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Abstract

We study markets of indivisible items in which price-based (Walrasian) equilibria often do not exist
due to the discrete non-convex setting. Instead we consider Nash equilibria of the market viewed as a
game, where players bid for items, and where the highest bidder on an item wins it and pays his bid. We
first observe that pure Nash-equilibria of this game excatly correspond to price-based equilibiria (and
thus need not exist), but that mixed-Nash equilibria always do exist, and we analyze their structure
in several simple cases where no price-based equilibrium exists. We also undertake an analysis of the
welfare properties of these equilibria showing that while pure equilibria are always perfectly efficient
(“first welfare theorem”), mixed equilibria need not be, and we provide upper and lower bounds on their
amount of inefficiency.

1 Introduction

1.1 Motivation

The basic question that Economics deals with is how to “best” allocate scarce resources. The basic answer is
that trade can improve everyone’s welfare, and will lead to a market equilibrium: a vector of resource prices
that “clear the market” and lead to an efficient allocation. Indeed, Arrow and Debreu [1] and much further
work shows that such market equilibria exist in general settings.

Or do they...? An underlying assumption for the existence of price-equilibria is always some notion
of “convexity.” While some may feel comfortable with the restriction to “convex economies,” markets of
discrete items – arguably the main object of study in computerized markets and auctions – are only rarely
“convex” and indeed in most cases do not have any price-based equilibria. What can we predict to happen
in such markets? Will these outcomes be efficient in any sense? In this paper we approach this questions by
viewing the market as a game, and studying its Nash-equilibria.

1.2 Our Model

To focus on the basic issue of lack of price-based equilibria, our model does not address informational issues,
assumes a single seller, and does not assume any budget constraints.
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Our seller is selling m heterogeneous indivisible items to n buyers who are competing for them. Each
buyer i has a valuation function vi specifying his value for each subset of the items. I.e., for a subset S of
the items vi(S) specifies the value for that buyer if he gets exactly this subset of the items, expressed in
some currency unit (i.e., the buyers are quasi-linear). We will assume free disposal, i.e., that the vi’s are
monotonically non-decreasing, but nothing beyond that.

The usual notion of price-based equilibrium in this model is called a Walrasian equilibrium: a set of
item prices p1 . . . pm and a partition S1 . . . Sn of the m items among the n buyers such that each buyer
gets his “demand” under these prices, i.e., Si ∈ argmaxS(vi(S) − ∑

j∈S pj). When such equilibria exist
they maximize social welfare,

∑
i vi(Si), but unfortunately it is known that they only rarely exist – it exists

exactly when the associated integer program has no integrality gap (see [3] for a survey).
We will consider this market situation as a game where each player1 i announces m offers bi1, . . . bim,

with the interpretation that bij is player i’s bid of item j. After the offers are made, m independent first
price auctions are executed. That is the utility of each bidder i is given by ui(b) = vi(Si)−

∑
j∈Si

bij where
S1 . . . Sn are a partition of the m items with the property that each item went to a highest bidder on it.
Some care is needed in the case of ties – namely, two (or more) bidders i 6= i′ that place the highest bid
bij = bi′j for some item j. In this case a tie breaking rule is needed to complete the specification of the
allocation and thus of the game. Importantly, we view this as a game with complete information, so each
player knows the (combinatorial) valuation function of each other player.

1.3 Pure Nash Equilibrium

Our first observation is that the pure equilibria of this game capture exactly the Walrasian equilibria of the
market. This justifies our point of view that when we later allow mixed-Nash equilibria as well, we are in
fact strictly generalizing the notion of price-equilibria.

Theorem: Fix a profile of valuations. Walrasian equilibria of the associated market are in 1-1 correspondence
with pure Nash equilibria of the associated game. This holds in the exact sense for some tie-breaking rule,
and holds in the sense of limits of ε-Nash equilibria for all ties-breaking rules.

A profile of strategies (bids) in the game is called a “limit of ε-Nash equilibria” if for every ε > 0 there
exists a sequence of ε-Nash equilibria that approach it.

Let us demonstrate this theorem with a trivial example: a single item on sale and two bidders who have
values of 1 and 2 respectively for it. A Walrasian equilibrium can fix the item’s price p anywhere between
1 and 2, at which point only the second bidder desires it and the market clears. In the associated game
(with any tie breaking rule), a bid p for the first player and bid p + ε for the second player will be an
ε-Nash-equilibrium. In the special case that the tie breaking rule gives priority to the second bidder, an
exact pure-Nash equilibrium will have both bidders bidding p on the item.

This theorem is somewhat counter intuitive as strategic (non-price-taking) buyers in markets may improve
their utility by strategically “reducing demand”. Yet, in our setting strategic buyers still reach the basic
non-strategic price-equilibrium.

As an immediate corollary of the fact that a Walrasian equilibrium optimizes social welfare (“The first
welfare theorem”), we get the same optimality in our game setting:

Corollary – A “First Welfare Theorem” For every profile of valuations and every tie-breaking rule,
every pure Nash equilibrium of the game (including a limit of ε-equilibria) optimizes social welfare. In other
words, the Price of Anarchy of pure Nash equilibria is trivial.

1.4 Mixed Nash Equilibria

As mentioned above, since Walrasian equilibria only rarely exists, so do only rarely exist pure Nash equilibria
in our games. So it is quite natural to consider also the standard generalization, Mixed-Nash equilibria of

1We use interchangeably the terms: player, bidder and buyer, and all three have the same meaning.
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our market games. The issue of existence of such mixed Nash equilibria is not trivial in our setting as buyers
have a continuum of strategies and discontinuous utilities so Nash’s theorem does not apply. Nevertheless,
there has been a significant amount of economic literature on these types of settings and a theorem of Simon
and Zame [7] provides at least a partial general positive answer:

Corollary (to a theorem of [7]): For every profile of valuations, there exists some (mixed) tie-breaking rule
such that the game has a mixed-Nash equilibrium.

It seems that, like in the case of pure equilibria, an ε-Nash equilibrium should exist for all tie breaking
rules, but we have not been able to establish this.

Once existence is established, we turn our attention towards analyzing what these mixed equilibria look
like. We start with the two basic examples that are well known not to have a price equilibria:

Example – Complements and Substitutes Bidders: In this example there are two items and two
bidders. The first bidder (“OR bidder”) views the two items as perfect substitutes and has value of vor

for either one of them (but is not interested in getting both). The second bidder (“AND bidder”) views
them as complements and values the bundle of both of them at vand (but is not interested in either of them
separately). It is not difficult to see that when vand < 2vor no pure equilibrium exists, however we find
specific distributions For and Fand for the bids of the players that are in mixed-Nash equilibrium.

Example – Triangle: In this example there are three items and three players. Each of the players is
interested in a specific pair of items, and has value 1 for that pair, and 0 for any single item, or any other
pair. A pure Nash equilibrium does not exist, but we show that the following is a mixed-Nash equilibrium:
each player picks a bid x uniformly at random in the range [0, 1/2] and bids this number on each of the
items. Interestingly the expected utility of each player is zero. We generalize the analysis to the case of
single minded players, each desiring a set of size k, each item is desired by d players, and no two players’
sets intersect in at most a single item.

We generalize our analysis to more general examples of these veins. In particular, these provide examples
where the mixed-Nash equilibrium is not optimal in terms of maximizing social welfare and in fact is far
from being so.

Corollary – A “First Non-Welfare Theorem”: There are profiles of valuations where a mixed-Nash
equilibrium does not maximize social welfare. There are examples where pure equilibria (that maximize
social welfare) exist and yet a mixed Nash equilibrium achieves only O(1/

√
m) fraction of social welfare

(i.e., “Price of Anarchy” is Ω(
√

m)). There exist examples where all mixed-Nash equilibria achieve at most
O(

√
(log m)/m) fraction of social welfare (i.e., “Price of Stability” is Ω(

√
m/(log m))).

At this point it is quite natural to ask how much efficiency can be lost, in general, as well for interesting
subclasses of valuations, which we answer as follows.

Theorem – An “Approximate First Welfare Theorem”: For every profile of valuations, every tie-
breaking rule, and every mixed-Nash equilibrium of the game we have that the expected social welfare
obtained at the equilibrium is at least 1/α (the “Price of Anarchy”) times the optimal social welfare, where

1. α ≤ 2β if all valuations β-fractionally subadditive. (The case β = 1 correponds to fractionally subad-
ditive valuations, also known as XOS valuations. They include the set of sub-modular valuations.)

2. α = O(log m) if all valuations are sub-additive.

3. α = O(m), in general.

These bounds apply also to correlated-Nash equilibria and even to coarse-correlated equilibria.

A related PoA result is that of [2] which derive PoA for β-fractionally sub-additive bidders in a second
price simultaneous auction under the assumption of “conservative bidding.” In this work we use the first
price (rather than the second price) and do not make any assumption regarding the bidding.
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Finally we extend these results also to a Bayesian setting where players have only partial information on
the valuations of the other players. We show that for any prior distribution on the valuations and in every
Bayesian Nash equilibrium, where each player bids only based on his own valuation (and the knowledge of
the prior), the average social welfare is lower by at most α = O(mn) than the optimal social welfare achieved
with full shared knowledge and cooperation of the players. For a prior which is a product distribution over
valuations which are β-fractionally sub-additive we show that α = 4β, which implies a bound of 4 for sub-
modular valuations and a bound of O(log m)for sub-additive valuations. Our proof methodology for this
setting is similar to that of [2].

1.5 Open Problems and Future Work

We consider our work as a first step in the systematic study of notions of equilibrium in markets where price
equilibria do not exist. Our own work focused on the mixed-Nash equilibrium, its existence and form, and its
welfare properties. It is certainly natural to consider other properties of such equilibria such as their revenue
or invariants over the set of equilibria. One may also naturally study other notions of equilibrium such as
those corresponding outcomes of natural dynamics (e.g., coarse correlated equilibria which are the outcome
of regret minimization dynamics). It is also natural to consider richer models of markets (e.g., two-sided
ones, non-quasi-linear ones, or ones with partial information).

Even within the modest scope of this paper, there are several remaining open questions: the characteri-
zation of all equilibria for the simple games we studied; and closing the various gaps in our Price of Anarchy
and Price of Stability results.

2 Model

We have a set M of m heterogeneous indivisible items for sale to a set N of n bidders. Each bidder i has
a valuation function vi where for a set of items S ⊆ M , vi(S) is his value for receiving the set S of items.
We will not make any assumptions on the vi’s except that they are monotone non decreasing (free disposal)
and that vi(∅) = 0. We assume that the utility of the bidders is quasi-linear, namely, if bidder i gets subset
Si and pays pi then ui(Si, pi) = vi(Si)− pi.

We will consider this market situation as a game where the items are sold in simultaneous first price
auctions. Each bidder i ∈ N places a bid bij on each each item j ∈ M , and the highest bidder on each item
gets the item and pays his bid on the item. We view this as a game with complete information. The utility
of each bidder i is given by ui(b) = vi(Si)−

∑
j∈Si

bij where S1...Sn are a partition of the m items with the
property that each item went to the bidder that gave the highest bid for it.

Some care is required in cases of ties, i.e., if for some bidders i 6= i′ and an item j ∈ M we have that
bij = bi′j are both highest bids for item j. In these cases the previous definition does not completely specify
the allocation, and to complete the definition of the game we must specify a tie breaking rule that chooses
among the valid allocations. (I.e., specifies the allocation S1, . . . , Sn as a function of the bids.) In general
we allow any tie breaking rule, a rule that may depend arbitrarily on all the bids. Even more, we allow
randomized (mixed) tie breaking rules in which some distribution over deterministic tie breaking rules is
chosen. We will call any game of this family (i.e.,with any tie breaking rule) a “first price simultaneous
auction game” (for a given profile of valuations).

3 Pure Nash Equilibrium

The usual analysis of this scenario considers a market situation and a price-based equilibrium:

Definition 3.1 A partition of the items S1...Sn and a non-negative vector of prices p1...pm are called a
Walrasian equilibrium if for every i we have that Si ∈ argmaxS(vi(S)−∑

j∈S pj).

We consider bidders participating in a simultaneous first price auction game, with some tie breaking
rule. Our first observation is that pure equilibria of a first price simultaneous auction game correspond to
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Walrasian equilibria of the market. In particular, this implies that the pure equilibrium maximizes the social
welfare, i.e., the Price of Anarchy of pure equilibria is 1.

Proposition 3.2 A profile of valuation functions v1...vn admits a Walrasian equilibrium with given prices
and allocation if and only if the first price simultaneous auction game for these valuations has a pure Nash
equilibrium for some tie breaking rule with these winning prices and allocation.

Proof: Let S1...Sn and p1...pm be a Walrasian equilibrium. In the auction each bidder bids for each item
its price in the Walrasian equilibrium, i.e., the bid of player i to item j is bij = pj and the game break ties
according to S1...Sn. Why are these bids a pure equilibrium of this game? Since we are in a Walrasian
equilibrium, each player gets a best set for him under the prices pj . In the game, given the bids of the other
players, he can never win any item for strictly less than pj , whatever his bid, and he does wins the items in
Si for price pj exactly, so his current bid is a best response to the others2.

Now fix a pure Nash equilibrium of the game with a given tie breaking rule. Let S1...Sn the allocation
specified by the tie breaking rule, and for each item j set its price to pj = maxi bij . We claim that this is a
Walrasian equilibrium. Suppose by way of contradiction that some player i strictly prefers another bundle
T under these prices. This contradicts the original bid of i was a best reply since the deviation bidding
bij = pj + ε for j ∈ T and bij = 0 for j 6∈ T would give player i the utility from T (minus at most ε|T |) which
would be more than he currently gets from Si, for a sufficiently small ε > 0 – a contradiction.

The allocation obtained by the game, is itself the allocation in a Walrasian equilibrium, and thus by the
First Welfare Theorem is a social-welfare maximizing allocation.

Corollary 3.3 Every pure Nash equilibrium of a first price simultaneous auction game achieves optimal
social welfare.

Two short-comings of this proposition are obvious: first is the delicate dependence on tie-breaking: we
get a Nash equilibrium only for some, carefully chosen, tie breaking rule. In the next section we will show
that this is un-avoidable using the usual definitions, but that it is not a “real” problem: specifically we show
that for any tie-breaking rule we get arbitrarily close to an equilibrium.

The second short-coming is more serious: it is well known that Walrasian equilibria exist only for restricted
classes of valuation profiles3. In the general case, there is no pure equilibrium and thus the result on the
Price of Anarchy is void. In particular, the result does not extend to mixed Nash equilibria and in fact it
is not even clear whether such mixed equilibria exist at all since Nash’s theorem does not apply due to the
non-compactness of the space of mixed strategies. This will be the subject of the the following sections.

3.1 Tie Breaking and Limits of ε-Equilibria

This subsection shows that the quantification to some tie-breaking rule in the previous theorem is unavoid-
able. Nevertheless we argue that it is really just a technical issue since we can show that for every tie
breaking rule there is a limit of ε-equilibria.

A first price auction with the wrong tie breaking rule

Consider the full information game describing a first price auction of a single item between Alice, who has
a value of 1 for the item, and Bob who values it at 2, where the bids, x for Alice and y for Bob, are allowed
to be, say, in the range [0, 10]. The full information game specifying this auction is defined by uA(x, y) = 0
for x < y and uA(x, y) = 1− x for x > y, and uB(x, y) = 2− y for x < y and uB(x, y) = 0 for x > y. Now

2The reader may dislike the fact that the bids of loosing players seem artificially high and indeed may be in weakly dominated
strategies. This however is unavoidable since, as we will see in the next section, counter-intuitively sometimes there are no pure
equilibria in un-dominated strategies. What can be said is that minimal Walrasian equilibria correspond to pure equilibria of
the game with strategies that are limits of un-dominated strategies.

3When all valuations are “substitutes”.
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comes our main point: how would we define what happens in case of ties? It turns out that formally this
“detail” determines whether a pure Nash equilibrium exists.

Let us first consider the case where ties are broken in favor of Bob, i.e., uB(x, y) = 2 − y for x = y and
uA(x, y) = 0 for x = y. In this case one may verify that x = 1, y = 1 is a pure Nash equilibrium4.

Now let us look at the case that ties are broken in favor of Alice, i.e., uA(x, y) = 1− x and uB(x, y) = 0
for x = y. In this case no pure Nash equilibrium exists: first no x 6= y can be an equilibrium since the winner
can always reduce his bid by ε < |x− y| and still win, then if x = y > 1 then Alice would rather bid x = 0,
while if x = y < 2 then Bob wants to deviate to y + ε and to win, contradiction.

This lack of pure Nash equilibrium doesn’t seem to capture the essence of this game, as in some informal
sense, the ”correct” pure equilibrium is (x = 1, y = 1 + ε) (as well as (x = 1− ε, y = 1)), with Bob winning
and paying 1 + ε (or 1). Indeed these are ε-equilibria of the game. Alternatively, if we discretize the auction
in any way allowing some minimal ε precision then bids close to 1 with minimal gap would be a pure Nash
equilibrium of the discrete game. We would like to formally capture this property: that x = 1, y = 1 is
arbitrarily close to an equilibrium.

Limits of ε-Equilibria

We will become quite abstract at this point and consider general games with (finitely many) n players whose
strategy sets may be infinite. In order to discuss closeness we will assume that the pure strategy set Xi of
each player i has a metric di on it. In applications we simply consider the Euclidean distance.

Definition 3.4 (x1...xn) is called a limit pure equilibrium of a game (u1...un) if it is the limit of ε-equilibria
of the game, for every ε > 0.

Thus in the example of the first price auction, (1, 1) is a limit equilibrium, since for every ε > 0, (1, 1+ ε)
is an ε-equilibrium. Note that if all the ui’s are continuous at the point (x1...xn) then it is a limit equilibrium
only if it is actually a pure Nash equilibrium. This, in particular, happens everywhere if all strategy spaces
are discrete.

We are now ready to state a version of the previous proposition that is robust to the tie breaking rule:

Proposition 3.5 For every first price simultaneous auction game with any tie breaking rule, a profile of
valuation functions v1...vn admits a Walrasian equilibrium with given prices and allocation if and only if the
game has a limit Nash equilibrium for these valuations with these winning prices and allocation.

Proof: Let S1...Sn and p1...pm be a Walrasian equilibrium. Consider the bids where bij = pj + ε/m for all
j ∈ Si and bij = pj for all j 6∈ Si. Why are these bids an εm-equilibrium of this game? Since we are in a
Walrasian equilibrium, each player gets a best set for him under the prices pj . In the game, given the bids
of the other players, he can never win any item for strictly less than pj , whatever his bid, and player i does
win each item j in Si for price pj + ε, so his current bid is a best response to the others up to an additive
ε/m for each item he wins, and the total is at most ε.

Now fix a limit pure equilibrium (bij) of the game with some tie breaking rule and let (b′ij) be an ε-
equilibrium of the game with |bij − b′ij | ≤ ε for all i, j and with no ties; let S1...Sn the allocation implied;
and for an item j let pj = maxi bij . We claim that this is an εm-Walrasian equilibrium. Suppose by way of
contradiction that for some player i and some bundle T 6= Si, we have

vi(T )−
∑

j∈T

pj > vi(Si)−
∑

j∈Si

pj + mε.

This would contradict the original bid b′i,j of i being an ε-best reply since the deviation bidding bij = pj + ε
for j ∈ T and bij = 0 for j 6∈ T would give player i the utility from T up to εm which, for sufficiently small
ε > 0, would be more than he currently gets from Si – a contradiction.

4The bid x = 1 is weakly dominated for Alice. Surprisingly, however, there is no pure equilibrium in un-dominated strategies:
suppose that some y is at equilibrium with an un-dominated strategy x < 1. If y ≥ 1 then reducing y to y = x would still
make Bob win, but at a lower price. However, if y < 1 too, then the loser can win by bidding just above the current winner –
contradiction.
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Now let ε approach zero and look at the sequence of price vectors ~p and sequence of allocations obtained
as (b′ij) approach (bij). The sequence of price vectors converges to a fixed price vector (since they are a
continuous function of the bids). Since there are only a finite number of different allocations, one of them
appears infinitely often in the sequence. It is now easy to verify that this allocation with the limit price
vector are a Walrasian equilibrium.

Again, we establish the following corollary.

Corollary 3.6 Every limit Nash equilibrium of a first price simultaneous auction game achieves optimal
social welfare.

4 General Existence of Mixed Nash Equilibrium

In this section we ask whether such a first price simultaneous auction game need always even have a mixed-
Nash equilibrium. This is not a corollary of Nash’s theorem due to the continuum of strategies and discon-
tinuity of the utilities, and indeed even zero-sum two-player games with [0, 1] as the set of pure strategies of
each player may fail to have any mixed-Nash equilibrium or even an ε-equilibrium. (In fact, we show in this
section that in our setting, for the “wrong” tie-breaking rule, it might be that no mixed-Nash equilibrium
exists.) There is some economic literature about the existence of equilibria in such games (starting, e.g.,
with [6, 4]), and a theorem of Simon and Zame [7], implies that for some (randomized) tie breaking rule, a
mixed-Nash equilibrium exists. The main example of their (more general) theorem is the following (cf. page
864):

Suppose we are given strategy spaces Si, a dense subset S∗ of S = S1×· · ·×Sn, and a bounded continuous
function ϕ : S∗ → <n. Let Cϕ : S → <n be the correspondence whose graph is the closure of the graph of ϕ,
and define Qϕ(s) to be the convex hull of Cϕ(s) for each s ∈ S. We call the correspondence Qϕ the convex
completion of ϕ. This is Simon and Zame’s motivating example of “games with an endogenous sharing rule,”
and their main theorem is that these have a “solution:” a pair (q, α), where q is a “sharing rule,” a Borel
measurable selection from the payoff correspondence Q and α = (α1...αn) is a profile of mixed strategies
with the property that each player’s action is a best response to the actions of other players, when utilities
are according to the sharing rule q.

We now show how this applies to our setting: S∗ will be the set of bids with no ties, i.e., where for all
j and all i 6= i′ we have that bij 6= bi′j , which is clearly dense (since bids with ties have measure zero).
Here ϕ is simply the vector of utilities of the players from the chosen allocation which is fully determined
and continuous in S∗ – when there are no ties. For b 6∈ S∗, we have that Cϕ(~b) is the set of utility vectors
obtained from all possible deterministic tie-breaking rules at ~b (each of which may be obtained as a limit of
bids with no ties), and Qϕ is the set of mixtures (randomizations) over these. The solution thus provides a
randomized tie-breaking rule q and mixed strategies that are a mixed-Nash equilibrium for the game with
this tie-breaking rule. So we get:

Corollary 4.1 The first price simultaneous auction game for any profile of valuations has a mixed-Nash
equilibrium for some randomized tie-breaking rule.

We now show that if we fix some tie breaking rule,it might be that there is no mixed Nash equilibrium
for the first price simultaneous auction game.

Theorem 4.2 There exists a profile of valuations and a tie-breaking rule such that the first price simulta-
neous auction game does not have a mixed-Nash equilibrium.

Proof: Consider two players and two products. Player ZERO has a zero value for any set. Player ONE has
a value 1 for any item, and also for both items. Ties are broken in favor of ZERO. For contradiction assume
that there is a mixed Nash equilibrium.

Our goal is to limit the possible bids in the support of ONE player, support(ONE). Assume that ONE
player has in its support (x, y) where x, y > 0. Then, the ONE player wins both, for any strategy in the
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support of the ZERO player. In this case (x, y) is inferior to both (x, 0) and (0, y) Therefore, in a mixed Nash
player ONE has only (x, 0) or (0, y) in its support.

Next we show that the ONE player does not have both (x, 0) and (0, y) in the support. Assume that both
(x, 0) and (0, y) are both in the support of ONE. Then the only best response of the ZERO player is to play
(0, 0). In such a case, player ONE has no best response to (0, 0). (This is because the tie breaking rule favors
the ZERO player.) This implies that the support of the ONE player has either (x, 0) or (0, y) but not both.
Assume that the none-zero bid is on the first item, i.e., (x, 0).

Finally, assume that the support of the ONE player includes only (x, 0). Let xinf = INF{x : (x, 0) ∈
support(ONE)}. We claim that xinf > 0, since the bid (0, 0) has a zero utility for the ONE player (due to
the tie breaking rule) and clearly she can guarantee a non-zero utility. Therefore, for any bid of the ZERO
player of the form (z, 0) ∈ support(OR) we have z < xinf . This implies that player ONE can improve by
playing moving his non-zero bids to the second item,e.g., (0, xinf/2).

This show that there is no mixed Nash equilibrium using the tie breaking rule that favors the ZERO player.

5 Mixed-Nash Equilibria: Examples

In this section we study some of the simplest examples of markets in our setting that do not have a Walresian
equilibrium.

5.1 The AND-OR Game

We have two players an AND player and OR player. The AND player has a value of 1 if he gets all the items in
M , and the OR player has a value of v if she gets any item in M . Formally, vand(M) = 1 and for S 6= M we
have vand(S) = 0, also, vor(T ) = v for T 6= ∅ and vor(∅) = 0.

When v ≤ 1/m there is a Walresian equilibrium with a price of v per item. By Proposition 3.2 this
implies a pure Nash Equilibrium in which both players bid v on each item, and the AND player wins all the
items. Therefore, the interesting case is when v > 1/m. It is easy to verify that in this case is no Walresian
equilibrium. We start with the case that |M | = 2 and later in Section 5.4 extend it to the case of arbitrary
number of items. Here is a mixed Nash equilibrium for two items.

• The AND player bids (y, y) where 0 ≤ y ≤ 1/2 according to cumulative distribution Fand(y) = (v −
1/2)/(v − y) (where Fand(y) = Pr[bid ≤ y]). In particular, There is an atom at 0: Pr[y = 0] =
1− 1/(2v).

• The OR player bids (x, 0) with probability 1/2 and (0, x) with probability 1/2, where 0 ≤ x ≤ 1/2 is
distributed according to cumulative distribution For(x) = x/(1− x).

Note that since the OR player does not have any mass points in his distribution, the equilibrium would
apply to any tie breaking rule.

We start by defining a restricted AND-OR game, where the AND player must bid the same value on both
items, and show that the above strategies are a mixed Nash equilibrium for it.

Claim 5.1 Having the AND player bid using Fand and the OR player bid using For is a mixed Nash equilibrium
of the restricted AND-OR game for two items.

Proof: Let us compute the expected utility of the AND player from some pure bid (y, y). The AND player
wins one item for sure, and wins the second item too if y > x, i.e., with probability For(y). If he wins a
single item he pays y, and he wins both items he pays 2y. His expected utility is thus For(y)(1− y)− y = 0
for any 0 ≤ y ≤ 1/2 (and is certainly negative for y > 1/2). Thus any 0 ≤ y ≤ 1/2 is a best-response to the
OR player.
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Let us compute the expected utility of the OR player from the pure bid (0, x) (or equivalently (x, 0)). The
OR player wins an item if x > y, i.e., with probability Fand(x), in which case he pays x, for a total utility
of (v − x) · Fand(x) = v − 1/2, for every 0 ≤ x ≤ 1/2 (and x > 1/2 certainly gives less utility). Thus any
0 ≤ x ≤ 1/2 is a best-response to the AND player.

Next we generalize the proof to the unrestricted setting.

Theorem 5.2 Having the AND player bid using Fand and the OR player bid using For is a mixed Nash
equilibrium of the AND-OR game for two items.

Proof: We first show that if the AND player plays the mixed strategy Fand then For is a best response for
the OR player. This holds since when the AND player is playing Fand, then all its bids are of the form (y, y)
for some y ∈ [0, 1/2]. Any bid (x1, x2) of the OR player, with x1 ≤ x2, is dominated by (0, x2), since the AND
player is restricted to bidding (y, y). Therefore, For is a best response for the OR player.

We now need to show that if the OR player plays the mixed strategy For then Fand is a best response for
the AND player. Let Q(x, y) be the cumulative probability of the OR player, i.e.,

Q(x, y) = Pr[bid1 < x, bid2 < y] =
x

2(1− x)
+

y

2(1− y)
.

for x, y ∈ [0, 1
2 ]. The expected utility of the AND player, given its distribution Fand, is:

UAND = E(x,y)∼Fand
[uand(x, y)],

where
uand(x, y) = 1 ·Q(x, y)− (xQ(x, 1) + yQ(1, y))

We show that for any x, y ∈ [0, 1
2 ] we have uand(x, y) = 0. This follows since,

uand(x, y) = 1 ·Q(x, y)− (xQ(x, 1) + yQ(1, y))

=
(

x

2(1− x)
+

y

2(1− y)

)
− x

(
x

2(1− x)
+

1
2

)
− y

(
1
2

+
y

2(1− y)

)

= (1− x)
x

2(1− x)
+ (1− y)

y

2(1− y)
− x

2
− y

2
= 0,

which completes the proof.

5.2 Uniqueness of the equilibrium in the restricted game

We show that the equilibrium we computed is the only mixed equilibrium in the restricted game. We first
prove the following lemmas regarding the structure of the mixed equilibrium. The first lemma claims that
there are no isolate mass-point in the support of the distribution.

Lemma 5.3 In any mixed equilibrium (F 1
and, F

1
or) there is no interval (a, b) which is not in the support of

F 1
and (F 1

or, respectively) and b is a mass-point in F 1
and (F 1

or, respectively).

Proof: The proof is by contradiction. Assume that there is such a mixed equilibrium (F 1
and, F

1
or) and interval

(a, b) w.r.t. F 1
and (the case of F 1

or will be done latter). Since the AND player does not bid in (a, b) the OR player
will also not bid in that interval, since any bid z ∈ (a, b) is dominated by the bid a. This implies that the
AND player can strictly improve its payoff by bidding (a + b)/2 rather than b. The allocation of the auction
will be identical and the payment will decrease by (b − a)/2 in the case when that the bid was suppose to
be b. Since b is a mass-point, this has a positive probability. Therefore, we reached a contradiction that
(F 1

and, F
1
or) is a mixed equilibrium.
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Now, again, for contradiction assume that there is such a mixed equilibrium (F 1
and, F

1
or) and interval (a, b)

w.r.t. F 1
or. Since the OR player does not bid in (a, b) the AND player will also not bid in that interval, since

any bid z ∈ (a, b) is dominated by the bid (z + a)/2. This implies that the OR player can strictly improve its
payoff by bidding (a + b)/2 rather than b. The allocation of the auction will be identical and the payment
will decrease by (b − a)/2 in the case when that the bid was suppose to be b. Since b is a mass-point, this
has a positive probability. Therefore, we reached a contradiction that (F 1

and, F
1
or) is a mixed equilibrium.

The next lemma essentially shows that there are no intervals which are not in the support.

Lemma 5.4 In any mixed equilibrium (F 1
and, F

1
or): (i) There is no interval (a, b), such that F 1

and(a) ≥ 0
and F 1

and(b) < 1 which is not in the support of F 1
and. (ii) There is no interval (a, b), such that F 1

or(a) ≥ 0
and F 1

or(b) < 1 which is not in the support of F 1
or.

Proof: For (i) assume we have such an interval, and let (a, b) be a maximal such interval. Note that by
Lemma 5.3 the point b is not a mass-point, and hence there is an interval [b, b̄) which is in the support of
F 1

and and has no mass-points. For the OR player, any bid c ∈ (a, b) is strictly dominated by the bid a. Hence,
the probability that the OR player submits a bid in (a, b) is zero. Consider a deviation of the AND player by
replacing any bid in [b, b′] with the bid (a+ b)/2, where b′ will be specified latter and F 1

and(b
′)−F 1

and(b) > 0.
Assume that the AND player deviates. If OR bids z ≤ a the gain of the AND player is at least (b− a) (since it
pays for both items), and this happens with probability F 1

or(a). If OR bids z ≥ b′ then the gain is at least
(b− a)/2, and this happens with probability 1− F 1

or(b
′). If the OR player bids z ∈ [b, b′] the AND player has

a loss of at most 1− 2b ≤ 1 which happens with probability F 1
or(b

′)− F 1
or(b). We need to show that there is

a b′ such that,

F 1
or(b

′)− F 1
or(b) < F 1

or(a)(b− a) + (1− F 1
or(b

′))
b− a

2
, (1)

and F 1
and(b

′)− F 1
and(b) > 0 (so the probability of the event is non-zero). This is equivalent to,

(1 +
b− a

2
)(F 1

or(b
′)− F 1

or(b)) < F 1
or(a)(b− a) + (1− F 1

or(b))
b− a

2
. (2)

Note that since there are no mass-points in [b, b̄) we can make the LHS as small as we want. The main issue
is to show that the RHS is strictly positive. If F 1

or(a) > 0 since b− a > 0 the RHS is positive. If F 1
or(a) = 0,

since F 1
or(b) = F 1

or(a) = 0, it implies that 1 − F 1
or(b) = 1 > 0 and we can use the second term, and again

the RHS is strictly positive. This implies that we can find a b′ ∈ [b, b̄) that satisfies (2). Therefore, the AND
player strictly gains from the deviation which contradicts the assumption that (F 1

and, F
1
or) is an equilibrium.

For (ii) assume we have such an interval, and let (a, b) be a maximal such interval. The probability that
the bid of the AND player is in (a + ε, b) is zero for any ε > 0; otherwise the AND player can improve its
utility by shifting this probability to the bid a + ε/2. Consider a deviation of the OR player where it bids
(a + b)/2 when it needs to bid in [b, b′]. Assume that the OR player deviates. If the AND player bids z ≤ a + ε
then the gain is (b− a)/2 with probability F 1

and(a + ε). If the AND player bids z > b′ then the outcomes are
identical. If the AND player bids in [b, b′] the maximum loss is v − b ≤ v, and this happens with probability
F 1

and(b
′)− F 1

and(b). We need to find a b′ such that,

(v − b)(F 1
and(b

′)− F 1
and(b)) <

b− a

2
F 1

and(a + ε) (3)

and F 1
or(b′) − F 1

or(b) > 0. If F 1
and(a + ε) > 0 since b − a > 0, and since b is not a mass-point (Lemma 5.3)

we can find such a b′. Else, if F 1
and(a + ε) = 0 = F 1

and(b) then a = 0, since (a, b) is maximal. This implies
that b is the lowest bid the AND player submits, and b > a = 0. This implies that the OR player never bids
below b (since in equilibrium it has a positive utility, and bidding below b gives it zero utility5). Consider
now a deviation of the AND player where it bids 0 when it needs to bid b. In both cases it has zero utility,

5The OR player has a positive utility since it can always bid (v + 0.5)/2 > 1/2 and have a utility (v − 0.5)/2 > 0.
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but now it has a cost of 0 rather than b. Hence, the case of F 1
and(a + ε) = 0 is impossible in equilibrium.

This established that the OR player strictly gains from the deviation, and we reached a contradiction.

Now we prove the uniqueness of the equilibrium.

Theorem 5.5 Any mixed equilibrium has Fand(x) = v−1/2
v−x and For(y) = y

1−y as the cumulative probability
distribution functions of the AND and OR players, respectively.

Proof: Assume we have F 1
and and F 1

or which give an equilibrium with an expected utility of UAND and UOR

for the AND and OR player, respectively. Let F 2
or(y) = F 1

or(y) − for(y), where for(y) is the probability mass
of F 1

or at y, i.e., F 2
or(y) = supz<y F 1

or(z).
For any y in the support of F 1

and we have:

F 2
or(y)(1− y)− y = (F 1

or(y)− for(y))(1− y)− y = UAND

(This is since the AND player looses in case of a tie.) This implies that for any y, F 1
or(y) − for(y) ≤

(UAND + y)/(1− y).
UAND = 0: Let yinf be the infimum y in the support of F 1

and. Since yinf is in the support of F 1
and, this

implies that F 2
or(yinf ) = UAND+yinf

1−yinf
. In equilibrium, F 2

or(yinf ) = F 1
or(yinf )−for(yinf ) = 0, since the OR player

would not submit bids below yinf . (The OR player might submit a zero bid, but if yinf > 0 this can happen
only if the OR player expected utility is zero. The OR player has a positive utility since it can always bid
(v + 0.5)/2 > 1/2 and have a utility (v − 0.5)/2 > 0.) This implies that UAND = 0 (and yinf = 0). Therefore,
F 2

or(y) = F 1
or(y)− for(y) ≤ y/(1− y) = For(y) (with equality for y in the support of F 1

and).
xsup = ysup = 1/2: Let ysup and xsup be the supermum in the support of F 1

and and F 1
or, respectively. I.e.,

ysup = sup{y : F 1
and(y) < 1} and xsup = sup{x : F 1

or(x) < 1}, We claim that in equilibrium ysup = xsup,
otherwise one of the players would have an incentive to lower its maximum bid. Formally, assume that
ysup > xsup. Then the AND player always wins with the bid y′ = (ysup + xsup)/2. So it will increase its
utility by bidding y′ instead of bids in the interval (y′, ysup]. A similar argument shows that we cannot have
ysup < xsup. Therefore xsup = ysup.

Clearly ysup ≤ 1/2, otherwise the AND player will have a negative utility. If ysup < 1/2 then xsup < 1/2
(since ysup = xsup) and the AND player can guarantee a positive utility by bidding (1/2 + ysup)/2 < 1/2,
contradicting the fact that UAND = 0.

F 2
or(y) = For(y): The cumulative distribution F 2

or(y) = y/(1 − y) = For(y) for any y in the support of
F 1

and, and F 2
or(y) ≤ For(y) for other values of y. Assume that there is a y0 such that F 2

or(y0) < For(y0).
Then y0 is not in the support of F 1

and. Clearly y0 > 0 (since F 2
or(0) = For(0)) and y0 < ysup (since ysup − ε

is in the support, for any ε > 0). Since y0 < ysup we have F 1
and(y0) < 1. It follows that there must be a

maximal interval (y1, y2), where y1 ≤ y0 < y2, F 1
and(y1) ≥ 0 and F 1

and(y2) < 1 that is not in the support of
F 1

and. By Lemma 5.4 we have that this is impossible, therefore F 2
or(y) = For(y).

F 1
and(x) = Fand(x): For every x in the support of F 1

or we have that (v − x)F 1
and(x) = UOR, and (v −

x)F 1
and(x) ≤ UOR for all other x. Since xsup = ysup = 1/2 we get that UOR = v − 1/2. So F 1

and(x) = Fand(x)
for x in the support of F 1

or and F 1
and(x) ≤ Fand(x) for all other x.

Assume that there is an x0 such that F 1
and(x0) < Fand(x0). Then x0 is not in the support of F 1

or. Clearly
x0 ≥ 0 and x0 < xsup = ysup. Since x0 < xsup = ysup we have F 1

or(x0) < 1. This implies that there must be
an interval (x1, x2), where x1 ≤ x0 < x2, where F 1

or(x1) ≥ 0 and F 1
or(x2) < 1 that is not in the support of

F 1
or. By Lemma 5.4 this is impossible, therefore F 1

and(x) = Fand(x).

5.3 AND-OR: Properties of the equilibrium

We now present few properties of the Nash equilibrium in Theorem 5.2, which was shown to be the unique
mixed Nash equilibrium for the restricted game. Our analysis is a function of the value v (oft the OR player.
We analyze first the expected social welfare, then we derive the probability that each player wins, and end
with the expected revenue.
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Theorem 5.6 The expected social welfare is v − 1/2.

Proof: The expected utility of the AND player is 0. The expected utility of the OR player is v − 1
2 . This

implies that the expected social welfare is v − 1
2 .

Next we derive the probability that the AND player wins(clearly the probability that the OR player wins
is the complement). This probability is depicted in Figure 1.
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value of OR

probability AND wins

Pr[And wins]

Figure 1: The probability that the AND player wins which is the same as the revenue generated from the AND
player.

Claim 5.7 The probability that the AND player wins is ln(2)− 1
2

v + O
(

1
v2

)
and for v = 1 the probability is 1/4.

Proof: If v 6= 1 we get that

Pr[AND wins] =
∫ 1/2

0

F ′and(x)For(x)dx

=
∫ 1/2

0

v − 1
2

(v − x)2
x

1− x
dx

=
(

v − 1
2

) [
ln v−x

1−x

(v − 1)2
− v

(v − 1)(v − x)

]1/2

0

=
(

v − 1
2

) [
ln(2v − 1)
(v − 1)2

− v

(v − 1)(v − 1/2)
− ln v

(v − 1)2
+

1
v − 1

]

=
(

v − 1
2

) [
ln(2v − 1)− ln v

(v − 1)2
− 1/2

(v − 1)(v − 1/2)

]

=
(v − 1/2) ln(2− 1

v )− 1
2 (v − 1)

(v − 1)2
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=
ln(2)− 1

2

v
+ O

(
1
v2

)

For v = 1 a similar calculation shows that

Pr[AND wins | v = 1] =
1
2

∫ 1/2

0

x

(1− x)3
dx =

1
2

[
2x− 1

2(x− 1)2

]1/2

0

=
1
4

.

Next we compute the expected revenue. The utility of the AND player is 0 and therefore the revenue from
the AND player equals to the probability that it wins. It remains to compute the revenue from the OR player.

Theorem 5.8 The expected revenue from the OR player is 1− ln 2−O( 1
v ). For v = 1 the expected revenue

from the OR player is 1/4.

Proof:

Revenue(OR) =
∫ 1/2

0

xF ′or(x)Fand(x)dx

=
∫ 1/2

0

x
1

(1− x)2
(v − 1

2 )
(v − x)

dx

=
(v − 1

2 )
(v − 1)2

[
v ln

(
1− x

v − x

)
+

(v − 1)
(1− x)

]1/2

0

=
(v − 1

2 )
(v − 1)2

[
v ln

( 1
2

v − 1
2

)
+

(v − 1)
1/2

−
(

v ln
1
v

+ (v − 1)
)]

=
(v − 1

2 )
(v − 1)2

[
v − 1− v ln 2 + v ln

v

v − 1
2

]

=
(v − 1

2 )
(v − 1)2

[
v − 1− v ln 2 + v ln(1 +

1
2

v − 1
2

)
]

=
(v − 1

2 )
(v − 1)2

[
v − 1− (v − 1) ln 2− ln 2 + v ln

(
1 +

1
2v − 1

)]

= (1− ln 2)
v − 1

2

v − 1
−O

(
1
v

)

= 1− ln 2−O

(
1
v

)
= 0.3068−O

(
1
v

)

For v = 1 a similar calculation shows that the revenue of the OR player is 0.25.

The revenue from the OR player is plotted in Figure 2 as a function of the value v. The revenue from the
auction (i.e., sum of both players) is shown in Figure 3.

Figure 4 shows the Price of Anarchy of the equilibrium of Theorem 5.2. That is we divide the average
value of the players in the equilibrium which is (Pr[And wins]+v ·Pr[OR wins]) by the social welfare max v, 1.
The difference max v, 1− (Pr[And wins] + v ·Pr[OR wins]) is shown in Figure 5. The expected loss converges
to ln(2)− 0.5 ≈ 0.19 as the value v of the OR player goes to infinity.

5.4 AND-OR: multiple items

We now extend the result to the AND-OR game with m items. The AND player selects y using the cumulative
probability distribution Fand(y) = v− 1

m

v−y for y ∈ [0, 1/m], and bids y on all the items. The OR player selects x

using the cumulative probability distribution For(x) = (m−1)x
(1−x) , where x ∈ [0, 1/m], and an i uniformly from

M , and bids x on item i and zero on all the other items.
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Figure 2: The revenue from the OR player.
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Figure 3: The revenue from the OR player and the AND player.
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Figure 4: The Price of Anarchy of the AND/OR game. For v < 1 it acheives a minimum of ≈ 0.818485 at
v ≈ 0.643028. For v > 1 it achieves a minimum of ≈ 0.945682 at v ≈ 1.87999.
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Figure 5: The additive loss in social welfare of the Nash equilibrium of the AND/OR game.
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Theorem 5.9 Having the AND player bid using Fand and the OR player with For is a mixed Nash equilibrium.

Proof: Let Q(x), for x ∈ [0, 1/m]m be the cumulative probability distribution of the bids of the OR player.
Given that the OR player bids using For it follows that

Q(x) = Pr[∀i bidi < xi] =
m∑

i=1

xi

1− xi

(
m− 1

m

)

for x ∈ [0, 1
m ]m. Let P denote the cumulative probability distribution of the bids of the AND player. Then

the expected utility of the AND player is:

UAND = Ex∼P [uand(x)],

where

uand(x) = 1 ·Q(x)−
m∑

i=1

xiQ(xi, (1/m)−i) .

We show that for any x ∈ [0, 1
m ]m we have uand(x) = 0.

uand(x) = 1 ·Q(x)−
(

m∑

i=1

xiQ(xi, (1/m)−i)

)

=
m∑

i=1

xi

1− xi

(
m− 1

m

)
−

m∑

i=1

xi

(
xi

1− xi

(
m− 1

m

)
+ (m− 1)

1
m

)

=
m∑

i=1

xi

1− xi

(
m− 1

m

)
−

m∑

i=1

xi
1

1− xi

(
m− 1

m

)

= 0.

This implies that the mixed strategy of the AND player defined by Fand, is a best response to the mixed
strategy of the OR player defined by For. We now show that the mixed strategy of the OR player defined by
For, is a best response to the mixed strategy of the AND player defined by Fand.

Recall that P (x), for x ∈ [0, 1/m]m is the cumulative probability distribution of the bids of the AND
player, and by the definition of the AND player it equals to

P (x) = Pr[∀i bidi < xi] =
v − 1

m

v −mini{xi} .

(Note that, as it should be, under P the support is the set of all identical bids, i.e., ∀i bidi = x. The
probability under P of having a vector z ≤ x is v− 1

m

v−x .)
The utility function of the OR player is:

UOR = Ex∼Q[uor(x)],

where,

uor(x) = v · e(x)−
(

m∑

i=1

xiP (xi, (1/m)−i)

)
,

and e(x) = PrP [∃i such that Xi < xi].
We obtain that for any x ∈ [0, 1

m ] and i ∈ [1,m] uor(xi = x, x−i = 0) = v − 1
m since

uor(xi = x, x−i = 0) =
v − (1/m)

v − x
(v − x) = v − 1

m

Furthermore, for any x ∈ [0, 1
m ]m we have uor(x) ≤ uor(y), where y keeps only the maximal entry in x and

zeros the rest. This follows since given P , the probability of winning under x and y is identical. Clearly the
payments under y are at most those under x (since all the bids in x are at least the bids in y). We conclude
that the OR player’s strategy is a best response to the AND player’s strategy, and this completes the proof.
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5.5 The Triangle Game

We start with a simple case of three single minded bidders and three items, where each bidder wants a
different set of two items, and has a value of one for this set.

Consider symmetric strategies in which each player bids the same for the pair of items it wants, namely
each player draws their bid x from the same distribution whose cumulative distribution function is F (x).
Assuming F (x) has no atoms then the utility of each player is

(1− 2x)F 2(x)− 2xF (x)(1− F (x)) = F 2(x)− 2xF (x)

Theorem 5.10 If each player draws an x from F (x) = 2x, where 0 ≤ x ≤ 1/2, and bids x on both items,
then it is a mixed Nash equilibrium.

Proof: Suppose two of the players play according to F (x) and consider the best response of the third player.
For any value 0 ≤ x ≤ 1/2 if the third player bids (x, x), his utility is zero. On the other hand, if it bids y
for one item and z for the other then its utility is F (y)F (z) · 1− yF (y)− zF (z) = −2(y − z)2 ≤ 0. Finally,
bidding any number strictly above 1/2 is dominated by bidding 1/2.

Consider now a generalization of this game where each player is single minded and is interested only in
a particular set of k items for which its utility is 1. We also make the following assumptions.

1. Exactly d agents are interested in each item.

2. For any two bidders i 6= i′, we have |Si∩Si′ | ≤ 1. (This implies that if we fix a player i and consider its
set Si of k items. The other (d− 1)k players who are also interested in these k items are all different.)

Assume each player i draws the same bid for all items in its set Si from the CDF G(x). If G(x) satisfies
the equation

G(d−1)k(x)− kxGd−1(x) = 0 (4)

for all x then the utility of a player is zero for every bid x.
One can easily verify that the function

G(x) = (kx)
1

(d−1)(k−1) ,

satisfies Equation (4) for all x. So G(x) = (kx)
1

(d−1)(k−1) , 0 ≤ x ≤ 1
k , forms an equilibrium for the restricted

game, where in the restricted game a player has to bid the same bid on all the items in his set. The following
shows that even if we do not restrict the players to bid the same then G(x) is an equilibrium.

Theorem 5.11 If each player i draw a bid xi for all k items in Si from G(x) = (kx)
1

(d−1)(k−1) , 0 ≤ x ≤ 1
k ,

then it is a mixed Nash equilibrium.

Proof: Suppose all the players but player i according to G(x) and consider the best response of that player.
Suppose her bid is xj for the jth item in Si. Then her utility is

Πk
j=1(kxj)

1
(k−1) −

k∑

j=1

xj(kxj)
1

(k−1) .

We claim that this utility is non-positive for every set of bids x1, . . . , xk. Indeed this follows since,

k
k

k−1

k∏

j=1

x
1

(k−1)
j ≤ k

1
k−1

k∑

j=1

x
k

(k−1)
j ,

by the inequality of arithmetic and geometric means:

k

√∏
x

k
k−1
i =

k∏

j=1

x
1

(k−1)
j ≤ 1

k

k∑

j=1

x
k

(k−1)
j .
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6 Inefficiency of Mixed Equilibria

In this section we use our analysis of the examples given in the previous section to construct examples where
there are large gaps between the efficiency obtained in a mixed-Nash equilibrium and the optimal efficiency.

We first analyze the AND-OR game with m items, where v ≥ 1/m, and hence there is no pure Nash
equilibrium. We will analyze the following parameters: value of the OR player is v = 1/

√
m and the value of

the AND player is 1.

Theorem 6.1 There is a mixed Nash equilibrium in the AND-OR game with the parameters above whose
social welfare is at most 2/

√
m. I.e., for this game we have PoA ≥ √

m/2.

Proof: For the PoA consider the equilibrium of Section 5.1. Assume that the value of the OR player is
v = 1/

√
m and the value of the AND player is 1. This implies that the optimal social welfare is 1. The

probability that the AND player bids x = 0 is v−1/m
v−x = 1 − 1/

√
m. Therefore with probability at least

1− 1/
√

m the OR player wins. This implies that the expected social welfare is at most 2/
√

m

We now prove the following lemma regarding the support of the AND player.

Lemma 6.2 In any Nash equilibrium the AND player does not have in its support any bid vector band such
that

∑m
i=1 band,i > 1.

Proof: Assume that there is such a bid vector band. Since
∑m

i=1 band,i > 1 the AND player can not get a
positive utility, and the only way it can gain a zero utility is by losing all its non-zero bids. This implies
that for any bid vector bor of the OR player, the OR player will win all the items. Therefore

∑m
i=1 bor,i > 1.

This implies that the revenue of the auctioneer is larger than 1 (every time). Since the expected revenue of
the auctioneer is larger than 1, and the optimal social welfare is 1, the sum of the expected utilities of the
players has to be negative. Hence one of the players has an expected negative utility. This clearly can not
occur in equilibrium.

It turns out that for this example, not only there exist bad equilibria, but actually all equilibria are bad!

Theorem 6.3 For any Nash equilibrium of the AND-OR game with the parameters above the social welfare
is at most 3

√
(log m)/m. I.e., the PoS ≥

√
m/ log m/3.

Proof:Assume we have a Nash equilibrium in which the AND player wins with probability α. This implies
that the expected utility of the OR player uor is at most (1−α)v. Also, the social welfare of the equilibrium
is (1− α)v + α ≤ v + α.

By Lemma 6.2 the AND player never plays a bid b in which the sum of the bids is larger than 1. This
implies that the AND player can have at most half of the bids which are larger than 2/m. Therefore, if the
OR player bid 2/m on log m random items, it will win some item with probability at least 1− 1/m. The OR
player utility from such a strategy is at least (1− 1/m)v − (log m)/m. This implies that in equilibrium,

(1− α)v ≥ uor ≥ (1− 1/m)v − (log m)/m.

For v =
√

(log m)/m it implies that α ≤ 2
√

(log m)/m. Therefore the social welfare is at most 3
√

(log m)/m.

Finally we study examples in which there are multiple equilibria, and show that they can be far apart
from one another:

Theorem 6.4 There is a set of valuations such that in the corresponding simultaneous first price auction
there is an efficient (pure) Nash equilibrium, as well as an inefficient one, where the inefficiency is at least
by a factor of

√
m/2. Equivalently, the corresponding auction has PoS = 1 but PoA ≥ √

m/2.
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Proof: Consider m = `2 items, which are labeled by (i, j) for i, j ∈ [1, `]. Now we analyze 2` single minded
bidder, where for each i ∈ [1, `] we have a bidder that wants all the items in (i, ∗), we call those bidders row
bidders. For each j ∈ [1, `] we have a bidder that want (∗, j), and we call them column bidders. All bidders
have value ` for their set. Note that there is no allocation where both a row and a column players are satisfied,
where a player is satisfied if it is allocated all the items in his set. The social optimum value is `2 (satisfying
all the row bidders or all the column bidders). In this game there is a Walresian equilibrium, where the price
of each item is 1. Similarly, there is a pure Nash equilibrium where all bidders bid 1 for each item and we
break the ties in favor to all the row players (or alternatively, to all the column players). This implies that
the PoS is 1. Note that this game has also a mixed Nash equilibrium (Section 5.5, Theorem 5.11). Since it
is a symmetric equilibrium, in which every player bids the same value on all items, the expected number of
satisfied players is at most 2 (since the probability of k satisfied players is at most 2−k). This implies that
the PoA is `/2 =

√
m/2.

7 Approximate Welfare Analysis

In this section we analyze the Price of Anarchy of the simultaneous first-price auction. We start with a
simple proof of an O(m) upper bound on the Price of Anarchy for general valuations. Then we consider
β-XOS valuations (which are equivalent to β-fractionally subadditive valuations) and prove an upper bound
of 2β. Since subadditive valuations are O(log m) fractionally subadditive [5, 2] we also get an upper bound
of O(log m) on the Price of Anarchy for subadditive valuations.

Assume that in OPT player i gets set Oi and receives value oi = vi(Oi) and ki = |Oi|. Let ei be the
expected value player i gets in an equilibrium and let ui be the expected utility of player i in an equilibrium.
Let ri be the expected sum of payments in equilibrium over all items in Oi (these items are not necessarily
won by player i in equilibrium).

Denote the total welfare, revenue, and utility in equilibrium by SW (eq), REV (eq), and U(eq), respec-
tively. By definitions we have: (1) SW (eq) =

∑
i ei, (2) SW (OPT ) =

∑
i oi, (3) REV (eq) =

∑
i ri ≤

SW (eq), (4) U(eq) =
∑

i ui = SW (eq)−REV (eq).

Theorem 7.1 For any set of buyers the PoA is at most 4m.

Proof: We first show that for each buyer i, we have 2ui ≥ oi − 4kiri.
By Markov, with probability of at least 1/2 the total sum of prices of items in Oi is at most 2ri. Thus

if player i bids 2ri for each item in Oi (and 0 elsewhere) he wins all items with probability of at least 1/2,
getting expected value of at least oi/2, and paying at most 2kiri. Since we were in equilibrium this utility
must be at most ui. Hence, 2ui ≥ oi − 4kiri.

Summing over all buyers, and bounding
∑

i ki ≤ m, we get that OPT ≤ 2U(eq) + 4mRev(eq) ≤
4mSW (eq).

A function v is β-XOS, if there exists an XOS function X such that for any set S we have v(S) ≥ X(S) ≥
v(S)/β, i.e., if there are numbers λj,l, j ∈ M and l ∈ L, such that for any set S we have

v(S) ≥ max
k∈L

∑

j∈S

λj,k ≥ v(S)/β

The equivalence of β-XOS and β fractionally sub-additive follows the same proof as in [5].

Theorem 7.2 Assume that the valuations of all the players are β-XOS. Then the PoA is at most 2β.

Proof: Since v is β-XOS, there is a k ∈ L such that
∑

j∈Oi
λj,k ≥ vi(Oi)/β, and for any set S, we have

v(S) ≥ ∑
j∈S λj,k. Let fj be the expected price of item j. By Markov inequality, with probability of at least

1/2 the price of item j is at most 2fj . Consider the deviation where player i bids bidi,j = min{λj,k, 2fj}
for each item j ∈ Oi (and 0 elsewhere). Player i wins each item j with probability αj and if bidi,j = 2fj
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then αj ≥ 1/2. Let Si be the set of item that player i wins with his deviation bids bidi,j . (Note that Si is
a random variable that depends on the random bids of the other players.) The expected utility of player i
from the deviation is,

E[vi(Si)−
∑

j∈Si

bidi,j ] ≥
∑

j∈Oi

αj(λj,k − bidi,j)

≥
∑

j∈Oi

1
2
(λj,k − 2fj)

≥ 1
2β

vi(Oi)−
∑

j∈Oi

fj .

Since player i was playing an equilibrium strategy, we have that ui ≥ E[vi(Si) −
∑

j∈Si
bidi,j ]. Summing

over all players i’s, and recalling that REV (eq) =
∑

j∈M fj , we get,

SW (eq)−REV (eq) =
n∑

i=1

ui ≥ 1
2β

SW (OPT )−REV (eq),

which completes the proof.

8 Bayesian Price of Anarchy

In a Bayesian setting there is a known prior distribution Q over the valuations of the players. We first
sample v ∼ Q and inform each player i his valuation vi. Following that, each player i draws his bid
from the distribution Di(vi), i.e., given a valuation vi he bids (bi,1, . . . , bi,m) ∼ Di(vi). The distributions
D(v) = (D1(v1), . . . , Dn(vn)) are a Bayesian Nash equilibrium if each Di(vi) is a best response of player i,
given that its valuation is vi and the valuations are drawn from Q.

We start with the general case, where the distribution over valuations is arbitrary and the valuations are
also arbitrary. Later we study product distributions over β-XOS valuations.

Theorem 8.1 For any prior distribution Q over the players valuations, the Bayesian PoA is at most 4mn+
2.

Proof: Fix a Bayesian Nash equilibrium D = (D1, . . . , Dn) as described above. Let Qvi be the distribution
on v−i obtained by conditioning Q on vi as the value of player i.

Let ui(vi) be the expected utility of player i when his valuation is vi, i.e.,

ui(vi) = Ebi∼Di(vi)Ev−i∼Qvi
Eb−i∼D−i(v−i)[vi(Si)−

∑

j∈Si

bi,j ],

where Si is the set of items that player i wins with the set of bids b. Let ui be the expected utility of player
i, i.e., ui = Evi∼Q[ui(vi)].

For any valuation vi for player i, consider the following deviation. Let Rev(vi) be the expected revenue
given that the valuation of player i is vi, i.e., Rev(vi) = Ev∼Qvi

[
∑m

j=1 maxk bk,j ]. Consider the deviation
where player i bids 2Rev(vi) on each item j ∈ M . By Markov inequality, he will win all the items M with
probability at least 1/2. Therefore, his utility from the deviation is at least

vi(M)/2− 2mRev(vi)

Since this is an equilibrium, we have that

ui(vi) ≥ vi(M)/2− 2mRev(vi)
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Summing over the players and taking the expectation with respect to v,

n∑

i=1

Ev[ui(vi)] ≥
n∑

i=1

Ev[vi(M)/2− 2mRev(vi)]

Clearly
∑n

i=1 Ev[ui(vi)] ≤ Ev(SW (D)), where Ev(SW (D)) is the expected social welfare of the Bayesian
equilibrium D. Also,

∑n
i=1 Ev[vi(M)] ≥ Ev[SW (OPT (v))]. Finally, for every player i, Ev[Rev(vi)] = Rev,

where Rev is the expected revenue. Therefore,

Ev[SW (D)] ≥ Ev[SW (OPT (v))]/2− 2mnRev

Since Rev ≤ Ev[SW (D)], we have that,

(4mn + 2)Ev[SW (D)] ≥ Ev[SW (OPT (v))]

The following theorem shows that the Bayesian PoA is at most 4β when the valuations are limited to
β-XOS and the distribution Q over valuations is a product distribution. The proof uses the ideas presented
in [2].

Theorem 8.2 For a product distribution Q over β-XOS valuations of the players, the Bayesian PoA is at
most 4β.

Proof: Fix a Bayesian Nash equilibrium D = (D1, . . . , Dn) as described above. Let Qvi be the distribution
on v−i obtained by conditioning Q on vi as the value of player i.

Consider the following deviation of player i, given its valuation vi. Player i draws w−i ∼ Qvi , that is w−i

are random valuations of the other players, conditioned on player i having valuation vi. Player i computes
the optimal allocation OPT (vi, w−i), and in particular his share OPTi(vi, w−i) in that allocation. Player i
bids 2fj(vi) on each item j ∈ OPTi(vi, w−i) , where fj(vi) is the expected maximum bid of the other players
on item j in the equilibrium D conditioned on player i having valuation vi, i.e.,

fj(vi) = Ew−i∼Qvi
Eb−i∼D−i(w−i)[max

k 6=i
bk,j ] .

By Markov inequality player i wins each item j ∈ OPTi(vi, w−i) with probability at least half. Since vi

is an β-XOS valuation, its expected value is at least 1
2β vi(OPTi(vi, w−i)) so the utility of player i in this

deviation is at least
Ew−i∼Qvi

[
1
2β

vi(OPTi(vi, w−i))−
∑

j∈OPTi(vi,w−i)

2fj(vi)]

Let ui(vi) be the expected utility of player i when his valuation is vi, i.e.,

ui(vi) = Ebi∼Di(vi)Ev−i∼Qvi
Eb−i∼D−i(v−i)[vi(Si)−

∑

j∈Si

bi,j ],

where Si is the set of items that player i wins with the set of bids b. Let ui be the expected utility of player
i, i.e., ui = Evi∼Q[ui(vi)]. We get that,

ui(vi) ≥ Ew−i∼Qvi
[

1
2β

vi(OPTi(vi, w−i))−
∑

j∈OPTi(vi,w−i)

2fj(vi)]

Taking the expectation with respect to vi,

ui = Evi [ui(vi)] ≥ EviEw−i∼Qvi
[

1
2β

vi(OPTi(vi, w−i))−
∑

j∈OPTi(vi,w−i)

2fj(vi)]
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= Ev∼Q[
1
2β

vi(OPTi(v))]− Ev∼Q[
∑

j∈OPTi(v)

2fj(vi)]

= Ev∼Q[
1
2β

vi(OPTi(v))]− 2Ev∼Q[
∑

j∈M

I(j ∈ OPTi(v))fj(vi)],

where I(X) is the indicator function for the event X. Summing over all the players

n∑

i=1

ui ≥
n∑

i=1

Ev∼Q[
1
2β

vi(OPTi(v))]− 2
n∑

i=1

Ev∼Q[
∑

j∈M

I(j ∈ OPTi(v))fj(vi)]

= Ev∼Q[
1
2β

SW (OPT (v))]− 2
∑

j∈M

Ev∼Q[
n∑

i=1

I(j ∈ OPTi(v))fj(vi)]

Now we use the fact that the distribution Q over the valuations is a product distribution. This implies that
for any valuation vi, we have the same value fj(vi). Let price(j) be the expected price of item j ∈ M , i.e.,
price(j) = Ev∼QEb∼D[ maxk bk,j ]. Since price(j) ≥ fj(vi) for any buyer i and valuation vi,

n∑

i=1

ui ≥ Ev∼Q[
1
2β

SW (OPT (v))]− 2
∑

j∈M

price(j)Ev∼Q[
n∑

i=1

I(j ∈ OPTi(v))]

= Ev∼Q[
1
2β

SW (OPT (v))]− 2
∑

j∈M

price(j),

where the last equality follows since item j is always assigned to some buyer, therefore, for any v, we have∑n
i=1 I(j ∈ OPTi(v)) = 1.
Let sw(D) be the expected social welfare of the Bayesian Nash D. Note that

∑n
i=1 ui = sw(D) −∑

j∈M price(j) and sw(D) ≥ ∑
j∈M price(j). Therefore,

sw(D)−
∑

j∈M

price(j) ≥ Ev∼Q[
1
2β

SW (OPT (v))]− 2
∑

j∈M

price(j),

which implies that

2sw(D) ≥ sw(D) +
∑

j∈M

price(j) ≥ Ev∼Q[ 1
2β SW (OPT (v))].

This implies that the PoA of the Bayesian equilibrium D is at most 4β.
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