Intersecting 2d domains surrounded by Bezier curves

A final assignment for the CAGD course

For two people

Create a software tool that will calculate the intersection of planar domains surrounded by a cubic Bezier spline.

The representation of a planar domain

We restrict our attention to simply connected domains. Such domains are the interior of a simple closed contour. The contours we deal with are composed of cubic Bezier curves only.

Examples of planar domains


The defining contour of the planar domain must be continuous, and closed, and must not intersect itself. A contour is given by a sequence of 3*N points in the plane. These define N Bezier curves, such that the first control point of each curves coincides with the last control point of the previous curve.

Example of the control polygon of a contour consisting of 4 curves:


The task

Given two planar domains, calculate all of their intersections, each one in the form of a contour surrounding a planar domain. Notice that the intersection of two simply connected domains can produce a number of simply connected domains.

Examples:


Requirements

1. The input and output is in the same format: sequences of 3*N points that describe closed contours.

2. Find all of the intersections if there is more than one.

3. The intersection points should be calculate exactly, up to computer accuracy, using an iterative method (Newton’s method).

4. Program the cubic Bezier evaluation yourself. Do not use any spline evaluation software.

5. Allow to display both the contour and its defining control points.

6. The code is not required to be optimal in terms of computation time.

7. The new generated curves should exactly match parts of the given curves – no approximation, but exact subdivision is required.

8. Incorporate some method (heuristic) to find all of the intersection points. Notice that two cubic Bezier curves can have up to nine intersection points!

Difficult cases

The problem of intersection of domains is notoriously difficult. The difficult part is to find the intersection points exactly, without missing any intersection point. You are not required to give a full solution that will never fail. A simple method that works for the regular cases is enough.

You are not required to handle successfully the following difficult cases:


Tangency (or near tangency) between the two domains

Overlapping contours:

If you encounter other difficult cases that you can classify, it’s o.k. not to solve them.

Regular cases – more than one intersection point between two Bezier curves

Despite what is said above, you are required to handle the regular cases, which include two Bezier curves having more than one intersection point.

Outline of the algorithm that should be implemented (other ideas are welcome)

1. Find all intersections between Bezier curves of the first domain and those of the second domain.

 Perform some sort of rough search to find initial guesses for intersection points

 Perform an iterative method to converge from the rough initial points to exact intersection points.

2. Subdivide the Bezier curves at the intersection points.

3. Build the new topology by traversing the contours in the correct order.

Hint: In order to build the new topology, you will probably have to assign a “direction” to each intersection point. Example:




For that, you are allowed to assume that the contour is given in a counter-clock-wise direction.

What and how to submit

Submit as a paper, including hard copies of source code and printed examples.

Include also a detailed description of the algorithm, including the method you used for the topological construction stage.

Write the code in a programming language of your choice.

Include drawings that demonstrate no intersection, single intersection and multiple intersection.

You are required to include drawings of cases for which your method fails, and to explain why it fails. In all of the cases use a legal input, i.e. contours that do not have self intersections, and Bezier curves without singular points.











out



in







