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1 Introduction

Let P, (RZ) be the space of polynomials of total degree n and R, , the set of al rationa functions
of degree n, i.e,

R, ={R=P/R:R.RT P (R?), P,>0}.

We wish to restrict ourselves to elements of R, that are taken from a collection of functions that can be
describedby m parameters. We will denote this collection by R . (see description in the proof of Lemma
3.3. Thus for 1 L (R?), 0<p£¥ wedenote

Fon(f), = R||r7%fm||f - R, -

Whenever m=n, wewill usethe notations R =R, and r () =r, (f) .

Let s (R?) denote the space of all piecewise polynomial functions of degree r over triangles,

SamlDJ (x) P(x), (11

where int(D,)Nint(D, )=A&for jt kand PT P (R?).For b >0 wedenoteby S.°(R?) the subspace
of piecewise polynomial functions over triangles whose minimal angleis 3 b . For f1 L, (RZ), O<pE£¥

we denote
sm’r(f)p:: inf|f-j ||p Smep (f) = inf | -] ”p

iTs, Poojisy?

Observe that any piecewise polynomial function of degree r of the form
&
alwk(x) Flz(x)’ (12)
k=1

where W, are compact polyhedral domains (not necessarily digjoint) can be represented in the form (1.1) by
triangulation. If the domains are pairwise digoint then the number of triangles m in (1.1) is proportional to
nJM, where m is the number of domainsin (1.2) and n, isan upper bound on the complexity of the
domains boundaries. However, we note that whenever the approximation takes placein L, (Rz) :

1< p<¥ , werestrict ourselves to triangles that are not too “skinny”. For example, if the domains W, are

rectangles, then thisimpliesthat for 1< p<¥ we restrict ourselves to rectangles whose dimensions' ratio is
bounded away fromOand ¥ .

We have been motivated in this work by a manuscript of Pencho Petrushev [P]. We follow the
approach in [P] that uses nested sets of rectangles and define nested sets of triangles.

Definition 1.1 We call asequence of sets of triangles L ={L } . = analmost nested sequence if it has the
following properties



(i) |L,|EC, 2", for some C, >0,
(ii) Thetriangles of L, have digoint interiors,
(iif) Foreach DI L, and DI L, either int(D)Nint(D) =/ or DI D,

(v bl |J D.
DL, oL,
We denote by S ( L,,) the set of piecewise polynomial functions associated with the level n
a L(x)R(x).
Dl L
PP,
Observe that conditions (ii)-(iv) above imply the two-scalerelation S'(L,)1 S'(L,..), n3 0. Therefore,

whenever iDpI(minangIe(D)) =b >0,forany j ,1 S(L,) andj .1 S'(L,,),thesumj  +j ., isin

S(L,,) andthusin SC"Lbzm1 (RZ). The degree of approximation by the level n is

n+l

E, . (f.L), = Ami([ln)”f—j |- 1.3)

jTs

The following two theorems are bivariate analogues of Theorem 10.6.2 in [LGM]. Note that by restricting

ourselves to approximation from Rz, we compar etwo nonlinear methods of approximation with C2"
free parameters. We thank Pencho Petrushev for pointing out to us the importance of comparing the two
methods with comparable number of free parameters. We consider this the proper comparison.

Theorem12Llet f1 L,(R?),a>0,r30andlet L ={L}  beany amost nested sequence.

(i) For 0O<p£1 andany n3 0 we have
.lp
- Lan 388 4 P 0
Fa(f),£C2 ka;ogQakEzkyr(f,L)pH +||f||gEj : (14
with C=C (p,r a,C,).

(i) Let 1< p<¥ and assume iDpI(minangIe(D)) =b >0.Thenforany n3 0 we have

rzn(f)pﬁcza“g%nl 2¥E, (f.L),+]f],2 L5
k=0 %)
with C=C(p,ra ,b.C ).

Remark Observe that when the approximation takes placein L, (RZ) , 1< p<¥ , weareforced to restrict

ourselves to triangles that are not too “skinny”. This assumption is needed in the proof of Lemma 2.7 where
we use a variant of the Hardy-Littlewood maximal function (see Section 2.2).



Theorem1.3Let f1 LP(RZ), O<p£l,a>0and r3 0.Thenforany n3 0 wehave

.1 p

r”4n(f)pECZ'a”gézog?kszkYr(f o’ 5 (L6)

with C=C (p,r,a).

Definition 1.4 (Piecewise polynomial approximation spaces) Let 0<p £¥ and r* 0.For 0<q£ ¥ ad
a >0 we define the approximation space A? (L,,S, ) asthe st of functions f1 L, (R?) for which

i lq
ical2®s.. (f - 0<qg<¥,

|f»a<%,s,):.}.3ﬂ=°( ol ))ﬂ @7
s, (1), a=v,

isfinite. In a similar manner we use the sequence {szmr ) (f)p} to define A? (L,.S,,b) for some

m30
minimal angle b . Observethat if b, £b, then A* (L,,S,.b,)i A (L,.S .b,). For anamost nested
sequence L ={L} ., wedefine A7 (L,.S,.L ) by replacingin (L7 theterms s ,, (f) with E,, (f,L)

(see (1.9). Finally, for {1 L, (R?) welet

|f|Angs,a A, s L)’

|f|/lg (0 5] —|nf{ alLs): iQfL(minangIe(D))s b} :

Definition 1.5 (Rational approximation spaces) Let 0<p £¥ .For 0<q£¥ and a >0 we definethe
rational logarithmic approximationspace A7 (Lpﬁ) as the set of functions f1 L, (Rz) for which

./q

i .q
@ 00

i B (1) 95 g<qey,
|f|ﬁ§,uog(Lp7€) :Il o Dol ))5( )p@E w9

i . i

PSP (T, =¥,

isfinite for some e > 0. Wedenoteby A (Lpﬁ ) the space corresponding to rational approximation where
theterms ", (f) aeusedin (18).

The following is our main result.
Theorem16Let 0<qf£¥ anda >0.For 0<p£1 wehave

A (LS, nest) T A (L, R). (L9

A (LpS )T Big(LoR)T A(L,R),  "g<a. (110)



For 1< p<¥ andany b >0 wehave
A (L,.S, nest,b) i A (L, R), (111)

A (LS. b)T A (L R)I A(LR), "g<a. (112)

Example1 7 Let f (x) =1,,(x) with W:{(XI'XZ)T R® 1%+ x§£]} . By using the rational functions
R, (Xl’xz) :QZ”,u (Xl2 + x§) , n3 3,

where Q,, istherationa function of Lemma 3.1 below with parameters k =2",u = max (1,1/ p) , one can
verify that 1 A, (Lpﬁ) fordl 0<p,g<¥,a >0. On the other, it is plausible that a near- best

approximation of the disk using 2" triangles is obtained by triangulating the regular 2" +2- gon inscribed
in the unit circle. Actualy, as one of the referees pointed out, a dightly better approximation is obtained by

triangulating alarger 2" +2- gon with a side length of 4/\/1+ 4cot? (p /(2n + 2)) . In any case, we beliewe

that there exists aconstant C, >0 such that
1/p

S, (f),? Q(p- (2”'1+1)sin(p/(2”'1+1))) , n32,r30.

Since there aso exists C, >0 such that
p - (2”’1+1)sin(p/(2”’1+1))3 c,2™,

wehavethat f1 A (L,,S ) whenever a >2/p forany 0<q£¥ . Inthecase p = 2, we have the
Curvelets [CD] that are designed to achieve the same performance as piecewise polynomials, and indeed we
have f 1 A2 (L,,Curvelets) whenever a >1. For Wavelets that, as we know, do not perform as well in the
multivariate case, we have (see Section 3in [CD] or Section 7.7 in[C]) 1 A? (L, Wavelets) whenever

a >1/2. Thespaces A® (L,,Curvelets) and A? (L,, Wavelets) are the analogues of the above approximation

spaces for nonlinear Curvelet approximation and nonlinear Wavelet approximation, respectively.
Example 17 istypical for indicator functions of domains whose boundary isasimple (i.e. not self-

intersecting) algebraic curve. While rational approximation can exploit the implicit representation of the
curve, piecewise polynomial approximation over triangles requires many triangles near the domain’s
boundary.

2 Preliminaries

2.1 Sometriangle geometry

For atriangle D1 R? and m3 1, we construct asimilar triangle D™ that contains D as follows.
Without loss of generality the center of the inscribed circle of D isat the origin. Denoteby v, 1£i £3 the



vectors of the verticesof D. Then D™ is defined as the triangle with vertices mv,. The following properties

of D™ can be easily verified using basic vector calculus:
(i) Thesdesof D™ arepardlel tothesidesof D.
(i) Thelengths of the heights of D™ are m times the lengths of the heights of D.

(i) We have |D’"| =1t |0}, where for any domainin Wi R”, W denotes the area of the domain.
We denote by D(b) the set of trianglesin R? whose minimal angleis 3 b . Let DI D(b) and let
Cir (D) be the circumscribed disk of D with radius R. Then the following equivalence of areas holds

4 <cir (D) £C(b)[D). @1
The left hand side inequality is obvioussince DI Cir (D). Let g, b, 1£i £3 bethe sidesand angles of D
with the angle b, oppositetotheside g . Then,

-_ § &
R= £ .
2sin(b;) 2sin(b)

Therefore

Cir(D)|=pR £E—L3%& _—c(p)222 =c(b)|D)
which is the right hand side of (21).
The following is a Vitali-type covering lemmafor constrained triangles.

Lemma 2.1 Let W be an arbitrary measurable subset of R? of finite measure. Let 7 beasubset of D(b)
for some b > 0 that covers W. Then there exist finitely many disjoint triangles {Di}iN=1 from F such that

%IDP C(b)W- 22

Proof The proof essentialy follows the proof of Lemma 3.3.2in [BS]. Asin [BS] we may asume without
loss of generality that W is compact and therefore that 7 isfinite. We select D, asthetrianglein F with
the largest circumscribed disk. We continue and select inductively thetriangle D, asthetrianglein F with

the largest circumscribed disk that is digoint from all the previously selected triangles D;, 1£ j <i . Since
F isfinite this process ends after finitely many steps yielding digioint triangles {D}", . For 1£i £N, let

C bethe disk concentric with Cir (D;) with aradius that is 3 times bigger than the radius of Cir (D, ). We
claim that the disks{ﬁivi}iN:1 cover W. If not, there exist xI WA[J"C; and DI  suchthat xI D. From our
construction Cir (D) is not bigger than Cir (D). Therefore, xi C, impliesthat Cir (D) and Cir(D,) are
digoint and thus so are D, D,. Continuing this way we see that D is digoint from all {Di}i:l whichis

impossible because then the process would not have ended after N steps. Therefore {6,} : cover W and by
(21)

D]

Qo=

C|= 9a|C|r )| £C(b)

i=1 i

QJ°z

e

i=1

W £

‘ :

'u‘



2.2 A Maximal function over constrained triangles

Definition 2.2 Let 0<b <p /4. For alocaly integrable function f we define the Maximal function M, f
by

M, f(x) = sup D |Q|f y)|dy.

>dI]D

Lemma 23 Let D,,D,1 D(b) for some b >0 with D, [ D,.Thenforany f1 L (D)

1.
x)|dx£mqﬂ M, f (x)dx. X&)

Lt
o]
Proof Let xT D,. Then,since D, i D,
A | f y)|dy£be(x). (2.4)

1
o}
Now, take the average over D, of both sides of (2.4) to obtain (2.3).

The minimal angle constraint comes into play in the proof of the following variant of the Hardy-Littlewood
maximal inequality.

Theorem24Let f1 L (RZ), 1< p£¥ .Then

M. ], £c(p.b)] f],- 2.5

Sketch of proof For p=¥ the proof isobvious. For 1< p<¥ , the proof follows Section 3.3 in [BS]. We
recall that for alocaly integrable f theHardy-Littlewood maximal function Mf is defined over cubes

Mf( sup| g|f |dy.

Qcube

The multivariate Hardy-Littlewood inequality establishesthe L, boundedness of the maximal operator for
1< p<¥
IMF], sy £C (P2 A) T,

The only difference in the proof of our inequality is that we use Lemma 2 1, that is, a variant of the Vitdli
covering lemmafor cubes (Lemma 3.3.2 in [BS]). We note that the constraint we place on the trianglesis
important just as the choice of cubes (equal side lengths!) is crucial for the original Hardy-L ittlewood
maximal inequality. Indeed, the choice of constrained triangles leads to the weak type inequality

xT ®? :be(x)>l|£C”:ci,

which implies that the maximal function is a bounded operator from L, to weak- L, .



Remark If the cubes are replaced by rectangles, one then obtains the so-called strong maximal inequality

[XT R? :Mf (x)>1 |£CQ2%X)|§+I09+§¥X)|ZW

which implies that the maximal function over rectangles is a bounded operator from the smaller Orlicz space
L(1+log’ L) towesk L, (see eg. [CF]).

2.3 Onintegration of distance gauges

Let Wi RR* be aconvex compact polyhedral domain with edges e, 1£i £ n,. We denote by = the
infinite strip defined by & and a parallel edge going through the vertex of W which is the farthest from g .
Denoting |, := width (z;) and d, (x)=d(x,5;) we define

W)= o W)= o d 2.6
a(x, )'_qu(x’ )_QW (2.6)

Lemma25 Let D beatriangleand g >1. Then
Q. (x,D)"dx£C(q)|D]. 2.7

Proof The three strips associated with a given triangle subdivide the plane into sub-domains, four of which
are D itself and three identical copies.

Figure 2-1 Two types of infinite rays

Since q (X, D) £1, we need to prove (2.7) only outside of these four triangles. The rest of the planeis

covered by six (overlapping) sectors each defined by the boundaries of two different strips and enclosing a
haf-strip of the third one. Hence, it suffices to prove (2 7) separately for each of these six sectors. Figure 2-1
illustrates two typical sectors (bounded by the bold lines). The one on the right has a heag-angle



O<w=p - b, £p /2, while the one on the |eft has a headangle w =p - b, >p /2. We now elaborate,

using the right sector for illustration, on how we estimate the integral in a sector with a head-angle £p /2,
and then explain how the other case can be treated similarly.

Thus, assume that the sector’s headangle is 0 <w £p /2. By shifting the head of the sector to the
origin and rotating so that one of the boundaries coincides with the x-axis we get,

Q,d (xD)* dx £ (I4,)" er(dl(x)ﬂl)“d(xdz (X)+ |2)q
_ q¥\ ><1‘\(W) d)(2
() g% 0 (xsin(w)- x cos(w)+1,)" (x, +1,)"

A change of variables

u=xsin(w)- x,cos(w), V=X,,

yields the Jacobian
J:‘ﬂ(xl,xz) _[Yfsin(w) Cot(W)‘zL,
T (u,v) 0 1 sin(w)

and we have

11,)" *X  dudv
o ,D) dx £ (_” C
Qctorq (X ) sm(w) S (U+|1)q (V+|2)q

_ ()Y du Y ov
Sin(w)t()j(u-"ll)qgj(v"'lz)q

£C(q)—12

sin(w)
=c(a)%==c(a)|

Asforthecase p /2<W <p we again illustrate the proof, this time on the left sector. We first place the
sector at the origin and then divide it into two smaller sectors. One is the upper left quadrant of the plane and
the other the remainder with a headangle of W- p /2<p /2. We then proceed with computation similar to
the above to estimate the integral over each of the two smaller sectors.

Lemma26Let DI D(b) andlet q>2.1f j 3 0 islocaly integrable then

Q. (x)a(x D) dxEC(a,b)QM,j (x)dx. 2.8

Proof We define D\ = D and construct similar triangles D := D”, k ® 1(see Section 2.1). These triangles
are associated with the scale 2¢ and satisfy

(|) D(k) ‘I D(k+l) ,
(i) |9|=2*|o],
(i) The heights of D) are 2 times the heights of D.



For xI D% wedlearly have q(x,D) =1. Let xI D" \D*? for k3 1. By ageometric argument, there

exists i(X), 1£i(x) £3 suchthat d ., (x)/1,, 2 3(2k1 1)sin(b ). Therefore

so that for xi D™\ D"
¥ ¥
q(xD)" £q,,(xD)" £C2*£Cq 29 =Cq 21, (x).

j=k j=0

Observethat D' T D(b). Now (2.3) yields

Q. (x)a (x,D)" dXECaZqJ i (X)dx

=clpjd 2 ﬁq j(x)ax

j=0
£c|D|§2'(‘*2 iQMbj (x)dx
i=0 Iy
£C(q,b)QMbj (x) dx,

where we used that g > 2.

Lemma2.7 Let D; betrianglesand a, 3 0 for j=1,...,m.
(i) For 0O<p£lad u>1/p wehave

anaq(xD)_dXEC(pu émap|D| 2.9
ej=t

(i) Let 1< p<¥ and u>2. Assumethat D, aredisiointand D,T D(b), j =1,...,m, for some b >0.
Then

..p

N uO m
Q:¢d 3 a(xD;) = &x£C(p,u,b)g af|D,|. (210)
S 7] j=1
Pr oof
(i) If 0< p£1, then
..P
& e mo "
Q: ga q(xD) - dx£élafgzq (x.D,)" dx,
S =

and since up >1,(29) follows from (2.7).
(i) Assume 1< p<¥ . Thenthereexists j 1 Lp¢(]R2),With p¢ being the dual index of p suchthatj 3 0,

bl ey =2 and

10



=Q.l (x)g aq (x, D, )udx.

L (%?) =

j=1

én_]_ajq(x,Dj)u

By (25) we have ||Mbj ||p¢£C(p¢b )=C(p,b).Lemma 26 and Holder's continuous and discrete
inequalities then yield
£Cém_ a;Q Myi (x)dx

é: aq(xD;) A

j=1

p

g] .
feas oy M 4o,

&y 6" g v O
ECQQ aJ'p|Di|+ 95_1 "MbJ L))

ei= g e= e

. /P

£ Cz‘eé ""JP|DJ'|2 '

ej= g

Remark We do not know whether the dependence of the constant in (2.10) on the minimal angleis
essential. If not, then clearly the results of this paper become independent of the “thinness’ of triangles and
(1.9)and (1.10) hold for al O< p <¥ .

2.4 Polynomial approximation over triangles

The following two results follow from [KP] Lemmas 2.6 and 2.7.

Lemma28 Let P P (R?)and D, i D, suchthat |D,|£ m[Dy|. Thenfor 0< p £¥

Pl o) £C(P.1) PP, g,

Proof The method of proof is similar to the method used to prove [KP] Lemma 2.6, except that here the
dependence on m is made explicit.

Lemma29Let PT P, (RZ) and 0< p,q£¥ . Then, for any triangle DI R?
Pl £S(par) o IP], (211)

We need an estimate on the rate of increase of a polynomial as we move away from a given triangle.
We prove

Lemma2.10 Let xI R?,D,1 R® and P P, (RZ).Then,

|P(X)|£C(r)q (X’ DO)-2r ||P|||_¥(DO) (2-12)

11



Proof If xT D, then dearly q(x,D;)=1and |P(x)|£]|P. (o, SO that (212) holds. Thus, we may assume

that x1 D,. Therearetwo cases:

Casel: The point X isinside a sector defined by two edges, say g, e,. Thetriangle D, that is defined by the
intersection of e, e, with aline going through X and parallel to e, asinFigure 2-2, contains D, and is
similar to it.

Figure 2-2 Construction of an including triangle, case |

Hence

al, (x)+1,0 :
o= g0 o) =g, (4.0 oy

|3

£q(x.D,) *|Dy,

|P(X)| £ ||P|||_¥(Dl) £C(r)q (X’ DO)_2r " P||L¥(D0)

Casell: Thepoint x isin awedge defined by two edges, say g, e,. Inthiscaselet D, be dfined, asin
Figure 23, by the vertices v,, v, X, where v,,v, arethe vertices oppositeto g, e,, respectively.

and by Lemma 2.8

Figure 2-3 Construction of an including triangle, case |1

It follows that
=Bl py=lel(E(¥*k) (>9+')
ol =
Therefore
) =208 5, =g, (0, .
Again Lemma 2.8 yidds -

12



PONEIPIL ) £C(r)as (Do) [Pl

£ C(r)q (X’ Do)-2r ”P”L¥(Do) '
and (2.12) is proved.

3 Main results

At the core of our proof lies the ability of rational functions of low degree to approximate well
characteristic functions. We begin by quoting [LGM], Lemma 10.6.5 (or [PP] Lemma 8.3).

Lemma 3.1 (Rational approximation of a characteristic function) For k3 5and u 2 1 thereexistsa
univariate rational function QT R,,,,, such that

0£Q(t)£1, "tl R,
1-Q(t)ee®®,  ft|£1- 2%,
QUEK e, o1

Let Wi R? be aconvex compact polyhedral domain with edges e, 1£i £n,. Wewould like to
construct a rational function that approximates well the indicator function of W away from the domain’s
boundary. To this end we construct for each strip - associated with g (see Section 2.3), using arotation

and a shift, an operator T,:R?® R, T, (X, %) =ax +bx +¢, suchthat T,(z) =[0,l,] and

o (x)=d (xe5) =d (T(<).[01]).

Lemma 3.2 Let Wi RR? beaconvex compact polyhedral domainwith n, edgesand let q (x, W) be defined
in (2.6). For k3 5 wedenoteby W, 1 W the “inner” boundary

W, :={yl W:$i i £n, 0£T (y)£e ¥, or 0£1,-T,(y)£e A, }. 3.1)
Then, for any u 3 1 there exists a bivariate rational function RT R an, n(axs2s) Such that O£ R(x) £1 and for
xI W,
IR(X)- 1, ()£ e ™ (kW)

Proof We set
& T (X)-1.0
R(x)=oqg%3, (32
- i a

where Q isfromLemma 3.1.
(i) Let xI WAW, . Then q(x,W) =1 and by Lemma 3.1

1y(¥9- R(X)£1-(1- *F)"

£ n.e kg (x, W)™ .

13



(ii) Let xI W. Then

The following is a bivariate anaogue of Lemma 10.6.4 in [LGM].
Lemma33Letj 1 §,(R?) for m® land r2 0.

(i) If 0< p£1, then for each n3 1thereexists RT R crn Such that

i - Rl oy EC (- Covm]l | oo 3.3
where the constants C,,C, dependon p,r .
(ii)If l<p<¥ adj 1 S (RZ), b >0, then for each n3 1 thereexists R1 ﬁcmn such that

b~ Rl £C: (- CATI [, oo @

where the constants C,,C, dependon p,r,b .

Proof Letj =3 1, B, where PT P, (R?).Let|;; bethe i- th height of the triangle D; and let T;, be
=1

the linear transformation corresponding to the i - th edge of D, . We construct

with
3 a&2T . (x)-1..06
R(x)=0Q —"'( )1, +.
i= g L 2
We take
u>r+max(1,1/2p), n>(6(4k+m)+r2)m, k3 5, (3.5

14



wherewefirst fix u and then take k to be the biggest possible integer satisfying (35). Thisis possible if
n3 Cm for asufficiently large C(p,r). Observe that the number of free parametersin R(x) is

£(r2 +12)m sothat RT R cmn. Weshall assumethat n3 Cm, otherwise there is nothing to prove. For each

1£ jEmlet W, bethe“inner” boundary of D, defined by (3 1). Note that |Wj’k| £6e“’E|DJ.|. Denote
E, :=UV\/J.’k . First we estimate the error away from the inner boundaries of the triangles. Let xT R?\E, .
j=

By Lemma32foral 1£ j£m
R (x)- 1, (x)|£3¢%q (xD,)". (3.6)
Therefore, by Lemma 2.10

(9 ROl &R (- 2, (3P ()

£3e'2‘ligq(x, DJ.)2u P ()|

J
=1

E%.zﬁélq( X DJ)Z(UJ) " Fi)|||_¥(DJ)'

Since by (3.5 u >r+max(1,1/2p) wemay apply Lemma 27 so that

P

i 3 . & u-r) O
- Rl e £C57 qu(e;iazl”Pj"Lé‘(DJ)q(X’Di)Z( ); o

ece™a R, o) Ol

where for 0< p£1 weapplied (29 and C=C (p,r) and for 1< p<¥ weapplied (2.10) and
C=C(p.r,b). By Lemma 29we conclude that

- 6" ] 8’1
Bl Plece AP,
j=1 =

= ce | |1

We now estimate on the “inner” boundaries of the triangles. Let x1 E,. Then there exists 1£ SEm
suchthat xi W, and xi W;,, j s.Againby (3.6) and Lemma 210 we have

I, (x)- R (x)|P; (x)

NORLCTEY
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IRl oy 3¢ &a (xR,

£<’:1||F’|| W, )+3e”aQ( )”'r)

We can now estimate [j - R|, - using the same techniques we applied in the first part of the proof for the

estimate over the domain R*\E,. For 1< p<¥ weget

b t- £“§1||Pi||a(q)]wl*(x)L<E>+3e»2ﬁ aa(xo)" Il
&y K Au-r)
£gja:-l||':’i||zg(oj)| | +3€2 ( D) P .
ECQe‘/—° || |D |_ +Ce2‘r|[| I,
j=1
£ ecr”' [,
where C=C(p,r,b).If ontheother hand 0< p£1, then
Q) (- RO axe [P, Wi+ ce g gaa (xo,)"
j=

cce P4 IRl bl ce AR, o]
=1 -

zce &R, ol

ece X |P,

with C=C (p,r). Since k was chosen as the biggest possible integer satisfying (3 5), we have that
k >Cn/m and the proof is completed by adding the bounds over the domains E, and R*\ E, .

Proof of Theorem1.2 Weassume 1< p<¥ andprove (1.5). Let L ={Ln}n3O be an amost nested
sequence (see Definition 1.1) with iun[(ninangle(D)) =b >0.Foreach k3 0 thereexigts f, T S'(L,)
such that Ezk’r(f,L)p=||f - fk||p.WeIetj o =f,andfor k3 1lwesetj, =f, -f, . Then, wehave

ol € Es (F2L), +1 11,

and
i ell, 1 -Ful, +l - il EE, (L) +E, (F.L),, k2L
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Furthermore, since L isan amost nested sequence, |  isin Sé’bzk (RZ) .Wenow fix j andfor O£k £ j

we approximate j , by therational function R T Rn(g, where n(k) :gCZZZCL 2 Iogz(za“'k))g that is
guaranteed by Lemma 3.3 By virtue of (3.4)

&® 20 ok |og2 [22(i-K) O

_ C,°C_ 2" log* |2 .
N
2

£C2° 0 (E,,, (F.L),+E,, (F.L),),

where E,, (f,L) :=|f] . Therefore for R:zé R, wehavethat RT Rcoi with C=C(p,ra,C_,b)
’ k=0
and

d
- R £[t -1, +&) .- R,

£C2“"”§ff||p +8 2°E, (f.L),
k=0 '

Q- O

Given n3 0, (15) follows from the above by a suitable choice of | (dependingon n). The proof of (14) is
similar only we use (3.3) instead of (3.4).

Proof of Theorem1.3 Assume 0< p£1. Foreach k2 0 thereexists f, 1 S}, (Rz) such that

[f-f P £, (f). Weletj,=f, andfor k* 1wesetj, =f, -f,,.Then wehave

ol £ 2(s (£)2+16E).
and

el bl 2, (00, (1), ot

Since j , isasum of two piecewise polynomial functionsin S, (]Rz),thereexistsaconstant C,,
independent of k and r , suchthat j , 1 SEM (RZ) .Wenow fix j andfor O£ k £ ] weapproximate j , by

the rational function R T R« where n(k) = gC;ZCgﬁk Iogz(Za(j' k))g that is guaranteed by Lemma 3.3. By
virtue of (3.3

? C52C34k kEZ(Za(]’k))g . ,
é- CZ C 4k - ||| k"p
3 -
(%]

£C2* 0P (s, (1)2+s, ()7),

P

i - Ry £Clexp

where's . (f) :=|f| . Thereforefor R:= é R, wehavethat Rl Rcs with C=C (pr,a) and

k=0
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d
-REe]t-1 [ +4) Rl
gc2enrP+8 2%s ()2
8 P =0 2 P o
Given n3 0, (16) follows from the above by asuitable choice of | (dependingon n).

Proof of Theorem 1.6 A variant of the discrete Hardy inequality (see Lemma 2.3.4 in [DL] and the remark
that follows) implies that if for non-negative sequences a={a } . , b={b} . wehave

,d/m
h £C,2" &5 A (2¢a )mo , ni Z,
82,
for some | ,mC, >0 thenforal q>0and O<a <| we have that
=4 ()% .o, (2ra)?
8k=-¥ E ’ 0&=-¥ B .

Therefore, the proofs for (1.9) and (1.11) follow from (1.4) and (1.5) respectively and a direct application of
the discrete Hardy inequality.
We now prove (1.12). The proof of (110) issimilar. Let f1 A? (Lp S, b) for 1< p<¥, 0<q<¥

and b >0.Foreach n® O thereexistsj T S° (RZ) suchthat | f-j || £2s,  (f), .Also, thereexists
aconstant C >0 such that | n||p £C||f||p. By (3.4) for m=2" there exists arational function

RT R cz gz 210g2( 2009 )y Such that

. @ |c;22"log? 2@ O
b Rl o0 3,

2n
£CZC |,
ec(pr b |f],)2".
Consequently
If- Rl ENT-Tal,*0 o - R,
£C(p.rb ], ) (s, (1), +27).
Therefore

L. EC(qub|“”)?ﬂ@%Sb +mzmﬂkg<¥.

The proof for q=%¥ issmilar.
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