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Using Laurent polynomial representation for the analysis
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Non-uniform binary linear subdivision schemes, with finite masks, over uniform grids, are
studied. A Laurent polynomial representation is suggested and the basic operations required
for smoothness analysis are presented. As an example it is shown that the interpolatory
4-point scheme is C1 with an almost arbitrary non-uniform choice of the free parameter.

1. Introduction

Starting with values {f 0
j }j∈Z assigned to the integers, a binary subdivision

scheme defines recursively values {fkj }j∈Z, respectively assigned to the binary points
{2−kj}j∈Z. The purpose of subdivision analysis is to study the convergence of such
processes and to establish the existence of a limit function on R and its smoothness
class. A general treatment of uniform subdivision can be found in [1–3,7,9,16,17].
Level-dependent subdivision schemes, where the scheme may vary from one refine-
ment level to the other, are discussed in [13]. In the present work we analyze non-
uniform binary subdivision schemes in which the scheme for defining the points may
vary from point to point and from level to level. To present the problem for non-
uniform schemes we first review one way of analyzing uniform binary subdivision
schemes using a Laurent polynomial representation.

A uniform binary subdivision scheme, with a finite mask {pi}ni=−m, is defined
by

fk+1
j =

∑
i∈Z

pj−2if
k
i . (1.1)

Let us represent the sequence of values {fkj } at level k by its Laurent series

Fk(z) =
∑
j∈Z

fkj z
j.
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The above uniform binary subdivision scheme may be represented by a generating
polynomial

p(z) =
n∑

i=−m
piz

i

defining the transformation from level k to level k + 1 by the formal relation

Fk+1(z) = p(z)Fk
(
z2). (1.2)

Fk(z2) =
∑

j∈Z f
k
j z

2j is interpreted as assigning the values fkj to the even points,
{2−(k+1) · 2j}, on the (k + 1) mesh. The equality in (1.2) is defined by equalities in
the coefficients of equal powers of z in both sides. A necessary condition [12] for the
convergence of the uniform binary subdivision scheme (1.1) to a C0 function is∑

p2i =
∑

p2i+1 = 1. (1.3)

These conditions can be expressed in terms of the generating polynomial as{
p(1) = 2,
p(−1) = 0,

(1.4)

and from here onwards it is assumed that (1.4) holds.
The analysis in [9] makes use of difference schemes and iterated schemes. In

the language of Laurent polynomials this gives us a practical tool for establishing the
smoothness class of the limit functions generated by a given scheme.

Theorem 1.1 (Proven in [9] and in [17] in terms of matrices). Let p[z] be the Laurent
polynomial representing a uniform binary subdivision scheme and assume

p(z) =
(z + 1)m+1

2mδm(z)
,

where δm(z) is a finite Laurent polynomial. A sufficient condition for a Cm limit
of the subdivision process is that there exists some ` > 0 such that the `-interated
polynomial

δm,`(z) =
`−1∏
i=0

δm
(
z2i) =

∑
j

δm,`
j zj (1.5)

is contractive in ‖ · ‖∞, i.e.,∑
i

∣∣δm,`
2`i+r

∣∣ < 1, 0 6 r < 2`. (1.6)

We note that δm(z) is the Laurent polynomial of the subdivision scheme for
the differences of the m-divided differences. Namely, if ∆ is the backward difference
operator, ∆fkj = fkj−1−fkj , then 2km∆mfkj /m! are the m-divided differences at level k
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and gkj = 2km∆m+1fkj /m! are the differences of the m-divided differences at level k.
The subdivision scheme induced by δm(z) transforms the values {gkj }j∈Z to the values

{gk+1
j }j∈Z [7].

The motivation for the analysis of non-uniform binary subdivision schemes arises
from some applications of the 4-point interpolatory scheme [8]. This scheme is defined
by {

fk+1
2j = fkj ,

fk+1
2j+1 =

(
1
2 + w

)(
fkj + fkj+1

)
− w

(
fkj−1 + fkj+2

)
,

(1.7)

where w is a constant tension parameter.
It is easy to check that the corresponding generating polynomial is

p(z) =
1

2z
(z + 1)2(1 + wb(z)

)
, (1.8)

where

b(z) = −2z−2(z − 1)2(z2 + 1
)
.

The analysis of this scheme in [8,9] gives ranges of the tension parameter w for
which the limit curve of the subdivision scheme is C0 or C1. In applications one
may need to use different tension values at different parts of the curve and at different
levels of the process. In general we consider the case w = wkj , i.e., a tension value
depending on the point j and the level k, and we would like to find conditions on the
values {wkj } so that the limit curve is still C0 or even C1.

The subdivision process (1.1) generates limit functions of the form

f (x) =
∑
j∈Z

f 0
j φ(x− j), (1.9)

where the function φ, termed the “basic limit function”, is supported in [−m,n] and
it satisfies the refinement equation

φ(x) =
n∑

i=−m
piφ(2x− i). (1.10)

Therefore, subdivision analysis is almost equivalent to the analysis of compact solutions
of corresponding refinement equations. This direction, which is also motivated by
wavelet analysis, is pursued in many works, e.g., [2,3], the main tool for this analysis
being of course Fourier analysis.

2. Analysis of non-uniform binary subdivision schemes

The analysis tools for uniform binary subdivision schemes in [7,9,17], or the
Fourier analysis approach in [2] do not seem to be appropriate for non-uniform
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schemes. In [4] de Boor studies the convergence of non-uniform corner cutting, and
this problem is further investigated by Gregory and Qu [14] who presented a full C1

analysis. In [10] an analysis of piecewise uniform subdivision schemes is presented.
In what follows we suggest an adaptation of the the above Laurent polynomial tools
for the analysis of general non-uniform binary subdivision schemes.

A general non-uniform linear binary subdivision scheme can be represented by
a bi-infinite sequence of generating polynomials {p(j,k)(z)} where each p(j,k) is the
polynomial representing the scheme generating the value fkj , k > 1, j ∈ Z. That is,

fk+1
j =

∑
i∈Z

p(j,k),j−2if
k
i , (2.1)

where p(j,k)(z) =
∑

m∈Z p(j,k),mz
m. We assume here that all the masks are finite,

namely, {p(j,k)(z)} are all finite Laurent polynomials. In the uniform case there is one
“basic limit function” which, together with its integer shifts and dyadic scalings, pro-
vides all the information on the limit function and the related multiresolution analysis.
In the level-dependent case [13], there is a different “basic limit function” for each
refinement level, while in the general non-uniform linear case we may define a “basic
limit function” φ(j,k)(x) per each dyadic point. Consequently there is a bi-infinite sys-
tem of refinement equations satisfied by {φ(j,k)(x)}. We are not going to pursue this
direction here.

Let G(z) =
∑

j∈Z giz
i be a Laurent series. We introduce the notation

[
G(z)

]
j

=

[∑
j∈Z

giz
i

]
j

= gj , j ∈ Z, (2.2)

for the operator extracting the coefficient of zj in a Laurent series. This simple operator
is the main tool used in the definitions and the derivations in this work. Two useful
simple properties of this operator are [zG(z)]j = [G(z)]j−1 and [G(z2)]2j = [G(z)]j .

The transformation from level k− 1 to level k by a general non-uniform scheme
can be expressed by the formal relation

Fk(z) =
∑
j∈Z

[
p(j,k)(z)Fk−1

(
z2)]

j
zj . (2.3)

It is clear that if j is even (odd) then only the even (odd) terms of p(j,k)(z)
contribute to the definition of the value fkj . However, in order to obtain a unified
formulation, we let p(j,k)(z) contain both odd and even powers. We further assume
that all the generating polynomials satisfy{

p(j,k)(1) = 2,
p(j,k)(−1) = 0. (2.4)

These conditions, which are necessary for a C0 limit in the uniform case, are certainly
not necessary for a C0 limit in the non-uniform case, but they are satisfied in some
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interesting examples of non-uniform schemes. The condition simply says that the
scheme preserves the constant function.

Example. Consider the 4-point scheme (1.8) where w is replaced by wkj . The corre-
sponding generating polynomials are

p(j,k)(z) =
1

2z
(z + 1)2(1 + wkj b(z)

)
. (2.5)

In other words, at each new point 2−kj the 4-point scheme is applied with possibly a
different tension parameter wkj .

Let us now examine the applicability of the new notation (2.2)–(2.3) to the basic
operations of backward differencing and to iterated subdivision. Backward differences
of the values {fkj } are represented by the Laurent series (z − 1)Fk(z). We would like
to express the backward differencing at level k by the backward differencing at level
k − 1, as follows:

(z − 1)Fk(z) =
∑
j∈Z

{[
p(j−1,k)(z)Fk−1

(
z2)]

j−1 −
[
p(j,k)(z)Fk−1

(
z2)]

j

}
zj

=
∑
j∈Z

[(
zp(j−1,k)(z)− p(j,k)(z)

)
Fk−1

(
z2)]

j
zj . (2.6)

Using (2.4) we have the factorization

zp(j−1,k)(z)− p(j,k)(z) =
(
z2 − 1

)
δ1

(j,k)(z), (2.7)

where δ1
(j,k)(z) is a finite Laurent polynomial, and thus

(z − 1)Fk(z) =
∑
j∈Z

[
δ1

(j,k)(z)
(
z2 − 1

)
Fk−1

(
z2)]

j
zj . (2.8)

Equation (2.8) expresses the transformation from differences at level k − 1 to differ-
ences at level k using the polynomials {δ1

(j,k)(z)}. Viewing the polynomials {δ1
(j,k)(z)}

as a non-uniform subdivision scheme, the non-uniform subdivision scheme defined
by the polynomials {p(j,k)(z)} is C0 if the scheme {δ1

(j,k)(z)} is contractive. If the
scheme {2δ1

(j,k)(z)} satisfies the conditions (2.4), then further difference schemes may
be defined. An important special case is considered in the following lemma:

Lemma 2.1. Let

p(j,k)(x) =
(z + 1)m+1

2m
(
a(z) + (z − 1)mbkj (z)

)
, (2.9)
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with a(1) = 1, and define δ0
(j,k)(z) ≡ p(j,k)(z). Then all the non-uniform difference

schemes {δr(j,k)(z)}, 1 6 r 6 m+ 1, defined recursively by

δr+1
(j,k)(z) =

2r(zδr(j−1,k)(z)− δr(j,k)(z))

z2 − 1
(2.10)

are finite Laurent polynomials. Furthermore, the scheme {δr+1
(j,k)(z)} maps the differ-

ences of the divided differences of order r of {fk−1
j } to the same differences at level k.

Namely,

(z − 1)r+1

2rk
Fk(z) =

∑
j∈Z

[
δr+1

(j,k)(z)
(z2 − 1)r+1

2r(k−1) Fk−1
(
z2)]

j

zj . (2.11)

The proof follows by applying (2.7) and (2.8) recursively, using the special
form (2.9) of {p(j,k)(z)}.

Next, in analogy to (1.5), we look for the generating polynomials for the `-iterated
scheme: We introduce the notation q(j,k,`)(z) representing the rule for calculating the
value fk+`

j using values at level k, {fki }.

Lemma 2.2. Let {q(j,k)(z)} be the generating polynomials of a non-uniform binary
subdivision scheme. Then the generating polynomials of the `-iterated scheme, trans-
forming values at level k directly to level k + `, are {q(j,k,`)(z)} defined recursively
by

q(j,k,i+1)(z) =
∑
m

q(j,k+i,1),mz
mq([(j−m)/2],k,i)

(
z2), (2.12)

where

q(j,k,1)(z) = q(j,k+1)(z)

and

q(j,k,i)(z) =
∑
m

q(j,k,i),mz
m, i = 1, . . . , `.

Proof. We would like to show that

Fk+`(z) =
∑
j∈Z

[
q(j,k,`)(z)Fk

(
z2`)]

j
zj . (2.13)

By definition,

Fk+i+1(z) =
∑
j∈Z

[
q(j,k+i,1)(z)Fk+i

(
z2)]

j
zj.
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Hence, assuming

Fk+i(z) =
∑
n∈Z

[
q(n,k,i)(z)Fk

(
z2i)]

n
zn,

we have

Fk+i+1(z) =
∑
j∈Z

[
q(j,k+i,1)(z)

∑
n∈Z

[
q(n,k,i)(z)Fk

(
z2i)]

n
z2n
]
j

zj

=
∑
j∈Z

∑
m

q(j,k+i,1),m

[
zm
∑
n∈Z

[
q(n,k,i)

(
z2)Fk(z2i+1)]

2nz
2n
]
j

zj

=
∑
j∈Z

∑
m

q(j,k+i,1),m

[∑
n∈Z

[
q(n,k,i)

(
z2)Fk(z2i+1)]

2nz
2n
]
j−m

zj

=
∑
j∈Z

∑
m

q(j,k+i,1),m
[
q([(j−m)/2],k,i)

(
z2)Fk(z2i+1)]

j−mz
j

=
∑
j∈Z

[∑
m

q(j,k+i,1),mz
mq([(j−m)/2],k,i)

(
z2)Fk(z2i+1)]

j

zj .

Thus q(j,k,i+1)(z) defined by (2.12) does transform values from level k into values
at level k + i+ 1. �

Definition 2.3. Using lemma 2.2, a non-uniform scheme represented by generating
polynomials {q(j,k)(z)} is said to be contractive if there exists some integer ` and
ρ ∈ [0, 1) such that ∑

i

|q(j,k,`),2`i+r| 6 ρ, 0 6 r < 2`, (2.14)

for any j and for any k > K, K > 1.

Theorem 2.4 (Sufficient conditions for Cm). Let {p(j,k)(z)} be the generating polyno-
mials of a non-uniform binary subdivision scheme, and let {δr(j,k)(z)}, 1 6 r 6 m+ 1,
be defined by (2.10). Then the scheme {p(j,k)(z)} is Cm if the scheme defined by
{δm+1

(j,k) (z)} is contractive.

3. The non-uniform 4-point scheme

In this section we apply the above analysis principles to the example of the non-
uniform interpolatory 4-point scheme. The corresponding generating polynomials (2.5)
can be written as

p(j,k)(z) =
(z + 1)2

2

(
1
z
− 2wkj z

−3(z − 1)2(z2 + 1
))
. (3.1)
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The uniform case {wkj ≡ w} is analyzed in [8], where it is shown that for any fixed

w ∈ I1 ≡ (0, 1
8 ), the 4-point scheme produces C1 limit functions. The special choice

w = 1
16 is fully investigated in [5,6]. The range of w for a C1 limit is extended

in [9] into w ∈ I2 ≡ (0, (
√

5− 1)/8), which is still not the largest possible. Using
the analysis in [10] it follows that applying the 4-point scheme different weights ⊂ I2

in different subintervals still yields C1 limit functions. For the non-uniform case we
restrict the analysis to {wkj } ⊂ I1.

Theorem 3.1. Let {wkj } be chosen arbitrarily in [ε, 1
8 −ε], for some fixed 0 < ε < 1

16 .
Then the non-uniform 4-point scheme defined by the polynomials (3.1) produces C1

limit functions.

Proof. Let us view the corresponding difference schemes. The non-uniform
scheme (3.1) is of the form (2.9) assumed in lemma 2.2. Hence, the difference schemes
are defined by the finite Laurent polynomials {δr(j,k)(z)}, r = 1, 2 defined by (2.10).
The explicit expressions are:

δ1
(j,k)(z) = (z + 1)

(
1

2z
+
(
zwkj−1 − wkj

)
z−3(z − 1)

(
z2 + 1

))
(3.2)

and

δ2
(j,k)(z) =

1
z
− 2
(
z2wkj−2 − 2zwkj−1 + wkj

)
z−3(z2 + 1

)
. (3.3)

By theorem 2.4, the non-uniform 4-point scheme would be C1 if we could prove
that the scheme {δ2

(j,k)(z)} is contractive. Following [9], let us examine the iterated
scheme {δ2

(j,k,2)(z)}. Using the recursive relation (2.12) we find that

δ2
(j,k,2)(z) =

3∑
m=−9

qmz
m

= z−9[4wk+1
i+1 w

k+2
j

]
− z−8[8wk+1

i+1 w
k+2
j−1

]
− z−7[2wk+1

i

(
1− 2wk+2

j−2 + 2wk+2
j

)]
+ z−6[8wk+1

i wk+2
j−1

]
+ z−5[4wk+1

i−1

(
1− wk+2

j−2 − w
k+2
j

)
− 2wk+2

j + 4wk+1
i+1 w

k+2
j

]
+ z−4[4wk+2

j−1

(
1 + 2wk+1

i−1 − 2wk+1
i+1

)]
+ z−3[1− 2wk+2

j−2 − 2wk+2
j − 2wk+1

i−2

(
1 + 2wk+2

j−2 − 2wk+2
j

)
− 2wk+1

i

(
1− 2wk+2

j−2 + 2wk+2
j

)]
+ z−2[4wk+2

j−1

(
1− 2wk+1

i−2 + 2wk+1
i

)]
+ z−1[4wk+1

i−1

(
1− wk+2

j−2 − w
k+2
j

)
− 2wk+2

j−2 + 4wk+1
i−3 w

k+2
j−2

]
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+ 8wk+1
i−1 w

k+2
j−1 + z

[
−2wk+1

i−2

(
1− 2wk+2

j−2 + 2wk+2
j

)]
− z2[8wk+1

i−2 w
k+2
j−1

]
+ z3[4wk+1

i−3 w
k+2
j−2

]
, (3.4)

where i = [j/2]. To check if the scheme {p(j,k)(z)} is C1 it is enough to prove
that {δ2

(j,k)(z)} is contractive, and in view of (2.14), it is enough to show that there
exists ρ ∈ [0, 1) such that each of the following four inequalities holds for any j
and k:

|q−9|+ |q−5|+ |q−1|+ |q3| 6 ρ,

|q−8|+ |q−4|+ |q0| 6 ρ,

|q−7|+ |q−3|+ |q1| 6 ρ, and

|q−6|+ |q−2|+ |q2| 6 ρ.

To simplify the notation let us denote the parameters in (3.4) as tm = wk+1
i−4+m, m =

1, . . . , 5, and tm = wk+2
j−8+m, m = 6, 7, 8. Now we have to show that above four

inequalities are satisfied for some fixed ρ ∈ [0, 1) for any {tm}8
m=1 ⊂ [ε, 1

8 − ε]. The
four inequalities take the form

4t5t8 +
∣∣4t3(1− t6 − t8)− 2t8 + 4t5t8

∣∣+
∣∣4t3(1− t6 − t8)− 2t6 + 4t1t6

∣∣
+ 4t1t6 6 ρ, (3.5)

8t5t7 + 4t7(1 + 2t3 − 2t5) + 8t3t7 6 ρ, (3.6)

2t4(1− 2t6 + 2t8) +
∣∣(1− 2t6 − 2t8)− 2t2(1 + 2t6 − 2t8)− 2t4(1− 2t6 + 2t8)

∣∣
+ 2t2(1− 2t6 + 2t8) 6 ρ, (3.7)

8t4t7 + 4t7(1 + 2t4 − 2t2) + 8t2t7 6 ρ. (3.8)

The inequalities (3.6) and (3.8) are easily satisfied with ρ = 3
4 . To handle (3.5)

we consider all the cases

4t3(1− t6 − t8) 6 or > 2t8 − 4t5t8

and

4t3(1− t6 − t8) 6 or > 2t6 − 4t1t6,

and it follows that the inequality holds with ρ = 1 − 10ε + 16ε2. In (3.7) we first
observe that the expression within the absolute value sign can be written as

1− 2t6(1 + 2t2 − 2t4)− 2t8(1− 2t2 + 2t4) > 3
8
> 0.

Thus, the whole expression is bounded by 1 − 2t6 − 2t8 6 1 − 4ε, and the four
inequalities are satisfied with ρ = 1− 4ε. �
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4. Guidelines for the multi-dimensional case

In this section we formulate the analysis principles for studying multi-dimensional
non-uniform binary subdivision schemes over uniform square grids. Based upon the
multidimensional theory in [7] the extension to the non-uniform case is quite straight-
forward, while the application to particular non-uniform cases becomes pretty involved.
In the following we present an analysis of the so called truncated tensor product
scheme [11], which is based upon the 4-point scheme. Using the standard multi-index
notation j = (j1, . . . , jd), z = (z1, . . . , zd) and zj = zj1

1 z
j2
2 · · · z

jd
d , the multivariate

notation and relations are as follows:
A general linear non-uniform d-variate binary subdivision scheme can be repre-

sented by a set of generating polynomials {p(j,k)(z)} where each p(j,k) is the polynomial
representing the scheme generating the value fkj , k > 1, j ∈ Zd. That is,

fk+1
j =

∑
i∈Zd

p(j,k),j−2if
k
i , (4.1)

where p(j,k)(z) =
∑

m∈Zd p(j,k),mzm. As in the univariate case we use the notation[∑
i∈Zd

gizi
]

j
= gj, (4.2)

for the operator extracting the jth coefficient of a Laurent series, and the values at
level k are represented by Fk(z) =

∑
j∈Zd f

k
j zj. The transformation from level k − 1

to level k is expressed by the formal relation

Fk(z) =
∑
j∈Zd

[
p(j,k)(z)Fk−1

(
z2)]

jz
j. (4.3)

We also denote 1 = (1, 1, . . . , 1) ∈ Zd, {er}dr=1 the standard basis for Rd and E =
{corners of [−1, 1]d}. The necessary conditions for a C0 limit in the uniform case are
assumed here for any one of the generating polynomials:{

p(j,k)(1) = 2d,
p(j,k)|E\1 = 0.

(4.4)

The main example we treat here is the non-uniform variant of the bivariate
truncated tensor product scheme [11], which is defined by the generating polynomial

p(z1, z2) =
1

4z1z2
(z1 + 1)2(z2 + 1)2(1 + w

(
b(z1) + b(z2)

))
, (4.5)

where b(z) is the same as in (1.8). As shown in [15], this scheme is C1 at least for
the range w ∈ (0, 0.122). For the non-uniform scheme we allow a different pair of
tension parameters at each new point generated at each level. Namely, {u((i,j),k)} and
{v((i,j),k)} as tension parameters in the x- and the y-directions, respectively, where (i, j)
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denotes a generic point in Z2. The set of generating polynomials of the non-uniform
truncated tensor product scheme is thus

p((i,j),k)(z1, z2) =
1

4z1z2
(z1 + 1)2(z2 + 1)2(1 + u((i,j),k)b(z1) + v((i,j),k)b(z2)

)
. (4.6)

To study the range of parameters for C1 limits of this non-uniform scheme, we
need to check the properties of the related difference schemes. In the multivariate
case we consider a vector of first order backward differences at level k represented by
vector Laurent polynomial

Gk(z) ≡ (z1 − 1, z2 − 1, . . . , zd − 1)TFk(z). (4.7)

Using the same arguments as in [7] we can write

zrp(j−er,k)(z)− p(j,k)(z)

=
(
δr,1

(j,k)(z), δr,2
(j,k)(z), . . . , δr,d

(j,k)(z)
)(
z2

1 − 1, z2
2 − 1, . . . , z2

d − 1
)T

, (4.8)

where {δr,s
(j,k)(z)} are finite Laurent polynomials.

Following the univariate derivation, using (2.6)–(2.7), we find out here that

Gk(z) =
∑
j∈Zd

[
D1

(j,k)(z)Gk−1
(
z2)]

jz
j, (4.9)

where D1
(j,k)(z) is the finite matrix Laurent polynomial with entries {δr,s

(j,k)(z)}dr,s=1. The
relation (4.9) is the multivariate analogue of (2.8). Following [7] again, it follows that
the scheme {p(j,k)(z)} produces C0 limit function if the matrix scheme {D1

(j,k)(z)} is
contractive. To analyze higher smoothness we need to consider higher order difference
schemes, and for their existence we need to assume some further conditions on the
matrix polynomials {D1

(j,k)(z)}. The vectors of higher differences get longer and the
corresponding matrix schemes are of corresponding bigger sizes. Instead of pushing
further the smoothness analysis for a general scheme in Rd, we rather focus on the spe-
cific example of the above mentioned bivariate non-uniform truncated tensor product
scheme. The generating polynomials of this scheme can be written as

p((i,j),k)(z1, z2) =
1

4z1z2

[
(z1 + 1)2(z2 + 1)2 − u((i,j),k)z

−2
1

(
z2

1 − 1
)2(

z2
1 + 1

)
(z2 + 1)2

− v((i,j),k)z
−2
2

(
z2

2 − 1
)2(

z2
2 + 1

)
(z1 + 1)2]. (4.10)

To check C1 we look for the scheme generating the vector of differences of first order
divided differences, namely

Hk(z1, z2) = 2
(
(z1 − 1)2, (z1 − 1)(z2 − 1), (z2 − 1)2)T

Fk(z1, z2). (4.11)

Using (2.6) twice we have

Hk(z1, z2) =
∑

(i,j)∈Z2

[
V((i,j),k)(z1, z2)Fk−1(z1, z2)

]
(i,j)z

i
1z
j
2, (4.12)
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where (with z = (z1, z2))

V((i,j),k)(z)

=


z2

1p((i−2,j),k)(z)− 2z1p((i−1,j),k)(z) + p((i,j),k)(z)

2
(
z1z2p((i−1,j−1),k)(z)− z1p((i−1,j),k)(z)− z2p((i,j−1),k)(z) + p((i,j),k)(z)

)
z2

2p((i,j−2),k)(z)− 2z2p((i,j−1),k)(z) + p((i,j),k)(z)

 .

For the special form of the scheme (4.10) we find that

V((i,j),k)(z) = 2A((i,j),k)(z)
((
z2

1 − 1
)2

,
(
z2

1 − 1
)(
z2

2 − 1
)
,
(
z2

2 − 1
)2)T

, (4.13)

where

A((i,j),k)(z) ≡ 1
2z1z2

{
Ar,s

((i,j),k)(z)
}3
r,s=1

is a finite 3× 3 matrix Laurent polynomial. The non-zero entries Ar,s
((i,j),k)(z) are given

below:

A1,1
((i,j),k)(z) = (z2 + 1)2 −

(
z2

1 + 1
)
(z2 + 1)2z−2

1

(
z2

1u((i−2,j),k) − 2z1u((i−1,j),k)

+ u((i,j),k)
)
,

A1,3
((i,j),k)(z) =−

(
z2

2 + 1
)
(z1 + 1)2z−2

2

(
z2

1u((i−2,j),k) − 2z1u((i−1,j),k) + u((i,j),k)
)
,

A2,1
((i,j),k)(z) =−

(
z2

1 + 1
)
(z2 + 1)2z−2

1 (z1z2u((i−1,j−1),k) − z1u((i−1,j),k) − z2u((i,j−1),k)

+ u((i,j),k)),

A2,2
((i,j),k)(z) = (z1 + 1)(z2 + 1),

A2,3
((i,j),k)(z) =−

(
z2

2 + 1
)
(z1 + 1)2z−2

2 (z1z2v((i−1,j−1),k) − z1v((i−1,j),k) − z2v((i,j−1),k)

+ v((i,j),k)),

A3,1
((i,j),k)(z) =−

(
z2

1 + 1
)
(z2 + 1)2z−2

1

(
z2

2u((i,j−2),k) − 2z2u((i,j−1),k) + u((i,j),k)
)
,

A3,3
((i,j),k)(z) = (z1 + 1)2 −

(
z2

2 + 1
)
(z1 + 1)2z−2

2

(
z2

2v((i,j−2),k) − 2z2v((i,j−1),k)

+ v((i,j),k)
)
.

Combining (4.11)–(4.13) we have

Hk(z1, z2) =
∑

(i,j)∈Z2

[
A((i,j),k)(z1, z2)Hk−1(z1, z2)

]
(i,j)z

i
1z
j
2 . (4.14)

Thus {A((i,j),k)(z1, z2)} is the non-uniform matrix scheme generating the vector of
differences of first order divided differences of the values generated by the non-uniform
scheme {p((i,j),k)(z1, z2)}. Therefore, the scheme {p((i,j),k)(z1, z2)} is a C1 scheme if the
scheme {A((i,j),k)(z1, z2)} is contractive. As in the univariate case we would like to find
a range of parameters {u((i,j),k)} and {v((i,j),k)} for which the non-uniform truncated
tensor product scheme is C1. The result in lemma 2.2 for computing iterated schemes
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is easily translated into the multivariate matrix case using the multi-index notation,
with z ∈ Rd and j, m ∈ Zd, as follows:

Lemma 4.1. Let {Q(j,k)(z)} be the generating matrix polynomials of a non-uniform
binary multivariate matrix subdivision scheme. Then the generating matrix polynomi-
als of the `-iterated scheme, transforming vectors at level k directly to level k+ `, are
{Q(j,k,`)(z)} defined recursively by

Q(j,k,i+1)(z) =
∑

m

Q(j,k+i,1),mzmQ([(j−m)/2],k,i)
(
z2), (4.15)

where

Q(j,k,1)(z) = Q(j,k+1)(z)

and

Q(j,k,i)(z) =
∑

m

Q(j,k,i),mzm, i = 1, . . . , `.

These formulae can be used to check the contractivity of the difference matrix
scheme {A((i,j),k)(z1, z2)} for verifying C1 of the non-uniform truncated tensor product
scheme (4.6). Considering the multitude of parameters involved, the application of this
approach for checking contractivity seems quite frightening here. Hence, instead of
a detailed algebraic proof, we performed a numerical simulation test. In this test we
have checked, for some fixed values of ε, the norm of {A((i,j),k,2)(z1, z2)} for many sets
of parameters {u((i,j),k)} and {v((i,j),k)} chosen at random in the interval (ε, 1

8−ε). Our
conclusion is that the scheme is contractive at least for ε = 0.02, i.e., the parameters
are in (0.02, 0.105). In order to verify if the interval of parameters can be further
stretched, one has to check the norms of {A((i,j),k,`)(z1, z2)} for ` > 2.
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