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Abstract

Let f ∈ C[−ω, ω], 0 < ω < π, be nonlinear and nondecreasing. We wish to
estimate the degree of approximation of f by trigonometric polynomials that are
nondecreasing in [−ω, ω]. We obtain estimates involving the second modulus of
smoothness of f and show that one in general cannot have estimates with the third
modulus of smoothness.

1 Introduction and the main results

The question of estimating the degree of approximation of a nondecreasing continuous
function on a finite interval, by nondecreasing algebraic polynomials, called today mono-
tone approximation, has a long history with the first significant result due to Lorentz
and Zeller [9]. A few years later Iliev [7] and Newman [12] asked about estimating the
degree of, what is called today, comonotone approximation of a continuous function on
a finite interval that changes its monotonicity finitely many times in that interval, by
algebraic polynomials that change monotonicity exactly at the same points.

Obviously, one could not ask for the analog of monotone approximation by trigono-
metric polynomials, of continuous 2π periodic functions, as the only nondecreasing such
periodic functions are the constants. On the other hand asking the analog question
about comonotone approximation of 2π periodic functions is quite natural, and this
question has recently been dealt with by Dzyubenko and Pleshakov [3] (see also [13]).

Videnskii [18], Erdelyi [4] and Erdelyi and Szabados [5] dealt with the behavior
of trigonometric polynomials on an interval [−ω, ω], 0 < ω < π and obtain, among
others, Bernstein and Markov type inequalities (see, e.g., [1, Chapter 5]). Recently,
we see renewed interest in the subject, by Kroó [8] and Vianello [17]. Also, questions
of trigonometric interpolation and quadratures on [−ω, ω] have been discussed in [2]
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and [6], and Nagy and Totik [11], have proved Bernstein type inequalities for algebraic
polynomials on the arc Kω := {eiθ | θ ∈ [−ω, ω]}.

Unlike the interval [−π, π], one may ask how well can nondecreasing trigonometric
polynomials approximate a function f ∈ C[−ω, ω], where 0 < ω < π and C[−ω, ω]
denotes the space of continuous functions equipped with the sup-norm ∥ · ∥[−ω,ω]. The
purpose of this note is to begin to answer this question.

Let Tn denote the space of trigonometric polynomials of degree ≤ n, and denote by
∆(1)[−ω, ω] ⊂ C[−ω, ω], the set of all nonlinear, nondecreasing, continuous functions on
[−ω, ω]. We are interested in estimating

E(1)
n (f, ω) := inf ∥f − Tn∥[−ω,ω],

where the infimum is taken over all polynomials Tn ∈ Tn that are nondecreasing in
[−ω, ω].

As usual, define

∆t(f, x) :=

{
f(x + t) − f(x), x, x + t ∈ [−ω, ω],

0, otherwise ,

and let ∆k
t (f, x) := ∆t

(
∆k−1

t (f, x)
)
, k ≥ 2.

Also, define
ωk(f, t; ω) := sup

0<τ≤t
∥∆k

τ (f, ·)∥[−ω,ω],

and denote

(1.1) Ω2(t) := ω2(f, t; ω) > 0.

Our first result is the following estimate.

Theorem 1.1 Let 0 < ω < π. If f ∈ ∆(1)[−ω, ω], then

(1.2) E(1)(f, ω) ≤ C(ω)
ω1(f, ω

3
; ω)

ω2(f, 2ω; ω)
ω2(f, π/n; ω), n ≥ N(ω) .

While we would have liked the constant in (1.2) to be independent of f (the dependence
on ω, obviously, is necessary), we could not obtain that. Nevertheless, the next result
shows that we cannot improve the estimates by involving ω3.

Theorem 1.2 Let 0 < ω < π be fixed, and let A > 0 be given. Then there is a function
f = fn,A;ω ∈ ∆(1)[−ω, ω], such that

(1.3) E(1)
n (f, ω) > Aω3(f, ω; ω) > 0, n ≥ 1 .

A trigonometric polynomial is obviously periodic in [−π, π], so that forcing it to
be monotone nondecreasing in [−ω, ω] means that it will have at least two changes of
monotonicity in [ω, 2π − ω]. Therefore our strategy in proving Theorem 1.2 will be to
construct auxiliary functions that well approximate f on [−ω, ω], are monotone nonde-
creasing there and are sufficiently simple so as to allow us to extend them into periodic
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functions in the whole interval [−π, π], with two changes of monotonicity, such that we
have control on their second modulus of smoothness in the latter interval. Then we will
approximate these functions by their best trigonometric polynomial approximations.

To this end, in Section 2, for selected positive h’s (h = π
n
), we will construct a

piecewise linear, periodic function gh in [−π, π], that is nondecreasing in [−ω, ω], changes
monotonicity twice in [−π, π] \ [−ω, ω], is close enough to f in [−ω, ω] and has an
appropriate second modulus of smoothness in [−π, π]. Then we will approximate it
using results of [3] (see Section 3). Finally in Section 4, we will prove our results.
The constants C(·, . . . , ·) depend on the parameters inside the parentheses, but may be
different in different occurrences even when they appear on the same line.

2 Auxiliary construction

Given n ≥ 2π
π−ω

, let h := π
n

and let p be the natural number satisfying

ph ≤ ω < (p + 1)h .

We begin by defining gh in [−ph, ph], as the broken line connecting

gh(ih) := f(ih), −p ≤ i ≤ p .

Denote by δp−1 := ∆h(f, (p−1)h) and δ−p := ∆h(f,−ph), and extend gh to the intervals
[ph, (p + 1)h] and [−(p + 1)h,−ph] by straight lines having the slopes δp−1/h and δ−p/h,
respectively. We note that by Whitney’s theorem [19] (see, e.g., [14])

(2.1) ∥f − gh∥[−ω,ω] ≤ c Ω2(h) ,

where c is an absolute constant.
Since we would like to obtain a 2π periodic gh, in (−∞,∞), we define

gh(ih + 2πk) := gh(ih), −(p + 1)h ≤ i ≤ (p + 1)h, k ∈ Z,

where Z denotes the integers, so that, in particular, we have gh

(
(2n − p − 1)h

)
=

gh

(
−(p + 1)h

)
. Note that the choice of n guarantees that 2n − p − 1 > p + 1.

With this in mind, it remains to define gh(ih) for p+1 < i < 2n−(p+1), and extend
it periodically, as above.

With parameters α, β > 0, to be prescribed, we define the differences

(2.2) δi := gh((i + 1)h) − gh(ih), p ≤ i < 2n − p ,

by

δi := δp−1 − Ω2(h)α(i − p), p ≤ i < n ,(2.3)

δi := δ−p − Ω2(h)β(2n − p − i − 1), n ≤ i < 2n − p .
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Note that the new definitions of δp and δ2n−p−1 agree with the construction above. On
the other hand, retrieving gh(ih), p + 1 < i < 2n − p − 1, we observe that we have two
definitions for g(nh), namely,

gh(nh) =
n−1∑
i=p

δi + f(ph) ,

and

gh(nh) = f(−ph) −
2n−p−1∑

i=n

δi .

Hence, to guarantee that gh is well defined as a piecewise linear function in [−ph, (2n−p)],
we impose the condition

n−1∑
i=p

δi + f(ph) = f(−ph) −
2n−p−1∑

i=n

δi ,

which is,

0 =

2n−p−1∑
i=p

δi + f(ph) − f(−ph)

= f(ph) − f(−ph) +
n−1∑
i=p

(
δp−1 − Ω2(h)α(i − p)

)
+

2n−p−1∑
i=n

(
δ−p − Ω2(h)β(2n − p − i − 1)

)
= f(ph) − f(−ph) + (n − p)(δp−1 + δ−p)

+ Ω2(h)(α + β)(n − p)(n − p − 1)/2 .

Hence,

(2.4) α + β =
f(ph) − f(−ph) + (n − p)(δp−1 + δ−p)

Ω2(h)(n − p)(n − p − 1)/2
,

where we observe that, by the choice of n, we have n − p − 1 ≥ 1.
We are free to impose another condition on the two parameters, so we take α = β.

Then, it follows by (2.4) that

(2.5) α = β =
f(ph) − f(−ph)

Ω2(h)(n − p)(n − p − 1)
+

δp−1 + δ−p

Ω2(h)(n − p − 1)
≥ δp−1 + δ−p

Ω2(h)(n − p − 1)
.

Remark Since f is nondecreasing, we know that f(ph)−f(−ph) ≥ 0. However, it may
happen that although f is not a constant, still for some h > 0, f(ph) = f(−ph). By virtue
of (2.1), in this case, the constant trigonometric polynomial T0(x) ≡ f(ph) provides the
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required degree of approximation of f in [−ω, ω], namely, ∥f − T0∥[−ω.ω] ≤ c ω2(f, h),
and we may proceed directly to Section 4.

Otherwise, we may assume that f(ph) > f(−ph). Then any pair of positive param-
eters satisfying (2.4) will produce a well defined function gh of period 2π. Moreover,
since gh is nondecreasing in [ph, (p+1)h] and in [(2n−p−1)h, (2n−p)h], while already
gh(ph) > gh((2n−p)h), it readily follows that gh has a maximum followed by a minimum
in the interval [(p + 1)h, (2n − p − 1)h].

Now, let i1 be such that δi1 ≥ 0 and δi1+1 < 0 and let i2 > i1 be such that δi2 ≥ 0 and
δi1−1 < 0. In view of the above remark, the existence of i1 and i2 is clearly guaranteed.
Moreover, straightforward calculations yield,

p − 1 +
δp−1

αΩ2(h)
< i1 ≤ p +

δp−1

αΩ2(h)
and,

2n − p − 1 − δ−p

βΩ2(h)
≤ i2 < 2n − p − δ−p

βΩ2(h)
,

which, in turn, imply that,

2(n − p) − 1 − δp−1

αΩ2(h)
− δ−p

βΩ2(h)
≤ i2 − i1 < 2(n − p) + 1 − δp−1

αΩ2(h)
− δ−p

βΩ2(h)
.

Hence, by virtue of (2.5), we conclude that

i2 − i1 ≥ 2(n − p) − 1 − δp−1 + δ−p

αΩ2(h)
≥ 2(n − p) − 1 − (n − p − 1) = n − p ,

so that the distance between the maximum of gh and its minimum is

(2.6) i2h − i1h ≥ π − ω .

Finally, it readily follows by (2.5) that

(2.7) α = β ≤ 2nω1(f, h; ω)

Ω2(h)(n − p)(n − p − 1)
≤ 4nω1(f, h; ω)

Ω2(h)(n − p)2
≤ 4πhω1(f, h; ω)

Ω2(h)(π − ω)2
,

where for the second inequality we used the fact that n − p − 1 ≥ 1.
Since gh is defined in R, we may talk about

∆2
t (gh, x) := gh(x) − 2gh(x + t) + gh(x + 2t), t > 0 ,

and denote
ω2(gh, h; R) := sup

0<t≤h
∥∆2

t (gh, ·)∥R .

Lemma 2.1 For h = π
n
, 0 < t ≤ h and x ∈ R, we have

|∆2
t (gh, x)| ≤ 2 max

−p≤i<2n−p
|∆2

h(gh, ih)|.

5



Proof. Since gh is periodic with period 2π, we may restrict the discussion to ih ≤ x <
(i + 1)h, −p ≤ i < 2n − p. We will show that

(2.8) |∆2
t (gh, x)| ≤ 2 max{|∆2

h(gh, ih)|, |∆2
h(gh, (i + 1)h)|} .

Indeed, we distinguish three cases
1. If ih ≤ x < x + t < x + 2t ≤ (i + 1)h, then ∆2

t (gh, x) = 0, and there is nothing to
prove.

For the other two cases we need the notation,

γ :=
1

h
∆h(gh, ih) ,

η :=
1

h
∆h(gh, (i + 1)h) ,

µ :=
1

h
∆h(gh, (i + 2)h) .

2. We have ih ≤ x < x+ t ≤ (i+1)h < x+2t or x < (i+1)h < x+ t < x+2t ≤ (i+2)h.
We deal with the former, the latter being similar.

To this end, we have

gh(x) =
(
x − (i + 1)h

)
γ + gh

(
(i + 1)h

)
,

gh(x + t) =
(
x + t − (i + 1)h

)
γ + gh

(
(i + 1)h

)
,(2.9)

gh(x + 2t) =
(
x + 2t − (i + 1)h

)
η + gh

(
(i + 1)h

)
.

Hence,

∆2
t (gh, x) =

(
x − (i + 1)h

)
γ − 2

(
x + t − (i + 1)h

)
γ +

(
x + 2t − (i + 1)h

)
η

=
(
x + 2t − (i + 1)h

)
(γ − η),

so that

(2.10) |∆2
t (gh, x)| ≤ |∆2

h(g, ih)| .

Finally,

3. We have ih < x < (i + 1)h < x + t < (i + 2)h < x + 2t. Then, instead of (2.9) we
have,

gh(x) =
(
x − (i + 1)h

)
γ + gh

(
(i + 1)h

)
,

gh(x + t) =
(
x + t − (i + 1)h

)
η + gh

(
(i + 1)h

)
,

gh(x + 2t) =
(
x + 2t − (i + 2)h

)
µ + gh

(
(i + 2)h

)
.

Hence, we obtain

∆2
t (gh, x) =

(
x − (i + 1)h

)
γ − 2

(
x + t − (i + 1)h

)
η +

(
x + 2t − (i + 2)h

)
µ

+ gh

(
(i + 2)h

)
− gh

(
(i + 1)h

)
=

(
x − (i + 1)h

)
(γ − η) +

(
x + 2t − (i + 2)h

)
(µ − η) .
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Thus, we conclude that

|∆2
t (gh, x)| ≤ |∆2

h(g, ih)| + |∆2
h(g, (i + 1)h)| ,

which together with (2.10) completes the proof of (2.8). �

Corollary 2.2 For h = π
n
, n ≥ 2π

π−ω
, we have

(2.11) ω2(gh, h; R) ≤ c max

{
Ω2(h),

hω1(f, h; ω)

(π − ω)2

}
,

where c is an absolute constant.

Proof. In view of Lemma 2.1 we only have to estimate ∆2
h(g, ih), −p ≤ i ≤ 2n− p− 1.

First, note that, by our construction, if i = p − 1 or i = 2n − p − 1, then ∆2
h(g, ih) = 0,

and for −p ≤ i < p − 1, (2.11) readily follows from (1.1) and (2.1).
Now, by (2.3), for p ≤ i < n − 1, we obtain

∆2
h(g, ih) = δi+1 − δi = −Ω2(h)α,

and (2.11) follows by (2.7).
Similarly, we get (2.11) for n ≤ i < 2n − p − 1. This completes the proof. �

3 Comonotone approximation

Given 2s, s ∈ N, fixed points Y = {y1, . . . , y2s}, in [−π, π), such that −π ≤ y2s < y2s−1 <
· · · < y1 < π, we extend it to a sequence in R, by yi+2sk := yi − 2kπ, 1 ≤ i ≤ 2s, k ∈ Z.
We denote by ∆(1)(Y ) the set of all 2π periodic functions g ∈ C(−∞,∞) that change
monotonicity at the points of Y and are nondecreasing in [y2s+1, y2s]. Thus, f ∈ ∆(1)(Y )
is nondecreasing in [y2i+1, y2i], −∞ < i < ∞, and is nonincreasing otherwise.

Denote by
E(1)

n (g, Y ) := infTn∈Tn∩∆(1)(Y )∥g − Tn∥[−π,π],

the degree of best comonotone trigonometric approximation to g.
It was proved in [3] that

(3.1) E(1)
n (g, Y ) ≤ c(s)ω2

(
g, π/n; R

)
, n ≥ N(Y ),

where c(s) depends only on s, but N(Y ) depends on min1≤i≤2s{yi − yi+1}.
The functions gh constructed in Section 2, have two changes of monotonicity, at i1h

and i2h. By our construction (i1 +2n− i2)h > 2ω, so that by virtue of (2.6), we conclude
that the above minimum is

(3.2) min{(i2 − i1)h, (i1 + 2n − i2)h} ≥ min{π − ω, 2ω} =: m(ω).

If we denote Y2 := {i1h, i2h}, then it follows by (3.1) and the previous restriction on n,
that for gh, where h = π

n
,

(3.3) E(1)
n (gh, Y2) ≤ c(s)ω2

(
gh, π/n; R

)
, n ≥ max{ 2π

π − ω
,N(m(ω))} =: N1(ω).
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4 Proofs of the main results

We begin with a lemma.

Lemma 4.1 There exists a constant C = C(ω) such that for every nonlinear function
f ∈ C[−ω, ω] and all h ≤ ω2, we have

(4.1) hω1(f, h; ω) ≤ C
ω1(f, ω

3
; ω)

ω2(f, 2ω; ω)
ω2(f, h; ω) .

Proof. We quote [10, 3.6(11)] with l = 2ω to obtain the estimate,

ω1(f, h; ω) ≤ C(f, ω)ω2(f,
√

h; ω), h ≤ ω2 .

Hence,

hω1(f, h; ω) ≤ C(f, ω)hω2(f,
√

h; ω)

≤ C(f, ω)h

(
1√
h

+ 1

)2

ω2(f, h; ω) ≤ C(f, ω)ω2(f, h; ω) .

A closer look at the proof of [10, Theorem 3.9] shows that

C(f, ω) = C(ω)
ω1(f, 4ω

3
; ω)

ω2(f, 2ω; ω)
,

and the proof of (4.1) is complete. �

Proof of Theorem 1.1. Fix n ≥ max{ π
ω2 , N1(ω)} =: N(ω), and let h = π

n
. Then, by

(3.3), there exists a trigonometric polynomial Tn ∈ Tn, nondecreasing in [−ω, ω], such
that

∥gh − Tn∥[−ω,ω] ≤ c(s)ω2

(
gh, π/n; R

)
.

Hence, it follows by (2.11) and Lemma 4.1 that,

∥gh − Tn∥[−ω,ω] ≤ C(ω)
ω1(f, ω

3
; ω)

ω2(f, 2ω; ω)
ω2(f, π/n; ω).

Now, by (2.1),

∥f − Tn∥[−ω,ω] ≤ ∥f − gh∥[−ω,ω] + ∥gh − Tn∥[−ω,ω] ≤ C(ω)
ω1(f, ω

3
; ω)

ω2(f, 2ω; ω)
ω2(f, π/n; ω).

This completes the proof. �

In order to prove Theorem 1.2, we need two lemmas (compare the first with [16,
Lemma 4]).
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Lemma 4.2 Given b > 1
ω
, there exist a function f ∈ ∆(1)[−ω, ω] and a quadratic

polynomial p, such that

p′(ω) < 0 and b∥f − p∥ ≤ |p′(ω)|.

Proof. Set π(x) := ω − 2/b − x and

φ(x) :=

{
π(x), x ∈ [−ω, ω − 2/b],

0, x ∈ (ω − 2/b, ω].

Let f(x) :=
∫ x

−ω
φ(u)du and p(x) :=

∫ x

−ω
π(u)du.

Clearly, f ∈ ∆(1)[−ω, ω] and p′(ω) = −2/b, while

|f(x) − p(x)| =

∣∣∣∣∫ x

−ω

(φ(u) − π(u))du

∣∣∣∣ ≤ ∫ ω

ω−2/b

(u + 2/b − ω)du =
2

b2
.

This completes the proof. �

It is well known that the sets of functions {1, x, x2, cos x, sin x, . . . , cos nx, sin nx} and
{1, x, cos x, sin x, . . . , cos nx, sin nx} are Chebyshev systems in [−ω, ω]. Denote

Hn := span{1, x, x2, cos x, sin x, . . . , cos nx, sin nx},
Kn := span{1, x, cos x, sin x, . . . , cos nx, sin nx},

and let Cn be the Chebyshev polynomial, associated with Hn, in [−ω, ω]. Namely,
following [1, Sections 3.1 and 3.3] (see Theorem 3.1.6, (3.3.2) and 3.3E.2a there)

Cn(x) = c
(
x2 − a0 − b0x −

n∑
k=1

(ak cos kx + bk sin kx)
)
,

where c is a normalizing factor so taken that ∥Cn∥[−ω,ω] = 1 and Cn(ω) = 1, and there
exist 2n + 3 points −ω = x1 < x2 < · · · < x2n+2 < x2n+3 = ω, such that

Cn(xi) = −Cn(xi+1) = (−1)i+1∥Cn∥[−ω,ω].

Observe that C ′
n ∈ Kn and vanishes at xi, 1 < i < 2n + 3, that is, 2n + 1 zeros. Since

C ′
n has at most 2n + 1 zeros, it follows that C ′

n(ω) ̸= 0, thus C ′
n(ω) > 0.

The following lemma is a modification of [1, Theorem 3.3.1] for Hn (see also [15,
Theorem 1.10]).

Lemma 4.3 If Q ∈ Hn, then

(4.2) |Q′(ω)| ≤ |C ′
n(ω)|∥Q∥[−ω,ω],
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Proof. Without loss of generality, we may assume that ∥Q∥[−ω,ω] = 1. Assume, to the
contrary, that (4.2) is false, so that

(4.3) |Q′(ω)| > |C ′
n(ω)|.

We may assume that Q′(ω) > C ′
n(ω), for otherwise we take −Q. It follows from [1,

Theorem 3.3.1] that Q(ω) < 1, for otherwise (4.2) is valid, so that we cannot have
(4.3). Take the interval [xi, xi+1], 1 < i < 2n + 3. Either Cn(x) − Q(x) vanishes at
xi or xi+1, in which case it has a double zero there, or Cn(xi) − Q(xi) and Cn(xi+1) −
Q(xi+1) have opposite signs, so that there is a zero in (xi, xi+1). Also, we may have
Cn(x2n+2) − Q(x2n+2) = 0, a double zero, or, if Cn(x2n+2) − Q(x2n+2) ̸= 0, then in view
of our assumption on Q, the polynomial Cn(x)−Q(x) must vanish at θ < ω. Similarly,
we either have a double zero at x2 or Cn(x) − Q(x) must vanish in [−ω, x2). Hence,
the number of zeros counting multiplicities, in [−ω, θ], is at least 2n + 2, which is the
maximum possible number of zeros of Cn(x) − Q(x). By Rolle’s theorem, this implies
that all zeros of C ′

n(x) − Q′(x) are in (−ω, θ). However,

C ′
n(ω) − Q′(ω) < 0,

and coupled with Cn(ω) − Q(ω) > 0, this implies that there is a ζ ∈ (θ, ω) such that
Cn(ζ) − Q(ζ) = Cn(ω) − Q(ω). In turn, we conclude by the mean value theorem that
C ′

n(x)−Q′(x) vanishes at a point in (ζ, ω), a contradiction. Hence, our assumption (4.3)
in wrong, and (4.2) follows. This completes the proof. �

Remark Comparing Lemma 4.3 and [1, Theorem 3.3.1], one observes that in the for-
mer we did not require that Q(ω) = Cn(ω). However, our Chebyshev system had the
additional property that 1 belonged to it, of which we take advantage both by knowing
that |Cn(ω)| = 1, thus assuming that Cn(ω) = 1 (see [1, 3.3E.2a]), and in counting the
number of zeros of Cn − Q. Our proof is valid for any Chebyshev system that contains
1.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let A > 0 be arbitrary, and take B > 8A + 1 such that
b := B|C ′

n(ω)| > 1/ω. Let f ∈ ∆(1)[−ω, ω] be the function from Lemma 4.2 for b, and
let Tn ∈ Tn ∩ ∆(1)[−ω, ω], be the best monotone approximation to f . Then, for the
quadratic polynomial p of Lemma 4.2, we have, by Lemma 4.3,

b∥f − p∥ ≤ |p′(ω)| ≤ |p′(ω) − T ′
n(ω)| ≤ |C ′

n(ω)|∥p − Tn∥[−ω,ω].

Hence

E(1)
n (f, ω) = ∥f − Tn∥[−ω,ω] ≥ ∥p − Tn∥[−ω,ω] − ∥f − p2∥[−ω,ω]

≥ (B − 1)∥f − p∥[−ω,ω] > 8A∥f − p∥[−ω,ω]

≥ Aω3(f − p, ω; ω) = Aω3(f, ω; ω).

This completes our proof. �
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[11] Béla Nagy and Vilmos Totik, Bernstein’s inequality for algebraic polynomials on cicular arcs,
Constr. Approx. 37 (2013). 223–232.

[12] D. J. Newman, Efficient co-monotone approximation J. Approx. Theory 25 (1979), 189–192.

[13] M. G. Pleshakov, Comonotone approximation of periodic functions of Sobolev classes, Candidate’s
Dissertation in Mathematics and Physics, Saratov State University, Russia, 1997.

[14] M. G. Pleshakov and A. V. Shatalina Piecewise coapproximation and the Whitney inequality, J.
Approx. Theory 105 (2000), 189–210.

[15] T. J. Rivlin An introduction to the approximation of functions, Dover Publ., New York, 1989, pp
vi+150.

[16] A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials, Mat. Zametki 29
(1981), 117–130 (in Russian).

[17] M. Vianello, Norming meshes by Bernstein-like inequalities, Math. Inequ. Appl. 17 (2014), 929–
936.

[18] V. S. Videnskii, Markov and Bernstein type inequalities for derivatives of trigonometric polyno-
mials on an interval shorter than the period, Dokl. Akad. Nauk. SSSR 130 (1960), 13–16.

[19] H. Whitney, On functions with bounded nth differences, J. Math. Pure. Appl. 6 (1957), 67–95.

11


