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Abstract

Piecewise L-splines are generalizations of L-splines, in the sense that they satisfy different differential
equations in different mesh intervals. Prenter attempted in [P.M. Prenter, Piecewise L-Splines, Numer.
Math. 18 (2) (1971) 243–253] to obtain results on piecewise L-splines by generalizing the results of Schultz
and Varga on L-splines in [M.H. Schultz, R.S. Varga, L-Splines, Numer. Math. 10 (1967) 345–369]. We
show that the results of Prenter are erroneous, and provide correct ones for piecewise L-splines of order
4. We prove the existence and uniqueness of such interpolants and establish the first and second integral
relations. In addition we obtain new L2 error bounds for the special case of splines in tension with variable
tension parameters.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Fitting a smooth function to interpolate samples taken from a univariate function at selected
points is a classical problem in numerical analysis, which is relevant to many applications. A
popular interpolant is the polynomial spline, formed by joining polynomials of fixed degree
m together at the interpolation points to obtain a Cm−1 function. Cubic splines (m = 3) are
used in many applications, due to their smoothness, low computational complexity and their
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energy minimizing property. Experiments show that the interpolatory cubic spline can exhibit
undesirable oscillations between the interpolation points. Such artifacts can be eliminated by
using the spline in tension, a C2 interpolant, which is a linear combination of the functions
{1, x, sinh ρx, cosh ρx} in each mesh interval [2,8,9]. Here ρ, the tension parameter, is a
nonnegative constant, possibly different in different mesh intervals. Increasing the tension
parameter corresponding to a mesh interval tightens the spline in that interval, thus removing
unnecessary oscillations there. Specifically, as ρ grows to infinity the spline in tension converges
to the linear interpolant on the corresponding mesh interval, while as ρ tends to zero, it
converges to a cubic polynomial there [9]. In this sense, splines in tension are generalizations
of cubic splines. For sufficiently large tension parameters the spline in tension can mimic
any monotonicity and convexity behavior that is present in the interpolated data [5]. Tension
parameter selection algorithms are suggested in [2]. Splines in tension are powerful interpolants,
because their smoothness and approximation orders equal those of cubic splines, while they can
be controlled to a much larger extent.

Cubic splines and splines in tension with uniform tension (i.e., with equal tension parameters)
are special cases of L-splines. A smooth interpolant s(x) at the points {xi }

N
i=0, x0 < x1 < · · · <

xN is called an L-spline of order 2n if it satisfies L∗Ls = 0 in each interval [xi−1, xi ], where

Lu(x) =
n∑

j=0

a j (x)D
j u(x) (1)

is a differential operator of degree n with a j ∈ Cn
[x0, xN ] for each j and an(x) > 0 on [x0, xN ],

and L∗ is its formal adjoint [1],

L∗v(x) =
n∑

j=0

(−1) j D j
{a j (x)v(x)}.

Important examples are the polynomial spline of degree 2n− 1, corresponding to the differential
operator L = Dn , and the spline in tension with uniform tension ρ, which is an L-spline of order
4 with L = D2

− ρD. Schultz and Varga obtained in [7] existence and uniqueness results for
L-spline interpolants, as well as error bounds with respect to the L∞ and the L2 norms.

The family of L-splines is limited because it excludes splines satisfying different differential
equations in different mesh intervals. For the investigation of such splines the concept of
piecewise L-splines is required. A smooth interpolant s(x) at the points {xi }

N
i=0, x0 < x1 < · · · <

xN is called a piecewise L-spline of order 2n if it satisfies L∗i L i s = 0 in the interval [xi−1, xi ],
i = 1, 2, . . . , N , where each L i is an nth order differential operator of the form (1) defined on
[xi−1, xi ]. The spline in tension with non-uniform tension is an example of a piecewise L-spline
which is not an L-spline. In [4] Prenter attempted to treat piecewise L-splines by generalizing
the results in [7], but obtained incorrect results when summing up the formula (derived in [1])∫ xi

xi−1

{vL i u − uL∗i v} = P(u(xi ), v(xi ))− P(u(xi−1), v(xi−1)),

where P(u, v) =
∑n−1

j=0 Dn− j−1u(x)
∑ j

k=0(−1)k Dk
{an− j+k(x)v(x)}, and ignoring the fact

that P(u(xi−), v(xi−)) 6= P(u(xi+), v(xi+)) for piecewise L-splines. A similar mistake was
repeated in [3, equation (6.7)]. To the best of our knowledge these mistakes have not been
detected in the literature.
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In the first part of this paper we correct the erroneous results in [4] for a certain family of
piecewise L-splines of order 4. We prove existence and uniqueness and obtain the first and
second integral relations. These results are used in the second part of the paper to obtain L2

error bounds for interpolation using splines in tension. Error bounds for derivatives are also
obtained. Although L2 approximation orders are derived in [4] for general piecewise L-splines,
these bounds are not valid, since their proof is based on previous erroneous claims. Thus our L2

error bounds are new for the case of splines in tension with non-uniform tension. We comment
that the resulting L2 approximation orders are identical to the known L∞ ones [5].

2. Preliminaries

For a positive integer m let Km[a, b] denote the collection of all real-valued functions f
defined on [a, b] such that f ∈ Cm−1

[a, b], and such that Dm−1 f ≡ f (m−1) is absolutely
continuous on [a, b], with Dm f ∈ L2

[a, b]. For a positive integer N let ∆ : a = x0 < x1 <

· · · < xN = b be a partition of [a, b] with knots {xi }
N
i=0. For each i = 1, 2, . . . , N let L i be a

normal differential operator (i.e. L∗i L i = L i L∗i ) defined on K2[xi−1, xi ] by

L i u(x) = ai2(x)u
′′(x)+ ai1(x)u

′(x)+ ai0(x)u(x),

where ai0, ai1, ai2 ∈ C2
[xi−1, xi ] and ai2(x) > 0 on [xi−1, xi ]. Suppose further that

ai2(xi ) = ai+1,2(xi ) and a′i2(xi ) = a′i+1,2(xi ), i = 1, 2, . . . , N − 1. (2)

We denote such a set by L (∆) = {L1, L2, . . . , L N }. Associated with each L i is its formal
adjoint

L∗i v(x) = (ai2(x)v(x))
′′
− (ai1(x)v(x))

′
+ ai0(x)v(x). (3)

Integration by parts gives the following relation (Green’s formula) for any u, v ∈ K2[xi−1, xi ]:∫ xi

xi−1

v(x) L i u(x)dx −
∫ xi

xi−1

u(x)L∗i v(x)dx = P(u(xi ), v(xi ))− P(u(xi−1), v(xi−1)),

where

P(u(x), v(x)) =
1∑

j=0

D1− j u(x)
j∑

k=0

(−1)k Dk
{ai,2− j+k(x)v(x)}

is the bilinear concomitant (see [1], page 124). This formula can be simplified to∫ xi

xi−1

v(x) L i u(x)dx −
∫ xi

xi−1

u(x)L∗i v(x)dx

=
{
ai2(x)u

′(x)v(x)+ u(x)(ai1(x)v(x)− (ai2(x)v(x))
′)
}
|
xi
xi−1

. (4)

Definition 1. A real-valued function s defined on [a, b] is called a piecewise L-spline of order
4 for L (∆) if s ∈ C2

[a, b] and for each i = 1, 2, . . . , Ns satisfies s ∈ K4[xi−1, xi ], L∗i L i s = 0
almost everywhere on [xi−1, xi ].

For a fixed L (∆) the class of all piecewise L-splines is denoted by SP(∆,L ). In this paper we
investigate functions s ∈ SP(∆,L ) satisfying
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s(xi ) = f (xi ), i = 0, 1, . . . , N ,

s′(a) = f ′(a) and s′(b) = f ′(b),
(5)

for f ∈ C1
[a, b], termed hereafter interpolants to f .

3. Existence and uniqueness

The following existence and uniqueness result shows that the set SP(∆,L ) is appropriate for
interpolation. In [4] Prenter states a similar theorem for piecewise L-splines of arbitrary order
but gives an erroneous proof.

Theorem 2. For f ∈ C1
[a, b], there exists a unique s ∈ SP(∆,L ) interpolating f .

Proof. For each i = 1, 2, . . . , N , L∗i L i s = 0 almost everywhere on [xi−1, xi ]. Therefore on
[xi−1, xi ]

s(x) = Ci1vi1(x)+ Ci2vi2(x)+ Ci3vi3(x)+ Ci4vi4(x),

where vi1, vi2, vi3, vi4 ∈ K4[xi−1, xi ] are linearly independent functions spanning the null space
of L∗i L i . Thus finding s is equivalent to solving for the 4N unknowns {Ci j }. The requirement that
s ∈ C2

[a, b] yields 3(N − 1) equations and the interpolation conditions yield N + 3 equations.
We therefore have a total of 4N equations in 4N unknowns. Thus it is sufficient to show that
there exists a unique piecewise L-spline in SP(∆,L ) which interpolates the zero function.

Clearly the zero spline from SP(∆,L ) interpolates the zero function. Assume, to the contrary,
the existence of another such spline, denoted by s. We claim that

N∑
i=1

∫ xi

xi−1

[
(L i s)

2
+ (L∗i s)2

]
= 0. (6)

Indeed, with v = L i s and u = s in (4) we have∫ xi

xi−1

(L i s)
2
=

∫ xi

xi−1

s L∗i L i s + {ai2 s′ L i s + s(ai1L i s − (ai2L i s)
′)} |xi

xi−1

= ai2 s′ L i s |
xi
xi−1

,

where the last equality follows since s ∈ SP(∆,L ) and s(xi−1) = s(xi ) = 0. Similarly we get
from (4) and from the normality of L i ,∫ xi

xi−1

(L∗i s)2 =
∫ xi

xi−1

s L i L∗i s − {ai2 (L
∗

i s)′ s + (L∗i s)(ai1 s − (ai2 s)′)} |xi
xi−1

= (ai2 s)′ L∗i s |xi
xi−1
= ai2 s′ L∗i s |xi

xi−1
.

Therefore

N∑
i=1

∫ xi

xi−1

[
(L i s)

2
+ (L∗i s)2

]
=

N∑
i=1

ai2 s′ (L i s + L∗i s) |xi
xi−1

.

By (3) and the fact that s(xi−1) = s(xi ) = 0,

(L i s + L∗i s) |xi
xi−1
= (ai2s′′ + ai1s′ + 2a′i2s′ + ai2s′′ − ai1s′) |xi

xi−1
= 2(a′i2s′ + ai2s′′) |xi

xi−1
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and we obtain

N∑
i=1

∫ xi

xi−1

[
(L i s)

2
+ (L∗i s)2

]
=

N∑
i=1

2ai2 s′ (a′i2s′ + ai2s′′) |xi
xi−1

. (7)

By the continuity requirements (2) and the fact that s ∈ C2
[a, b] and s′(a) = s′(b) = 0 we

conclude that the sum on the right-hand side of (7) is zero, so (6) is proved. Therefore∫ xi

xi−1

(L i s)
2
= 0

and L i s = 0 on [xi−1, xi ] for i = 1, 2, . . . , N . It follows that for each i = 1, 2, . . . , N ,

s(x) = di1ui1(x)+ di2ui2(x)

on [xi−1, xi ], where ui1 and ui2 are linearly independent functions in K2[xi−1, xi ] spanning the
null space of L i . Starting with

s(x) = d11u11(x)+ d12u12(x)

on [x0, x1], and using s(x0) = s′(x0) = 0, we conclude that s ≡ 0 on [x0, x1]. The continuity
requirements imply that s(x1+) = s′(x1+) = 0, so similarly s ≡ 0 on [x1, x2]. Continuing this
argument across the knots we find that s ≡ 0 on [a, b], contrary to our assumption. Thus s ≡ 0
is the only spline in SP(∆,L ) interpolating the zero function. This completes the proof of the
theorem. �

Remark 1. The proof in [4] is similar, but based on the identity
∑N

i=1

∫ xi
xi−1

(L i s)2 = 0 instead
of (6). The derivation of the above equality in [4] is erroneous.

4. Integral relations

The first and the second integral relations are important identities in the theory of splines. For
L-splines these relations are derived in [7]. For piecewise L-splines erroneous formulas are given
in [4]. Here we present the correct first and second integral relations for piecewise L-splines from
SP(∆,L ).

Theorem 3. For f ∈ K2[a, b] and s ∈ SP(∆,L ) interpolating f , let e = f − s. Then the
following first integral relation holds:

N∑
i=1

∫ xi

xi−1

(L i f )2 =
N∑

i=1

∫ xi

xi−1

(L i e)
2
+

N∑
i=1

∫ xi

xi−1

(L i s)
2

+ 2
N−1∑
i=1

ai2(xi )e′(xi ) (L i − L i+1)s(xi ). (8)

Proof. For each i = 1, 2, . . . , N , L i f = L i e + L i s, so∫ xi

xi−1

(L i f )2 =
∫ xi

xi−1

(L i e)
2
+ 2

∫ xi

xi−1

L i s L i e +
∫ xi

xi−1

(L i s)
2.
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With v = L i s and u = e in (4) we have∫ xi

xi−1

L i s L i e =
∫ xi

xi−1

e L∗i L i s +
{
ai2e′ L i s + e(ai1 L i s − (ai2 L i s)

′)
}
|
xi
xi−1

= ai2e′L i s |
xi
xi−1

,

where the last equality follows since s ∈ SP(∆,L ) and e(xi−1) = e(xi ) = 0. By (2) and the
fact that e′(a) = e′(b) = 0 we obtain

N∑
i=1

∫ xi

xi−1

L i s L i e =
N−1∑
i=1

ai2(xi )e
′(xi )(L i − L i+1)s(xi ) (9)

and the proof is complete. �

Remark 2. In the proof of the first integral relation in [4] and in [3, equation (6.7)], it is claimed
that the sum in (9) vanishes. This is incorrect, as is demonstrated by the following example.
Consider the function f (x) = x2 on the interval [−1, 1], the partition ∆ : −1 < 0 < 1 and
L1 = D2

+ 5D, L2 = D2
+ D. In this case the sum (9) has one term only which equals

−4s′(0)2. It is easy to verify that for this special case s′(0) 6= 0.

For smoother functions another integral relation holds.

Theorem 4. For f ∈ K4[a, b] and s ∈ SP(∆,L ) interpolating f , let e = f − s. Then the
following second integral relation holds:

N∑
i=1

∫ xi

xi−1

(L i e)
2
=

N∑
i=1

∫ xi

xi−1

e L∗i L i f +
N−1∑
i=1

ai2(xi )e
′(xi ) (L i − L i+1)e(xi ). (10)

Proof. With v = L i e and u = e in (4) we have for i = 1, 2, . . . , N∫ xi

xi−1

(L i e)
2
=

∫ xi

xi−1

eL∗i L i e +
{
ai2 e′ L i e + e(ai1L i e − (ai2 L i e)

′)
}
|
xi
xi−1

=

∫ xi

xi−1

e L∗i L i f + ai2e′ L i e |
xi
xi−1

,

where the last equality follows since s ∈ SP(∆,L ) and e(xi−1) = e(xi ) = 0. By (2) and the
fact that e′(a) = e′(b) = 0 we obtain

N∑
i=1

∫ xi

xi−1

(L i e)
2
=

N∑
i=1

∫ xi

xi−1

e L∗i L i f +
N−1∑
i=1

ai2(xi )e
′(xi ) (L i − L i+1)e(xi )

and the proof is complete. �

5. L2 error bounds for splines in tension

In this section we investigate the special class of piecewise L-splines called splines in tension.

Definition 5. Given a partition ∆ of the interval [a, b] and a sequence of nonnegative parameters
{ρi }

N
i=1, a real-valued function s defined on [a, b] is called a spline in tension if s ∈ C2

[a, b]
and s(4) − ρ2

i s′′ = 0 on [xi−1, xi ] for each i = 1, 2, . . . , N .
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Since s(4)−ρ2
i s′′ = (D2

−ρi D)(D2
+ρi D)s, s can be interpreted as a piecewise L-spline from

SP(∆,L ), where

L i = D2
+ ρi D, i = 1, 2, . . . , N . (11)

In what follows all operators L i are of the form (11). For fixed ∆ and ρ = {ρi }
N
i=1, the class

of all splines in tension is denoted by ST(∆, ρ). Given f ∈ C1
[a, b], a spline in tension s is an

interpolant to f provided that

s(xi ) = f (xi ), i = 0, 1, . . . , N ,

s′(a) = f ′(a) and s′(b) = f ′(b).

We start by establishing a few preliminary results.

Lemma 6. If f ∈ K1[a, b] and f (a) = f (b) = 0, then∫ b

a
f 2
≤
(b − a)2

π2

∫ b

a
( f ′)2.

Proof. This inequality is called the Rayleigh–Ritz inequality. It is proved in [6, page 5] for
f ∈ C1

[a, b], but the same arguments apply also to f ∈ K1[a, b]. �

Lemma 7. For f ∈ K1[a, b] and s ∈ ST(∆, ρ) interpolating f , let e = f − s. Then∫ b

a
e2
≤

∆̄2

π2

∫ b

a
(e′)2,

where ∆̄ = max1≤i≤N (xi − xi−1).

Proof. Note that e(xi ) = 0 for i = 0, 1, . . . , N . Applying Lemma 6 to e yields∫ xi

xi−1

e2
≤
(xi − xi−1)

2

π2

∫ xi

xi−1

(e′)2 ≤
∆̄2

π2

∫ xi

xi−1

(e′)2

for i = 1, 2, . . . , N . Summing these inequalities with respect to i from 1 to N completes the
proof. �

Lemma 8. For f ∈ K2[a, b] and s ∈ ST(∆, ρ) interpolating f , let e = f − s. Then

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
≤

1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

]
. (12)

Moreover, for f ∈ K4[a, b],

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
=

N∑
i=1

∫ xi

xi−1

e L∗i L i f. (13)
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Proof. First we prove (12). By the first integral relation (8),

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
≤

N∑
i=1

∫ xi

xi−1

[
(L i f )2 − 2ρi e

′e′′
]

− 2
N−1∑
i=1

e′(xi )(ρi − ρi+1)s
′(xi ). (14)

Denote L̃ (∆) = {L∗1, L∗2, . . . , L∗N } and let s̃ be the piecewise L-spline from SP(∆, L̃ )

interpolating f . Since L∗i L i = L i L∗i = (L∗i )
∗L∗i for each i , s ≡ s̃ and we may apply the

first integral relation to s̃ and to L̃ (∆) to obtain

N∑
i=1

∫ xi

xi−1

[
(L∗i e)2 + 2ρi e

′e′′
]
≤

N∑
i=1

∫ xi

xi−1

[
(L∗i f )2 + 2ρi e

′e′′
]

− 2
N−1∑
i=1

e′(xi )(−ρi + ρi+1)s
′(xi ). (15)

Because (L i e)2 − 2ρi e′e′′ = (e′′)2 + ρ2
i (e
′)2 and (L∗i e)2 + 2ρi e′e′′ = (e′′)2 + ρ2

i (e
′)2, the

left-hand sides of (14) and (15) are equal. Taking the average of (14) and (15) proves (12).
To prove (13), we apply the second integral relation (10) to s,

N∑
i=1

∫ xi

xi−1

(L i e)
2
=

N∑
i=1

∫ xi

xi−1

e L∗i L i f +
N−1∑
i=1

e′(xi )
2(ρi − ρi+1). (16)

But

N∑
i=1

∫ xi

xi−1

2ρi e
′e′′ =

N∑
i=1

ρi

∫ xi

xi−1

(
(e′)2

)′
=

N∑
i=1

ρi (e
′)2 |xi

xi−1
=

N−1∑
i=1

e′(xi )
2(ρi − ρi+1). (17)

Subtracting (17) from (16) proves (13). �

We now derive L2 error bounds for interpolation with splines in tension. The L2 norm of a
real-valued function f such that f 2 is Lebesgue integrable on [a, b] is

‖ f ‖2 =

(∫ b

a
f 2(x)dx

)1/2

.

We derive two types of error bounds, one for functions in K2[a, b] and one for smoother functions
in K4[a, b].

Theorem 9. For f ∈ K2[a, b] and s ∈ ST(∆, ρ) interpolating f ,

‖ f − s‖2 ≤
2∆̄2

π

√
π2 + 4ρ2∆̄2

(
1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

])1/2

, (18)
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∥∥ f ′ − s′
∥∥

2 ≤
2∆̄√

π2 + 4ρ2∆̄2

(
1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

])1/2

, (19)

and

∥∥ f ′′ − s′′
∥∥

2 ≤

(
1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

])1/2

, (20)

where ρ = min1≤i≤N |ρi |.

Proof. We start by proving (20). Let e = f − s. Then∫ xi

xi−1

(e′′)2 =
∫ xi

xi−1

(L i e)
2
−

∫ xi

xi−1

2ρi e
′e′′ −

∫ xi

xi−1

ρ2
i (e
′)2

for i = 1, 2, . . . , N . Summing these equalities with respect to i from 1 to N and using (12) gives∫ b

a
(e′′)2 =

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
−

N∑
i=1

∫ xi

xi−1

ρ2
i (e
′)2

≤
1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

]
, (21)

from which (20) follows.
To prove (19) note that e(xi ) = 0 for i = 0, 1, . . . , N . Applying Rolle’s theorem to e we

obtain points ξi ∈ (xi−1, xi ) such that e′(ξi ) = 0 for i = 1, 2, . . . , N . Define ξ0 = a and
ξN+1 = b and note that e′(ξ0) = e′(ξN+1) = 0 by the interpolation conditions. Applying
Lemma 6 to e′ gives

π2
∫ ξi

ξi−1

(e′)2 ≤ (ξi − ξi−1)
2
∫ ξi

ξi−1

(e′′)2 (22)

for i = 1, 2, . . . , N + 1. Let ρ(x) be a step function with ρ(x) = ρi on [xi−1, xi ), i =
1, 2, . . . , N − 1 and ρ(x) = ρN on [xN−1, xN ]. Adding (ξi − ξi−1)

2
∫ ξi
ξi−1

ρ2(e′)2 to both sides
of (22) we obtain(

π2
+ (ξi − ξi−1)

2ρ2
) ∫ ξi

ξi−1

(e′)2 ≤ (ξi − ξi−1)
2
∫ ξi

ξi−1

[
(e′′)2 + ρ2(e′)2

]
(23)

or ∫ ξi

ξi−1

(e′)2 ≤
(ξi − ξi−1)

2

π2 + (ξi − ξi−1)2ρ2

∫ ξi

ξi−1

[
(e′′)2 + ρ2(e′)2

]
≤

4∆̄2

π2 + 4ρ2∆̄2

∫ ξi

ξi−1

[
(e′′)2 + ρ2(e′)2

]
,

where the last inequality readily follows from ξi − ξi−1 ≤ 2∆. Summing these inequalities with
respect to i from 1 to N + 1 gives∫ b

a
(e′)2 ≤

4∆̄2

π2 + 4ρ2∆̄2

∫ b

a

[
(e′′)2 + ρ2(e′)2

]
.
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Because (L i e)2 = (e′′)2 + 2ρi e′e′′ + ρ2
i (e
′)2,∫ b

a
(e′)2 ≤

4∆̄2

π2 + 4ρ2∆̄2

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
. (24)

Combining this with (12) proves (19).
Finally by Lemma 7 and (19)∫ b

a
e2
≤

∆̄2

π2

∫ b

a
(e′)2 ≤

4∆̄4

π2(π2 + 4ρ2∆̄2)

1
2

N∑
i=1

∫ xi

xi−1

[
(L i f )2 + (L∗i f )2

]
,

which proves (18). �

Remark 3. It is easy to verify that the results of Theorem 9 hold with 1
2

∑N
i=1

∫ xi
xi−1

((L i f )2 +

(L∗i f )2) replaced by
∑N

i=1

∫ xi
xi−1

(L i f )2 if ρ1 = ρ2 = · · · = ρN . Yet, this is not the case
when the {ρi } are different, as is demonstrated by the following example. Consider the function
f (x) = x (x − 1)2 (x + 1)2 on the interval [−1, 1], the partition ∆ : −1 < 0 < 1 and ρ1 = 0,
ρ2 = 1. Then s ≡ 0 on [−1, 1] and it is readily verified that (20) does not hold with the above
change.

If f is smoother we can prove a finer result:

Theorem 10. For f ∈ K4[a, b] and s ∈ ST(∆, ρ) interpolating f ,

‖ f − s‖2 ≤
4∆̄4

π2(π2 + 4ρ2∆̄2)

(
N∑

i=1

∫ xi

xi−1

(L∗i L i f )2
) 1

2

, (25)

∥∥ f ′ − s′
∥∥

2 ≤
4∆̄3

π(π2 + 4ρ2∆̄2)

(
N∑

i=1

∫ xi

xi−1

(L∗i L i f )2
) 1

2

, (26)

and

∥∥ f ′′ − s′′
∥∥

2 ≤
2∆̄2

π

√
π2 + 4ρ2∆̄2

(
N∑

i=1

∫ xi

xi−1

(L∗i L i f )2
) 1

2

. (27)

Proof. We start by proving (25). Let e = f − s. By Lemma 7 and (24)∫ b

a
e2
≤

∆̄2

π2

∫ b

a
(e′)2 ≤

4∆̄4

π2(π2 + 4ρ2∆̄2)

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
.

Using (13) and Cauchy–Schwarz inequality, we get∫ b

a
e2
≤

4∆̄4

π2(π2 + 4ρ2∆̄2)

N∑
i=1

∫ xi

xi−1

e L∗i L i f

≤
4∆̄4

π2(π2 + 4ρ2∆̄2)

(∫ b

a
e2
) 1

2
(

N∑
i=1

∫ xi

xi−1

(
L∗i L i f

)2) 1
2

,

from which (25) follows.
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To prove (26) we use (24) with (13) and obtain∫ b

a
(e′)2 ≤

4∆̄2

π2 + 4ρ2∆̄2

N∑
i=1

∫ xi

xi−1

e L∗i L i f.

By Cauchy–Schwarz inequality and (25),∫ b

a
(e′)2 ≤

4∆̄2

π2 + 4ρ2∆̄2

(∫ b

a
e2
) 1

2
(

N∑
i=1

∫ xi

xi−1

(L∗i L i f )2
) 1

2

≤
4∆̄2

π2 + 4ρ2∆̄2

4∆̄4

π2(π2 + 4ρ2∆̄2)

N∑
i=1

∫ xi

xi−1

(L∗i L i f )2,

which yields (26).
Finally by (21) and (13)∫ b

a
(e′′)2 ≤

N∑
i=1

∫ xi

xi−1

[
(L i e)

2
− 2ρi e

′e′′
]
=

N∑
i=1

∫ xi

xi−1

eL∗i L i f.

Cauchy–Schwarz inequality and (25) lead to∫ b

a
(e′′)2 ≤

(∫ b

a
e2
) 1

2
(

N∑
i=1

∫ xi

xi−1

(L∗i L i f )2
) 1

2

≤
4∆̄4

π2(π2 + 4ρ2∆̄2)

N∑
i=1

∫ xi

xi−1

(L∗i L i f )2,

which completes the proof. �

Remark 4. Cubic splines correspond to the case ρ1 = ρ2 = · · · = ρN = 0, since then L i = D2

and L∗i L i s = s(4) = 0 is the differential equation that cubic splines satisfy in each mesh interval.
Therefore L2 error bounds for interpolation with cubic splines can be obtained from Theorems 9
and 10 as a special case by setting ρi = 0 for each i . Such bounds and similar ones can be found
in [6].
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