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Abstract
In recent years there have been various attempts at the representations of multi-

variate signals such as images, which outperform wavelets. As is well known wavelets
are not optimal in that they do not take full advantage of the geometrical regularities
and singularities of the images. Thus these approaches have been based on tracing
curves of singularities and applying bandlets, curvelets, ridgelets etc. (e.g., [3],[4], [8],
[15], [18], [26], [27], [29]), or allocating some weights to curves of singularities like the
Mumford-Shah functional ([25]) and its modifications. In the latter approach a function
is approximated on subdomains where it is smoother but there is a penalty in the form
of the total length (or other measurement) of the partitioning curves. We introduce a
combined measure of smoothness of the function in several dimensions by augmenting
its smoothness on subdomains by the smoothness of the partitioning curves.

Also, it is known that classical smoothness spaces fail to characterize approxima-
tion spaces corresponding to multivariate piecewise polynomial nonlinear approxima-
tion. We show how the proposed notion of smoothness can almost characterize these
spaces. The question whether the characterization proposed in this work can be further
‘simplified’ remains open.
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1 Introduction

Let Ω ⊂ R2 be a bounded connected domain whose boundary is piecewise Lipschitz smooth.

It is constructive to think of Ω = [0, 1]2. For f : Ω ⊆ Rn, h ∈ Rm and r ∈ N we recall the
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rth order difference operator ∆r
h(f) : Ω ⊆ Rm → Rn

∆r
h(f, x) := ∆r

h(f, Ω, x) :=





r∑
k=0

(−1)r+k
(

r
k

)
f(x + kh) [x, x + rh] ⊂ Ω ,

0 otherwise ,

where [x, y] denotes the line segment connecting any two points x, y ∈ Rm. The modulus of

smoothness (see [13] for the univariate case) is defined for 0 < p ≤ ∞ by

ωr(f, t)Lp(Ω) := sup
|h|≤t

‖∆r
h(f, Ω, x)‖Lp(Ω) , t > 0 , (1.1)

where for x ∈ Rn, |x| denotes the norm of x. For a bounded domain Ω ⊂ R2 and f : Ω → R
we define

ωr(f, Ω)p := sup
h∈R2

‖∆r
h(f, Ω, x)‖Lp(Ω) .

Another notion of smoothness is the K-functional which employs the use of the Sobolev

spaces. In the bivariate case, the Sobolev space, W r
p (Ω), is the space of functions g : Ω ⊆

R2 → R, g ∈ Lp(Ω), which have all their distributional derivatives of order r, Dγg := ∂rg

∂x
γ1
1 ∂x

γ2
2

,

γ = (γ1, γ2), γi ≥ 0, |γ| := γ1 + γ2 = r, in Lp(Ω). The semi-norm of this space is given by

|g|W r
p (Ω) :=

∑
|γ|=r ‖Dγg‖Lp(Ω) < ∞. For f : Ω ⊆ R2 we define

Kr(f, t)p := K(f, t, Lp(Ω),W r
p (Ω)

)
:= inf

g∈W r
p (Ω)

‖f − g‖Lp(Ω) + t|g|W r
p (Ω) . (1.2)

We also denote for a bounded domain Ω̃ ⊆ R2

Kr(f, Ω̃)p := Kr

(
f, diam(Ω̃)r

)
p

. (1.3)

It is known that the above two notions of smoothness, (1.1) and (1.2) are equivalent (see [13]

Chapter 6 for the univariate case, [2] for the case Ω = Rd and [20] for the case of Lipschitz-

graph multivariate domains). That is, for 1 ≤ p ≤ ∞, there exist C1, C2 > 0, such that for

any t > 0

C1Kr(f, tr)Lp(Ω) ≤ ωr(f, t)Lp(Ω) ≤ C2Kr(f, tr)Lp(Ω) . (1.4)

It is easy to show that C2 depends only on r. But, whenever Ω is not a univariate domain or

a ‘simple’ multivariate domain such as a cube, the constant C1 also depends on the geometry

of Ω.

In our setup, the choice of the K-functional as a measure of smoothness seems to be

more appropriate. Specifically, we will measure the smoothness of a ‘surface’ piece given by

f : Ω̃ ⊆ R2 → R in the p-norm by (1.3). Observe that by (1.4) we always have

C1Kr(f, Ω̃)p ≤ ωr(f, Ω̃)p ≤ C2Kr(f, Ω̃)p , (1.5)
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with C1 depending on the geometry of Ω̃.

The smoothness of a continuous planar curve b : [0, 1] → R2 will be measured by the

K-functional

Kr(b, t)∞,1 := K
(
b, t, C[0, 1], W r−1

(
BV [0, 1]

))

:= inf
g∈W r−1(BV [0,1])

‖ |b− g| ‖∞ + t|g(r−1)|BV ,

where for a planar curve ϕ : [0, 1] → R2

|ϕ|BV := sup
0=t0<···<tn=1

n−1∑
i=0

∣∣ϕ(ti+1)− ϕ(ti)
∣∣ .

Using the appropriate variant of (1.4) one shows that for t > 0

Kr(b, t
r)∞,1 ≤ CKr(b, t

r)∞ ≤ Cωr(b, t)∞ . (1.6)

Using the equivalence (1.4) one can define the Besov space Bα
q (Lp(Ω)) (see [11]) as the set

of functions f ∈ Lp(Ω) for which

|f |Bα
q (Lp(Ω)) :=





(
1∫
0

(
t−αKr(f, tr)p

)q dt
t

)1/q

, 0 < q < ∞ ,

sup
0<t≤1

t−αKr(f, tr)p , q = ∞ ,
(1.7)

is finite for some r ≥ bαc + 1. The integration in (1.7) is over [0, 1] due to the fact that

Ω is bounded. By the monotonicity of the modulus of smoothness or the K-functional, an

equivalent discrete form is

|f |Bα
q (Lp(Ω)) ∼





( ∞∑
n=0

(
2nαKr(f, 2−nr)p

)q
)1/q

, 0 < q < ∞ ,

sup
n≥0

2nαKr(f, 2−nr)p , q = ∞ .
(1.8)

Observe that one usually finds in the literature the discrete sum (1.8) with Kr(f, 2−nr)p

replaced by ωr(f, 2−n)p. The equivalence of these two representations again follows from

(1.4).

The Besov spaces play an important role in approximation theory since they characterize

the approximation spaces corresponding to some important approximation methods: Linear

algorithms such as polynomial and spline approximation and nonlinear algorithms such as

univariate free-knot splines ([13] Chapter 12), univariate rational approximation ([23] Section
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10.6) and multivariate wavelets ([11] Chapter 7). In the multivariate setting, the Besov spaces

have perhaps the following disadvantage. From (1.1) it is clear that once a direction h ∈ R2

is chosen, the function is ‘differentiated’ in that direction over the whole of the domain. One

may then argue that in the multivariate setting the measure of smoothness should be more

adaptive to piecewise smoothness over certain disjoint sub-domains.

Another point is this: Besov spaces and their multivariate anisotropic variants are linear

spaces. At the same time approximation spaces associated with multivariate piecewise poly-

nomial approximation are not linear (see Section 2.1). Therefore it is not possible that Besov

spaces or other ‘classical’ smoothness spaces can characterize these approximation spaces.

We propose that in the multivariate setting, a measure of smoothness that incorporates

measures of smoothness in several dimensions, is more appropriate. Our efforts to proceed

in this direction rely on recent attempts (e.g., [3], [4], [8], [15], [18], [26], [27], [29]) to find

compact representations for multivariate signals by combining traditional coding methods

such as wavelet compression with computation of lower-dimensional structure, for example

segmentation in the case of images. Indeed, one of the goals of this work is to try and

understand on which ‘class’ of functions these approaches outperform wavelets. Thus, we

try to quantify, in an approximation theoretical sense, the amount of ‘structure’ present in

the signal.

Definition 1.1 For t > 0 we define Λ(t) as the set of partitions Λ of a bounded domain Ω

with the following properties:

(i) The partition Λ is defined by non-intersecting curves bj : [0, 1] → Ω, j = 1, . . . , nE(Λ),

each of finite length, denoted by len(bj). The curves may intersect only at endpoints

and a subset of the curves should compose the boundary of Ω. Observe that we allow

the curves to have ‘crack-tips’ (see for example [25]), that is, an end of a curve possibly

does not touch the end of any of the other curves.

(ii) To each curve bj we associate a parameter 0 < tj ≤ 1 such that
∑nE(Λ)

j=1 t−1
j ≤ t−1 (in

particular this implies that nE(Λ) ≤ t−1).

(iii) The curves partition Ω into open connected sub-domains Ωk, k = 1, . . . , nF (Λ).

The following notion of smoothness combines measures of smoothness at several dimen-

sions.
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Figure 1-1. A partition Λ of the domain Ω

Definition 1.2 For f ∈ Lp(Ω), 1 ≤ p < ∞, t > 0, and r1, r2 ∈ N, we define

K̃r1,r2(f, t)p := inf
Λ∈Λ(t)




nE(Λ)∑
j=1

len(bj)Kr1(bj, t
r1
j )∞,1 +

nF (Λ)∑

k=1

Kr2(f, Ωk)
p
p




1/p

. (1.9)

One can see from (1.9) that the K̃-functional is defined using sums of ‘curve’ and ‘surface’

smoothness terms. The K̃-functional is highly nonlinear in the following sense

(i) K̃ is non-decreasing as a function of t, but in general is not continuous.

(ii) K̃ in general is not sub-linear, that is, there does not exist any constant C such that

for any f, g ∈ Lp(Ω) we have K̃r1,r2(f + g, t)p ≤ C(K̃r1,r2(f, t)p + K̃r1,r2(g, t)p).

In Section 4 we discuss the relationships between the K̃-functional and the Mumford-

Shah type functionals of [25].

Using (1.9) we define the following bivariate smoothness spaces.

Definition 1.3 A function f ∈ Lp(R2), 1 ≤ p < ∞, is said to be in the B̃-space B̃α,r1,r2
q (Lp(Ω))

if

(f) eBα,r1,r2
q (Lp(Ω)) :=





(
1∫
0

(
t−αK̃r1,r2(f, t)p

)q dt
t

)1/q

, 0 < q < ∞ ,

sup
0<t≤1

t−αK̃r1,r2(f, t)p, q = ∞ ,
(1.10)

is finite. In similar manner to (1.8) we have

(f) eBα,r1,r2
q (Lp(Ω)) ∼





( ∞∑
n=0

(
2nαK̃r1,r2(f, 2−n)p

)q
)1/q

, 0 < q < ∞ ,

sup
n≥0

2nαK̃r1,r2(f, 2−n)p, q = ∞ .
(1.11)
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Observe that (·) eBα,r1,r2
q (Lp(Ω)) serves as a measure of smoothness, but it is not a semi-norm

because in general the triangle inequality is not fulfilled. From (1.10) or (1.11) it is clear that

B̃α,r1,r2
q (Lp(Ω)) ⊆ B̃β,r1,r2

q (Lp(Ω)), moreover (·) eBβ,r1,r2
q (Lp(Ω))

≤ (·) eBα,r1,r2
q (Lp(Ω)), whenever β ≤

α. We find it useful to denote B̃α,r
q (Lp(Ω)) := B̃α,2,r

q (Lp(Ω)) and B̃α
q (Lp(Ω)) := B̃α,2,r

q (Lp(Ω))

with r = bαc+ 1.

The following two results show the relations between the classical Besov smoothness

spaces and the B̃-spaces.

Theorem 1.4 For Ω = [0, 1]2, 1 ≤ p < ∞, r ∈ N and 0 < t ≤ 1

K̃2,r(f, t2)p ≤ Cωr(f, t)p . (1.12)

In particular for any α > 0 and 0 < q ≤ ∞ we have that the space Bα
q (Lp([0, 1]2)) is contained

in B̃
α/2
q (Lp([0, 1]2)), moreover (·) eBα/2

q (Lp([0,1]2))
≤ C| · |Bα

q (Lp([0,1]2)).

One can improve the above by using the characterization of Besov spaces by wavelet

approximation spaces (see [11] Section 7.6).

Theorem 1.5 For α > 0, 1 < p < ∞, q = (α/2 + 1/p)−1 and r > α + 1 − 1/p, the

space Bα
q (Lq([0, 1]2)) is contained in B̃

α/2,r
q (Lp([0, 1]2)), moreover we have (·) eBα/2,r

q (Lp([0,1]2))
≤

C| · |Bα
q (Lp([0,1]2)).

It seems that these results are sharp in the sense that the Besov space on the left is not

contained in B̃
β/2,r
q (Lp([0, 1]2)) for any β > α.

The difference between the Besov spaces and the B̃-spaces is that the B̃-spaces exhibit the

most significant singularities along curves penalized by a measure of the lower-dimensional

smoothness of those curves. If a function in B̃ represents an image, then the singularities

along curves are the edges in the images and the other parts are smooth in the 2-dimensional

gauge. These curves of singularities we call the ‘structure’ present in a given function.

In general, we cannot expect multivariate functions of weak-type smoothness to have any

lower-dimensional geometric structure and, in fact, in general they are of oscillatory type.

This was demonstrated by Donoho [16] by manipulating the wavelet coefficients of real-life

images such that on the one hand their Besov semi-norm remains unchanged, and thus also

the performance of nonlinear wavelet approximation (see [D]), and on the other hand they

turn into visually incoherent texture.

The next simple result verifies that, unlike the Besov spaces, B̃-spaces contain functions

that do have lower-dimensional structure or smoothness (see also Example 1.7 in [9]).
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Example 1.6 Let Ω̃ ⊂ Ω and assume that ∂Ω̃, ∂Ω are piecewise Lip∗(α) curves. Then,

1leΩ ∈ B̃β,r1,r2
q (Lp(Ω)) for all r1 ≥ bαc + 1, r2 ≥ 1, β < α, 1 ≤ p < ∞, 0 < q ≤ ∞. For

example, if ∂Ω̃ ∈ C∞ then 1leΩ ∈ B̃α,r1,r2
q (Lp(Ω)), whenever r1 ≥ bαc+ 1. On the other hand

we have that 1leΩ 6∈ Bα
q (Lp(Ω)) if α > 1/p.

Let Sr1,r2
m (Ω) denote the collection of piecewise polynomials of type

∑m
k=1 1lΩk

Pk, where

Ωk ⊂ Ω are domains with disjoint interiors whose boundary is composed a fixed number

of non-intersecting piecewise polynomial segments of degree r1 − 1 and Pk are bivariate

polynomials of degree r2 − 1. In the special case where r1 = 2, the approximation takes

the form of piecewise polynomials over polygonal domains. By triangulating these polygonal

domains, we may consider S2,r
m (Ω) to be the collection of functions of type

∑m
k=1 1l∆k

Pk,

where ∆k are triangles with disjoint interiors and Pk are bivariate polynomials of degree

r − 1.

The parameters r1, r2 allow to ‘tune’ the approximation method to the lower or higher

dimensional smoothness of the approximated functions. For f ∈ Lp(Ω) we define the degree

of approximation

σm,r1,r2(f)p := inf
φ∈S

r1,r2
m

‖f − φ‖Lp(Ω) .

Denoting σm,r(f)p := σm,2,r(f)p, we have the following Jackson-type inequality for approxi-

mation by piecewise polynomials over triangles.

Theorem 1.7 Let Ω be a bounded domain with a piecewise Lip∗(2) boundary and let f ∈
L∞(Ω). Then for 1 ≤ p < ∞ and each m ≥ 1, we have that

σm,r(f)p ≤ C1(p, r) max
(‖f‖L∞(Ω), 1

)
K̃2,r(f, C2m

−1)p . (1.13)

Remark. It seems like a drawback of Theorem 1.7, that we have to assume that f ∈ L∞(Ω),

while we would like estimates in the Lp-norm, and (1.13) may look a bit awkward in view

of the involvement of the quantity ‖f‖L∞(Ω) in the estimate. However, we wish to point out

that images are always in L∞ so that in normal applications we usually obtain L2 estimates

of functions in L2(Ω) ∩ L∞(Ω). It is pretty clear that our K̃-functional does not distinguish

between the characteristic function of the unit disk and 106 blowup of that function.

The main ingredients in the proof of the Jackson inequality (1.13) are the ‘local’ polyno-

mial approximation result, Theorem 2.2, and Theorem 3.1, the geometric result concerning

polygonal approximation of partitions of planar domains.
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Definition 1.8 (Approximation spaces) For α > 0 and 0 < q ≤ ∞, let Aα,r1,r2
q (Lp(Ω), Σ)

denote the set of functions f ∈ Lp(Ω) for which

(f)A
α,r1,r2
q (Lp,Σ) :=





( ∞∑
m=0

(
2mασ2m,r1,r2(f)p

)q
)1/q

, 0 < q < ∞ ,

sup
m≥0

2mασ2m,r1,r2(f)p, q = ∞ ,
(1.14)

is finite. In the special case where r1 = 2 and the approximation takes the form of piecewise

polynomials over triangles we denote Aα,r
q (Lp(Ω), ∆) := Aα,2,r

q (Lp(Ω), Σ).

The B̃-spaces can ‘almost’ characterize nonlinear approximation algorithms correspond-

ing to piecewise polynomial approximation in the following way.

Theorem 1.9 Let Ω be a bounded domain with a piecewise linear boundary. Then, for

any α > 0, 1 ≤ p < ∞, 0 < q ≤ ∞ and r ∈ N, the set Aα,r
q

(
Lp(Ω), ∆

)
is contained in

B̃α,r
q

(
Lp(Ω)

)
, moreover (f) eBα,r

q (Lp(Ω)) ≤ C(f)Aα,r
q (Lp(Ω),∆). On the other hand,

f ∈ B̃α,r
q

(
Lp(Ω)

) ∩ L∞(Ω) =⇒ f ∈ Aα,r
q

(
Lp(Ω), ∆

)
. (1.15)

Perhaps our discussion so far quantifies the following ‘intuition’. Besov spaces cannot

well capture singularities along curves while nonlinear piecewise polynomial approximation

does. Thus piecewise polynomials over triangles outperform wavelets significantly if the

approximated function represents, for instance, an image which normally has edge singular-

ities, what we have referred to as ‘structure’. On the other hand, if a function is a typical

Besov-type function that is smooth only in a weak-sense with oscillations ‘randomly’ dis-

tributed over the time and frequency domains, then we should not expect m-term piecewise

polynomials approximation to perform any better than the term m-wavelet approximation.

Another form of nonlinear approximation we consider is approximation by rational func-

tions. Denote by Rn, the set of all bivariate rational functions of degree n, i.e.,

Rn :=
{
R = P1/P2 : P1, P2 ∈ Πn(R2), P2 > 0

}
.

We restrict ourselves to elements of Rn that are taken from a collection of functions that

can be described by n parameters and denote this collection by R̃n (see [9] for an exact

description of these parameters). Thus, for f ∈ Lp(R2), 0 < p ≤ ∞ we denote

ρ̃n(f)p := inf
R∈ eRn

‖f −R‖p .

The corresponding rational approximation spaces Aα
q (Lp, R̃) are defined by replacing in

(1.14) the terms σ2m,r1,r2(f)p, by ρ̃2m(f)p. Applying (1.15) and [9] Theorem 1.6, we may
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conclude that bivariate rational approximation also performs well in the presence of lower-

dimensional structure.

Corollary 1.10 For any γ < α, 0 < q ≤ ∞ and r ∈ N we have

f ∈ B̃α,r
q

(
L1(Ω)

) ∩ L∞(Ω) =⇒ f ∈ Aγ
q

(
L1(Ω), R̃)

.

2 Approximation by piecewise polynomials

2.1 Nonlinearity of the piecewise polynomial approximation spaces

As mentioned in the introduction, all classical smoothness spaces are linear spaces. Here,

following the discussion in [11] Section 6.5, we give a simple proof that the multivariate

approximation spaces we are interested in are nonlinear and therefore cannot be characterized

by the classical smoothness spaces.

Theorem 2.1 For α > 0, 0 < p < ∞ and 0 < q ≤ ∞ there exist functions f, g ∈ Lp[(0, 1]2)

such that f, g ∈ Aα,1
q (Lp([0, 1]2), ∆) but f + g 6∈ Aα,1

q (Lp([0, 1]2), ∆).

Proof. Assume first that 1/p < α < 2/p. We construct recursively two sequences of

functions {fn}n≥1, {gn}n≥1. The function f1 is described in Figure 2-1 and f2 is described

in Figure 2-2.

0

1

-1

Figure 2-1. The function f1

Assume that fn, n ≥ 2, , is already defined as 0 on the upper right corner, a square In of

side length 2−n. We set fn+1 = fn on [0, 1]2\In and proceed to define it on In. We divide

In by a vertical line into two rectangles In,1 and In,2 each of vertical side length 2−n and

horizontal side length of 2−(n+1). We now divide In,1 into 2n+1 equal vertical strips on which

fn+1 assumes the alternating values of (−1)m, m = 0, . . . , 2n+1 − 1. We divide In,2 by an

9



0

1 -1 1 -1

1

1

-1

Figure 2-2. The function f2

horizontal line into two equal size squares of side length 2−(n+1), and ascribe to fn+1 the

value (−1)n in the lower square and 0 in the upper square, i.e., in In+1.

The function gn is obtained by reflection of fn through the main diagonal of I0 := [0, 1]2.

The function g2 is described in Figure 2-3.

1 0

-1

1

-1

-1

1

1

Figure 2-3. The function g2

We can summarize the properties of the functions fn and gn:

• The functions fn and gn are piecewise constant over 2n+1 + n− 2 rectangles.

• The functions fn, gn take the values 0 and ±1.

• On [0, 1]2\In we have that fn+1 = fn, gn+1 = gn, and therefore also fn+1+gn+1 = fn+gn.
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• The function fn + gn takes the values 0 and ±2 in rectangles, the total of which is

≥ 4n−1. The function fn + gn is zero in about half of these rectangles, so we have more

than 4n−2 rectangles with nonzero values.

• The sequences {fn}n≥1, {gn}n≥1 converge in the p-metric for all 0 < p < ∞, to (mea-

surable) limits f := limn→∞ fn, g := limn→∞ gn.

Since on [0, 1]2\In we have f = fn, we can triangulate it into 2(2n+1 + n− 1) triangles to

obtain

σ2n+3(f)p ≤ σ2(2n+1+n−1)(f)p ≤ |I2n|1/p = 2−2n/p ,

which implies that f ∈ Aα,1
q (Lp, ∆), for α < 2/p. The same is true for g.

When we approximate f + g with piecewise constants on 2n triangles, we obviously have

to assign the same nonzero values taken by fn + gn on the biggest rectangles. Observe that

the number of rectangles on which f[(n+4)/2] + g[(n+4)/2] takes nonzero values is bigger than

2n−1 (so that the number of such triangles is bigger than 2n). Note that by our construction

the rectangles we get for the function f[(n+4)/2]+1 + g[(n+4)/2]+1, in the square in the lower left

corner of I[(n+4)/2] are smaller than any of the above, thus on that area the approximating

function is 0. On about half of it fn + gn = ±2 and this area is 1/8 of the area of I[(n+4)/2],

namely, no less than 2−n−4. Hence

σ2n(f + g)p ≥ 2−42−n/p ,

and consequently f + g 6∈ Aα,1
q (Lp, ∆) for α > 1/p.

To treat the case α ≥ 2/p, we modify the above construction by assigning to the func-

tions fn, gn the values 0 and ±2n(2/p−α−ε) over In at the nth step of the construction, with

sufficiently small ε > 0. ¤

Remark. Observe that the approximation spaces corresponding to piecewise polynomials

of type
m∑

k=1

1l∆k
Pk ,

where the triangles ∆k are allowed to intersect, are linear spaces and therefore strictly contain

the (nonlinear) spaces Aα,r
q (Lp, ∆).

2.2 On polynomial approximation over triangles

For a bounded domain Ω ⊂ R2 and r ∈ N we denote the degree of polynomial approximation

Er−1(f, Ω)p := min
P∈Πr−1

‖f − P‖Lp(Ω) .
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The following is the main result of this section.

Theorem 2.2 Let
⋃N

n=1 ∆n ⊆ Ω̃, where ∆n are triangles with disjoint interiors. Then for

any f ∈ Lp(Ω̃), 1 ≤ p < ∞,

N∑
n=1

Er−1(f, ∆n)p
p ≤ C(p, r)Kr(f, Ω̃)p

p , (2.1)

where Kr(f, Ω̃)p is defined by (1.3).

Whitney-type estimates for polynomial approximation are estimates of the type

Er−1(f, Ω)p ≤ Cωr(f, Ω)p ,

where the constant C usually depends on r and p but in the multivariate case may also depend

on the geometry of the domain. To characterize approximation of piecewise polynomials

over triangles we require Whitney-type results where the constant does not depend on the

‘thinness’ of the triangles. Indeed, it is proved in [21] that for any triangle ∆ and f ∈ Lp(∆),

0 < p ≤ ∞ we have

Er−1(f, ∆)p ≤ C(r, p)ωr(f, ∆)p . (2.2)

In our case, we require a variant of (2.2) that uses the appropriate K-functional because the

modulus of smoothness (1.1) is not suitable when we want to add up estimates over several

triangles.

Remark. In the univariate case one can add up smoothness terms over disjoint intervals

using the averaged modulus of smoothness (see [13] Section 6.5). This technique also works

for disjoint multivariate cubes (see [14]).

The Whitney estimate (2.2) and the right-hand side of (1.4) yield

Er−1(f, ∆)p ≤ C(r, p)Kr(f, ∆)p , (2.3)

for functions in f ∈ Lp(∆), 1 ≤ p ≤ ∞, and for functions g ∈ W r
p (∆), they give

Er−1(g, ∆)p ≤ C(r, p)
(
diam(∆)

)r|g|W r
p (Ω) . (2.4)

In [10] we generalize (2.3) and show that for any bounded convex domain Ω ⊂ Rd and

f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

Er−1(f, Ω)p ≤ C(r, d)Kr(f, Ω)p .
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Proof of Theorem 2.2 Let g ∈ W r
p (Ω̃) such that

‖f − g‖Lp(eΩ) + diam(Ω̃)r|g|W r
p (eΩ) ≤ 2Kr(f, Ω̃)p .

Let Pn ∈ Πr−1, n = 1, . . . , N such that Er−1(g, ∆n)p = ‖g − Pn‖Lp(∆n) and define the

piecewise polynomial function

φ :=
N∑

n=1

1l∆nPn .

. Then for U :=
⋃N

n=1 ∆n and 1 ≤ p < ∞
N∑

n=1

Er−1(f, ∆n)p
p ≤ ‖f − φ‖p

Lp(U)

≤ (‖f − g‖Lp(U) + ‖g − φ‖Lp(U)

)p
.

Application of (2.4) yields

‖g − φ‖p
Lp(U) ≤ C(r, p)

N∑
n=1

(
diam(∆n)

)rp|g|pW r
p (∆n)

≤ C(r, p)
(
diam(Ω̃)

)rp|g|p
W r

p (eΩ)
.

Consequently

N∑
n=1

Er−1(f, ∆n)p
p ≤

(‖f − g‖Lp(U) + ‖g − φ‖Lp(U)

)p

≤
(
‖f − g‖Lp(eΩ) + C

(
diam(Ω̃)

)r|g|W r
p (eΩ)

)p

≤ CKr(f, Ω̃)p
p . ¤

3 Polygonal approximation of a partition of planar do-

main

The following main result of this section is required for the proof of the Jackson inequality

(1.13).

Theorem 3.1 Let Λ be a partition of a bounded domain Ω (see Definition 1.1). Assume

that each curve bj of the partition Λ is approximated by an interpolating polygon sj such

that max0≤u≤1 |bj(u) − sj(u)| ≤ εj, j = 1, . . . , nE(Λ), and that the total number of linear
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segments of all the polygons is m. Then there exist pairwise interior disjoint polygonal

connected domains Ω̃k,l, k = 1, . . . , nF (Λ), l = 1, . . . , nF (k), with Ω̃k,l ⊆ Ωk, such that the

total complexity of {Ω̃k,l} is O(m) and

|Ω| −
nF (Λ)∑

k=1

nF (k)∑

l=1

|Ω̃k,l| ≤ 4

nE(Λ)∑
j=1

len(bj)εj . (3.1)

Let γ be a closed Jordan curve in the plane and let P = {p1, . . . , pn} be a set of n points

on γ which appear in this counterclockwise order along the curve. For each i = 1, . . . , n,

let γi denote the arc between pi and pi+1 (where we put pn+1 := p1). Let Ci denote the

convex hull of γi, and let Ri be a circumscribed rectangle of Ci (or of γi), one of whose sides

is parallel to the straight segment [pi, pi+1]. Put U :=
⋃n

i=1 Ci and W :=
⋃n

i=1 Ri. Clearly,

U ⊆ W .

We first observe that the union W :=
⋃n

i=1 Ri may have quadratic complexity. A con-

struction that illustrates the lower bound is shown in Figure 3-1.

1i
p

+

i
R

i
p

Figure 3-1. The union W of the rectangles Ri may have quadratic complexity

(In Figure 3-1 not all the rectangles Ri are shown but the presence of the missing ones

would not have affected the quadratic complexity of W .)

Our goal is to first find an intermediate polygonal region U∗ that contains U , is contained

in W , and has complexity O(n). In what follows we show how to construct such a region.

Lemma 3.2 The number of intersection points of the boundaries of the sets Ci that lie on

∂U is at most 6n− 12 for n ≥ 3.

Proof. We claim that {Ci} is a collection of pseudo-disks, i.e., simply connected planar

regions, each pair of whose boundaries intersect at most twice. This is a well known property

(see, e.g., [6]) but we include its proof for the sake of completeness. Let Ci, Cj be a fixed pair
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of these sets, and suppose to the contrary that ∂Ci and ∂Cj intersect each other in at least

four points. Since these sets are convex, Ci∪Cj\(Ci∩Cj) consists of at least four nonempty

connected components, at least two of which, denoted C ′
i, C ′′

i are contained in Ci\Cj, and

at least two others, denoted C ′
j, C

′′
j , are contained in Cj\Ci; see Figure 3-2.

Ci

Cj

u
v

w

z

C ′i

C ′′i

C ′j

C ′′j

Figure 3-2. Two hull boundaries ∂Ci, ∂Cj cannot intersect at four points

Note that each of the components C ′
i, C

′′
i (resp. C ′

j, C
′′
j ) must intersect γi (resp. γj),

for otherwise, if say, γi ∩ C ′
i = ∅, then we can replace Ci by Ci\C ′

i, which is a convex set

that contains γi, contradicting the fact that Ci is the convex hull of γi. Choose four points

u ∈ C ′
i ∩ γi, v ∈ C ′′

i ∩ γi, w ∈ C ′
j ∩ γj and z ∈ C ′′

j ∩ γj, and observe that the portion of

γi between u and v must cross the portion of γj between w and z; see Figure 3-2. This

contradiction implies that {Ci} is a family of pseudo-disks. The claim is now an immediate

consequence of the linear bound on the complexity of the union of pseudo-disks, given in

[22]. ¤

For each pair of consecutive intersection points u, v along (some connected component of)

∂U , connect u and v by a straight segment. This chord and the portion of ∂U between u and

v bound a convex subregion of U . Let K denote the set of resulting subregions. The regions

in K are pairwise openly-disjoint, as is easily verified. See Figure 3-3(a) for an illustration.

We now use the following result, due to Edelsbrunner et al. [17].

Lemma 3.3 Let K be a collection of m pairwise openly-disjoint convex regions in the plane.

One can cover each region in K by a convex polygon, so that the resulting polygons are also

pairwise openly disjoint, and the total number of their edges is at most 3m− 6.

Let K be a region in K, and let V be the convex polygon that covers K. We shrink V

by translating each of its edges so that it becomes tangent to K. The resulting polygon V ′
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is clearly contained in V and contains K. Finally, let Ci be the (unique) convex hull that

contains K, and let Ri be the rectangle containing Ci. We replace V ′ by V ′ ∩ Ri. This

increases the number of edges of V ′ by at most four. See Figure 3-3(b).

K2

K3
K5 K6

(a)

K1

(b)

K ⊆ Ci

Ri

K4

Figure 3-3. (a) The subregions in K and their containing polygons. (b) Shrinking a covering
polygon

In summary, we have obtained a collection V of at most 6n− 12 pairwise openly disjoint

convex polygons with a total of at most 3(6n − 12) − 6 = 18n − 42 edges. Let U∗ denote

the union of U with the union of V . Then U ⊆ U∗ ⊆ W . Moreover, ∂U∗ consists exclusively

of edges of the polygons in V (the inclusion of U just fills holes in V), so U∗ is a polygonal

region with at most 18n− 42 edges. We have thus shown

Theorem 3.4 Let γ, P and W be as above. There exists a polygonal region U∗ with at most

18|P | − 42 edges that contains γ and is contained in W .

Proof of Theorem 3.1 Let Ωk be a sub-domain of the partition defined by the subset

of curves bk,j, j = 1, . . . , nE(k). Without loss of generality we may assume that Ωk is of

genus 1, which implies that ∂Ωk is a Jordan curve. Else, we may subdivide Ωk into regions

of genus 1 by adding at most nE(k) line segments and associating with them the ‘error’

ε = 0. We denote by bk,j,i, i = 1, . . . , ns(k, j) the ith portion of the curve bk,j and by sk,j,i the

corresponding approximating linear segment of sk,j. We associate with each such portion the
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rectangle Rk,j,i one of whose sides is parallel to sk,j,i as described in Figure 3-4. Assuming

the segment sk,j,i is placed on the x-axis, then Rk,j,i is defined by min/max points of bk,j,i

in the x and y directions. The horizontal length of the rectangle cannot exceed the length

of the curve segment bk,j,i, while the vertical length is bounded by 2εj because the distance

between each point on bk,j,i and the segment sk,j,i does not exceed εj.

( ), ,k j i
len b≤

, ,k j ib

2 jε≤

, ,k j is

Figure 3-4. The rectangle Rk,j,i

Therefore, denoting

Wk :=
⋃

i = 1, . . . , ns(k, j)
j = 1, . . . , nE(k)

Rk,j,i

we have

|Wk| ≤ 2

nE(k)∑
j=1

len(bk,j)εk,j .

By Theorem 3.4 there exists a polygonal domain U∗
k of total complexity ≤ C

∑nE(k)
j=1 ns(k, j)

such that ∂Ωk ⊂ U∗
k ⊆ Wk. This implies that Ωk\U∗

k =
⋃nF (k)

l=1 Ω̃k,l where Ω̃k,l, l =

1, . . . , nF (k), are pairwise interior disjoint polygonal connected domains whose total com-

plexity is smaller than the complexity of U∗
k and for which

∣∣∣∣Ωk\
nF (k)⋃

l=1

Ω̃k,l

∣∣∣∣ ≤ |U∗
k | ≤ |Wk| ≤ 2

nE(k)∑
j=1

len(bk,j)εk,j . (3.2)

The result is obtained by summing up the total number of edges of {Ω̃k,l} and the area

estimate (3.2) over all Ωk, k = 1, . . . , nF (Λ). ¤
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4 Relations between the K̃ and the Mumford-Shah

functionals

We would like to draw the attention to a connection between the K̃ and the Mumford-Shah

functionals. In their seminal paper [24], Mumford and Shah introduced a technique for

segmenting a bivariate function, thereby obtaining a ‘compact’ representation of functions

that have some lower-dimensional structure. Let Λ be a collection of continuous curves bj,

j = 1, . . . , nE(Λ) that partition the domain Ω to open sub-domains Ωk, k = 1, . . . , nF (Λ). In

the case of the Mumford-Shah functional, there are no ‘smoothness’ parameters tj associated

with the curves bj (see Definition 1.1). In particular, there is no limit on their number nE(Λ).

Let D be a differential operator of degree r, such as the gradient of degree 1 used in [25].

Let g ∈ L2(Ω) such that g ∈ W r
2 (Ωk), k = 1, . . . , nF (Λ). Then for weights µ1, µ2 > 0 and

any f ∈ Lp(Ω) we define an energy gauge

E(f, Λ) =

NF (Λ)∑

k=1

‖f − g‖2
L2(Ωk) + µ1

NF (Λ)∑

k=1

‖Dg‖2
L2(Ωk) + µ2

nE(Λ)∑
j=1

len(bj) , (4.1)

which is the error in the approximation of f by g, combined with penalty terms of various

types. The Mumford-Shah functional seeks to minimize (4.1) over all partitions Λ and

piecewise smooth functions g. The first term in (4.1) measures the approximation of f

by g, the second the (piecewise) smoothness of g and the third asks that the curves that

determine the partition be as short as possible. The weight µ1 controls the balance between

approximation and smoothness and the weight µ2 the ‘amount’ of segmentation one expects

in the solution. Indeed, these parameters depend on the specific application where the

technique is used and are sometimes implicitly controlled by the user.

As noted in [25], the choice of the L2 norm implies that the Mumford-Shah functional

depends only on the partition Λ. Indeed, once the partition is fixed, standard calculus of

variations shows that E is a positive definite quadratic function with a unique minimum.

Now, a modified version of the K̃-functional in the case of p = r1 = 2 can be expressed

as the infimum of

Ẽ(g, Λ) := ‖f − g‖2
L2(Ω) + µ1

nF (Λ)∑

k=1

‖Dg‖2
L2(Ωk) +

nE(Λ)∑
j=1

len(bj)t
2
j‖b′′j‖2

2 , (4.2)

with
nE(Λ)∑
j=1

t−1
j ≤ µ−1

2 ,
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where again µ1, µ2 are weights that play the same role as in (4.1). Comparing (4.1) with

(4.2) we see that the main difference between E and Ẽ lies in the different notions of lower-

dimensional ‘structure’. The energy gauge E uses only the length as a measure of lower-

dimensional structure and does not distinguish for example between a straight line and a

circle, both of the same length. Obviously, from an approximation theoretical point of view

the circle is more complex. Also, note that Ẽ counts the number of curves in the partition,

nE(Λ) and ensures that it does not exceed µ−1
2 . This implies that Ẽ implicitly considers the

end-points of the curves as vertices of the partition where breakpoints in curves are allowed.

One of our future goals is to investigate if functionals of the type (4.2) have any advantage

over known variants of the Mumford-Shah in applications such as segmentations of images.

Another possible application of the K̃-functional is the following. In [5] it is shown that

wavelet shrinkage methods can provide a near-minimizer for the K-functional

‖f − g‖L2([0,1]2) + t|g|B1
1(L1([0,1]2)) . (4.3)

Thus, the wavelet shrinkage algorithm which is both fast and robust can be used to solve

a variational problem that traditionally was considered computationally intensive and non-

stable. In [7] it was shown that wavelet shrinkage methods also produce near-minimizers for

a variational problem similar to (4.3) where the ‘smoothness’ measure |g|B1
1(L1) is replaced

by |g|BV . This is the Total-Variation functional introduced in [28].

Now, consider the following problem. For a given m ≥ 2, r ≥ 1 and a function

f ∈ Lp([0, 1]2) find a ‘near-best’ piecewise polynomial φ =
∑m

k=1 1l∆k
Pk over m triangles

such that ‖f − φ‖p ≤ Cσm,r(f)p. While for wavelet approximation finding a ‘near-best’ m-

term approximation is a relatively simple task using the ‘greedy algorithm’ (see [11]), finding

a ‘near-best’ piecewise polynomial approximation might be computationally impossible. In-

deed, in [1] it is shown that the discrete version of this problem is NP-hard. Roughly speaking

this means the following. Assume that for given samples fi,j = f(i/N, j/N), 0 ≤ i, j ≤ N ,

tolerance ε > 0 and 1 ≤ p < ∞, there exists an (optimal) piecewise polynomial φ ∈ S2,r
m (R2)

such that (
N∑

i,j=1

∣∣fi,j − φ(i/N, j/N)
∣∣p

)1/p

≤ ε , (4.4)

where m is the smallest possible number of triangles for which (4.4) can be satisfied. It seems

that there is no algorithm that runs in polynomial time (in the number of samples) and finds

a ‘near-best’ piecewise polynomial over say Cm triangles and satisfies (4.4). However, it

is shown in [1] that there exists an algorithm that runs in O(N16) and finds a piecewise

polynomial over Cm log m triangles which satisfies (4.4).
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So the following approach could be considered. Since, in this work we show that in some

sense (ignoring for a moment the constants)

σm,r(f)p ≈ K̃2,r(f,m−1)p ,

perhaps one can ‘reverse’ the approach of [5] and find a near-minimizer of the nonlinear ap-

proximation problem by applying Mumford-Shah techniques to minimize the K̃-functional?

This suggests the following algorithm for computing a ‘good’ piecewise polynomial approxi-

mation over triangles.

1. Find a (local) minimum of Ẽ, given in (4.2) with µ2 ≈ m−1. The solution is determined

by a partition Λ ∈ Λ(µ2).

2. Approximate the curves of Λ by near-best ‘free-knot’ polygons. The expected total of

segments of the polygons is O(m).

3. From the polygons of step 2 compute O(m) disjoint triangles that ‘almost cover’ the

sub-domains of Λ. This can be done using geometric algorithms that correspond to

the constructive techniques of Section 3.

4. For each triangle ∆ computed in step 3, calculate a near-best polynomial P ∈ Πr−1 so

that ‖f − P‖Lp(∆) ≤ CEr−1(f)Lp(∆).

5 Proofs of the main results

Proof of Theorem 1.4 Let f ∈ Lp([0, 1]2). We partition the square [0, 1]2 into smaller

squares with side lengths dt−1e−1. There are Cdt−2e of those. They define a partition where

the curves bj are simply the edges of the squares with attached parameters tj = 1 and the

domains Ωk are the squares themselves. The partition is in Λ(Ct2), and we clearly have by

(1.3) and (1.4),

K̃2,r(f, Ct2)p
p ≤

nF (Λ)∑

k=1

Kr(f, Ωk)
p
p

≤ CKr(f, tr, [0, 1]2)p
p

≤ C(p, r)ωr(f, t)p
Lp([0,1]2) .

By virtue of(1.8) and (1.11), it is easy to see that (f) eBα/2
q (Lp)

≤ C|f |Bα
q (Lp). ¤
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Lemma 5.1 Let Ω be a bounded domain with a piecewise linear boundary and let f ∈ Lp(Ω).

Then

K̃2,r

(
f, C(Ω)m−1

)
p
≤ σm,r(f)p .

Proof. Let ϕ ∈ Sr
m(R2) with ϕ =

∑m
k=1 1l∆k

Pk such that ‖f − ϕ‖Lp(Ω) ≤ (1 + ε)σm,r(f)p for

some ε > 0. Then, the triangles {∆k}m
k=1 determine a partition Λϕ ∈ Λ(C(Ω)m−1) where the

first curves bj, j = 1, . . . , nE(Ω) are the edges of the domains boundary and the remaining

curves, bj, j = nE(Ω) + 1, . . . , nE(Ω) + 3m are the edges of the triangles with parameters

tj = 1. The domains of the partition are the triangles ∆k and Ω̃ := Ω\⋃m
k=1 ∆k. Thus,

K̃2,r(f, Cm−1)p
p ≤

m∑

k=1

Kr(f, ∆k)
p
p + Kr(f, Ω̃)p

p

≤
m∑

k=1

‖f − Pk‖p
Lp(∆k) + ‖f‖p

Lp(eΩ)

≤ ‖f − ϕ‖p
Lp(Ω)

≤ (1 + ε)pσm,r(f)p
p . ¤

Proof of Theorem 1.5 It is well known that the Besov space Bα
q (Lq([0, 1]2)) is charac-

terized by its n-term approximation by B-spline wavelets of order r > α + 1 − 1/p, on the

dyadic cubes (see [12] and [14]). Note that these are piecewise polynomials on dyadic rings.

By triangulating these dyadic rings ( we obtain a partition of [0, 1]2 where the curves bj are

the edges so that K2(bj, 1)∞,1 = 0. The proof now follows by Lemma 5.1 when we observe

that σC2n,r(f)p is smaller than the degree of wavelet approximation on 2n dyadic cubes. ¤

In what follows we use the notation σm,r(ϕ)∞ to also denote the degree of approximation

of a univariate continuous function ϕ ∈ C([0, 1]) by Cr−2- ‘free-knot’ splines of degree r − 1

over m pieces (see [13] Section 12.4).

Lemma 5.2 Let ϕ : [0, 1] → R be continuous. Then for r ≥ 1

σm,r(ϕ)∞ ≤ C(r)Kr(ϕ,m−r)∞,1 .

Proof. Let g ∈ W r−1(BV ) such that

‖ϕ− g‖∞ + m−r|g(r−1)|BV ≤ 2Kr(ϕ,m−r)∞,1 .

By [13] Theorem 12.4.5 we have that

σm,r(g)∞ ≤ Cm−r|g(r−1)|BV .
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Let s ∈ Cr−2([0, 1]) be a spline of degree r−1 over m pieces such that ‖g−s‖∞ ≤ 2σm,r(g)∞.

Then,

‖ϕ− s‖∞ ≤ ‖ϕ− g‖∞ + ‖g − s‖∞
≤ ‖ϕ− g‖∞ + Cm−r‖g(r−1)‖BV

≤ CKr(ϕ,m−r)∞,1 . ¤

Corollary 5.3 Let b(u) := (b1(u), b2(u)) : [0, 1] → R2 be a continuous planar curve. Then

for each m ≥ 1 there exists an interpolating polygon s : [0, 1] → R2 with m segments such

that

max
0≤u≤1

|b(u)− s(u)| ≤ CK2(b,m
−2)∞,1 . (5.1)

Proof. By Lemma 5.2 we can find univariate polygons s̃1, s̃2 each with m segments, such that

max0≤u≤1 |bi(u) − s̃i(u)| ≤ CK2(bi,m
−2)∞,1, i = 1, 2. It is easy to see that we can ‘correct’

the polygons so that they interpolate the functions b1, b2 at the knots without hurting this

estimate (by changing the constant). Merging the knot-sequences of s̃1, s̃2 we construct a

polygon s(u) := (s1(u), s2(u)) with at most 2m knots for which (5.1) holds. ¤

Proof of Theorem 1.7 Let 1 ≤ p < ∞ and let f ∈ L∞(Ω). For each m ≥ 1 there exists a

partition Λ ∈ Λ(m−1) such that




nE(Λ)∑
j=1

len(bj)K2(bj, t
2
j)∞,1 +

nF (Λ)∑

k=1

Kr(f, Ωk)
p
p




1/p

≤ 2K̃2,r(f,m−1)p ,

0 < tj ≤ 1 and
∑nE(Λ)

j=1 t−1
j ≤ m. By Corollary 5.3, each boundary curve bj of Λ can

be approximated by an interpolating polygon sj with nj := dt−1
j e line-segments such that

|bj(u)− sj(u)| ≤ CK2(bj, t
2
j)∞,1 for all u ∈ [0, 1]. The total number of segments is therefore

bounded by
nE(Λ∑
j=1

dt−1
j e ≤ Cm .

Observe that although the curves bj may intersect only at their end points, the polygons sj

may self-intersect or intersect with other polygons. We now apply Theorem 3.1 that ensures

the existence of polygonal piecewise disjoint regions {Ω̃k,l}, of total complexity ≤ Cm such

that Ω̃k,l ⊆ Ωk, k = 1, . . . , nF (Ω), l = 1, . . . , nF (k) and

|Ω| −
∑

k,i

|Ω̃k,i| ≤ C

nE(Λ)∑
j=1

len(bj)K2(bj, t
2
j)∞,1 .
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We obtain that the error, in the p-norm, of replacing the domains Ωk by the regions {Ω̃k,l}
is bounded by

C‖f‖∞




nE(Λ)∑
j=1

len(bj)K2(bj, t
2
j)∞,1




1/p

.

We now triangulate the polyhedral sub-domains {Ω̃k,l} into a total of n∆(k) triangles with

disjoint interiors. We have that
⋃nF (k)

l=1 Ω̃k,l =
⋃n∆(k)

i=1 ∆k,i and
∑nF (Λ)

k=1 n∆(k) ≤ Cm. On each

triangle ∆k,i, we can find a bivariate polynomial of degree r2 − 1 such that

‖f − Pk,i‖Lp(∆k,i) = Er−1(f, ∆k,i)p .

Thus, we define φ ∈ Sr
Cm(R2) by

φ :=

nF (Λ)∑

k=1

n∆(k)∑
i=1

1l∆k,i
Pk,i .

We now apply (2.1) to obtain

σCm(f)p
p ≤ ‖f − φ‖p

p

≤ C‖f‖p
∞

nE(Λ)∑
j=1

len(bj)K2(bj, t
2
j)∞,1 +

nF (Λ)∑

k=1

n∆(k)∑
i=1

‖f − Pk,i‖p
Lp(∆k,i)

≤ C max(‖f‖p
∞, 1)




nE(Λ)∑
j=1

len(bj)K2(bj, t
2
j)∞,1 +

nF (Λ)∑

k=1

Kr(f, Ωk)
p
p




≤ Cp
1 (p, r) max(‖f‖p

∞, 1)K̃2,r(f, C2m
−1)p

L(Ω)
. ¤

Remark. It is interesting to compare the method used in the proof of Theorem 1.7 which

allocates to edges some ‘thickness’ with the Bandlets of [26]. Also, there are variants of the

Mumford-Shah functionals (see, e.g., [19]) that replace the edges’ length ‘penalty’ in (4.1)

with a boundary set B ⊂ Ω ‘penalty’ In this approach (4.1) takes the form

E(g, B) = ‖f − g‖2
L2(Ω\B) + µ1‖Dg‖2

L2(Ω\B) + µ2

∫

B

dx .

Finally,

Proof of Theorem 1.9 The first statement follows from Lemma 5.1, while Theorem 1.7

yields (1.15). ¤
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