Non-spline subdivision schemes

Adi Levin

A subdivision scheme given in terms of a mask

In the non-spline case of subdivision, the (finitely supported) subdivision mask 
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is given, and we are interested in calculating the limit curve and in characterizing it.

The following questions are asked, when a specific mask is given:

1. Does the subdivision scheme converge?

2. How smooth is the limit curve?

3. How to calculate points on the limit curve?

4. How to calculate tangent vectors of the limit curve?

5. Is there a corresponding refinable function, whose integer shifts generate the limit curve?

The answer to the convergence and to the smoothness question is complicated. We will only discuss here schemes with known convergence and smoothness properties.

Under certain conditions that the mask 
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should satisfy, we are guaranteed that:
1. The subdivision scheme 
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converges to a C^m curve (m differs between different schemes).

2. The limit curve is nothing but
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, where 
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are the control points and 
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is the only function that satisfies the 2-scale relation
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The 4-point scheme

This is a simple interpolatory subdivision scheme. Namely, new points are added at each subdivision step, and existing points are kept. Therefore, the limit curve goes through the control points.

The scheme always adds a new point between two existing points, by a weighted average of 4 points, with weights 
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is a shape parameter that governs the shape of the curve. The regular choice is 
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. It reduces to cubic interpolation.
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In the mask formulation we have 
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where
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How come? When i is even, we only visit 
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and among those, only 
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is non zero. And we get 
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When i is odd, we only visit 
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where we find the four weights, so we get
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 EMBED Equation.3  [image: image18.wmf]
Smoothness

It is proven that the scheme results in curves that are C^1 continuous, in case the parameter is in the range 
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What is the support of 
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Theorem: Let 
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be a given mask which is zero for all 
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are integers. Let 
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be a compactly supported function satisfying the corresponding 2-scale relation. Then 
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Proof: Let 
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be the infimum, and 
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the supremum of all parameters 
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In the 2-scale relation 
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Therefore it follows that
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Q.E.D.

How to calculate the values at the integers from the 2-scale relation?

In the case of B-splines, the basis functions are known, so we can calculate the values at the integers by direct evaluation. However, in a general subdivision scheme, the 2-scale relation is known, and there is no analytic expression for the basis function. We still want to evaluate it at the integers.

Given the 2-scale relation 
[image: image38.wmf]å

-

=

k

k

k

u

a

u

)

2

(

)

(

f

f

, we substitute integer values of u=j, to get
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Therefore, the vector 
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is an eigenvector of the matrix 
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. Since it is easy to know the support of 
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, we know what square part of that matrix is relevant. We also know that it should sum up to 1.

Example: Cubic B-splines:
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The only eigenvector with eigenvalue 1, that sums up to one, 
[image: image45.wmf]6

1

3

2

6

1

,

,

.

In the case of the 4-point scheme, the support is (-3,3), and therefore, the only possible non zero integer values are 
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The subdivision matrix is:
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For values of 
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, there is only one eigenvector with eigenvalue 1 (up to a constant factor), and that is (0,0,1,0,0). Therefore, the only non zero value at the integers is 
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How to calculate derivatives of the curve?

As before, all we need is the derivatives of the basis function at the integers.
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Given the 2-scale relation 
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substitute integer values of u=j, to get
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Therefore, the vector 
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is an eigenvector of the subdivision matrix M (
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), but with eigenvalue 0.5!

Important: in contrast to the situation of function values, here the values do not sum up to 1, they sum up to zero. So that means that the eigenvector approach will only give us the derivative up to a constant factor. But – this is all we need, since we don’t have an explicit parameterization anyway!

Example: Cubic B-splines:

The matrix is
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The only eigenvector with eigenvalue 0.5 (up to a constant factor) is (1,0,-1). The true values are (0.5,0,-0.5).

The 4-point scheme:

The subdivision matrix is:
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For values 
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there is only one eigenvector with eigenvalue 
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How to calculate the refinable basis function? (at the dyadics)

We’ve already calculated the values at the integers.

Now, from the 2-scale relation we can directly calculate the values at the half-integers.

And then at the quarter-integers, and so on.
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For the quadratics we have

Integers: 
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Half integers: 
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For the 4-point scheme we have
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In fact, this means all we have to do is to apply the “odd” rule many times, starting from the values at the integers.
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