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Behavior Preserving Extension 
of Univariate and Bivariate 
Functions
D. Levin
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

CHAPTER TWO

Abstract

Given function values on a domain D0  , possibly with noise, we examine the possibility 

of extending the function to a larger domain D,D0 ⊂ D. In addition to smoothness at 

the boundary of D0  , the extension to D \ D0 should also inherit behavioral trends of the 

function on D0  , such as growth and decay or even oscillations. The approach chosen 

here is based upon the framework of linear models, univariate, or bivariate, with con-

stant coefficients or varying coefficients.
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D. Levin20

1. INTRODUCTION

Prony5 has suggested in 1795 to model a data sequence by a linear 
combination of complex exponentials, and he has shown that such a model 
is equivalent to finding a linear model, with constant coefficients, for the 
evolution of the sequence. Shanks6 has revived this approach, used it for 
convergence acceleration, and has shown its relation to Padé approxima-
tion. Prony’s method for the decomposition of a signal to a series of com-
plex exponentials is a powerful tool for signal analysis. It has been studied 
by many authors, who made valuable contributions to the practical applica-
tion of the method, e.g., by Smyth and Osborne.4

2-D linear prediction models with constant coefficients have been used 
in Ref. 2 in the context of double series and bivariate Padé approximation. 
In the 2-D case the equivalence between linear prediction and exponential 
fitting is not true anymore, and the class of double sequences satisfying 2-D 
linear models with constant coefficients is in general richer than just sums 
of exponentials.

1-D linear models with varying coefficients have been studied in Ref. 1 
and in Ref. 3 who introduced new sequence transformations which are 
efficient for a wide class of sequences, wider than those which are defined 
by sums of exponentials. For a complete overview see Ref. 7.

Prony’s method has a close relationship to the least-squares linear 
prediction algorithms, and as such it can evidently be used for the 
extension, or the extrapolation, of sequences. The problem of extending 
a function is closely related to this, with the extra requirement that the 
extension should be smooth. In the present paper we begin by showing 
how univariate linear prediction model, with constant coefficients, may 
be used for smooth functional extension, without the need of solving for 
the exponents, as required in Prony’s method. This new approach allows 
generalization to higher dimensions, and it is used here for the extension 
of 2-D data.

2.  UNIVARIATE CASE—FROM A LINEAR MODEL TO 
EXTENSION

Given a function on a domain D0, the ideal information for extend-
ing the function into a larger domain would be the differential equation 
which the function satisfies on D0. If the differential equation is simple, e.g., 
with constant coefficients, it can be extended beyond D0, and the extension 
of the function may be defined by solving the differential equation with 
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Behavior Preserving Extension of Univariate and Bivariate Functions 21

proper initial or boundary conditions. If the function is known only on a 
discrete set of points in D0, say on a uniform grid, we may hope to find a 
difference equation which the data values satisfy on the grid. Knowing the 
difference equation may serve as a starting point for both approximating 
the function on D0 and for extending it beyond D0, as explained below. 
It is important to note that a univariate function is a sum of exponentials 
if and only if it satisfies a linear differential equation with constant coef-
ficients. Also, the values of a univariate function on a regular grid are a 
sum of exponentials if and only if they satisfy a linear difference equation 
with constant coefficients. This equivalence does not hold in 2-D. The 
case of linear differential or difference equations with varying coefficients 
is studied in Ref. 3 for the generation of the d-transformation and the  
D-transformation for efficient extrapolation of infinite series and integrals. 
It is shown there that the class of functions satisfying such equations covers 
most of the special functions, and their combinations.

2.1 Extracting linear prediction models
Let D0 = [a, b] and consider data sets {xi, fi}, where { fi} are 
 function values  (possibly with noise) at equidistant points 
xi = a + ih, i = 0, . . ., N , h = (b − a)/N . We would like to find a differ-
ence equation, or a linear prediction model, by which we can extend the 
function for x > b. Recalling our declared goal, we would like the extension 
to carry along the characteristic behavior of the function within the interval 
[a, b]. Since h may be very small, difference relation on a sequences of data 
values at distance h cannot catch the global behavior of f  on [a, b]. Also, in 
particular in presence of noise, the problem of finding a difference equation 
satisfied by the given data may be quite unstable. Let d = nh, we quest for 
a linear prediction model of order m satisfied by all the data sequences of 
mesh size d, { fi+(j−1)n}

[(N + 1)/n]
j = 1 , i = 0, . . ., n − 1. As we shall see below, 

the value d determines, by Nyquist sampling theory, the frequencies which 
can be reconstructed by the prediction model. We consider linear prediction 
models of the form:

Typical choices of the function u would be:
1. u ≡ 0 for a model with constant coefficients.
2. u(x) = x for a linearly varying model.

(1)[1 + qm+1u(xi)]fi =

m
∑

k=1

[pk + qku(xi)]fi−(m−k+1)n.

Author’s personal copyAuthor’s personal copy



D. Levin22

3. u(x) = 1
x+α for a model with rational variation.

Now we may use a standard way of defining an approximate prediction 
model by a least-squares fit, as follows:

We look for model coefficients P = {pk}
m
k=1 and Q = {qk}

m+1
k=1 such that

In Section 4 we discuss other options for extracting the model. In par-
ticular, we consider improving the numerical stability by minimizing

In Section 5 we use linear models for the bivariate extension problem.

3. APPROXIMATION AND EXTENSION ALGORITHMS
3.1 Univariate models with constant coefficients

Let us first discuss a linear model with constant coefficients. i.e., we would 
like to approximate the data on [a, b], and extend it beyond b, using the 
linear model

Such a model takes us back to Prony’s method, i.e., approximation by a sum 
of exponentials. Let {λj}

m
j=1 be the roots of the characteristic polynomial

For simplicity, let us assume that all the roots of p are simple. Then, all 
sequences satisfying (4) are of the form

(2)

I1(P , Q)

=

N∑
i=mn

(
[1 + qm+1u(xi)]fi −

m∑
k=1

[pk + qku(xi)]fi−(m−k+1)n

)2

→ min.

(3)I1(P , Q) + ν1

m
∑

k=1

p
2
k + ν2

m+1
∑

k=1

q
2
k .

(4)gi =

m
∑

k=1

pkgi−(m−k+1)n.

(5)p(λ) =

m
∑

k=1

pkλ
k−1

− λ
m

.

(6)
grn+i =

m
∑

j=1

c
(i)
j λ

r
j , r ∈ Z

P

P

P
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Behavior Preserving Extension of Univariate and Bivariate Functions 23

with coefficients {c(i)j } depending on i. We recall that the value grn+i is 
attached to the point x = a + (rn + i)h = a + rd + ih, and we would like 
to define a smooth function g such that g(a + rd + ih) = grn+i. W.l.o.g., we 
may assume that d = 1, and obtain the relation

The evident way of defining a smooth g on R is to make the coefficients 
independent of i, i.e., c̃(i)j = c̃j for any i. Then, g is simply

Other ways for constructing a smooth g satisfying the model will be pre-
sented in the following sections.

3.1.1  The approximation-extension algorithm for linear model with 
constant coefficients

1. Find the model coefficients by (2) with u ≡ 0.
2. Find the exponents {λj}

m
j=1 as the roots of the characteristic polynomial (5).

3. Define the approximation on [a, b] and the extension by (8) where the 
coefficients {c̃j} are obtained by least-squares approximation to the given 
data on [a, b].
There are some technical issues to deal with in the above algorithm. 

One is the case of multiple roots in step 2, and another is the problem of 
complex approximation to a real function in step 3. The last issue can be 
resolved by replacing the basis functions in step 3 above by an independent 
subset of {Re(λ

x
j ), Im(λ

x
j )}

m
j=1. More problematic is the issue of choosing 

the right order m for the model. If m is too small the model cannot approxi-
mate the data, and if m is too large some of the extra resulting exponents 
may introduce highly oscillatory behavior or another type of instability. 
Altogether, as shown in examples 1 and 2 below, the above algorithm works 
quite nicely for noisy data of functions which can be well approximated by 
sums of exponentials. However, the above approach cannot be applied to 
models with varying coefficients, and in the bivariate case it is not suitable 
even for models with constant coefficients. Therefore, the main purpose 
of this paper would be to suggest more general approximation-extension 
algorithms which are applicable to those cases as well.

(7)g(a + r + ih) =

m
∑

j=1

c
(i)
j λ

r
j =

m
∑

j=1

c̃
(i)
j λ

a+r+ih
j , r ∈ Z.

(8)g(x) =

m
∑

j=1

c̃jλ
x
j , x ∈ R.
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D. Levin24

3.1.2  Examples of approximation extension using  
exponential's fitting

As an example we consider extension of the function:

to [0, 14]. We first demonstrate the results for non-noisy data. The param-
eters used are n = 50, h = 0.02, and a model of the form (4) with m = 6. 
The resulting exponents are:

Note that 0.8, e
i
= 0.540302 ± 0.841471i and e2i = −0.416149 +− 0.909297i 

are the exact exponentials constituting f1. However, since f1 is not a “pure” 
sum of exponentials, we do not get them exactly. In Figure 2.1 we plot the 
function f1 together with the reconstructed approximation-extension g on 
[0, 14] (defined by (8)), using function values only on [0, 7].

Next we consider the same test function f1, measured at the same 
points in [0, 7], but with an added noise, randomly distributed in 
[−0.2, 0.2]. Here the resulting exponents of a model of the same size, 
m = 6, turn to be

In Figure 2.2 we plot the reconstructed approximation-extension g 
on [0, 14] together with the data on [0, 7] used in the algorithm, and the 
exact function f1 on (7, 14]. We note that the complex exponents are not 

(9)f1(x) = .8
x
− cos(x) + 2sin(2x) +

1

x + 1
, x ∈ [0, 7]

{λj}={0.061818,0.772124,−0.416977±0.908787i, 0.520298±0.852041i}.

{λj}={0.273076,−0.864675,−0.414134±0.908059i,0.542686±0.562524i}.

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

Figure 2.1 Approximation to non-noisy data on [0, 7] and extension on [0, 14]. For color 
version of this figure, the reader is referred to the online version of this chapter.
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Behavior Preserving Extension of Univariate and Bivariate Functions 25

so sensitive to the noise, but the real frequencies are quite different. Yet, the 
approximation in [0, 7] is good, and the extension is also reasonable.

3.2 Univariate models with varying coefficients
Unlike the above Prony’s type method, the algorithm presented below does 
not rely on finding the general solution of sequences satisfying the model. 
Hence, in principle, it is applicable even for non-linear models with vary-
ing coefficients. The method is based upon joining together all the required 
elements into one objective functional, and minimizing this functional 
within the space of all sequences satisfying the model. We demonstrate the 
approach via linear models with constant or varying coefficients.

Let us denote by g ∈ M a sequence g = {gi}n0≤i≤n1
, n0 ≤ 0 and n1 ≥ N, 

satisfying a model M . We would like to find a sequence g ∈ M  such that:
A. {gi}

N
i=0 approximates the given data sequence {fi}

N
i=0.

B. g is smooth.
Requirement A is reflected in the functional.

while the smoothness requirement B is characterized by

where � is the ordinary difference operator and p is a parameter represent-
ing the smoothness degree.

(10)E(g) =

N
∑

i=0

[fi − gi]
2

(11)Sp(g) =
∑

n0≤i≤n1−p

[�
p
gi]

2
,

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4

Figure 2.2 Approximation to noisy data on [0, 7] and extension on [0, 14] . For color 
version of this figure, the reader is referred to the online version of this chapter.
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D. Levin26

3.2.1 The approximation-extension algorithm for general models
1. Find an appropriate model M  for the data { fi}

N
i=0.

2. Define the approximation on {xi}
N
i=0 and its extension as the sequence 

g = {gi}n0≤i≤n1
 minimizing the functional

3.2.2 Discussion
The new element here is the inclusion of the smoothing functional Sp. 
Such a functional is a very common tool in Computer-Aided Geometric 
Design, where it is used for smooth filling of holes in a surface. In approxi-
mation theory Sp is viewed as a regularization functional. Let us explain its 
special role in our context; In the case of a model with varying coefficients, 
if the coefficients vary smoothly, each sequence obeying the model may 
be smooth, in some sense. However, let us recall that the model connects 
points which are d distance apart, or, equivalently, n indices apart, from each 
other (see (4)). Therefore, within g ∈ M  there may be n smooth indepen-
dent subsequences satisfying the model. The first role of the functional Sp 
is to force those n subsequences of g to unite into one smooth sequence. 
Furthermore, even in the case of models with constant coefficients, the 
space of sequences satisfying the model may include parasitic highly oscilla-
tory sequences. The second role of smoothing functional Sp is to invalidate 
these parasite components in M . The parameter µ determines a balance 
between the functionals Sp and E. In the examples below we discuss the 
effects of the parameter µ and the order p of the difference operator in Sp.

One may also argue that it is enough to take care of the smoothness of 
{gi}

N
i=0, and to continue the sequence by the model. However, this approach 

has been found to be unstable, and moreover, as explained in Section 5, this 
approach cannot work in 2-D.

As an example we have repeated the example with f1 defined in (9), 
measured at the same points in [0, 7], with an added noise randomly distrib-
uted in [−0.2, 0.2]. The model is also of the same size, m = 6, with constant 
coefficients, but the reconstruction is computed by minimization of F2 
defined in (12) with µ = 0.001. The numerical results of the reconstruction 
and the extension are very similar to those presented in Figure 2.2.

3.3 The scope of linear models with varying coefficients
Shanks6 investigated the use of exponentials fitting to a sequence as a tool 
for convergence acceleration. It is also shown there that fitting a linear 
model with constant coefficients to the terms of a power series leads to 

(12)Fp(g) = Sp(g) + µE(g), g ∈ M .

Author’s personal copyAuthor’s personal copy



Behavior Preserving Extension of Univariate and Bivariate Functions 27

Padé approximations. The use of linear models with varying coefficients has 
been studied in Ref. 1 and in Ref. 3 who introduced new sequence trans-
formations which are efficient for a wide class of sequences, wider than 
those which are defined by sums of exponentials. In Ref. 3 we can find 
examples of classes of sequences {ak} which satisfy a linear model with coef-
ficients which has asymptotic expansion in inverse powers of k, as n→∞. 
We refer to models of a general order m of the form:

where

As a simple example consider the sequence ak = k
α
e
ck. Obviously,

which is a linear model, with coefficients that vary with k. For any c and α, 
the coefficients have asymptotic expansion in inverse powers of k, as k→∞.  
Following Ref. 3 we denote by B(m) the class of sequences satisfying a 
model of order m of the form (13) with coefficients which has asymptotic 
expansions of the form (14).

Similar to the case of exponentials, the following algebraic rules hold3:
Let {ak} ∈ B

(m1) and {bk} ∈ B
(m2) then

For example,  by the above properties we can analyze sequences of equi-
distant evaluations of  Bessel functions, concluding that {ak} = {Jν(ks)} ∈ B

(2) 
for any order ν and for any s. Altogether, we recall here the rich family of 
sequences satisfying linear models of type B(m). In this paper we report the 
use of a restricted subclass of B(m), namely models of the form (1) with 
u(x) = x or u(x) = 1/x + α.

(13)ak+m+1 =

m
∑

i=1

pi(k)ak+i,

(14)pi(k) ∼ k
ri

∞
∑

j=0

pi,jk
−j

as k → ∞, ri ∈ Z.

(15)ak+1 = e
c
(1 −

1

k + 1
)
α
ak,

(16){ak + bk} ∈ B
(m1+m2), {akbk} ∈ B

(m1m2).
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D. Levin28

3.3.1  Examples of approximation-extension using a model with 
rational coefficients

As an example we considered extension of the function:

to [0, 14]. Here again f2 is measured with a noise, randomly distributed in 
[−0.2, 0.2]. The parameters used are n = 100, h = 0.01, and a model of 
the form (1) with u(x) = 1

x+1 and m = 6. The reconstruction is computed 
by minimization of F2 defined in (12) with µ = 0.0001 (µ ∼ h

2) (see Figs. 
13.3 and 13.4).

(17)f2(x) =
5 cos(2x)

x
2
+ 1

+ x
1.5

sin(x), x ∈ [0, 7]

0 2 4 6 8 10 12 14
−40
−30
−20
−10

0
10
20
30
40
50
60

Figure 2.4 Rational coefficients model: approximation-extension on [0, 14]. For color 
version of this figure, the reader is referred to the online version of this chapter.

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15

Figure 2.3 Rational coefficients model: approximation to the noisy data on [0, 7]. For 
color version of this figure, the reader is referred to the online version of this chapter.
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Behavior Preserving Extension of Univariate and Bivariate Functions 29

Remarks
1. Using the above characterization rules, the function (17) is in B(4), and 

it cannot satisfy a linear model with constant coefficients. Our model, 
with rational coefficients of low degree, is also not ideal here, but it 
performs better that a model with constant coefficients.

2. The right choice of the parameter µ is important. Choosing µ too 
big results in a bad approximation to the data, while a too small µ 
yields non-smooth approximation. The rule µ ∼ h

2 has been found to 
works well.

4.  THE BIVARIATE CASE—FROM A LINEAR MODEL TO A 
SMOOTH EXTENSION

W.l.o.g, let D0 = [a, b] × [a, b] and consider data sets {(xi, yj), fi,j},  
where {fi,j} are function values (possibly with noise) on a square mesh 
(xi, yj) = (a + ih, a + jh), i, j = 0, . . ., N , h = (b − a)/N . We would like to  
find a difference equation, or a linear prediction model, by which we can extend 
the function into D = [c, d] × [c, d], c < a, d > b.  As in the univariate case, 
we start by finding a linear model of size m×m satisfied by all the data sequences 
of mesh size d = nh, {fi+(k−1)n,j+(ℓ−1)n}

[(N+1)/n]

k,ℓ=1 , i, j = 0, . . . , n − 1. 
Denoting K = {(k, ℓ) : k, ℓ = 1, . . ., m}, we consider linear models of the 
form:

with the normalization pm,m = 1.
The first step in the extension algorithm is finding an approximate 

model M  for the given data. As in the 1-D case we do it by a least-squares 
minimization. Defining K−

= K\{(m, m)} we look for model coefficients 
P = {p(k,ℓ)}(k,ℓ)∈K

− such that

As remarked in the introduction, 2-D linear prediction models with 
constant coefficients describe function spaces which are much richer 
than sums of exponentials. In fact the space of functions satisfying a 
given 2-D model is usually of infinite dimension. Hence, the method of 

(18)

∑

(k,ℓ)∈K

pk,ℓfi+(k−1)n,j+(ℓ−1)n = 0

(19)

I2(P)=
�
(i,j)







�

(k,ℓ)∈K
−

pk,ℓfi+(k−1)n,j+(ℓ−1)n


+ fi+(m−1)n,j+(m−1)n




2

→ min.

P

P
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fitting exponentials cannot work here, and we use the above approxima-
tion + smoothing algorithm, which does not rely on finding the general 
solution of sequences satisfying the model.

Let us denote by g ∈ M  a sequence g = {gi,j}n0≤i,j≤n1
, n0 ≤ 0 and 

n1 ≥ N , satisfying a model M . We would like to find a sequence g ∈ M  
such that:
A. {gi,j}

N
i,j=0 approximates the given data sequence {fi,j}

N
i,j=0.

B. g is smooth.
Requirement A is reflected in the functional

while the smoothness requirement B is characterized by

where Q is the following quadratic operator:

with �xxgi,j = gi−1,j − 2gi,j + gi+1,j, �yygi,j = gi,j−1 − 2gi,j + gi,j+1, and 
�xygi,j = gi,j − gi−1,j − gi,j−1 + gi−1,j−1. We note that the functional S(g) is 
related to the bi-harmonic operator.

4.1 The bivariate approximation-extension algorithm
1. Find the model parameter P for the data by minimizing I2.
2. Define the approximation on D0, and its extension into D, as the 

sequence g = {gi,j}n0≤i,j≤n1
 satisfying the model M  and minimizing the 

smooth approximation functional

4.2  Examples of bivariate approximation-extension using a 
model and a smoothing functional

Unlike the method of fitting exponentials, the algorithm based upon the 
smooth approximation functional is completely linear. It is important to 

(20)E(g) =

N
∑

i,j=0

[fi,j − gi,j]
2

(21)
S(g) =

∑

n0+1≤i,j≤n1−1

Qgi,j ,

(22)

Qgi,j = [�xxgi,j]
2
+ [�yygi,j]

2

+
1

4
{[�xygi,j]

2
+ [�xygi+1,j]

2
+ [�xygi,j+1]

2
+ [�xygi+1,j+1]

2
}

(23)F(g) = S(g) + µE(g), g ∈ M .

P
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Behavior Preserving Extension of Univariate and Bivariate Functions 31

note that in the bivariate case, even if we knew g on D0, a direct extension 
of g into the larger domain D by the model would be impossible. Hence, 
we must solve here for g on the entire mesh in the larger domain D. Of 
course, the size of the linear system gets larger with the size m of the model 
and the size of the domain D.

In the following we demonstrate the performance of the proposed 
algorithm for two test functions:

In both cases the data is given on a square mesh, of mesh size h = 0.1,  
in D0 = [0, 4]

2, with an added random noise in [−0.2, 0.2]. The exten-
sion is into a square mesh, of the same mesh size, in D = [−2, 6]

2. A 4 × 4 
linear model is computed by (19), and the approximation-extension g is 
computed by minimizing the smooth approximation functional (23) with 
µ = 100. The linear system involves a sparse matrix of size 8900×8900, and 
the solution is done by MINRES iterations.

For the function f3 the resulting model coefficients are:

The noisy data of f3 is shown in Figure 2.5 and the resulting extension 
is shown in Figure 2.6.

For the function f4 the resulting model coefficients are:

The non-noisy data of f4 is shown in Figure 2.7 and the resulting 
extension is shown in Figure 2.8.

(24)f3(x, y) = 0.4 cos(4(x + y)) + 0.6y sin(3(x − y)) − (x − 2)
2
,

(25)f4(x, y) = x
2
− y

3
+ 2 + x − y + 20∗ exp(−(x − 2)

2
).

P =

















−0.0539 0.1662 −0.0964 −0.7606

0.3700 −0.0796 −0.3966 −0.4032

−0.2253 0.0797 −0.4422 0.2967

−0.1989 0.1743 0.5024 1.0000

















.

P =

















0.1505 0.0772 0.1560 −0.3483

0.0480 0.2556 0.1838 −0.0669

−0.1204 −0.0840 −0.0200 −0.4786

−0.1863 −0.2081 −0.3254 1.0000

















.P

P
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Figure 2.5 The noisy data of f3 on D0 = [0, 4]
2. For color version of this figure, the 

reader is referred to the online version of this chapter.
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Figure 2.6 Approximation-extension of f3 on D = [−2, 6]
2. For color version of this 

figure, the reader is referred to the online version of this chapter.
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Figure 2.7 The non-noisy data of f4 on D0 = [0, 4]
2. For color version of this figure, the 

reader is referred to the online version of this chapter.
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Figure 2.8 Approximation-extension of f4 on D = [−2, 6]
2. For color version of this 

figure, the reader is referred to the online version of this chapter.
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5.  EFFICIENT APPROXIMATION-EXTENSION USING 
MODEL-SPLINE BASIS FUNCTIONS

The two main deficiencies in the above method for smooth approx-
imation-extension are the high complexity in the bivariate case, and the 
need to find a proper balancing parameter µ between the approximation 
and the smoothing functionals in (23). In the following we present another 
method, which is very efficient, and does not involve any balancing param-
eter. Yet, it is less appropriate for models with varying coefficients, or for 
more general models. The method is based upon the following simple 
observation:

Proposition 5.1
Let P = {pk,ℓ}(k,ℓ)∈K represent a linear model with constant coefficients, where K is a 
finite subset of Z2, and let φ be a function of compact support in R2. Consider

where {ci,j}(i,j)∈Z
2 is a bi-infinite sequence satisfying the model, i.e.,

Then, the function g satisfies the model, i.e.,

Proof
Using the compact support of K and of φ,

 □

(26)
g(x, y) =

∑

(i,j)∈Z
2

ci,jφ(x − i, y − j), (x, y) ∈ R
2
,

(27)∑

(k,ℓ)∈K

pk,ℓci+k,j+ℓ = 0 ∀(i, j) ∈ Z
2
.

(28)
∑

(k,ℓ)∈K

pk,ℓg(x + k, y + ℓ) = 0 ∀(x, y) ∈ R
2
.

(29)

∑
(k,ℓ)∈K

pk,ℓg(x + k, y + ℓ) =
∑

(k,ℓ)∈K

pk,ℓ

∑

(i,j)∈Z
2

ci,jφ(x − i + k, y − j + ℓ)

=
∑

(k,ℓ)∈K

pk,ℓ

∑

(r ,s)∈Z
2

cr+k,s+ℓφ(x − r , y − s)

=
∑

(r ,s)∈Z
2

φ(x − r , y − s)
∑

(k,ℓ)∈K

pk,ℓcr+k,s+ℓ

= 0.

P
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Proposition 5.2
Let P = {pk,ℓ}(k,ℓ)∈K represent a linear model with constant coefficients, where K 
is a finite subset of Z2, and let φ be a function of compact support in R2 such that its 
integer shifts are linearly independent. Consider

If the function g satisfies the model, i.e., (28) holds, then {ci,j}(i,j)∈Z
2 satisfies the 

model, i.e., (27) holds.

Proof
The proof follows directly from (29) using the linear independence of 
{φ(x − i, y − j)}. □ 

Remark
The propositions are formulated for the bivariate case, but the results hold 
in any dimension.

In view of Proposition 5.1 we can easily generate many functions 
which satisfy a given model by sums of integer shifts of any function φ. 
We look for functions which satisfy a given model and are also smooth, 
and can form a basis for approximating the data. One possible choice 
for our problem is to define φ as a B-spline (e.g., tensor product) with 
equidistant knots, of mesh size d. The size d should be chosen so that 
d-shifts of the B-spline can provide good approximation to the func-
tion f  we would like to extend. Then, a spline approximation to f  
will approximately satisfy the same model as f  does, and, in view of 
Proposition 5.2, the B-spline coefficients will also approximately satisfy 
the same model. The choice of B-splines is natural here in view of the 
smoothness functionals used above, which are related to splines. In our 
tests we have used cubic B-splines, and their tensor products. Next, we 
would like to find a convenient way for generating the space of splines 
satisfying a model.

5.1 M spline basis functions for approximation-extension
Let us begin with the univariate case. Having decided upon the basis 
function φ as a cubic B-spline, and the parameter d, we would like to 
construct a basis for all the splines with equidistant knots, of mesh size d,  
which satisfy a given model. Here again we assume, w.l.o.g., that d = 1.  

(30)g(x, y) =
∑

(i,j)∈Z
2

ci,jφ(x − i, y − j), (x, y) ∈ R
2
.

P
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We consider coefficients satisfying a univariate model M  of order m of 
the form

For convenience we denote by {ci} ∈ M  a sequence satisfying the model. 
Viewing (31) as a prediction model, any vector of m initial values {ci}

r+m−1
i=r  

generates a sequence satisfying (31) for i ≥ r. A basis for all the sequences 
{ci} ∈ M  for i ≥ r may be obtained by using m independent initial vectors, 
e.g., the standard basis vectors e(j) = {δi,j}

m
i=1, j = 1, . . ., m. For an approxi-

mation in [0, N ], using the standard cubic B-spline representation, we need 
the coefficients {ci}

N+1
i=−1. We thus generate a basis of m sequences {c(j)i } ∈ M,  

for i ≥ −1, by m independent vectors of initial condition 
{c

(j)
i }

m−2
i=−1 = e

(j)
, j = 1, . . ., m. The m spline functions corresponding to 

these m sequences are

By Proposition 5.1, any g ∈ span{Sj}
m
j=1 satisfies the model M . We call 

such g an M spline. Therefore, all we need to do for the approximation-
extension procedure is to find g ∈ span{Sj}

m
j=1 which best approximates 

the given data. To demonstrate the method we go back to the previous 
examples, with noisy data for the test functions f1 and f2, with m = 6. First, 
we present plots of the M spline basis functions {Sj}

6
j=1, corresponding 

to the model found for f1 in Figure 2.9, and for f2 in Figure 2.10. One 
can already see the behavior of f1 and of f2 living in their corresponding 
basis functions. The approximation-extension using these basis functions is 
depicted in Figure 2.11.

Remark
 The above approach is both faster in application and is parameters’ 

free. The smoothness is determined directly by the choice of the basis 
function φ.

5.1.1 M spline basis functions for the bivariate case
The main motivation for using the basis functions’ approach is the high 
complexity involved in the application of the smoothing approach in 
2-D. Consider an m × m order bivariate model of the form (18). W.l.o.g.,  

(31)ci+m+1 =

m
∑

k=1

pkci+k, i ∈ Z.

(32)Sj(x) =

N+1
∑

i=−1

c
(j)
i B(x − i), j = 1, . . ., m.
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we would like to form a basis for all the tensor-product bi-cubic splines, 
with integer knots, which satisfy the model on [0, N ]

2. Any such bi-cubic 
spline can be written as

0 2 4 6 8 10 12 14
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.9 {Sj}
6
j=1 for the model found for f1. For color version of this figure, the reader 

is referred to the online version of this chapter.
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Figure 2.10 {Sj}
6
j=1 for the model found for f2. For color version of this figure, the reader 

is referred to the online version of this chapter.
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According to Propositions 5.1 and 5.2, the coefficients {ci,j} should satisfy 
the model. I.e.,

Let L = {(i, j)| − 1 ≤ i ∨ j ≤ m − 1} denote the m − 1 layers of indices 
along the bottom and the left boundary of the set of indices {(i, j)}

N+1
i,j=−1. 

Given any boundary values for {ci,j}(i,j)∈L, we can use the above model to 
fill out the rest of the coefficients by:

Hence, the space of all the tensor-product bi-cubic splines, with integer 
knots, which satisfy the model on [0, N ]

2 is of dimension #(L). A basis to 
this space can be generated, as in the univariate case, by taking a basis for 
the space VL = {ci,j|(i, j) ∈ L}, extending each vector in the basis by (35), 
and using the resulting coefficients to define a basis function by (33).

(33)
S(x, y) =

N+1
∑

i,j=−1

ci,jB(x − i)B(y − j).

(34)

∑

1≤k,ℓ≤m

pk,ℓci+k,j+ℓ = 0 with pm,m = 1.

(35)
ci+m,j+m = −

∑
1≤k,ℓ≤m; (k,ℓ)�=(m,m)

pk,ℓci+k,j+ℓ, i, j = 0, . . . , N − m + 1.
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Figure 2.11 Approximation-extension of f2 using the model-spline basis. For color 
version of this figure, the reader is referred to the online version of this chapter.
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In the following we go back to the bivariate example with noisy data for 
f3, now with a 6×6 model. In this case the dimension of the approximating 
space of spline functions satisfying the model is 85. To get the feeling of the M 
spline basis functions involved we plot one of them in Figure 2.12. In Figure 
2.13 we see the given data, in Figure 2.14 the approximation to the data by the 
spline basis functions, and in Figure 2.15 the extension into a larger domain.

Figure 2.12 One of the model-spline basis functions for reconstructing f3. For color 
version of this figure, the reader is referred to the online version of this chapter.

0 1 2 3 4 5 6

0
1

2
3

4
5

6
−6

−4

−2

0

2

4

Figure 2.13 The noisy data for f3. For color version of this figure, the reader is referred 
to the online version of this chapter.
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5.2 Interpolation between models
In all the above examples we have demonstrated methods for functions’ 
extensions which preserve their behavior. Now we consider the possibility 
of generating a smooth extension of a function which blends its behavior 
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Figure 2.14 The approximation of f3 by model-splines f3. For color version of this figure, 
the reader is referred to the online version of this chapter.
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Figure 2.15 The extension of f3 by model splines. For color version of this figure, the 
reader is referred to the online version of this chapter.
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into another desired behavior. This seems a whole project by itself, but with 
the tools presented in this work we can already present a basic method and 
an example which illustrate the potential of this direction. We consider 
the univariate case, and start by fitting a model to a given data on [a, b].  
Denoting this model by M1, we would like to approximate the data by a 
smooth function on [a, b], and extend this approximation into [b, c], so that 
the behavior model will change smoothly from M1 on [a, b] to another 
behavior M2 on [b, c].

We assume that both models are linear and of the same order m. The 
simple idea is to define a linear model M  on [a, c] that is a blend-
ing of the two models. In Figure 2.16 we depict the noisy data 
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Figure 2.16 The approximation of the data of cos(2x) by the blended model. For color 
version of this figure, the reader is referred to the online version of this chapter.
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Approximation on original interval Extrapolation

Figure 2.17 The approximation of cos(2x) extended to decay as e−2x. For color version 
of this figure, the reader is referred to the online version of this chapter.
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of f (x) = cos(2x) on [0, 5]. Computing a linear model of order 4, 
with constant coefficients, for this data yields the coefficients of M1: 
P = {0.0803, 0.6555, −0.4325, −0.2470, −1.0000}. We have chosen M2 
to be the model for the function f (x) = e

−2x. The corresponding model 
coefficients are: P = {0, 0, 0.0178, 0.0024, −1.0000}. We now define a 
linear model with linear coefficients (as in (1)), by a linear interpolation 
between the corresponding coefficients of the two models, such that it 
agrees with M1 at x = 0 and with M2 at x = 8. The resulting model is 
of the form (1) with u(x) = x, and we can use it as in Section 3.3 to 
define the approximation extension of the data. The result is shown in 
Figure 2.17.

ACKNOWLEDGMENT
I would like to thank Dr. Adi Ditkowski for raising the problem, and for 
his valuable insight.

REFERENCES
 1. Levin, David Development of Non-linear Transformations for Improving Convergence 

of Sequences. Int. J. Comput. Math. 1973, 3 (1), 371–388.
 2. Levin, David On Accelerating the Convergence of Infinite Double Series and Integrals. 

Math. Comput. 1980, 35 (152), 1331–1345.
 3. Levin, David; Sidi, Avram Two New Classes of Nonlinear Transformations for Accelerating 

the Convergence of Infinite Integrals and Series. Appl. Math. Comput. 1981, 9 (3), 
175–215.

 4. Smyth, G. K. M. R.; Osborne, M. R. A Modified Prony Algorithm for Exponential 
Function Fitting. SIAM J. Sci. Statist. Comput. 1995, 16, 119–138.

 5. Prony, R. Essai experimental et analytique: sur les lois de la dilatabilite de fluides elastique 
et sur celles de la force expansive de la vapeur de l’alkool, a differentes temperatures. J. 
L’Ecole Polytech. (Paris) 1795, 1 (22), 24–76.

 6. Shanks, D. Non-linear Transformations of Divergent and Slowly Convergent Sequences. 
J. Math. Phys. 1955, 34, 1–42.

 7. Sidi, A. Practical Extrapolation Methods; Cambridge University Press

P

P

Author’s personal copyAuthor’s personal copy

http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0005
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0005
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0010
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0010
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0015
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0015
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0015
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0020
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0020
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0025
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0030
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0030
http://refhub.elsevier.com/B978-0-12-800536-1.00002-2/h0035

	2
 Behavior Preserving Extension of Univariate and Bivariate Functions
	1. Introduction
	2. Univariate case—from a linear model to extension
	2.1 Extracting linear prediction models

	3. Approximation and extension algorithms
	3.1 Univariate models with constant coefficients
	3.1.1 The approximation-extension algorithm for linear model with constant coefficients
	3.1.2 Examples of approximation extension using exponential's fitting

	3.2 Univariate models with varying coefficients
	3.2.1 The approximation-extension algorithm for general models
	3.2.2 Discussion

	3.3 The scope of linear models with varying coefficients
	3.3.1 Examples of approximation-extension using a model with rational coefficients


	4. The bivariate case—from a linear model to a smooth extension
	4.1 The bivariate approximation-extension algorithm
	4.2 Examples of bivariate approximation-extension using a model and a smoothing functional

	5. Efficient approximation-extension using model-spline basis functions
	5.1 M spline basis functions for approximation-extension
	5.1.1 M spline basis functions for the bivariate case

	5.2 Interpolation between models

	Acknowledgment
	References




