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10.1 Introduction

Today topic is market equilibrium. The basic elements of a market are buyers and product
(and there are also potentially sellers). The goal is to �nd prices that clear the market.
Namely, under those prices every product is completely sold, and there is no �remaining�
demand. In other words, we would like to achieve a state where demand equals supply.

This is probably one of the most important conceptual contributions of economic theory
to the everyday life. The assumption that if we let the market set the prices then the market
will reach prices that will clear the market.

10.2 Fisher Market

we will start by introducing the Fischer market. The Fisher market has the following ingre-
dients:

• a set of n buyer

• A set of m products

• A budget of Bi for buyer i.

The goal of buyer i, given a set of prices p, is to buy a set a products S, such that its
cost is at most Bi (no value for leftover budget) and maximizes its utility.

The �rst step we need to take is to de�ne the utility of a buyer. A few desired features
are the following:

• Monotonically non-decreasing in the amount of any product (this is equivalent to the
free disposal hypothesis).

• Normalize the value of the empty set to 0.

Here are a few poplar utility functions:
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Linear ui(x) =
∑m

j=1 ai,jxi,j, where ai,j ≥ 0.

Cobb-Douglas ui(x) =
∏m

j=1 x
ai,j
i,j , such that

∑m
j=1 ai,j = 1. Namely a geometric average with weights

ai,∗.

Leontief ui(x) = minj{ai,jxi,j.

All the above examples are a special case of what is called Constant Elasticity Substitution
(CES), which is de�ne as:

u(x) = (
m∑
j=1

αjx
ρ
j )

1/ρ

For ρ = 1 we have the linear utility, and the products are substitutes. For ρ→ 0 we have
Cobb-Douglas utility, which balances substitutes and complementary. For ρ→ −∞ we have
the Leontief.

Without loss of generality we assume that from each product we have a single copy. (The
amount that we get from a product is the percentage we get from all the available products.)

Our goal is two fold. Find both prices and allocation such that: (1) No product
is oversold (feasibility) and (2) Each buyer maximizes its utility given its budget and the
prices.

We would like the solution to also have a few basic properties:

• Multiplication by a constant of ui should not change the the allocation.

• If buyer i splits to two buyers with identical utility, the sum of the buyers will get
exactly what buyer i gets.

This goals can lead us to try and maximize the average utility, given the feasibility
constraint. It turns out that maximizing the the geometric mean is what will work. This is
the idea of Eisenberg-Gale.

Let B =
∑n

i=1Bi, Then we like to maximize,

(
n∏
i=1

uBi
i )1/B

where ui is the utility of agent i. This is equivalent to maximizing
∏n

i=1 u
Bi
i , which is equiv-

alent to maximizing
∑n

i=1Bi log ui. We have the following Eisenberg-Gale convex program
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for the linear utilities,

max
n∑
i=1

Bi log ui

∀i ∈ BUY ERS ui =
m∑
j=1

ai,jxi,j

∀j ∈ PRODUCTS
n∑
i=1

xi,j ≤ 1

∀i, j, xi,j ≥ 0

First let us transform the problem to the standard minimization form,

min
n∑
i=1

−Bi log(
m∑
j=1

ai,jxi,j)

∀j ∈ PRODUCTS
n∑
i=1

xi,j − 1 ≤ 0

∀i, j, −xi,j ≤ 0

Now we can build the Lagrangian. We have dual variables pj for each inequality for a
product j and λi,j for each inequality of xi,j. The Lagrangian is,

L =
n∑
i=1

−Bi log(
m∑
j=1

ai,jxi,j) +
m∑
j=1

pj(
n∑
i=1

xi,j − 1) +
∑
i,j

λi,j(−xi,j)

We can now consider the KKT condition for optimality. First we have the non-negativity of
the dual variables.

∀j ∈ PRODUCTS pj ≥ 0

∀i, j, λi,j ≥ 0

Next we have the complementary slackness,

∀j ∈ PRODUCTS pj(
n∑
i=1

xi,j − 1) = 0

∀i, j, λi,jxi,j = 0

Finally, we have that the gradient is zero, which implies that,

−Biai,j∑m
j=1 ai,jxi,j

+ pj − λi,j = 0
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The λi,j are redundant and we can have,

pj ≥
Biai,j∑m
j=1 ai,jxi,j

For the KKT conditions we derive a few interesting consequences. First,

pj > 0⇒
m∑
j=1

xi,j = 1

which implies that the products with non-zero price pj are completely distributed.
We also have that

ai,j
pj

≤
∑m

j=1 ai,jxi,j

Bi

xi,j > 0 ⇒ ai,j
pj

=

∑m
j=1 ai,jxi,j

Bi

which implies that the utility per dollar is maximized by the buyer's bundle, and each product
in the bundle maximizes it.

Theorem 10.1. For the linear Fisher model, if for each product j some buyer i has ai,j > 0
then,

• The prices clear the market (Each buyer uses all its budget and each item is completely
distributed)

• The set of equilibrium allocations is convex.

• The prices and utilities are unique (not the allocations)

Proof. From the KKT conditions, each buyer gets an optimal allocations (given the prices).
In addition, for any xi,j > 0 we have

Biai,jxi,j∑m
j=1 ai,jxui,j

= pjxi,j

When we sum over the products, for a given buyer i, we have,

Bi

∑m
j=1 ai,jxi,j∑m

j=1 ai,jxui,j
=

m∑
j=1

pjxi,j

which implies that

Bi =
m∑
j=1

pjxi,j

therefore buyer i completely uses its budget Bi.
Since every equilibrium is an optimal solutions to the convex program.
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10.3 Arrow-Debrue market

In this section we will discuss the Walrasian market, also known as the Arrow-Debrue model.
This model can be viewed as an extension of the Fisher model. The agents rather than having
a budget, have an endowment of goods that they start with. They sell the endowment to
buy other goods. (An good can be also the ability to work.)

The model has,

• A set of agents A.

• A set of goods G.

• Agent i has an endowment ei = (ei,1, . . . , ei,m) and a utility function ui(x). (We will
again concentrate on linear utility functions.)

The main result of Arrow-Debrue is that under rather minimalistic assumptions there
exists a set of prices that clear the market. We will concentrate more on the computational
issue.

First we show that the Fisher market is a special case of the Arrow-Debrue market.

Theorem 10.2. The Fisher market is a special case of the Arrow-Debrue market.

Proof. We add another product which is money, and another agent which initial will have
all the goods, and is interested only in money. The initial endowments

0, . . . , 0, B1

0, . . . , 0, B2

...

0, . . . , 0, Bm

1, . . . , 1, 0

The utility of the agents are as follows:

1 ≤ i ≤ m , has zero utility for money and the previous utility to the other products.

i = m+ 1 has only utility for money and no utility for the other products, i.e., u(x1, . . . , xm+1) =
xm+1.

It is easy to see that this is identical to the Fisher market we had.

A simplifying assumption is that each agent has one complete product. For simplicity,
we will assume that ai,j > 0 for all products j and agents i.
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We can write the following non-convex program:

∀i
n∑
i=1

xi,j = 1

∀i, j, xi,j ≥ 0

∀i, j ai,j
pj
≤

∑m
k=1 ai,kxi,k
pi

∀j, pj ≥ 0

The �rst two conditions say that the solution is feasible. The third is due to maximizing
the agent utility. The fourth is that the prices are positive (there are no zero prices since we
assumed that ai,j > 0).

Theorem 10.3. The solutions of the non-convex program are market equilibrium and include
all market equilibria.

Proof. It is clear that every market equilibrium obeys all the requirements. We will show
that any solution to the program is a market equilibrium. From the third line we have, after
multiplying by xi,jpj,

∀i, j ai,jxi,j ≤
∑m

k=1 ai,kxi,k
pi

xi,jpj

we can sum over the product,

∀i, j
m∑
j=1

ai,jxi,j ≤
∑m

k=1 ai,kxi,k
pi

m∑
j=1

xi,jpj

The assumption that ai,j > 0 implies that
∑m

j=1 ai,jxi,j > 0 Therefore,

∀i pi ≤
m∑
j=1

xi,jpj

summing over all the agnets we have

n∑
i=1

pi =
n∑
i=1

m∑
j=1

xi,jpj =
m∑
j=1

pj

n∑
i=1

xi,j =
m∑
j=1

pj

This implies that we have

∀i pi =
m∑
j=1

xi,jpj
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We would like to turn the program to be convex. The problem is the requirement,

∀i, j ai,j
pj
≤

∑m
k=1 ai,kxi,k
pi

This is important in the case that ai,j > 0 (otherwise it is trivial). This is equivalent to,

∀i, j pi
pj
≤

∑m
k=1 ai,kxi,k
ai,j

Taking the logarithm we have,

∀i, j log(pi)− log(pj) ≤ log(
m∑
k=1

ai,kxi,k)− log(ai,j)

We can now replace log(pi) by new variables LOGpi and have

∀i, j LOPpi − LOGpj ≤ log(
m∑
k=1

ai,kxi,k)− log(ai,j)

In the new variables we have a convex program.

10.4 Linear Arrow-Debrue- approximate equilibrium with

auction

The approximation:

• The market clears (exactly).

• Every agent gets a bundle of products whose utility is at least (1− ε)2 from the utility
of the optimal bundle.

The algorithm is build from iterations,each iteration is build from rounds. In each round
we go over all agents in a round-robin order.

Initially, all the prices of the goods are 1, i.e., pj = 1. This implies that the total money
of the agents is n. During a round, when we reach agent i, we check if it has available money.
If not we continue to the next agent. Otherwise, we check which bundle it would like to
buy at prices pj(1 + ε). (Each product has agents holding it at pj and pj(1 + ε)). If there
is such a bundle, we buy the products back from the relevant agents, at the old price, and
sell it to agent i. The process completes when agent i exhausts its money, and we continue
to agent i + 1. If there is no more agents with price pj (all have price pj(1 + ε)) then we



Lecture 10: Market Equilibrium 8

complete an iteration. At the end of an iteration we update the money of the agents (given
their initial endowment). If at some point (at the end of a round) the total money is at most
εsmin,where smin = mini

∑m
j=1 ei,j, we stop the entire process. At termination we distribute

the remaining products arbitrarily.
Let pmax be the maximum price.

Lemma 10.4.1. The number of rounds in an iteration is bounded by O(1
ε
log(mpmax

εsmin
))

Proof. In every exchange we buy at pj(1 + ε) and sell at pj. This implies that the total
amount of money decreases by a factor of 1 + ε in every completed round. The total money
at the start of an iteration is at most mpmax. The iteration ends if we have that the money
is less than εsmin.This bounds the number of rounds is at most log1+ε(

mpmax

εsmin
).

Lemma 10.4.2. The number of iteration is bounded by O(m
ε
log pmax)

Proof. Each iteration increases the price of some product by 1+ε, so the number of iteration
is at most O(m log1+ε pmax).

Lemma 10.4.3. Relative to the �nal prices,each agent gets a bundle whose utility is at least
(1− ε)2 from the optimal bundle.

Proof. The algorithm always sells the agent an optimal bundle at the current prices (the
agent might pay pj(1 + ε)).

The sub-optimality can have two sources. First, at the end, agent i has a remaining
money. Let M be the value of i's endowment at the �nal prices and M1 be the value of the
items it bought. Since the money left is at most εsmin, we have that

M1 ≥ (1− ε)M

(We have that M ≤ smin since prices start at 1 and smin ≤
∑m

j=1 ei,j.)
Second, agent i buy products at price pj(1 + ε) and not pj. Therefore,

M1

1 + ε
≥ (1− ε)M

1 + ε
≥ (1− ε)2M

Let amin = mini,j ai,j and amax = maxi,j ai,j.

Theorem 10.4. The algorithms �nds an (1− ε)2 market equilibrium,in time

O(
mn

ε2
log

mamax
εsminamin

log
amax
amin

).
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Proof. Every product whose price is above the initial price of 1 is completely sold.
The total money of the agents is the value of the products at the �nal prices. The

requirement that the surplus of money is at most εsmin has to be reached before all products
are sold completely. On termination, the ratio of the maximum to minimum price is at most
amax/amin, and this is a bound on pmax.

Each round requires O(n) time.
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