From uniform B-splines to subdivision

Adi Levin

Abstract

The notions of refinability and that of a subdivision scheme are presented and demonstrated in the case of uniform B-splines.

It is shown that refinability leads to a subdivision scheme.

Refinability is a property of the basis function.

A subdivision scheme is an algorithm for calculating a curve/surface.

Notation

We denote by 
[image: image1.wmf]ord

N

the B-spline over the knot sequence 0,1,...,ord. It is a scalar function defined over the bi-infinite line, with support (0,ord).

We denote the integer shift operator by 
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, namely
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We denote the binary dilation operator by 
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, namely 
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We denote the convolution operation by 
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, namely
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Easy-to-prove facts

1. 
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And so 
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 where P is a polynomial.

3. 
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Refinability of B-splines

Recall that 
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is defined as follows:
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Theorem: For every 
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Proof by induction:

For 
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, this reduces to
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which is clearly true.

For higher orders, we have
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(take out the constant)
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(use fact 3)
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(use fact 2)
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(use fact 2 again)
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(use definition of B-spline)
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Q.E.D.

Corrolary (Another way to write the dilation equation):
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where 
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(the mask) has a finite number (ord+1) of non zero coefficients, and is defined as follows:
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the binomial coefficient being zero whenever 
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This identity is called the 2-scale relation. It says that the function is a dilation of a combination of the integer shifts of  itself. Any function that satisfies such an equation is called refinable.

From the 2-scale relation to a subdivision scheme
Theorem: Let 
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be any locally supported function that satisfies the 2-scale relation 
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where 
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is a locally supported mask. Then for any set of coefficients (control points) 
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we have
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where S is the subdivision operator defined by
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Remark: All of the sums are infinite sums, but each one of them contains only a finite number of non zero elements. Therefore there is no question of convergence.

Proof:
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(using dilation equation)
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(letting j=2i+k)
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(changing the order of summation)
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