )2 , max 1,1/nk pυ= = , one can 

verify that °( ),q pf A Lα∈ R  for all 0 ,p q< < ∞ , 0α > . On the other, it is plausible that a near-best 

approximation of the disk using 2n  triangles is obtained by triangulating the regular 2 2n + −gon inscribed 
in the unit circle. Actually, as one of the referees pointed out, a slightly better approximation is obtained by 

triangulating a larger 2 2n + −gon with a side length of ( )( )24 1 4cot / 2 2nπ+ + . In any case, we believe 

that there exists a constant 1 0C >  such that 

( ) ( ) ( )( )( )1/
1 1

12 , 2 1 sin 2 1n

p
n n

pr f Cσ π π− −≥ − + + ,      2n ≥ , 0r ≥ . 

 
Since there also exists 2 0C >  such that 

( ) ( )( )1 1 2
22 1 sin 2 1 2n n nCπ π− − −− + + ≥ , 

 
we have that ( ),q p rf A Lα∉ Σ  whenever 2 / pα >  for any 0 q< ≤ ∞ . In the case 2p = , we have the 

Curvelets [CD] that are designed to achieve the same performance as piecewise polynomials, and indeed we 
have ( )2 ,qf A L Curveletsα∉  whenever 1α > . For Wavelets that, as we know, do not perform as well in the 

multivariate case, we have (see Section 3 in [CD] or Section 7.7 in [C]) ( )2 ,qf A L Waveletsα∉  whenever 

1/2α > . The spaces ( )2 ,qA L Curveletsα  and ( )2,qA L Waveletsα are the analogues of the above approximation 
spaces for nonlinear Curvelet approximation and nonlinear Wavelet approximation, respectively.  

Example 1.7 is typical for indicator functions of domains whose boundary is a simple (i.e. not self-
intersecting) algebraic curve. While rational approximation can exploit the implicit representation of the 
curve, piecewise polynomial approximation over triangles requires many triangles near the domain’s 
boundary.  

 

2 Preliminaries 
 
2.1  Some triangle geometry 
 

For a triangle 2∆ ⊂ ¡  and 1µ ≥ , we construct a similar triangle µ∆  that contains ∆  as follows. 
Without loss of generality the center of the inscribed circle of ∆  is at the origin. Denote by iv , 1 3i≤ ≤  the 
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vectors of the vertices of ∆ . Then µ∆  is defined as the triangle with vertices ivµ . The following properties 

of µ∆  can be easily verified using basic vector calculus:  
(i)   The sides of  µ∆  are parallel to the sides of ∆ . 
(ii)  The lengths of the heights of µ∆  are µ  times the lengths of the heights of ∆ . 

(iii) We have 2µ µ∆ = ∆ , where for any domain in 2Ω ⊂ ¡ , Ω  denotes the area of the domain.  

We denote by ( )β∆  the set of triangles in 2¡  whose minimal angle is β≥ . Let ( )β∆∈∆  and let 

( )Cir ∆  be the circumscribed disk of ∆  with radius R . Then the following equivalence of areas holds 
 

( ) ( )Cir C β∆ < ∆ ≤ ∆ .                                                          (2.1) 

The left hand side inequality is obvious since ( )Cir∆ ⊂ ∆ . Let ie , iβ , 1 3i≤ ≤  be the sides and angles of ∆  

with the angle iβ  opposite to the side ie . Then, 

( ) ( )2sin 2sin
i i

i

e eR
β β

= ≤ . 

Therefore 

( ) ( ) ( ) ( )2 1 2 3 1 2 3
38sin 4

e e e e e e
Cir R C C

R R
π

π β β
β

∆ = ≤ = = ∆ , 

which is the right hand side of (2.1). 
The following is a Vitali-type covering lemma for constrained triangles. 

Lemma 2.1 Let Ω  be an arbitrary measurable subset of 2¡  of finite measure. Let F  be a subset of ( )β∆  

for some 0β >  that covers Ω . Then there exist finitely many disjoint triangles { } 1

N
i i=

∆  from F  such that 

( )
1

N

i
i

C β
=

∆ ≥ Ω∑ .                                                               (2.2) 

 
Proof The proof essentially follows the proof of Lemma 3.3.2 in [BS]. As in [BS] we may assume without 
loss of generality that Ω  is compact and therefore that F  is finite. We select 1∆  as the triangle in F  with 
the largest circumscribed disk. We continue and select inductively the triangle i∆  as the triangle in F  with 

the largest circumscribed disk that is disjoint from all the previously selected triangles j∆ , 1 j i≤ < . Since 

F  is finite this process ends after finitely many steps yielding disjoint triangles { } 1

N
i i=

∆ . For 1 i N≤ ≤ , let 
°

iC  be the disk concentric with ( )iCir ∆  with a radius that is 3 times bigger than the radius of ( )iCir ∆ . We 

claim that the disks °{ }
1

N

i i
C

=
 cover Ω . If not, there exist °

1
\

N

ii
x C

=
∈Ω ∪  and ∆ ∈F  such that x ∈∆ . From our 

construction ( )Cir ∆  is not bigger than ( )1Cir ∆ . Therefore, ±
1x C∉  implies that ( )Cir ∆  and ( )1Cir ∆  are 

disjoint and thus so are 1,∆ ∆ . Continuing this way we see that ∆  is disjoint from all { } 1

N
i i=

∆  which is 

impossible because then the process would not have ended after N  steps. Therefore °{ }
1

N

i i
C

=
 cover Ω  and by 

(2.1) 

° ° ( ) ( )
1 1 11

9
N N N N

i i i i
i i ii

C C Cir C β
= = ==

Ω ≤ ≤ = ∆ ≤ ∆∑ ∑ ∑∪ . 

♦ 
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2.2  A Maximal function over constrained triangles  
 

Definition 2.2  Let 0 / 4β π< < . For a locally integrable function f  we define the Maximal function M fβ  
by 

( )
( )

( )1
sup

x
M f x f y dyβ

β ∆∈∆∈∆
=

∆ ∫ . 

Lemma 2.3  Let ( )0 1, β∆ ∆ ∈∆  for some 0β >  with 0 1∆ ⊆ ∆ . Then for any ( )1 1f L∈ ∆  

( ) ( )
1 01 0

1 1
f x dx M f x dxβ∆ ∆

≤
∆ ∆∫ ∫ .                                                 (2.3) 

 
Proof Let 0x ∈∆ . Then, since 0 1∆ ⊆ ∆  

( ) ( )
11

1
f y dy M f xβ∆

≤
∆ ∫ .                                                       (2.4) 

 
Now, take the average over 0∆  of both sides of (2.4) to obtain (2.3). 

♦ 
The minimal angle constraint comes into play in the proof of the following variant of the Hardy-Littlewood 
maximal inequality. 

Theorem 2.4 Let ( )2
pf L∈ ¡ , 1 p< ≤ ∞ . Then 

( ), pp
M f C p fβ β≤ .                                                         (2.5) 

 
Sketch of proof For p = ∞  the proof is obvious. For 1 p< < ∞ , the proof follows Section 3.3 in [BS]. We 
recall that for a locally integrable f  the Hardy-Littlewood maximal function Mf  is defined over cubes 

 

( ) ( )
 

1
: sup

Qx Q
Qcube

Mf x f y dy
Q∈

= ∫ . 

 
The multivariate Hardy-Littlewood inequality establishes the pL  boundedness of the maximal operator for 
1 p< < ∞  

( ) ( ) ( ),d d
p pL L

Mf C p d f≤¡ ¡ . 

 
The only difference in the proof of our inequality is that we use Lemma 2.1, that is, a variant of the Vitali 
covering lemma for cubes (Lemma 3.3.2 in [BS]). We note that the constraint we place on the triangles is 
important just as the choice of cubes (equal side lengths!) is crucial for the original Hardy-Littlewood 
maximal inequality. Indeed, the choice of constrained triangles leads to the weak type inequality 
 

( )2 1 : 
f

x M f x Cβ λ
λ

∈ > ≤¡ , 

which implies that the maximal function is a bounded operator from 1L  to weak- 1L . 
♦ 
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Remark If the cubes are replaced by rectangles, one then obtains the so-called strong maximal inequality 
 

( ) ( ) ( )
2

2  : 1 log
f x f x

x Mf x C dxλ
λ λ

+
  
 ∈ > ≤ +      

∫¡
¡ , 

 
which implies that the maximal function over rectangles is a bounded operator from the smaller Orlicz space 

( )1 logL L++  to weak 1L  (see e.g. [CF]). 

 
2.3  On integration of distance gauges  
 

Let 2Ω ⊂ ¡  be a convex compact polyhedral domain with edges ie , 1 ei n≤ ≤ . We denote by iY  the 
infinite strip defined by ie  and a parallel edge going through the vertex of Ω  which is the farthest from ie . 

Denoting ( ):i il width= Y  and ( ) ( ): ,i id x d x= Y  we define 
 

( ) ( )
( )1 1

, : , :
e en n

i
i

i i i i

lx x
d x l

θ θ
= =

Ω = Ω =
+∏ ∏ .                                       (2.6) 

Lemma 2.5 Let ∆  be a triangle and 1q > . Then 

( ) ( )2
, qx dx C qθ ∆ ≤ ∆∫¡

.                                                           (2.7) 

 
Proof The three strips associated with a given triangle subdivide the plane into sub-domains, four of which 
are ∆  itself and three identical copies.  
 
                                                                              
                                                                                                  1l  
 
                                                                         3β                                                                                                                                                          

                                                                  ∆                 2e                                   ( )1d x  

                                                                          3e               1β         ω  
                                    ω%                                                                                x•  
                                                                                                                                 ( )2d x                                                                                       
                                                                                                                                      
                                                                                                     2l                          
 
                                                          

 
 

Figure 2-1 Two types of infinite rays  
 

Since ( ), 1xθ ∆ ≤ , we need to prove (2.7) only outside of these four triangles. The rest of the plane is 
covered by six (overlapping) sectors each defined by the boundaries of two different strips and enclosing a 
half-strip of the third one. Hence, it suffices to prove (2.7) separately for each of these six sectors. Figure 2-1 
illustrates two typical sectors (bounded by the bold lines). The one on the right has a head-angle 
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30 / 2ω π β π< = − ≤ , while the one on the left has a head-angle  1 / 2ω π β π= − >% . We now elaborate, 
using the right sector for illustration, on how we estimate the integral in a sector with a head-angle / 2π≤ , 
and then explain how the other case can be treated similarly.  
 Thus, assume that the sector’s head-angle is 0 / 2ω π< ≤ . By shifting the head of the sector to the 
origin and rotating so that one of the boundaries coincides with the x-axis we get, 
 

( ) ( )
( )( ) ( )( )

( )
( ) ( )( ) ( )

( )1

1 2sector sector
1 1 2 2

   

2
1 2 1

0 0 1 2 1 2 2

,

                          .
sin cos

q q
q q

x tg
q

q q

dx
x dx l l

d x l d x l

dxl l dx
x x l x l

ω

θ

ω ω

∞

∆ ≤
+ +

=
− + +

∫ ∫

∫ ∫
 

A change of variables 
( ) ( )1 2sin cosu x xω ω= − , 2v x= , 

yields the Jacobian 

( )
( )

( ) ( )
( )

1 2, 1 sin cot 1
, sin0 1

x x
J

u v

ω ω

ω

∂
= = =

∂
, 

and we have 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )

1 2

sector
0 0 1 2

1 2

0 01 2

1 2

2 2

,
sin

                         
sin

                         
sin

                         .
2

q
q

q q

q

q q

l l dudv
x dx

u l v l

l l du dv

u l v l

l l
C q

e lC q C q

θ
ω

ω

ω

∞ ∞

∞ ∞

∆ ≤
+ +

=
+ +

≤

= = ∆

∫ ∫ ∫

∫ ∫
 

 
As for the case / 2π ω π< <%  we again illustrate the proof, this time on the left sector. We first place the 
sector at the origin and then divide it into two smaller sectors. One is the upper left quadrant of the plane and 
the other the remainder with a head-angle of / 2 /2ω π π− <% . We then proceed with computation similar to 
the above to estimate the integral over each of the two smaller sectors. 

♦ 

Lemma 2.6 Let ( )β∆∈∆  and let 2q > . If 0ϕ ≥  is locally integrable then 

( ) ( ) ( ) ( )2
, ,qx x dx C q M x dxβϕ θ β ϕ

∆
∆ ≤∫ ∫¡

.                                           (2.8) 

 
Proof  We define ( )0∆ = ∆  and construct similar triangles ( ) 2:

kk∆ = ∆ , 1k ≥ (see Section 2.1). These triangles 
are associated with the scale 2k  and satisfy 
  
(i)    ( ) ( )1k k +∆ ⊂ ∆ , 

(ii)  ( ) 22k k∆ = ∆ , 

(iii)  The heights of ( )k∆  are 2k  times the heights of ∆ . 
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For ( )0x ∈∆  we clearly have ( ), 1xθ ∆ = . Let ( ) ( )1\k kx −∈∆ ∆  for 1k ≥ . By a geometric argument, there 

exists ( )i x , ( )1 3i x≤ ≤  such that ( ) ( ) ( ) ( ) ( )11
/ 2 1 sin

3
k

i x i xd x l β−≥ − . Therefore 

 

( ) ( ) ( )

( ) ( ) ( )

( )

,

               2 .

i x
i x

i x i x

k

l
x

d x l

C

θ

β −

∆ =
+

≤

 

so that for ( ) ( )1\k kx −∈∆ ∆  

( ) ( ) ( ) ( ) ( )
0

, , 2 2 2 j

q q qk qj qj
i x

j k j

x x C C C xθ θ
∞ ∞

− − −

∆
= =

∆ ≤ ∆ ≤ ≤ =∑ ∑ 1 . 

Observe that ( ) ( )j β∆ ∈∆ . Now (2.3) yields  

( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( )

( ) ( )

2

0

2

0

2

0

, 2

1
                               2

1
                               2

                               , ,

j

j

q qj

j

q j

j
j

q j

j

x x dx C x dx

C x dx

C M x dx

C q M x dx

β

β

ϕ θ ϕ

ϕ

ϕ

β ϕ

∞
−

∆
=

∞
− −

∆
=

∞
− −

∆
=

∆

∆ ≤

= ∆
∆

≤ ∆
∆

≤

∑∫ ∫

∑ ∫

∑ ∫

∫

¡

 

where we used that 2q > . 
♦ 

Lemma 2.7  Let j∆  be triangles and 0ja ≥  for 1, ,j m= … .  

(i) For 0 1p< ≤  and 1 / pυ >  we have 

( ) ( )2

1 1

, ,
p

m m
p

j j j j
j j

a x dx C p a
υ

θ υ
= =

 
∆ ≤ ∆ 

 
∑ ∑∫¡ .                                           (2.9) 

 
(ii) Let 1 p< < ∞  and 2υ > . Assume that j∆  are disjoint and ( )j β∆ ∈∆ , 1, ,j m= … , for some 0β > . 
Then 

( ) ( )2

1 1

, , ,
p

m m
p

j j j j
j j

a x dx C p a
υ

θ υ β
= =

 
∆ ≤ ∆ 

 
∑ ∑∫¡

.                                       (2.10) 

Proof  
(i) If 0 1p< ≤ , then 

( ) ( )2 2

1 1

, , ,
p

m m pp
j j j j

j j

a x dx a x dx
υ υ

θ θ
= =

 
∆ ≤ ∆ 

 
∑ ∑∫ ∫¡ ¡

 

 
and since 1pυ > , (2.9) follows from (2.7). 

(ii) Assume 1 p< < ∞ . Then there exists ( )2
pLϕ ′∈ ¡ , with p′  being the dual index of p  such that 0ϕ ≥ , 

( )2 1
pL

ϕ
′

=¡  and 
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( )
( )

( ) ( )2

21 1

, ,
p

m m

j j j j
j jL

a x x a x dx
υ υ

θ ϕ θ
= =

∆ = ∆∑ ∑∫¡
¡

. 

 
By (2.5) we have ( ) ( ), : ,

p
M C p C pβϕ β β

′
′≤ = . Lemma 2.6 and Holder’s continuous and discrete 

inequalities then yield 

( ) ( )

( )

( )

1 1

1/

1

1/ 1/

1 1

1

,

                            

                            

                            

j

p j

p j

m m

j j j
j jp

m p

j j L
j

p p
m m pp

j j L
j j

m
p
j j

j

a x C a M x dx

C a M

C a M

C a

υ

β

β

β

θ ϕ

ϕ

ϕ

′

′

∆
= =

∆
=

′
′

∆
= =

=

∆ ≤

≤ ∆

   
≤ ∆   

   

 
≤ ∆



∑ ∑ ∫

∑

∑ ∑

∑
1/

.
p




 

♦ 
Remark We do not know whether the dependence of the constant in (2.10) on the minimal angle is 
essential. If not, then clearly the results of this paper become independent of the “thinness” of triangles and 
(1.9) and (1.10) hold for all 0 p< < ∞ . 
 
2.4  Polynomial approximation over triangles 
 
The following two results follow from [KP] Lemmas 2.6 and 2.7. 

Lemma 2.8  Let ( )2
rP ∈ Π ¡  and 0 1∆ ⊆ ∆  such that 1 0µ∆ ≤ ∆ . Then for 0 p< ≤ ∞  

( ) ( ) ( )1 0

1/,
p p

r p
L L

P C p r Pµ +
∆ ∆

≤ . 

 
Proof The method of proof is similar to the method used to prove [KP] Lemma 2.6, except that here the 
dependence on µ  is made explicit.  

♦ 

Lemma 2.9 Let ( )2
rP∈ Π ¡  and 0 ,p q< ≤ ∞ . Then, for any triangle 2∆ ⊂ ¡  

( ) ( ) ( )
1/ 1/, ,

q p

q p

L LP C p q r P−

∆ ∆≤ ∆                                               (2.11) 

 
We need an estimate on the rate of increase of a polynomial as we move away from a given triangle. 

We prove 

Lemma 2.10 Let 2x ∈ ¡ , 2
0∆ ⊂ ¡  and ( )2

rP ∈Π ¡ . Then,  

( ) ( ) ( ) ( )0

2
0, r

L
P x C r x Pθ

∞

−

∆
≤ ∆ .                                                 (2.12) 
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Proof If 0x ∈∆  then clearly ( )0, 1xθ ∆ =  and ( ) ( )0L
P x P

∞ ∆
≤  so that (2.12) holds. Thus, we may assume 

that 0x ∉∆ . There are two cases: 

Case I: The point x  is inside a sector defined by two edges, say 1 2,e e . The triangle 1∆  that is defined by the 
intersection of 1 2,e e  with a line going through x  and parallel to 3e  as in Figure 2-2, contains 0∆  and is 
similar to it. 
 
                                                                   x  •                           1e     

 
                                                                       1∆        3e            0∆  

                                                                                                  2e  
 

Figure 2-2 Construction of an including triangle, case I 

 
Hence 

( ) ( )

( )

2
23 3

1 0 3 0 0
3

2
0 0

,

                                    , ,

d x l
x

l

x

θ

θ

−

−

+ 
∆ = ∆ = ∆ ∆ 

 

≤ ∆ ∆

 

and by Lemma 2.8 

( ) ( ) ( ) ( ) ( )1 0

2
0, r

L L
P x P C r x Pθ

∞ ∞

−

∆ ∆
≤ ≤ ∆ . 

 
Case II: The point x  is in a wedge defined by two edges, say 1 2,e e . In this case let 1∆  be defined, as in 
Figure 2-3, by the vertices 1 2, ,v v x , where 1 2,v v  are the vertices opposite to 1 2,e e , respectively. 
 
                                                  2v                       
                                                                1e  
                                            3e       0∆                     
                                        
                                        1v                              2e                           
                                                                                                                   1∆  
                                                                                                                                     x•  
 

Figure  2-3 Construction of an including triangle, case II 

 
It follows that  

3 3
0 2

e l
∆ = , 

( )( )3 3 3
1 2

e d x l+
∆ = . 

Therefore  
( ) ( ) 13 3

1 0 3 0 0
3

,
d x l

x
l

θ −+
∆ = ∆ = ∆ ∆ . 

Again Lemma 2.8 yields 



 13 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0

0

3 0

2
0

,

                         , ,

r

L L

r

L

P x P C r x P

C r x P

θ

θ

∞ ∞

∞

−

∆ ∆

−

∆

≤ ≤ ∆

≤ ∆
 

and (2.12) is proved.  
♦ 

 

3 Main results 
 

At the core of our proof lies the ability of rational functions of low degree to approximate well 
characteristic functions. We begin by quoting [LGM], Lemma 10.6.5 (or [PP] Lemma 8.3). 

Lemma 3.1 (Rational approximation of a characteristic function) For 5k ≥  and 1υ ≥  there exists a 
univariate rational function 4 2kQ υ+∈R  such that 

( )0 1Q t≤ ≤ ,              t∀ ∈¡ , 
 

( ) 21 kQ t e−− ≤ ,        1 2 kt e−≤ − , 
 

( ) 2 2 kQ t t eυ− −≤ ,              1t ≥ . 

 
Let 2Ω ⊂ ¡  be a convex compact polyhedral domain with edges ie , 1 ei n≤ ≤ . We would like to 

construct a rational function that approximates well the indicator function of Ω  away from the domain’s 
boundary. To this end we construct for each strip iY  associated with ie  (see Section 2.3), using a rotation 

and a shift, an operator 2:iT →¡ ¡ , ( )1 2 1 2,i i i iT x x a x b x c= + + , such that ( ) [ ]0,i i iT l=Y  and 

( ) ( ) ( ) [ ]( ): , , 0,i i i id x d x d T x l= =Y . 

Lemma 3.2 Let 2Ω ⊂ ¡  be a convex compact polyhedral domain with en  edges and let ( ),xθ Ω  be defined 

in (2.6). For 5k ≥  we denote by kΩ ⊂ Ω  the “inner” boundary 

( ) ( ){ }: : ,1 , 0  or  0  k k
k e i i i i iy i i n T y e l l T y e l− −Ω = ∈Ω ∃ ≤ ≤ ≤ ≤ ≤ − ≤ .              (3.1) 

 

Then, for any 1υ ≥  there exists a bivariate rational function ° ( )4 , 4 2e en n kR υ+∈R  such that ( )0 1R x≤ ≤  and for 

kx ∉ Ω  

( ) ( ) ( )22 ,k
eR x x n e x υθ−

Ω− ≤ Ω1 . 

Proof  We set 

 ( ) ( )
1

2en
i i

i i

T x l
R x Q

l=

− 
=  

 
∏ ,                                                       (3.2) 

where Q  is from Lemma 3.1. 

(i) Let \ kx∈ Ω Ω . Then ( ), 1xθ Ω =  and by Lemma 3.1 

( ) ( ) ( )
( )

2

22

1 1

                     , .

en
k

k
e

x R x e

n e x υθ

−
Ω

−

− ≤ − −

≤ Ω

1
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(ii) Let x ∉Ω . Then 

( ) ( ) ( ) ( )

( )
( )

( )
( ) [ ]

1

0 0,

2

2 2
                                     

e

i i i i

n
i i

i i

i i i i

T x l T x li i

T x l
x R x R x Q

l

T x l T x l
Q Q

l l

Ω
=

≤ ≤ ∉

− 
− = =  

 
− −   

=    
   

∏

∏ ∏

1

 

                                    
( )( ) [ ]

2

2

0,

                                  
2

i i

k i

T x l i i

le
T x l

υ

−

∉

≤
−∏  

                                    

( )( ) [ ]

( )
( )

2

2

0,

2

2

1

22

                                  

                                  

                                  , .

i i

e

k i

T x l i i

n
k i

i i i

k

le
d x l

le
d x l

e x

υ

υ

υθ

−

∉

−

=

−

≤
+

=
+

= Ω

∏

∏  

♦ 
The following is a bivariate analogue of Lemma 10.6.4 in [LGM]. 

Lemma 3.3 Let ( )2r
mSϕ ∈ ¡  for 1m ≥  and 0r ≥ . 

(i) If 0 1p< ≤ , then for each 1n ≥  there exists °
,C m nR∈R  such that  

( ) ( ) ( )2 21 2exp /
p pL L

R C C n mϕ ϕ− ≤ −¡ ¡ ,                                               (3.3) 

where the constants 1 2,C C  depend on ,p r . 
 
(ii) If 1 p< < ∞  and ( ), 2r

mS βϕ ∈ ¡ , 0β > , then for each 1n ≥  there exists °
,C m nR ∈R  such that 

( ) ( ) ( )2 21 2exp /
p pL L

R C C n mϕ ϕ− ≤ −¡ ¡ ,                                              (3.4) 

where the constants 1 2,C C  depend on , ,p r β . 
 

Proof Let 
1

j

m

j
j

Pϕ ∆
=

= ∑1 , where ( )2
j rP ∈ Π ¡ . Let ,j il  be the i − th height of the triangle j∆  and let ,j iT  be 

the linear transformation corresponding to the i − th edge of j∆ . We construct 
 

( ) ( ) ( )
1

m

j j
j

R x R x P x
=

= ∑ , 

with 

( ) ( )3
, ,

1 ,

2
: j i j i

j
i j i

T x l
R x Q

l=

 −
=    

∏ . 

We take 
( )max 1,1/2r pυ > + ,    ( )( )26 4 2n k r mυ> + + ,     5k ≥ ,                                             (3.5) 
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where we first fix υ  and then take k  to be the biggest possible integer satisfying (3.5). This is possible if 
n Cm≥  for a sufficiently large ( ),C p r . Observe that the number of free parameters in ( )R x  is 

( )2 12r m≤ +  so that °
,C m nR ∈R . We shall assume that n Cm≥ , otherwise there is nothing to prove. For each 

1 j m≤ ≤  let ,j kΩ  be the “inner” boundary of j∆  defined by (3.1). Note that , 6 k
j k je−Ω ≤ ∆ . Denote 

,
1

:
m

k j k
j

E
=

= Ω∪ . First we estimate the error away from the inner boundaries of the triangles. Let 2 \ kx E∈¡ . 

By Lemma 3.2 for all 1 j m≤ ≤  

( ) ( ) ( )223 ,
j

k
j jR x x e x

υ
θ−

∆− ≤ ∆1 .                                              (3.6) 

Therefore, by Lemma 2.10 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1

22

1

22

1

                     3 ,

                     3 , .

j

j

m

j j
j

m
k

j j
j

m rk
j j L

j

x R x R x x P x

e x P x

e x P

υ

υ

ϕ

θ

θ
∞

∆
=

−

=

−−

∆
=

− ≤ −

≤ ∆

≤ ∆

∑

∑

∑

1

 

 
Since by (3.5) ( )max 1,1/2r pυ > +  we may apply Lemma 2.7 so that 

( ) ( ) ( ) ( )

( )

2 2

22
\

1

2

1

,

                      ,

p k j

j

p
m rp p k

j jL E L
j

m pp k
j jL

j

R Ce P x dx

Ce P

υ
ϕ θ

∞

∞

−−

∆
=

−

∆
=

 
− ≤ ∆ 

 

≤ ∆

∑∫

∑

¡ ¡
 

 
where for 0 1p< ≤  we applied (2.9) and ( ),C C p r=  and for 1 p< < ∞  we applied (2.10) and 

( ), ,C C p r β= .  By Lemma 2.9 we conclude that 
 

( ) ( )
2 2

1 1

2                                  .

j p j

m mp pp k p k
j j jL L

j j

pp k
p

e P Ce P

Ce ϕ

∞

− −

∆ ∆
= =

−

∆ ≤

=

∑ ∑
 

 
We now estimate on the “inner” boundaries of the triangles. Let kx E∈ . Then there exists 1 s m≤ ≤  

such that ,s kx∈ Ω  and ,j kx ∉Ω , j s≠ . Again by (3.6) and Lemma 2.10 we have 
 

                           ( ) ( ) ( ) ( ) ( )
1

j

m

j j
j

x R x x R x P xϕ ∆
=

− ≤ −∑ 1  

                           ( ) ( ) ( )                     s j j
j s

P x R x P x
≠

≤ + ∑  
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( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ),

22

22

1 1

                    3 ,

                    3 , .

s j

j k
j j

rk
s j jL L

j s

m m rk
j j jL L

j j

P e x P

P x e x P

υ

υ

θ

θ

∞ ∞

∞ ∞

−−
∆ ∆

≠

−−
Ω∆ ∆

= =

≤ + ∆

≤ + ∆

∑

∑ ∑1
 

 
We can now estimate 

( )p kL E
Rϕ −  using the same techniques we applied in the first part of the proof for the 

estimate over the domain 2 \ kE¡ . For 1 p< < ∞  we get 
 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( )
( )

,

22

1 1

+3 ,  
j kp k j j

p k p k

m m rk
j j jL E L L

j jL E L E

x R x P x e x P
υ

ϕ θ
∞ ∞

−−
Ω∆ ∆

= =

− ≤ ∆∑ ∑1  

                   

( ) ( ) ( )

( )
( )

( )

2

1/
22

,
1 1

1/

2

1

                            +3 ,  

                            +C

                            ,

j j

p

j

p
m m rp k

j j k j jL L
j j L

p
m pk k

j j pL
j

C k
p

P e x P

C e P e

Ce

υ
θ

ϕ

ϕ

∞ ∞

∞

−−

∆ ∆
= =

− −

∆
=

−

 
≤ Ω ∆ 

 

 
≤ ∆ 

 

≤

∑ ∑

∑

¡

 

 
where ( ), ,C C p r β= . If on the other hand 0 1p< ≤ , then 
 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( )

22
,

1 1

2

1 1

1

,

                                 

                                 

       

j jk k

j j

j

p
m m rpp p k

j j k j jL LE E
j j

m mp pk p k
j j j jL L

j j

m pp k
j jL

j

x R x dx P Ce x P dx

Ce P Ce P

Ce P

υ
ϕ θ

∞ ∞

∞ ∞

∞

−−

∆ ∆
= =

− −

∆ ∆
= =

−

∆
=

 
− ≤ Ω + ∆ 

 

≤ ∆ + ∆

≤ ∆

∑ ∑∫ ∫

∑ ∑

∑

                          ,pp k
p

Ce ϕ−≤

 

 
with ( ),C C p r= . Since k  was chosen as the biggest possible integer satisfying (3.5), we have that 

/k Cn m>  and the proof is completed by adding the bounds over the domains kE  and 2 \ kE¡ . 
♦ 

Proof of Theorem 1.2 We assume 1 p< < ∞  and prove (1.5). Let { } 0n n≥
Λ = Λ  be an almost nested 

sequence (see Definition 1.1) with ( )( )inf  0minangle β
∆∈Λ

∆ = > . For each 0k ≥  there exists ( )r
k kSφ ∈ Λ  

such that ( )2 ,
,k kpr p

E f f φΛ = − . We let 0 0ϕ φ=  and for 1k ≥  we set 1k k kϕ φ φ −= − . Then, we have 

 
( )0 1, ,r pp p

E f fϕ ≤ Λ + , 

and 
( ) ( )11 2 , 2 ,

, ,k kk k k p pp p p r r
f f E f E fϕ φ φ −−≤ − + − ≤ Λ + Λ ,    1k ≥ . 
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Furthermore, since Λ  is an almost nested sequence, kϕ  is in ( ), 2
2k

r
C

S β

Λ
¡ . We now fix j  and for 0 k j≤ ≤  

we approximate kϕ  by the rational function ° ( )n kkR ∈R , where ( ) ( )( )2 2
2 2 log 2 j kkn k C C α −−

Λ
 =    that is 

guaranteed by Lemma 3.3. By virtue of (3.4) 
 

( )( )

( ) ( ) ( )( )1

2 2
2

1 2

1 2 , 2 ,

2  log 2
exp

2

                2 , , ,k k

j kk

k k kkp p

j k
p pr r

C C
R C C

C

C E f E f

α

α

ϕ ϕ

−

−−
Λ

Λ

− −

 
 − ≤ −  
 

≤ Λ + Λ

 

 

where ( )12 ,
, :

pr p
E f f− Λ = . Therefore for 

0

:
j

k
k

R R
=

= ∑  we have that ° 2 jCR ∈R  with ( ), , , ,C C p r Cα βΛ=  

and 

( )

0

2 ,
0

             2 2 , .k

j

j k kp pp
k

j
j k

pp r
k

f R f R

C f E fα α

φ ϕ
=

−

=

− ≤ − + −

 
≤ + Λ 

 

∑

∑
 

 
Given 0n ≥ , (1.5) follows from the above by a suitable choice of j  (depending on n ). The proof of (1.4) is 
similar only we use (3.3) instead of (3.4).  

♦ 
Proof of Theorem 1.3 Assume 0 1p< ≤ . For each 0k ≥  there exists ( )2

2k
r

k Sφ ∈ ¡  such that 

( )2 ,
2 k

p p
k pp r

f fφ σ− ≤ . We let 0 0ϕ φ=  and for 1k ≥  we set 1k k kϕ φ φ −= − . Then, we have 

 

( )( )0 1,2p pp
r pp p

f fϕ σ≤ + , 

and 

( ) ( )( )11 2 , 2 ,
2 k k

p p p p p
k k k p pp p p r r

f f f fϕ φ φ σ σ−−≤ − + − ≤ + ,    1k ≥ . 

 
Since kϕ  is a sum of two piecewise polynomial functions in ( )2

2k
rS ¡ , there exists a constant 3C , 

independent of k  and r , such that ( )
3

2
4k

r
k C

Sϕ ∈ ¡ . We now fix j  and for 0 k j≤ ≤  we approximate kϕ  by 

the rational function ° ( )n kkR ∈R  where ( ) ( )( )2 2
2 3 4 log 2 j kkn k C C α −− =    that is guaranteed by Lemma 3.3. By 

virtue of (3.3) 

( )( )

( ) ( ) ( )( )1

2 2
2 3

1 2
3

2 , 2 ,

4  log 2
exp

4

                2 ,k k

p
j kk

p pp
k k kkp p

p pj k p
p pr r

C C
R C C

C

C f f

α

α

ϕ ϕ

σ σ−

−−

− −

 
 − ≤ − 
  

≤ +

 

where ( )12 ,
:

pr p
f fσ − = . Therefore for 

0

:
j

k
k

R R
=

= ∑  we have that °
4 jCR∈R  with ( ), ,C C p r α=  and 
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( )

0

2 ,
0

             2 2 .k

jpp p
j k kp pp

k

j
p pjp kp

pp r
k

f R f R

C f fα α

φ ϕ

σ

=

−

=

− ≤ − + −

 
≤ + 

 

∑

∑
 

 
Given 0n ≥ , (1.6) follows from the above by a suitable choice of j  (depending on n ). 

♦ 
Proof of Theorem 1.6 A variant of the discrete Hardy inequality (see Lemma 2.3.4 in [DL] and the remark 
that follows) implies that if for non-negative sequences { }n n

a a
∈

= ¢ , { }n n
b b

∈
= ¢  we have 

 

( )
1/

0 2 2
n

n k
n k

k

b C a
µ

µλ λ−

=−∞

 ≤  
 
∑ , n ∈¢ , 

 
for some 0, , 0Cλ µ >  then for all 0q >  and 0 α λ< <  we have that 
 

( ) ( ) ( )
1/ 1/

02 , 2
q q

q qk k
k k

k k

b C q C aα αα
∞ ∞

=−∞ =−∞

   ≤   
   
∑ ∑ . 

 
Therefore, the proofs for (1.9) and (1.11) follow from (1.4) and (1.5) respectively and a direct application of 
the discrete Hardy inequality.  

We now prove (1.12). The proof of (1.10) is similar. Let ( ), ,q p rf A Lα β∈ Σ  for 1 p< < ∞ , 0 q< < ∞  

and 0β > . For each 0n ≥  there exists ( ), 2
2n
r

n S βϕ ∈ ¡  such that ( )2 , ,
2 nn pp r

f f
β

ϕ σ− ≤ . Also, there exists 

a constant 0C >  such that n p p
C fϕ ≤ . By (3.4) for 2nm =  there exists a rational function 

° ( )( )2 2
22 , 2 log 2nn nC CnR α ε+− 

  
∈R  such that  

( )

( )

( ) ( )

2 2
2

1 2

1

2 log 2exp
2

                2

                , , , 2 .

nn

n n nnp p

n
n p

n

p

CR C C

C

C p r f

α ε

α ε

α ε

ϕ ϕ

ϕ

β

+−

− +

− +

 
 − ≤ −
 
 

≤

≤

 

Consequently 

( ) ( ) ( )( )2 ,
               , , , 2 .n

n n n np p p

n

pp r

f R f R

C p r f f α ε

ϕ ϕ

β σ − +

− ≤ − + −

≤ +
 

Therefore  

°( ) ( ) ( ) { }
,log , , ,

, , , , 2
q p q p r q

n
A L p A L l

f C p q r f fα α
ε

β
β −

Σ
 ≤ + < ∞  rR . 

 
The proof for q = ∞  is similar.  

♦ 
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