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Abstract

A general method for near-best approximations to functionals on Rd, using scattered-data information, is applied for
producing stable multidimensional integration rules. The rules are constructed to be exact for polynomials of degree 6m
and, for a quasi-uniform distribution of the integration points, it is shown that the approximation order is O(hm+1) where
h is an average distance between the data points. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given function values at scattered data points in a domain we are sometimes asked to evaluate
the integral of the function over the domain. The common practice in such a case is to approximate
the function by some interpolation procedure and to integrate the interpolant. We suggest a direct
approach to the integration problem, and our approach is based upon the following general method
for approximation:
Let f ∈ F where F is a normed function space on Rd, and let {Li(f)}Ni=1 be a data set, where

{Li}Ni=1 are bounded linear functionals on F . In most problems in approximation we are looking for
an approximation to L(f), where L is another bounded linear functional on F , in terms of the given
data {Li(f)}Ni=1. Usually we choose a set of basis functions, {�k}⊂F , e.g., polynomials, splines,
or radial basis functions. Then we �nd an approximation f̂ to f from span{�k}, and approximate
L(f) by L(f̂). If the approximation process is linear, the �nal approximation can be expressed as

L̂(f) ≡ L(f̂) =
N∑
i=1

aiLi(f): (1.1)
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In analyzing the approximation error, or the approximation order, we are frequently using the fact
that the approximation procedure is exact for a �nite set of fundamental functions P≡ span{pj}Jj=1⊂F .
Usually, we choose P to be �m, the space of polynomials of total degree 6m.

L̂(p) =
N∑
i=1

aiLi(p) = p; p ∈ P: (1.2)

In case the basis functions {�k}⊂F are locally supported (e.g., B-splines) and P =�m, and under
some proper assumptions on the distribution of the data points, it can be shown that the resulting
approximation error is O(hm+1), where h is an average distance between the data points. Another
way of analyzing the approximation error follows directly from the representation (1.1).
Let 
0⊂Rd be the support of the functional L, i.e. L(g) = 0 for all g vanishing on 
0, and let


N denote the support of
∑N

i=1 aiLi. Also let p be the best approximation to f from the set P on

 ≡ 
0 ∪ 
N ,

E
;P(f) ≡ ‖f − p‖
 = inf
q∈P

‖f − q‖
; (1.3)

where ‖ · ‖
 is the natural restriction to 
 of the norm on F . Using (1.2) it follows that

|L(f)− L̂(f)|6 |L(f)− L(p)|+ |L(p)− L̂(f)|

6 ‖L‖‖f − p‖
 +
∣∣∣∣∣
N∑
i=1

aiLi(f − p)
∣∣∣∣∣

6 ‖L‖‖f − p‖
 +
N∑
i=1

|ai‖|Li‖‖f − p‖


=

(
‖L‖+

N∑
i=1

|ai‖|Li‖
)
E
;P(f): (1.4)

Thus, a bound on the error, in the approximation (1.1) is given in terms of the norms of L and
the L′is, the coe�cients {ai}Ni=1, and of E
;P(f), the error of best approximation to f on 
 from P.
Similarly, let p̃ be the best approximation to f on 
 from all q ∈ P such that L(q)= L(f), and let

EL
;P(f) ≡ ‖f − p̃‖
 = inf
q∈P;L(q)=L(f)

‖f − q‖
: (1.5)

Then it follows that

|L(f)− L̂(f)|6
N∑
i=1

|ai‖|Li‖EL
;P(f): (1.6)

Let us assume that the data set {Li(f)}Ni=1 is �nite and J6N . In [6] we use the Backus–Gilbert ap-
proach [1–4], to �nd the coe�cients vector �a={a1; : : : ; aN} for the approximation L̂(f)=∑N

i=1 aiLi(f)
by minimizing the quadratic form

Q =
N∑
i=1

w(Li; L)a2i ; (1.7)
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subject to the linear constraints
N∑
i=1

aiLi(pj) = L(pj); j = 1; : : : ; J: (1.8)

In (1.7) {w(Li; L)} are non-negative weights, w(Li; L) represents a separation measure between the
functionals Li and L; w(Li; L)¿ 0 if Li 6= L.
Assume L 6= Lk; k = 1; : : : ; N , and Rank(E) = J where Ei; j = Li(pj) for 16i6N , 16j6J . It is

shown in [6] that the approximation de�ned by the constraint minimization problem (1.7), (1.8) is
L̂(f) =

∑N
i=1 aiLi(f) with

�a= D−1E(EtD−1E)−1 �c; (1.9)

where D=2Diag{w(L1; L); : : : ; w(LN ; L)} and �c=(L(p1); : : : ; L(pJ ))t. A typical example is the inter-
polation problem, where {Li} and L are the point evaluation functionals, Li(f) = f(xi); 16i6N ,
and L(f)=f(x). In this case, we take w(Li; L)=�(‖x−xi‖), where �(t) is fast decreasing as t → ∞,
and it is important to note that ai = ai(x); 16i6N . Namely, the coe�cients in the approximating
functional L̂ vary with the point x.
The resulting approximant is closely related to the moving least-squares method of McLain [8,9],

which is further discussed by Lancaster and Salkauskas [7]. In [6] we demonstrate and analyze the
method for univariate interpolation, smoothing and derivative approximation, and for scattered-data
interpolation and derivative approximation in Rd, d = 2; 3. In the present work we suggest to use
the method for deriving numerical integration rules based upon scattered-data information.

2. Integration formulas with scattered nodes

In this work we consider the approximation of

I(f;
) =
∫


w(x)f(x) dx; (2.1)

where 
 is a domain in Rd; w(x)¿0 on 
, and f is a smooth enough function. We assume that
values of f are given on a set X = {xi}Ni=1⊂
 and we look for an integration formula of the form

IN (f;
) =
N∑
i=1

Aif(xi): (2.2)

Following [10] and [5], our goal is to achieve a formula which is stable, i.e.,
∑N

i |Ai| is as small as
possible, and for which we can prove an approximation order result. We restrict the discussion to
sets of nodes as de�ned below.

De�nition (Sets h–�–�, of mesh size h, density 6�, and separation ¿h�). Let 
 be a domain in
Rd, and consider sets of data points in 
. We say that the set X = {xi}Ni=1 is a set h–�–� if
1. h is the minimal number such that


⊂
N⋃
i=1

B(xi; h=2); (2.3)

where B(x; r) is the closed ball of radius r with center x.
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2.
#{X ∩ B(y; qh)}6�qd; q¿1; y ∈ 
: (2.4)

Here, #{Y} denotes the number of elements of a given set Y .
3. ∃�¿ 0 such that

‖xi − xj‖¿h�; 16i¡ j6N: (2.5)

Let f be a function in Cm+1(
). Then, for sets h–�–� of nodes, with �xed � and �, we would
like to get

|I(f;
)− IN (f;
)|6C · hm+1; (2.6)

as h→ 0.
Let us suppose that we know how to evaluate I(p;
) for p ∈ �m. Then, the obvious strategy

for de�ning a good stable integration formula would be to �nd the weights {Ai} in (2.2) such that
IN (p;
) = I(p;
); p ∈ �m; (2.7)

and
∑N

i=1 |Ai| is minimal. This problem is not well posed, and it usually has in�nitely many solutions.
It is not clear how to extract an integration rule which satis�es an approximation order result like
(2.6). In the following, we suggest a composite rule strategy for building the integration formula
(2.2). We decompose the domain 
 into subdomains of diameter O(h); 
 =

⋃K
k=1 Ek; Ek ∩ Ej = ∅

for k 6= j. For each Ek we then construct an integration formula

ImN (f; Ek) =
N∑
i=1

A(k)i f(xi) ≈ I(f; Ek) (2.8)

which is as local and as stable as possible. Then we aggregate all the local formulae into a global
integration rule (2.2) over 
 with

Ai =
K∑
k=1

A(k)i (2.9)

and we denote this rule by ImN (f;
). Note that the rule also depends upon the speci�c decomposition
of 
 into subdomains. Following the general idea presented in the introduction we propose the
following procedure for de�ning an integration formula of order m on a subdomain E⊂
.
Let us assume that the integrals I(p; E), for p ∈ �m, are easily computable, and let x∗ be some

center of E. We de�ne an approximation ImN (f; E) =
∑N

i aif(xi) ≈ I(f; E) so that the rule is exact
for �m, i.e.,

ImN (p; E) = I(p; E); ∀p ∈ �m: (2.10)

Furthermore, for the localization of the rule and for controlling the magnitudes of the weights we
require that the {ai} minimize the quadratic form

Q =
N∑
i=1

�(‖x∗ − xi‖)a2i ; (2.11)
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with a fast increasing, �nitely supported, weight function

�(r) = exp(r2=h2)�s(r=h); (2.12)

where �s is the characteristic function of the open ball of a radius s around x = 0, and s is some
�xed number so that E⊂B(x∗; sh).
In the framework of the general procedure presented in the Introduction, L(f) = I(f; E) and

Li(f)=f(xi), i=1; : : : ; N . Consequently, the solution of the constraint minimization problem (2.10)
and (2.11) is given by (1.9), namely �a= D−1E(EtD−1E)−1 �c with

D = 2Diag{�(‖x∗ − x1‖); : : : ; �(‖x∗ − xN‖)};

Ei; j = pj(xi); 16i6N; 16j6J

and �c = (I(p1; E); : : : ; I(pJ ; E))t . Here J =
(
d+m
m

)
is the dimension of �m and the computation of

the coe�cients vector �a involves the solution of a full linear system of order J .
In the following, we present an approximation order theorem for the resulting aggregated approx-

imation to I(f;
), de�ned by (2.2) and (2.9) with weights {A(k)i } de�ned as the coe�cients {ai}
obtained by the above process applied for E = Ek .

Theorem. Let f be a function in Cm+1(
); and consider sets h−�− � of data points with �xed �
and �. Then; there exists h∗¿ 0 such that the approximation ImN (f;
) de�ned by (2:2) and (2:9);
with � given by (2:12); satis�es

|I(f;
)− ImN (f;
)|6Chm+1; (2.13)

for 0¡h6h∗.

Proof. For a �xed h we decompose the domain 
 into subdomains of diameter O(h), such that

 =

⋃K
k=1 Ek; Ek ∩ Ej = ∅ for k 6= j. As in [6] it can be shown that, for a su�ciently small h,

there exists a �xed s¿ 0 (for the de�nition of � in (2.12)) such that the approximation on each
subdomain {Ek} satis�es

|I(f; Ek)− ImN (f; Ek)|6C1hm+1 × Volume(Ek)6C2hm+1+d; (2.14)

where C1 and C2 are constants independent of k and h. Summing up all the approximations ImN (f; Ek),
noting that there are O(h−d) subdomains, the result (2.13) follows.

3. Numerical demonstration — Scattered data integration rules in R2 and R3

In this section we present some results on the application of the suggested method for deriving
integration formulae. We consider scattered nodes in domains in R2 and R3, and we try to show
that the method gives good stable integration rules. We examined integration rules over 
 = [0; 1]d

based upon data points scattered in [0; 1]d, for d= 2; 3, and obtained very good approximations for
many test functions. The weight function � used in our experiments is

�(r) = exp(r2=h2): (3.1)
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Fig. 1. The weights for the integration rule I 381(f;
).

In one of the experiments we applied the method for a set of 81 data points randomly chosen
in [0; 1]2, with a corresponding h = 0:25 in (3.1). In Fig. 1 we display the weights of the result-
ing integration rule (2.2) which is obtained as described in Section 2, with the exactness class
�3 (J = 10). We used the decomposition of [0; 1]

2 into squares of size 0:25 × 0:25 and we de-
note this approximation by I 381(f;
). Each intergation point is represented by a circle of area
equals the absolute value of the corresponding weight. The circles are open to the right if the
weights are positive, and to the left if negative. We observe that the weights are all positive, and
that there are larger weights where there are fewer data points. The application of the integra-
tion rule to the function f(x; y) = e x−y yields a relative error ∼ 0:000065, while for the func-
tion f(x; y) = e5(x−y) the relative error is ∼ 0:0317, which is consistent with an approximation
order 4.
Similar properties were observed in the 3-D case. We applied the method of exactness class �2

in R3 (J =10) for a set of 729 integration points randomly chosen in [0; 1]3, with h=0:25 in (3.1).
Here the subdomains are chosen to be boxes of size 0:25× 0:25× 0:25. Here we choose to display
the weights of the integration rule for the subdomain E = [0:75; 1]3. The weights are depicted in
Fig. 2, where each integration point is represented by a box of size proportional to the value of
the corresponding weight in the rule for I 2729(f; E). The boxes are open above if the corresponding
weights are positive, and below if negative. We observe that the signi�cant weights are all positive,
and that they are all in a small neighborhood of the subdomain E. Here also all the weights of the
integration rule I 2729(f; [0; 1]

3) turn to be positive. We remark that this is not always true. However,
the number and the magnitudes of the negative weights are always very small. The application of
the integration rule to the function f(x; y)= e x−y+z yields a relative error ∼ 0:000165, while for the
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Fig. 2. The weights for the integration rule I 2729(f; [0:75; 1]
3).

function f(x; y)= e5(x−y+z) the relative error is ∼ 0:0386, which is consistent with an approximation
order 3.
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