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Abstract

We study the smoothness of quasi-uniform bivariate subdivision. A quasi-uniform bivariate scheme consists of
different uniform rules on each side of theaxis, far enough from the axis, some different rules neawthsais,
and is uniform in they-direction. For schemes that generate polynomials up to degree derive a sufficient
condition forC™ continuity of the limit function, which is simple enough to be used in practice. It amounts to
showing that the joint spectral radius of a certain pair of matrices has to be lessthaWe also relate the Holder
exponent of thenth order derivatives to that joint spectral radius. The main tool is an extension of existing analysis
techniques for uniform subdivision schemes, although a different proof is required for the quasi-uniform case. The
same idea is also applicable to the analysis of quasi-uniform subdivision processes in higher dimension. Along
with the analysis we present a ‘tri-quad’ scheme, which is combined of a scheme on a triangular grid on the half
planex < 0 and a scheme on a square grid on the other half plan® and special rules near theaxis. Using
the new analysis tools it is shown that the tri-quad scheme is gloBally
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The smoothness analysis of subdivision schemes is mostly confined to the case of uniform schemes
on uniform grids. In the uniform case there are several well established analysis tools such as the
Fourier analysis approach (see, e.g., [3,4,6,7])zttransform tools (see, e.g., [2,9,10]) using difference
schemes and in terms of the joint spectral radius of the local subdivision operators (see, e.g., [14,15,24]).
A special nonuniform analysis is required in the analysis of subdivision schemes over meshes of general
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topology. In this case, there is a special structure and a special analysis around ‘extraordinary vertices’,
using eigensystem analysis of the local subdivision operator, and using a special parametrization by
the ‘characteristic map’ (see, e.qg., [8,22,23,26]). Recently, nonuniform subdivision schemes have been
analyzed, by extending the tools of difference schemes to nonuniform schemes over uniform grids [19]
and to schemes over nonuniform grids [5,13,25]. In the present work we are interested in the analysis of
quasi-uniform subdivision schemes. Such schemes may be of interest when matching two patches, where
in each patch a different uniform subdivision scheme is applied, or in designing a scheme interpolating a
curve on the surface (see [16,17]). A univariate study of piecewise uniform schemes is presented in [11].
The analysis presented in this paper combines a few ideas of the above mentioned tools into a new
method which is specially designed for quasi-uniform subdivision schemes. It combines eigensystem
analysis with a joint spectral radius check and implicit divided differences considerations, and it also
involves nonstationary matrix subdivision analysis. Along with the general discussion we consider a
specific quasi-uniform scheme, the ‘tri-quad’ scheme, which is combined of Loop scheme on a triangular
grid on the half plane < 0 and of Catmull-Clark scheme on a square grid on the other half plan@.

A scheme of this type has already been considered in [21], where the benefit in using ‘tri—quad’ meshes
is explained. The particular scheme used in [21] is defined on meshes of general topology, composed
of triangular and quadrilateral faces. It is noCd scheme, yet it apparently produces limit surfaces
with everywhere bounded curvatures. In this work, to properly define the special rules for the tri-quad
scheme near the-axis we employ a recent procedure suggested in [18]. The resulting tri-quad scheme
accompanies the definitions and the assumptions of the general theory presented in the next section, and
is used to demonstrate the analysis tools. It is shown that the new tri-quad scheme is glébally

2. Definitions, assumptions, and the tri-quad scheme

We consider ajuasi-uniform gridX € R?, namely a grid which is uniform in each of the half planes,
x>0andx <0, and such thaf X = {Gi,j + 1 | (i, j) €e X} =X, 2X C X and( )2 ,2"X =R2 The
leading example of a quasi-uniform grid in this paper is the tri-quad grid in Fig. 1.

Fig. 1. The tricquad grid.
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Let /(X) denote the space of all control point sequendeé®) = {P | P: X — R}. The subdivision
operatorS is a linear operator ol(X), S:/(X) — I(X). A stationary subdivision scheme is defined as
the repeated application &fto given control points € [(X).

We say thatS is convergentif for every P € [(X), there existd e C(R?) (called the limit function)
such that

nILmoo ||SnP - F(Zin ')Hw,xman =0, @)
for any open and bounded domaln C R2. We denoteS®P = F. We also require, as part of the
definition of uniform convergence, th&t° P is nonzero for some. Notice that althougls” P is formally
defined as a sequence ouEr we associate the valug' P (x) for x € X, with the value of the limit
function at 2"x, as implied by (1).

We say thatS is C™ if S*°P e C™(R?) for any P € [(X). Furthermore, we say thatis C"* if the
mth order derivatives of* P are Holder continuous of orderfor any P € [(X).

A gquasi-uniform bivariate schenmnsists of different uniform rules on each side of fhaxis, far
enough from the axis, some different rules neantfaxis, and is uniform in the-direction. We assume,
of course, thas is C” continuous away from the-axis, and that the bivariate scheme generatgsthe
space of bivariate polynomials up to degreeThe last requirement implies the existence of an ‘inverse’
Q of $*° on IT,,. The important properties @ are summarized in the following theorem, proved in [18].
To state the result we introduce the notiorlezding coefficient preservatiokVe say thaD : IT,, — [(X)
preserves leading coefficients if

fel, = |0f()—f@]=o(lxl*) as|x||— oo, x €X, 2

for all Kk < m. For example, any operator of the for@f (x) = f(x) + Df(x), whereD is a linear
differential operatorD1 = 0, preserves leading coefficients. Here, foe [(X) andx € X, P(x) denotes
the entry of P attached toc. We also introduce thdilation operatoro,

of:f(é).

Theorem 2.1 [18]. If S is a convergent subdivision schen#? is an injection, andQ : IT,, — [(X)
preserves leading coefficients, then

SQf = ngv Vf ell,, (3)
if and only if
Soonzf’ ernm- (4)

Theorem 2.1 reduces (4), which is the formal notation for polynomial generation, to condition (3), in
which S appears as a linear term. This is useful for the construction of new subdivision schemes. Once
we fix @, condition (3) can be translated into a system of linear equations, from which we deduce the
subdivision weights. This technique is demonstrated in [18], and is used in the following construction of
the tri-quad scheme.

From (3) we also get important information about the eigenvalues and the eigenvectSrs of
Considering a monomiaf = x’y/, with i + j <m, it follows thato f = 2=/ f and thus

SQ{xiyj} _ Qa{xiy-’} 22_(i+j)Q{xiy'i}, i+ j<m, (5)



A. Levin, D. Levin/ Appl. Comput. Harmon. Anal. 15 (2003) 18-32 21

1
16 1 1
3 4 4
8 1 3 1 o
3 64 32 64
1 8 1 1
o 9 4 4
16 3 i 3
1 32 32 1 3 1
16 16 8 16

-

>

-

>~
-
ol
o|w
-
ol

Fig. 2. The scheme masks away from thexis: Catmull-Clark scheme on the right and Loop scheme on the left.

i.e., Q{x'y/} is an eigenvector of the scheme for j < m with eigenvalue 2+/. Some examples of
the operator for different subdivision schemes are given in [18].

Example 2.1 (The tri-quad scheme—construcfjol€onsidering théri-quad gridin Fig. 1, we would
like to define a quasi-uniform scheme over this grid which is the tensor product cubic B-spline scheme,
or the Catmull-Clark scheme [1], on the right half plane, andthguartic three-directional box-spline
scheme, or the Loop scheme [20], on the left half plane. The masks of these schemes are depicted in
Fig. 2.

The goal is to define special rules on thexis and near it so that overall the scheme willdFe i.e.,
as smooth as the right and left schemes. These special rules are constructed together with angperator
which also requires a special definition near fhaxis, so that the conditiofiQ = Qo holds forIT, over
the entire plane. The operatgr away from they-axis is defined as the appropriafeoperator for the
right and left uniform schemes, i.e.,

1 1 1 1
Qf=Q+f=f_6fxx_éfyy’ x>0, szQ_fzf_éfxx_gfyy’ x <0.

It is easy to verify thatD* and O~ satisfy the required equation (3), withh= 2, for the right and left
schemes, respectively. Given this choicalfthe special subdivision rules near thaxis are defined by
requiring the conditions (5), fan = 2. The equations coming out of (5) are solvable, but not uniquely.
The challenge is to find a scheme of the smallest possible support which fulfills (5). A scheme with pos-
itive weights and of small support, though probably not the smallest possible, is described by the rules
shown in Fig. 3. Note that the convolution stencil (c) is only used for calculating temporary values before
the application of the uniform left scheme.

By Theorem 2.1 it then follows that this scheme generates polynomials.iis now left to be shown
that this scheme generat€$ limit functions over the entire plane. We note that it is possible to define a
scheme that generates polynomials up to degree 3, but this cannot improve the smoothnes§beyond
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Fig. 3. The scheme near theaxis: (a) The stencil for a new value at old grid points onytkexis. (b) The stencil for a new value
at new grid points on the-axis. (c) The stencil of the operator defining temporary values on-#rds before the application
of the Loop scheme on < 0.

Remark 2.2. The choiceQ = Q™ on the y-axis is somewhat arbitrary. Different choices @flead

to different subdivision rules. By experimenting with other choicegobn the y-axis, we found that
for some of them there does not exist subdivision schefnesth positive weights (e.g.0 = O~ or

0 = (0~ + 0™)/2 on they-axis). WithQ = Q™ on they-axis we were able to get a subdivision scheme
that consists of only three special rules, in which all weights are positive.

3. Theanalysis procedure and the tri-quad example

In the following, we describe the procedure for checking whether a given quasi-uniform séheme
is C™. We assume thaf generates polynomials up to degrmee in the sense that (3) is satisfied for
someQ. The justification of the different steps is given in the following sections.

First we recall (see [25]) that the local subdivision matrix that maps a region around the origin
to itself must satisfy the necessary conditions ¥ smoothness. Namely, that its eigenvalues are
(1,05,05,...,27, ...,27™) and each of them corresponds to an eigenvector with a polynomial as
the limit function. The rest of the eigenvalues must be strictly smaller thén 2
The analysis procedure:

(1) LetL c X denote a subset of mesh points around the origin such that the values of the limit function
in [—1, 1] x [0, 1] depend only on control points ih. Furthermore, the values at iteration 1/in
and in€L, namelySP|; andSP|¢;, depend only on the initial values in, P|;, wheref is a shift
operator€L ={(i,j+1) | (i, j) € L}.

(2) Let A denote the local subdivision operator taking values. ito values inL after one subdivision
iteration. LetB denote the operator taking valueslirto values in€ L.

(3) Using the left and right eigenvectors 4f form a basisV for the vectors of values ih such that the
matrix form of A in the new basis is
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WhereA =diag(1,0.5,05,...,2™,...,27™). One way to do it is to compose the bagigrom the
(m + 1)(m + 2)/2 right eigenvectors,

Ofl, f=x'y/,0<i+j<m, 7)

and a basis of the null space of the corresponding left eigenvectors.

(4) From the polynomial generation assumption about the scheme, it turns out that the matrix form of
in the basisV is

where® is an upper-triangular matrix that has the same diagonal &doreover,® has certain zero
values above the diagonal, creating such diagonal blocks of si2e8,4, ..., e.g., form =2

BIEEE R * * 7]
0|05 0| =% * *
0l 0 05| =% * *
©=100 0025 0 0 ©)
000 0] 0 025 O
|00 0| O 0 025]

(5) A sufficient condition forC™ continuity is that thgoint spectral radiusof Yo andYy, oo (Yo, Y1), iS
strictly less than 2", where

. . 1/k
poo(Yo, Y1) = limsup(max{[| Ve, Ve, -+ Yoy lloot & € {0, 1), i =1,...,k})"". (10)
keZ\O
Moreover, if poo (Yo, Y1) = 27 "+%) 0 < o < 1 then themth order derivatives of the limit function
are Holder continuous with exponemt— ¢ for arbitrarily smalle > 0. Of course, this only holds if
the limit function away from the-axis is known to have that Hoélder exponent.

Remark 3.1. A practical upper bound for the joint spectral radipg (Yo, Y1) can be computed by
estimating the norms of all possible products of finite lerigtf Y, andYy, i.e.,

poo(Yo, Y1) < pl (Yo, Y1), (11)

where

. 1/k
P (Yo, Y1) = (Max{ || Ve, Yo,y -+ Ve lloo? & € (0, 1},i =1,..., k}) "

(12)

Remark 3.2. The conditiono., (Yo, Y1) < 2~ in view of the special basig used in (6), implies that

the mth degree Taylor expansion coefficients$f P at dyadic points on the-axis are all uniformly
bounded. This is the main idea behind the theory presented here, the detailed proof is presented in
Section 6.

Example 3.3 (The tri-quad scheme&Z analysi3. Let us apply the above analysis tools for the tri-quad
scheme presented above. Thelés the set of L| = 45 points

L={@ j):i=012 -4<j<4, jeZ}U{Gi j+05):i=-1-2 —-4<j<4, jel).
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The matricesA and B are evaluated as follows: First we choose an ordering of the poinfs in
L = {(1, j1),---, (L, jiu)}- An entry A, in A corresponds to a pair of point&ix, ji), (i¢, ji))-
Applying the subdivision scheme to initial data get= 4, ;) which is 1 at the pointi,, j,) and zero
elsewhere, we have

Ao = (8¢, i) in, jo) k=1...,|L|, £=1,...,|L|.
The entries of the matri® are
Bi.o = (S8, j) (ix, je+D) k=1,...,|L|, £=1,...,|L|.

The matricesA and B are just the representation af and B, respectively, in another basis. The
construction of this basis is described in item 3 of the analysis procedure above, and it involves the
computation of the polynomial eigenvectorsf

The upper-left block® of B for the tri-quad scheme is

-1/—0.1859 00476 —0.0039 00271 —0.01817
0 05 0 [—0.0036_0.1398 Q0921
o0 0 05 |-00968 00241 —0.0216

@=|9"0 0 | 025 0 0 (13)
o o0 0 0 0.25 0
0 0 0 0 0 025

A bound for p., (Yo, Y1) may be estimated byXl(Yo, Y1) using Remark 3.1, and this is used to
compute a lower estimatg = —2 — log,(plX!(Yo, ¥1)) of the Holder exponent. We obtained

a > o= —2—log,(p't¥ (Yo, Y1)) = 0.5942 (14)

Hence, we deduce that the tri-quad scheme is at [843t*2 A straightforward extrapolation of the
valuese, as a function of 1k indicates that lim., ., ax ~ 1, leading to the conjecture that the tri-quad
scheme L3¢ for anye > 0. This conjecture is, at least, in agreement with the spectral radj ahd
Y1, p(Yo) = p(¥Y1) =1/8.

The following sections justify the above analysis procedure.

4. Thematrix subdivision scheme (A, B)

By assumption, the subdivision scheme&’td away from they-axis, and all we need is to check the
convergence and the smoothness neawthgis. We do it by monitoring the values generated in a wide
enough strip of mesh points along theaxis. Specifically, we consider the strip

J={G.j): -M<i<N, jez}=J&L. (15)
JjEZ

By the definition ofL, the subdivision schemgtakes values ity to values inJ in the next iteration,

Sy = ",
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Restricted ta/, we view S as a univariate vector-valued subdivision scheme, as follows: To each integer
point (0, j27") on the y-axis we relate the vector of data valugs= f"|¢;,. The operatorsA and B
defined above constitute a vector-valued binary subdivision scheme with the 2-termAn&yknamely,

n+l __ n n+l1 __ n
v = Avj, vy = Bvj. (16)

This scheme is equivalent tHnear they-axis, in the following sense. First, every set of control points
generated bys can be generated by the vector-valued scheme, simply by taking as initial data to the
vector-valued scheme, groups of control points over integer shiftsiofthe y-direction, v? = Plgir-

Second, the vaIue{s;;’}f';‘Ol at iterationn of the vector scheme are the same as the values generafed by

at thenth iteration if the initial data folS over L is taken agg.

Also, by the definition ofL, the stripJ is wide enough to capture the behavior of théh order
derivatives on they-axis. If we show that the vector-valued scheme with the m@skB) generates
bounded sequences, then we know thagenerates bounded values. If the vector-valued schei@i®, is
i.e., generate€® univariate vector-valued functions, then it follows tigais C° along they-axis as
well. Yet, the mask of the vector-valued scheme has only two terms, and, as such, it cannot produce a
€O limit from an arbitrary vector-valued data. Even if we find a way to overcome this hurdle, we cannot
push it further to higher order smoothness, since the vector-valued scheme is univariate and we are also
interested in derivatives in thedirection and in mixed derivatives as well.

Here comes into play the representation of the vector-valued data in the eigenvectors basis. The idea
here is, that knowing the coefficients in the eigenvectors expansion at a point, gives us the Taylor
expansion (up to degrea) of the limit function at that point, i.e., the coefficient of the monomial
eigenvectorQ[xy/] with eigenvalue 2(+/) > 2= s the coefficient ofc’y/ in the Taylor expansion.

The eigenvectors corresponding to eigenvalues smaller th&nd@ not contribute to thenth order
derivatives. At a given dyadic point we know exactly how the coefficients of the monomial eigenvectors
evolve with the iterations. The matrix subdivision scheme with the n(léslB) fills up the coefficients

of these eigenvectors on finer grids.

We want to show that the coefficients corresponding to the main eigenvalues remain bounded or tend to
Zero at a certain rate during the refinement process. For example, the constant term must remain bounded.
Linear terms at refinement leve| multiplied by 2 must remain bounded. In general, the coefficient of
the monomial eigenvecto@[x'y’/] corresponding to the monomialy/, should stay bounded when
multiplied by 2i+)7, All the rest of the coefficients of eigenvectors must tend to zero when multiplied
by 2t o > 0. If these conditions are satisfied, we can show thabitreorder derivatives of are
Holder continuous of ordet.

In order to study the rate at which certain coefficients tend to zero, we rescale the vector-valued
scheme A, B), multiplying by corresponding powers of @hen represented in the basis We obtain a
nonstationary vector-valued schert,, B,) where the maskéA,,, B,) depend on the iteration level
through

Ay =A"TAAT B, =A"TBAT,
where A is a diagonal matrix with the diagonal values
diaga) =(1,2,2,4,4,4,...,2", ..., 2" 2", .. 2", a7)

Our goal, then, is to show that the nonstationary vector-valued schestabls i.e., it generates values
which are uniformly bounded, given bounded initial data.
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It is easy to see that,, converges geometrically to a matrix with the shape

I| O
Aw = 02T, |-
Also, due to the shape @ (9), B, also converges with the same speed to
o
Boe = | 277y |-

The particular issue of the stability of nonstationary subdivision schemes has been studied in [12].
It turns out that the nonstationary scherte,, B,) is asymptotically equivalent to the limit scheme
(Ax, Bso), and thus it is enough to check whether.,, B,,) is stable. A necessary condition for the
stability of the schemé&A.,, B,) is that the joint spectral radius af and Y1, ps (Yo, Y1), does not
exceed 20+,

5. C™ analysisand Holder continuity near the y-axis

In this section we relate the uniform rate of decay of coefficients of eigenvectotsmthe Holder
exponent of continuity of thenth order derivatives of the limit function. We suppose that the limit
function away from they-axis is in C"™*%, i.e., its mth order derivatives away from thg-axis have
Holder exponent of continuity @ o < 1.

Let us denote the Holder constant of a functidin a domainl c R? by
F —F
H(F,a,U)= sup M (18)
x,yeU, x#y ||X —y||°‘

We define a domaiv as the pair of rectangles

T B Y £ ) a9

By the definition ofL, the limit function onW depends only on the control pointsin Assuming that
the mth order derivatives away from theaxis are Holder continuous with Holder exponenitwe get,
from the linearity and the local support 8f that

H(D"S*P.a, W) < c|[Plluc,z. (20)

for somec > 0, whereD™ denotes any differential operatdy” of orderm. It is also easy to verify that
for any domainU,

H(F(\),a,U)=A"H(F,a, U), VYA>D0. (21)

We want to study the Hélder constant §F P closer and closer to the-axis, H(D"S® P, a, 27"W),
ne€Z,.ButS®P = (5*S"P)(2"-). Therefore, we get using (21) that

H(D"S*P,a,27"W)=H (2" D"(S*S"P)(2"-),a,27"W)
=2"2"H(D"S®S"P,a, W),
and then from (20), we have
H(D"S®P,a,27"W) <2""*c|S"P|_,. (22)
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Similarly, the limit function on 2”& W depends only on the values 8f P in £ L, and by using (21)
and recalling thaF is y-direction shift invariant, we get

H(D"S®P,a,27"&'W) < 2" ¢|S"P| o), Vn€Zy, Viel (23)

Later on we use the above relations to prove that the Holder constaxit$sf P is uniformly bounded
in the domains 2'£'W, n € Z,, i € Z. In the next section we show that uniform Holder continuity over
the domains 2°£'W implies Holder continuity over the entire plane.

6. Uniform Hdlder continuity over the plane

We now show how to deduce Holder continuity over a domain from the uniform Hdélder continuity
over subsets of the domain, provided that the closure of their union covers the domain.

Since we assume Holder continuity away from thexis, we restrict our attention to the strip
[—1, 1] x [—o0, 0o]. Define

v=Jew= ([—1,—%} U ElD x (—00, 00).

JEZ

Lemma 6.1 (Uniform Holder continuity away from the-axis).Let F : R? — R denote a function which
is continuous everywhere except maybe thaxis. If for all i € Z, H(F,a, £'W) < ¢, then for any

p =(p1, p2),q = (q1,¢2) € U such thatjp; — g2| <1,
|F(p) — F(g@)| <3cllp —ql* (24)

Proof. Let p,q € U, and letr denote the point with coordinatég1, g») € U. Sincer andg only differ
by their first coordinate, they belong to the same integer shiW pand therefore
|F(r) = F(@)| <clr—ql* (25)

We now observeF(p) — F(r)|. In casep andr belong to the same integer shift @f, we have that
|[F(p) — F(r)| <c|lp — q|*. Otherwise, we assume, w.l.0.g, that> p,. We now use the assumption
that|p, — g2 < 1. Fors = (py, |r2]), we have that

|F(p) — F(s)| <cllp — s |[F(r) = F(s)| <clr —s]I°
and, becausgp — sl|, Ir — sl < llp — rll, we get

|F(p) = F(n| < 2clp —rll*. (26)
From (25) and (26) we get that

|F(p) — F(@)|<3cllp—ql*. O

Corollary 6.2. Letn > 0. Ifforall i e Z, H(F,a,2"'W) < c, then
p2—q2l <27 = |F(p)—F(g)|<3clp—ql* Vp.qe2™U.
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Proof. Using (21), we have
H(F(2™":),a,E&'W) <2,

From Lemma 6.1 it follows that p, g € U such that2" p, — 2"¢,| < 1,
|F(2_”2”p) — F(2_”2”q)| <3 2_”“c|2”p — 2"q|a =3cllp —ql®. O

Lemma 6.3 (Uniform continuity near the-axis). Let F : R? — R denote a function which is bounded
and continuous everywhere except maybe onthgis. If foralli € Z, andn > 0, H(F, a, 27"'W) < c,
then

H(F, o, ([—1, 19\ {O}) x (—00, oo)) < 00. (27)
Furthermore,F may be redefined on theaxis so that

H(F,a,[-1,1] x (=00, 00)) < 00. (28)

Proof. For p,q € ([—1, 1]\ {0}) x (—o0, co) we would like to show thatF (p) — F(g)| < ¢|p — ql|°.
This is established by considering all the different cases of relative locations=of(p1, p») and

q =(q1,92):

(1) If p andgq are far away from each other, we use the fact tha bounded.

(2) If p andg are not on the same side of tleaxis, we define- = (—p1, p2), and use the triangle
inequality |F(p) — F(g@)| < |F(p) — F(r)| + |F(r) — F(g)|. |F(p) — F(r)| can be bounded by
Corollary 6.2 sincep andr lie in the same strip2'U. The term|F (r) — F(g)| will be estimated by
cases (3)—(5) below.

(3) The casep; # g1 and p, # g2, when p and g are from the same side of theaxis. We define
r=(p1,q2) and usgF(p) — F(g)| < |F(p) — F(r)| + |F(r) — F(q)|. That reduces the problem to
the casep; = q1 Or pr = go.

(4) The casey =q1. If |p2 — g2| < 1/2|p1|, Corollary 6.2 does the job. Otherwise, we definéurther
from the y-axis, and useF(p) — F(q)| < |F(p1. p2) — F(r1. p2)l + |F(r1. p2) — F(r1.q2)| +
|F(r1, g2) — F(q1, g2)|. The mid-term is bounded using Corollary 6.2. The other terms are settled by
case (5).

(5) The case op andg being on the same side of theaxis andp, = ¢». This case is established by
defining intermediate points along the line segment betweamd g on the boundaries between
dilations of U, and summing up the contributions. gfe 27U andq € 27"U, n > m, we have,
using Corollary 6.2,

n—1

[F(p)— F(g)| <6ellp—qll® +3¢ Y (27 —2774)°,
m+1

where the above sumis setto zeraEm + 1. If n > m + 1 we have

n—1
(2 -2 e (2 2 <l =gl
m+1
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The above considerations prove (27), i.e., uniform Hdlder continuity over the split dothain
([—1, 11\ {0}) x (—o0,00). To extend the result tp—1, 1] x (—oo, o) we observe that (27) implies
that for any sequencép™} c U converging to a point0, y) on the y-axis, there is a unique limit
lim, o F(p™). The result (28) thus follows by redefinifg(0, y) as this limit. O

All the above results lead to the main result of this paper.

Theorem 6.4. Assume thaf is a C™ scheme away from thg-axis, and that thenth order derivatives
of its limit function there have Hélder exponent of contin@ity o < 1. Also, assume thg8B) is satisfied
for someQ : I1,, — [(X). LetYy and Y, be defined as i(6), (8).

If poo (Yo, Y1) < 27+ thenS is globally C™ and themth order derivatives of its limit functions
have Holder exponent.

Proof. First we note, that in order to avoid the problem of unbounded sequences of control points, it
is enough to assume that the control poiftsare zero inJ \ L. In view of Lemma 6.3, and since
D™ S P exists away from the-axis, it suffices to show thatl (D" S®P,«a,27"E'W) < ¢, Vn € Z,
i € Z. Equation (23) exhibits the relation between the Holder constant over the domdifid/2and
the values of the control points ovéf L, namely ||S" P|l,, ¢ - It Seems that we have to show that
|8" Pl so.ei . = O(27" ) which in general is false, so we have to be more careful.

Let G denote the projection of values Inonto the subspace of thie: + 1) (m + 2) /2 right eigenvectors
of A, namely, spafQf|., f =x'y/, 0<i+ j <m}. All the other eigenvectors of are in kefG). We
note thatG(S” P|¢i;) consists only of a combination of eigenvectors that correspond to polynomials
of degree< m in the limit. Theirmth order derivatives are either zero or constant, and they have zero
Holder constant. Therefore, we can reduce the discussion toS@#&g:; which is a combination of
eigenvectors ofA with eigenvalues smaller tharm2, i.e., to(I — G)(S" P|gi1). It is easy to check, in
view of the definition of the matrix subdivision scherfy, B), and in view of Section 4, that

|(1 = G)(S"Pleir) | ., < c(poo(Yo, Y1) +6)", (29)

for any e > 0. And this, in view of (23), implies that the:th order derivatives o8> P have Hdélder
exponenty in R?,

To complete the proof af™ continuity we use the same method to prove this result for all lower order
derivatives ofS* P. To deal with thekth order derivatives, fok < m, we replace the definition of in
(17) by

diagA) = (1,2,2,4,4,4,..., 2%, ... 25,21 2kHY), (30)

Also, we redefine of the above projection operatrto be the projection onto the subspace of
the (k + 1)(k + 2)/2 right eigenvectors ofA corresponding to monomials of degregsk, namely,
spafQfl., f=x'y/, 0<i+ j<k}. In view of the structure ofi and B in (6), (8), the arguments
used for thenth order derivative can be repeated here, and the claim of the theorem is praved.
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7. Conclusions and open issues
7.1. A simple smoothness check

In this paper, we have presented an algorithm for checking the smoothness of quasi-uniform
subdivision schemes. It is important to note that the algorithm is simple to apply. It does not require
the construction of complicated difference schemes, neither it requires costly eigenvector analysis of the
subdivision matrices. The construction of the matrices involved in the algorithm is done by applying the
subdivision scheme to specific data. The only eigenvectors needed in the construction correspond to the
eigenvalues 11/2,...,27™, and are given by (7).

7.2. The tri-quad example and beyond

The tri-quad mesh serves here as a case study. We use it to demonstrate the construction of the scheme
on the boundary between two uniform regions with a different uniform subdivision scheme defined on
each. Then we apply the new smoothness check algorithm to the tri-quad scheme. We are not aware of
any other method for analyzing such a scheme. The analysis procedure can be directly adapted, or suitably
extended, to deal with many other cases of quasi-uniform subdivision (for more examples see [18]). For
example, consider a quasi-uniform schem&$nconsisting of different uniform schemes on each side of
the xy-plane and some special rules near tlpeplane. The smoothness check of such a scheme follows
quite the same steps as the algorithm presented in this paper, where in the end one has to estimate the
joint spectral radius of four matrices.

7.3. Necessary and sufficient condition?

It is not clear whether the joint spectral radius conditiog(Yo, Y1) < 2~ is also necessary for
C™*e continuity. It is certainly necessary for the stability of the vector-valued schetge B.,) and
thus for the stability of the nonstationary vector-valued schée, B,,)} defined in Section 4. It turns
out that if po. (Yo, Y1) > 2-("+%) then the scheme cannot 6& <, but the case of equality is not clear.

7.4. The analysis of uniform schemes

There are well established analysis tools for uniform multivariate schemes. One approach is via
difference schemes ([2,9,10]) and the other is in terms of the joint spectral radius of the local subdivision
operators ([14,15,24]). The method presented here for the analysis of quasi-uniform schemes is related to
the second approach. The following result is merely a presentation of the result in [15] in our terminology.

Let us consider a uniform schem®on X = Z?, and let&; and & denote the shift operators
EL={(+L1j)|GjelL}, &EL={Gj+ 1) |G, j) e L}. Here we choosd. C X as the subset
of mesh points around the origin such that the values at iterationL.1 §iL, &L, and&>E. L, namely
SP|., SPler, SPle,, andSP|g,g 1, depend only on the initial values ib, P|.. For (i1,i2) € E =
{(0,0), (1,0), (0, 1), (1, 1)} let A2 denote the matrix operator taking the vector of val®eés to the
VeCtOI'SP|g’,25’,1L.
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To each point 2"(i, j) € 27"Z? we relate the vector of data valueré,,. = §"P|gjgi - The four
’ 2%1

matrices{A12} constitute a bivariate vector-valued binary subdivision scheme generating all these
vector sequences, namely,

Vs i, = APV (i, i) €E. (31)
The benefit in defining such a vector-valued scheme is realized when considered in a special basis. Using
the left and right eigenvectors @f®?, just as described in the analysis procedure in Section 3, we form
a basisV for the vectorsP|, . In this basis, the matrices>2 take the form

~i © (.i2) | Cl1.i2)
AR = [T’m] : (32)

Let thejoint spectral radiusof the four matricegY 12} be defined as

poo(Y @O, Y20 yOD y @Dy — jimsup(max{ | Yyt vt _: e € E})Y" (33)
keZ4\0

Theorem 7.1. Let S be a uniform bivariate binary scheme @1, and assume thaf mapsIT,, into itself
and S* is an injection. Le{Y v2}, (i4, i») € E, be defined as above. If

,Ooo(Y(O’O), Y(l-,O)’ Y(O’l), Y(l’l)) = 2~ (m+a) (34)

0 <a <1thenS is C™ and themth order derivatives of the limit function are Holder continuous with
exponentr — ¢ for arbitrarily small ¢ > 0.

Proof. The proof relies on checking the decay of the differences of divided differences of the data
generated byS, as is done in [2,9,10], only without using difference schemes. As in Section 4,
condition (34) implies that the coefficients in the local eigenvector expansion at all dyadic points
2772, n € Z,, are properly bounded, i.e., the coefficients of the eigenvectors with eigenvaiteé 2
corresponding to the monomial limit functioly/, i + j < m, are Q27"¢+7), and the coefficients of
the other eigenvectors behave a0 +%)), asn — oo. We also observe that each vectgy generated
by the vector subdivision (31) represents a subset of values generafetibgice, evaluating differences
between the elements of ; is the same as evaluating local differencesSoi near the point 2 (i, j).

Unlike the quasi-uniform case, using the injectivity assumption, it follows by [18] that the first
(m +1)(m +2)/2 eigenvectors are polynomials (restrictedZf). Moreover, the eigenvector correspond-
ing to the monomial limit functionc’y/, i + j < m, is of the form(q (x, y) + x'y/)|zz2, With g € IT;; ;1.
Since all divided differences of ordér j + 1 of such eigenvector data are zero, we find out that the
differences of all divided differences of orderare Q27"%), asn — oo. Thus, the result follows from
the theory in [2,9,10]. O
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