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4.1 Lecture Overview

In this lecture we turn our attention to the multiarmed bandit (MAB) model. In this
model, there is a set N of actions from which the player has to choose in every step
t ∈ T . After choosing the action, the player can see the loss of her action, but not the
losses of the other possible actions. Notice the difference from the full information
(FI) model (the model we used in all previous lectures), in which after the player
chooses the action, she sees the losses of all possible actions. MAB models many real-
life situations. For example, in choosing a route to take to work, the driver knows
only her loss (how long it took to get to work), but not the losses of the other actions
(how long it would have taken had she taken another route).
Today we will look at three regret minimization algorithms for MAB problems:

1. In section 4.3, we look at a general reduction from any FI regret minimization
algorithm to a MAB regret minimization algorithm that guarantees a regret
bound of O(T 2/3).

2. In section 4.5, we look at the EXP3 algorithm which was introduced by Auer
et al.[1], which gives a regret bound of O(T 1/2).

3. In section 4.6, we look at the EXP4 algorithm, also by Auer et al.[1], which
is a modification of the EXP3 algorithm for the expert problem where there
are many more experts than actions. EXP4 also guarantees a regret bound of
O(T 1/2), but achieves a better asymptotic bound with respect to the number of
actions.

4.2 Exploration vs. Exploitation

The main difficulty with multiarmed bandit problems (in both the stochastic and the
adversarial model) is that we don’t have all of the information that we have in the full
information model. Specifically - without trying an action, we have no information
at all about its loss. This fact alone gives us a trivial bound on the regret: given
that there are N possible actions, the regret is at least N − 1, as we have to try each
action at least once. Whereas in the FI model we were able to achieve a regret of
O(
√
T logN), in the MAB model it is impossible to have a logarithmic dependency

on N .

1



Lecture 4: Multiarmed Bandit in the Adversarial Model 2

This difficulty can be viewed as a trade-off between exploration and exploitation.
On one hand, we need to try all the different actions. On the other hand, we would
like to use the information we have so far to minimize the regret.

Clearly, in order to minimize regret, we need information about the loss of each
action. In the FI model, we simply see the loss of each action at every step. How can
we estimate the loss of each action in the MAB model? We will look at two methods
of estimating the losses:

1. Separating exploration and exploitation. We have steps which we allocate
specifically to exploration, in which we do not exploit any knowledge from
previous steps.

2. Combining exploration and exploitation. In this case we use importance sam-
pling - we sample actions based on their importance, at the same time making
sure that all actions have a non-negligible probability of being sampled.

4.2.1 Importance sampling

Given a distribution D over our actions, we choose action i with probability pi and we
see a loss li. We would like to use the ratio li/pi to update i’s loss. Sampling according

to this ratio is called importance sampling. Notice that Ei∼p[li/pi] =
∑
i

pili/pi =∑
i

li, so if, for example, we know that for all i 6= j, li = 0 and lj = 1, this expected

loss is exactly the value we wish to find.

4.3 Reduction from Full Information

We would like to take a FI algorithm and use it to obtain an algorithm to the case
of partial information. Given a regret minimization FI algorithm A, our reduction,
uses the following interaction with A: at specific times, we give A a full vector of
losses l (that is l = {l(1), l(2), · · · l(N)}, where l(i) is the loss of action i). A returns
a probability distribution p over the actions.

We divide the time to T/Z blocks B of size Z. At the end of block Bτ , we give A
the losses lτ and receive the distribution pτ from A (we call pτ A’s recommendation).
In block Bτ+1, we use the latest recommendation pτ (this is the exploitation part of the
algorithm), interspersed with sampling each of the N actions once (the exploration
part). Specifically, in block Bτ+1, we sample once for each action, at a time selected
uniformly at random. For the rest of the block (T/Z − N time slots), we sample
according to pτ . At the end of the block, we give A the losses of all actions we
sampled in our exploration phase.
Label the loss of action i in block Bτ by xi,τ . (xi,τ is the actual loss of action i from
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the exploration phase). It is easy to see that the expectation of the loss is

E[xi,τ ] =
1

Z

∑
t∈Bτ

lt(i), (4.1)

where lt(i) is the loss of action i at time t. We take xi,τ as a representative for
the loss of action i in block Bτ . The FI algorithm A receives a loss vector lτ =
{x1,τ , x2,τ , · · · , xN,τ} at the end of each block Bτ , for a total of T/Z such loss vectors.
Thus, the output of A at the end of block τ is as if A played a full information game
with T/Z steps, and returned, at step τ a probability distribution pτ .

What is the expected cost of our online MAB algorithm?

E[OnlineMAB] =

T/Z∑
τ=1

∑
t∈Bτ

N∑
i=1

pt(i)lt(i)

≤
T/Z∑
τ=1

N∑
i=1

pτ (i)Lτ (i) +
∑
τ

∑
i

xi,τ (4.2)

≤
T/Z∑
τ=1

N∑
i=1

pτ (i)Lτ (i) +
T

Z
·N (4.3)

Notice the inequality (4.2) stems from the fact that we may count the loss twice
for actions at the points of exploration. In inequality (4.3), the left part represents
the exploitation phase, while the right part represents the exploration phase. We
notice now that we made two assumptions that we have not mentioned so far:

1. The losses for each action are bounded at each time are taken from the interval
[0, 1]. Hence we can bound the loss of the exploration phase by the number of
points of exploration.

2. The adversary must choose in advance the losses for each action. We assume
that the losses in each block were already decided upon at the start of the block.

The regret minimization algorithm A only sees the series xτ . Since A is a regret-
minimization algorithm for xτ , we have∑

τ

∑
i

pτ (i)xτ (i) ≤
∑
τ

xτ (j) +R(T/Z), (4.4)

where the left side is the loss of A and j is the best action. Notice that both xτ (i)
and xτ (j) are random variables. Similarly to equation (4.1),

E[xτ (j)] =
1

Z
Lτ (j),

and so we calculate the expectation of both sides of equation (4.4):
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∑
τ

∑
i

pτ (i)E[xτ (i)] ≤ E[
∑
τ

xτ (j)] +R(T/Z),

1

Z

∑
τ

∑
i

pτ (i)Lτ (i) ≤
1

Z

∑
τ

Lτ (j)] +R(T/Z),

E[Online exploitation] ≤ Lj + ZR(T/Z)

And therefore, adding the loss of the exploration phase, we get

E[Online MAB] ≤ Lj + ZR(T/Z) +NT/Z

Our regret in this case is
ZR(T/Z) +NT/Z,

where R(T/Z) = 2
√

T
Z

logN .

We would like to choose a Z to minimize the regret. Optimizing, we get

Z =
T 1/3N2/3

log1/3N
.

And so
MAB Regret = 2T 2/3N1/3 log1/3N.

Notice that the variable we most care about is T , and the regret is proportional to
T 2/3, which is not as good as the regret bound for the FI model . This makes sense,
as we make a sacrifice for exploration. Notice also that we assume that T/Z >> N .
This is a reasonable assumption to make, because usually in regret minimization
algorithms, we make the assumption that T >> N .

4.3.1 Many experts, few actions

What happens when we have many more experts than actions? Let’s say we have N
experts and A actions, where N >> A. For example, we have N = 1, 000 weathermen
and A = 2 possible actions: to take an umbrella to work or not to take an umbrella
to work. We can improve the analysis of our regret bound:

In the exploration stage, we need to explore each action once, so our loss for explo-
ration is AT

Z
. The exploitation phase achieves the same bound, as the FI algorithm

calculates the loss for each expert, and so the regret for the FI algorithm remains
ZR(T/Z). Overall, our MAB online algorithm has regret

A
T

Z
+ ZR(

T

Z
)

ZR(T
Z

) = 2
√
TZ logN and so

Z = T 1/3A1/2 log−1/3N
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And so the regret is
2T 2/3A1/2 log1/3N,

Which is dependent on logN instead of N .
Notice that even in this case, the dependence is still on T 2/3. When attempting to
minimize regret, we usually believe that we can reach a bound of T 1/2, and so we are
not completely happy with this bound. We will show how to achieve a better regret.

4.4 Importance Sampling

First, we give a short background to the use of importance sampling :
Assume that we can sample a random variable X from distribution D, and wish

to “transfer” it to a distribution Q. We will look at a random variable Y , where

Y = X
Q(X)

D(X)

We would like to know X’s expectation over Q:

EX∼Q[X] =
∑

Q(X)X

=
∑ Q(X)

D(X)
XD(X)

= ED[Y ]

This method has a lot of problems (which we will not get into in this lecture). For
example, what happens if D(X) is very small?

4.5 EXP3

4.5.1 The idea

• We run the exponential weights regret minimization algorithm.

• At time t, we choose actions according to the distribution pt - that is, we choose
action i with probability pt(i).

• We receive a profit for action i - gt(i). (Note that we will be maximizing profits
rather than minimizing losses.)

• We update the estimate for the sum of profits of action i by gt(i)
pt(i)

.

This guarantees that at all times, the expectation of the profit of i is roughly the
sum:

E[estimate of i’s profit] =
∑
t

gt(i)

pt(i)
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4.5.2 The EXP3 algorithm

The EXP3 algorithm is based on the the exponential weights regret minimization
algorithm. We have a learning parameter η ∈ [0, 1]. Each action is assigned a weight
wi, which is initialized to 1, i.e. ∀i ∈ [1, 2, · · · , N ], wi(1) = 1. We define Wt to be the
sum of the weights of the actions at time t:

Wt =
N∑
i=1

wi(t)

We use Wt to normalize the probabilities pi of the actions.

At time t,

1. We let

pi(t) = (1− η)
wi(t)

Wt

+ η
1

N
.

That is, pi(t) is proportional to the relative weight of i with a small correction
to ensure that pi is never too close to 0.

2. We choose an action it (a random variable) according to the distribution p1(t), · · · , pN(t).

3. We receive a profit git(t) ∈ [0, 1].

4. We define

ĝj(t) =

{
gj(t)/pj(t) if j = it,

0 otherwise

5. We update the weights of the actions:

wj(t+ 1) = wj(t)e
ηĝj(t)/N

To summarize, we have weights that give us an estimate to how good the actions are.
The actions are chosen with probability relative to their weights, and the weights are
updated in an exponential fashion.

4.5.3 Bounding the regret

Before presenting our main theorem for this section, we give a few definitions.

Define Gj =
∑
t

gj(t) - the total profit of action i.

Let Gmax = max
j
Gj, and let G∗ ≥ Gmax, be some value that is larger than the

largest profit (we assume that Gmax can be upper bounded).
The profit of EXP3 is

GEXP3 =
∑
t

git(t)
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Where git(t) is a random variable which is dependent on all the previous choices, i.e.,
on all giτ for τ < t.

Theorem 4.1 For any loss sequence, EXP3 guarantees,

Gmax − E[GEXP3] ≤ 2ηGmax +
N lnN

η
≤ 2
√

2G∗N lnN

The second inequality is due to optimizing η by η =
√

N lnN
2G∗ . We replaced Gmax by

G∗ because when we calculate η, we don’t know Gmax. For G∗ ≤ T , we get that the
regret is O(

√
TN lnN).

To prove Theorem 4.1, we first present the following lemma, and prove the theo-
rem assuming the lemma is true. We then prove the lemma.

Lemma 4.5.1 In each execution of EXP3,

GEXP3 ≥ (1− η)
T∑
t=1

ĝj(t)−
N lnN

η
− η

N

T∑
t=1

N∑
i=1

ĝi(t), (4.5)

where j is any action (and so, of course, it can be taken to be the action with the
largest profit).

Proof of theorem 4.1
First we compute the expectation of ĝi:

E[ĝi(t)|i1, · · · it−1] = E[pi(t) ·
gi(t)

pi(t)
]

= gi(t) (4.6)

This means that the expectation of ĝi(t) is independent of the history. We now take
the expectation of equation (4.5):

E[GEXP3] ≥ (1− η)E[
T∑
t=1

ĝj(t)]−
N lnN

η
− η

N

T∑
t=1

N∑
i=1

E[ĝi(t)]

= (1− η)Gj −
N lnN

η
− η

N

T∑
t=1

N∑
i=1

gi(t) (4.7)

= (1− η)Gj −
N lnN

η
− η

N

N∑
k=1

Gk

≥ (1− η)Gmax −
N lnN

η
− ηGmax
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For (4.7), notice that E[
T∑
t=1

ĝj(t)] is exactly the profit of action j, i.e. Gj.

From this, we get that

Gmax − E[GEXP3] ≤
N lnN

η
+ 2ηGmax

Therefore, given Lemma 4.5.1, we get the bound on the regret of Theorem 4.1. We
now turn to the proof of the lemma.

Proof of lemma 4.5.1
We use the following properties:

1. Bounding the value of ĝi:

ĝi(t) ≤
gj(t)

pj(t)
≤ 1

pj(t)
≤ N

η
. (4.8)

(Because the profit is bounded by 1.)

2. Computing the expectation of ĝi:

N∑
i=1

pi(t)ĝi(t) = pit(t)
git(t)

pit
= git (4.9)

3. Bounding the variance of ĝi:

N∑
i=1

pi(t)(ĝi(t))
2 = pit(t)

git
pit
· ĝit(t) (4.10)

= git(t) · ĝit(t)
≤ ĝit(t)

=
N∑
i=1

ĝi(t)

The last inequality is because the profits are bounded by 1.

Recall that Wt =
N∑
i=1

wi(t). We want to bound WT+1

W1
, or specifically ln (WT+1

W1
)

from above and below. Note that W1 = N .

Lower bound

ln
WT+1

W1

≥ ln
wj(T + 1)

N
=

η

N

T∑
t=1

ĝj(t)− lnN
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(From the exponential updating of the weights).

Upper bound

ln
WT+1

W1

=
T∑
t=1

ln
Wt+1

Wt

Because all the entries in the telescopic sum cancel each other out except for the first
and last. Now we look at each entry in the telescopic sum:

Wt+1

Wt

=
N∑
i=i

wi(t+ 1)

Wt

=
N∑
i=1

wi(t)

Wt

e
η
N
ĝi(t) (4.11)

From the definition of pi(t), we get that wi(t)
Wt

= pi(t)−η/N
1−η . From (4.8) we know that

η
N
ĝi(t) ≤ 1, and so we can use the inequality ez ≤ 1 + z + z2, which is true for z ≤ 1.

So

e
η
N
ĝi(t) ≤ 1 +

η

N
ĝi(t) +

η2

N2
ĝ2i (t) (4.12)

From (4.11) and (4.12), we get that

Wt+1

Wt

≤
N∑
i=1

(
pi(t)− η/N

1− η

)
·
(

1 +
η

N
ĝi(t) +

η2

N2
ĝ2i (t)

)

≤
N∑
i=1

pi(t)− η/N
1− η

+
N∑
i=1

pi(t)

1− η
η

N
ĝi(t) +

N∑
i=1

pi(t)

1− η
η2

N2
ĝ2i (t)

≤ 1 +
N∑
i=1

pi(t)η

N(1− η)
ĝi(t) +

N∑
i=1

pi(t)η
2

N2(1− η)
ĝ2i (t)

≤ 1 +
η

N(1− η)
git(t) +

η2

N2(1− η)

N∑
i=1

ĝ2i (t) (4.13)

The second inequality is due to the removal of some negative terms. The third

inequality stems from the fact that
N∑
i=1

pi(t)− η/N
1− η

= 1. The last inequality is from

properties 2 (equation (4.9)) and 3 (equation (4.10)).
We take the logarithm of equation (4.13), and use the inequality ln (1 + x) ≤ x, and
have,

ln
Wt+1

Wt

≤ η

N(1− η)
git(t) +

η2

N2(1− η)

N∑
i=1

ĝi(t)

Now we sum over all time steps:

T∑
t=1

ln
Wt+1

Wt

≤ η

N(1− η)

T∑
t=1

git(t) +
η2

N2(1− η)

N∑
i=1

T∑
t=1

ĝi(t)
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Noticing that
T∑
t=1

git(t) = GEXP3 and combining the upper and lower bounds, we get

that,

η

N

T∑
t=1

ĝj(t)− lnN ≤ ln
WT+1

W1

≤ η

N(1− η)
GEXP3 +

η2

N2(1− η)

N∑
i=1

T∑
t=1

ĝi(t) (4.14)

And, multiplying both sides by N(1−η)
η

, we get

GEXP3 ≥ (1− η)
T∑
t=1

ĝj(t)−
N lnN

η
− η

N

T∑
t=1

N∑
i=1

ĝi(t)

Which proves Lemma 4.5.1 and thus Theorem 4.1.

We notice that the lemma revolves around how the sum of the weights changes.
We can see that the ratio Wt+1

Wt
grows in proportion to our profit and a small quadratic

term.

To summarize, we showed that EXP3 reaches a regret bound of O(
√
T ) by com-

bining the exploration and exploitation stages of the MAB algorithm.

4.6 EXP4

We can improve EXP3 in the case that we have many more experts than actions. We
take EXP3 and modify it to EXP4, for the case of N experts and A actions, where
N >> A.
In each time step, each expert i gives a distribution βi(t) over the actions. We give
weights to the experts, and infer the weights of the actions:

The weight of expert i at time t is wi(t).

The weight of action j at time t is
N∑
i=1

wi(t)βi,j(t).

When updating, we will use ŷi(t) for the experts (instead of ĝi(t) which we used in in
EXP3):

ŷi(t) = βi(t) · ĝ(t) =
A∑
j=1

βi,j(t) · ĝj(t)

We now present the algorithm EXP4:

4.6.1 The EXP4 Algorithm

We initialize η ∈ [0, 1] and ∀i, wi(1) = 1.
At time t, we
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1. Receive (from the experts) the vectors βi,

2. Calculate Wt =
N∑
i=1

wi(t),

3. Calculate, for each action j, the probability

pj(t) = (1− η)
N∑
i=1

wi(t)βi,j(t)

Wt

+
η

A
,

4. Choose action jt according to p(t),

5. Receive a profit for the action gjt(t) ∈ [0, 1],

6. Calculate

ĝk(t) =

{
gk(t)/pk(t) if k = jt,

0 otherwise

7. For each expert i = 1, · · · , N , set

ŷi(t) = βi(t) · ĝ(t)

=
A∑
j=1

βi,j(t) · ĝj(t)

8. Update the weight of each expert:

wi(t+ 1) = wi(t) · e
η
A
ŷi(t)

4.6.2 Bounding the regret

Similarly to EXP3, we first state our theorem. We then state the lemma and show
why it implies the theorem. Finally, we prove the lemma.

Theorem 4.2 For any loss sequence, EXP4 guarantees,

Gmax − E[GEXP4] ≤ 2ηGmax +
A logN

η
≤ 2
√

2G∗A logN

Lemma 4.6.1

GEXP4 ≥ (1− η)
T∑
t=1

ŷj(t)−
A logN

η
− η

A

T∑
t−1

A∑
i=1

ĝi(t)
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Proof of theorem 4.2
We calculate the expectation of ŷi(t):

E[ŷi(t)] = E[
A∑
k=1

βi,k(t)ĝk(t)]

=
A∑
k=1

βi,k(t)gk(t)

, yi(t)

The profit of expert i is Gi =
T∑
t=1

yi(t).

1

A
E[

T∑
t=1

A∑
j=1

ĝi(t)] =
T∑
t=1

1

A

A∑
i=1

gj(t) ≤ max
1≤i≤N

T∑
t=1

yi(t) = Gbest,

where Gbest is the profit of the best expert. And so

E[GEXP4] ≥ (1− η)
T∑
t=1

yj(t)−
A logN

η
− ηGbest

= (1− η)Gj −
A logN

η
− ηGbest

= Gj −
A logN

η
− 2ηGbest

As this is true for any expert j, the theorem follows. �

Proof of lemma 4.6.1
We set qi(t) = wi(t)

Wt
- the relative weight of expert i at time t. As before,

T∑
t=1

N∑
i=1

qi(t)ŷt(t) ≥
T∑
t=1

ŷk(t)−
A lnN

η
− η

A

T∑
t=1

N∑
i=1

qi(t)(ŷi(t))
2

As before, we need to bound the rightmost and leftmost terms of the above inequality:
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The leftmost

N∑
i=1

qi(t)ŷi(t) =
N∑
i=1

qi(t)

(
A∑
j=1

βi,j(t)ĝj(t)

)

=
A∑
j=1

(
N∑
i=1

qi(t)βi,j(t)

)
ĝj(t)

=
A∑
j=1

pj(t)− η/A
1− η

ĝj(t)

≤ gj(t)

1− η
.

The rightmost

N∑
i=1

qi(t)(ŷi(t))
2 =

N∑
i=1

qi(t) · (βi,it(t)ĝit(t))2

≤ (ĝit(t))
2

(
pit(t)− η/A

1− η

)
≤ ĝ − it(t)

1− η

And so:
T∑
t=1

git(t) ≥ (1− η)
T∑
t=1

ŷk(t)−
A lnN

η
− η

A

T∑
t=1

A∑
j=1

ĝj(t)

The left side of the inequality is exactly GEXP4, and so the lemma proof is complete.

�
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