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7.1 Introduction

In the Bayesian approach to the Multi Armed Bandit problem we assume a statistical model
governing the rewards (or costs) observed upon sequentially choosing one of n possible arms.
We consider a γ-discounted setting in which the value of a reward r at time t is rγt. We will
see that although searching for an optimal policy (a rule for choosing the next arm, based
on history, such that expected rewards are maximal) may be infeasible, the structure of an
optimal policy is based on an index value that may be computed for each arm independently.
The optimal policy will just choose next the arm of highest index, and update the index
value (of the chosen arm only) based on the observed result, thereby breaking down the
optimization problem to a small set of independent computations.

7.1.1 Example 1 - Single machine scheduling

There are n jobs to be completed but just a single machine. Each job i ∈ {1, . . . , n} requires
Si machine time to complete. Upon completion of job i at time t, a cost tCi is charged (i.e
a cost rate of Ci per unit of time for unfinished jobs). What is the optimal ordering of jobs
to be completed by the machine such that the total cost is minimal?

Claim 7.1 The optimal ordering of jobs in the single machine scheduling setting is by de-
creasing Ci

Si
.

Proof: Consider j1 and j2, two of the n jobs to be performed sequentially by some policy.
Since the costs related to the rest of the jobs are the same regardless of the order in which
j1 and j2 are performed, we can assume that j1 and j2 are the only jobs (i.e. n = 2, j1 = 1,
j2 = 2). Now, the total costs if performing first j1 and then j2 are C1S1 + C2(S1 + S2), and
the total costs if performing the jobs in reversed order are C2S2 + C1(S1 + S2). Therefore,
an optimal policy will perform j1 before j2 only if C1S1 +C2(S1 +S2) ≤ C2S2 +C1(S1 +S2),
i.e. only if C1

S1
≥ C2

S2
. �

In this first example, we see that the optimal policy is an index policy, that is, a policy
that is based on an index value function (that may be evaluated independently for each
possible option) and at each decision time selects the option having highest index. In the
single machine scheduling setting the options at each decision time are the jobs to be handled
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next by the machine and the index function of job i is Ci
Si

. Also note the simple interchange
argument in the proof - we will use similar interchange arguments throughout.

7.1.2 Example 2 - Gold mines

We have n gold mines, each with an initial amount of gold Zi, i ∈ {1, 2, . . . , n}. We have
a single machine that may be used sequentially to extract gold from a mine. When the
machine is used in mine i, with probability pi it will extract a qi portion of the remaining
gold (and may be afterwards used again in the same mine or another), and with probability
1−pi will break (ending the process). We are looking for an optimal policy to select the order
of mines to use the machine, such that the expected amount of gold extracted is maximal.

Claim 7.2 The optimal ordering of mines in the gold mine setting is by selecting the mine
with the highest piqixi

1−pi , where xi is the remaining amount of gold in mine i ∈ {1, 2, . . . , n}.

Proof: We again use an interchange argument. Assume that we consider using the
machine in two gold mines 1 and 2, one after the other. Given the gold levels x1 and x2 in
the mines, compare the expected amount of gold extracted for a policy that uses the machine
in gold mine 1 first and (if the machine did not brake) mine 2 afterwards, to the expected
amount of gold extracted for a policy that uses the machine in reversed order (note that the
expected amount of gold remaining in the mines after using the machine on both mines does
not depend on the order). To use first the machine in gold mine 1 we require that

p1(q1x1 + p2q2x2) ≥ p2(q2x2 + p1q1x1)

which holds when p1q1x1
1−p1 ≥

p2q2x2
1−p2 . Note that after using the machine in gold mine i (and

assuming the machine did not break) the relevant index piqixi
1−pi decreases and therefore the

optimal policy will recompute and compare the indices after each usage, choosing to use the
machine in the gold mine with higher index at every step. �

7.1.3 Example 3 - Search

An item is placed in one of n boxes. We are given a prior probability p ∈ ∆n, where pi is
the prior probability that the item is in box i. At each step we choose one of the n boxes i
and if the item is indeed in box i then we find it with probability qi. If upon searching box
i the item is not found, the probability pi is updated according to bayes’ rule:

pnewi = Pr(item in box i|item not found upon searching box i) =
(1− qi)pi
1− qipi

The cost of searching box i is Ci. We are looking for a policy to sequentially choose boxes
to be searched such that the average cost of finding the item is minimal.
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Claim 7.3 The optimal ordering of boxes in the search setting is by decreasing piqi
Ci

.

Proof: Again, we use an interchange argument. A similar reasoning as in the previous
examples indicates that we may restrict our attention to two boxes only, which without loss
of generality we assume are boxes 1 and 2. The average cost of searching box 1 followed (if
not found) by searching box 2 is C1 + (1 − p1q1)C2, while the average cost of searching in
the reversed order is C2 + (1 − p2q2)C1. Therefore1, we will prefer searching box 1 first if
C1 + (1− p1q1)C2 ≤ C2 + (1− p2q2)C1, that is if p1q1

C1
≥ p2q2

C2
. �

7.1.4 Example 4 - Multi Armed Bandit

We are given n arms B1 . . . Bn. Each arm Bi when selected has an (unknown) probability
of success θi. At a sequence of decision times t = 0, 1, 2 . . . we select an arm i, and (if
successful) earn a γ-discounted reward γt. Given a prior probability distribution on the
values {θi}ni=1, our goal is to find an optimal rule for the sequence of arms chosen such
that the average of the γ−discounted sum of rewards over time is maximal. As before, the
probability distribution of θi is updated according to bayes’ rule after observing the result
of every selection. For example, if the prior distribution of θi is Beta(1, 1) (i.e. uniform
over [0, 1]) then after observing ai successes and bi failures in ai + bi selections of arm i, the
posterior probability distribution for θi is Beta(1 + ai, 1 + bi). Note that if the probability
distributions for θi are Beta(αi, βi) then the obvious greedy policy that at each step choses
the arm of highest index αi

αi+βi
is not optimal. This is because given two arms of the same

index value αi
αi+βi

=
αj

αj+βj
but different times used (e.g. αi + βi << αj + βj) an optimal

policy will prefer arm i over j since the substantially larger information gain in observing Bi

(which has much higher variance at this point) may be later used to achieve higher expected
rewards.

To see how the expected total reward under the optimal policy may be calculated, consider
the simple setting n = 2 with arm 2 having a fixed known success probability p. Now,
R(α, β, p), the expected total reward under an optimal policy, when the probability of success
of arm 1 is θ ∼ Beta(α, β) satisfies the following recursion:

R(α, β, p) = max{ p

1− α
,

α

α + β
[1 + γR(α + 1, β, p)] +

β

α + β
γR(α, β + 1, p)} (7.1)

where p
1−α is the expected reward when choosing arm 2 indefinitely2, and the other term sums

two summands which are the optimal expected rewards when choosing arm 1 and observing
a success, or a failure, respectively. We may therefore solve for R(α, β, p) iteratively, starting

1Note that a search of one of the boxes has no effect on the probability pi of the other, and therefore the
probabilities p1 and p2 after searching both boxes are independent of the searching order.

2if it is optimal to choose arm 2 once, then it remains optimal thereafter since the information before
choosing arm 2 is the same as the information after observing the result
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with an approximation3 for all values of α and β such that α+ β = N and then calculating
iteratively for all values of α and β such that α + β = N − 1 and so on. It can be shown
that that the approximation error exponentially4 decreases with N . An index value for arm
1 given a Beta(α, β) probability of success may be the value of p for which the max in (7.1)
is over two expressions of the same value. In what follows we formalize this notion and prove
the existence of the Gittins index and its form. We start with the formal model.

7.2 Model

Given n arms B1 . . . Bn. At any time t, each arm Bi may be in a state xi(t) ∈ Si. At a
sequence of decision times t0 = 0, t1, . . . , tl, . . . we select (control) an arm i. Upon choosing
arm i at time t the state of arm Bi (and only Bi) transitions to state y ∈ Si according to
pi(y|xi(t)) and we observe a bounded reward r(xi(t)). The interval T until the next decision
time t+ T is set according to a probability distribution that may also depend on xi(t).

Our goal is to find a policy (a rule that given the history and the problem parame-
ters selects which arm to control at every decision time) that maximizes the average (over
realizations5) of the γ−discounted sum of rewards over time:∑

tl

γtlr(xi(tl)) (7.2)

It will be convenient to consider the observed reward r(s) (where s is the state of the
selected arm at decision time t) as being ’spread’ over the time interval ending in the subse-
quent decition time t+ T . We therefore define the reward rate r(s) as follows:

r(s) ,
r(s)

E[
∫ T
0
γtdt|x(0) = s]

Note that E[
∫ T
0
γtr(s)dt|x(0) = s] = r(s) and therefore the two reward methods are

equivalent with respect to the target (7.2). It will also be convenient to refer to the arm
choice process as being continuous between decision times - i.e. the arm is being chosen
throughout the time period (resulting in r(s) reward per unit of time) until the next decision
time. Now, we define for a fixed time interval [0, T )

w(T ) ,
∫ T

0

γtdt =
1− γT

ln 1
γ

(7.3)

3larger values of α + β imply higher concentration around the true success probability θ, and therefore
we are able to provide increasingly good approximations of R as we increase the initial α+ β

4an ε-approximation to R for α+ β = N results in an εγ-approximation to R for α+ β = N − 1
5all expectations are over realizations, unless explicitly indicated otherwise
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And note that for such a fixed T we have

r(s) = w(T )r(s) (7.4)

It is assumed that at every decision time t all the states x(t) = (x1(t), . . . , xn(t)) and
problem parameters (e.g. the discount factor γ, the transition distributions pi and reward
function r) are known to the policy. Therefore, optimizing (7.2) is possible by state space
evaluation methods such as dynamic programming. Such methods however are computa-
tionally infeasible due to the exponential size of the state space.

In what follows we will see that the optimal policy for (7.2) is an index policy - a policy
that assigns to each arm an index value that only depends on its state (and not on the states
of the other arms) and at each decision time selects the arm of highest index value. In doing
so, we replace a problem of evaluating values of

∏
i |Si| states (exponential in n) with n

independent computations of the values of |Si| states for each arm.

7.3 First proof: Finite number of states

Without loss of generality we may assume that all arms are identical, with the same state
space S =

⋃
Si, and only differ by their initial state (any underlying state independence

is reflected in the state transition function). We first show that at any decision time it
is optimal to choose the arm of maximal reward rate, and then we use this to prove (by
induction on the number of states |S|) that an optimal index policy exists. Furthermore, the
construction in the proof will serve to define the index.

Claim 7.4 It is optimal to choose an arm which is in state sN = arg maxs∈S r(s)

Proof: Note that it is not necessarily the case that there is an arm in state sN , the claim
is that if there is then any optimal policy will choose it right away. Assume that it is arm B1

in state sN at time 0 (x1(0) = sN). We use a simple interchange argument: assume there is
an optimal policy π that does not choose sN at time 0, and instead chooses at a sequence of
decision times a sequence of arms in states different than sN until eventually (after a period of
length τ , collecting an accumulated reward R) chooses B1 until the next decision time τ +T .
The reward observed by π during the interval [0, τ + T ) is R+ γτr(sN) = R+ γτw(T )r(sN).

We will compare the accumulated reward of π with that of a policy π, that chooses B1 at
time 0 for a period of length T and then chooses the same sequence as π during a period of
length τ and is identical to π thereafter (note that the states of the arms at time T + τ is the
same for both policy realizations). The reward observed by π, during the interval [0, τ + T )
is r(sN) + γTR = w(T )r(sN) + γTR. We consider the difference between the reward of π,

and the reward of π:

w(T )r(sN) + γTR− (R + γτw(T )r(sN)) = w(T )r(sN)−R(1− γT )− γτw(T )r(sN)
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Now, by the definition of sN we have that R ≤ w(τ)r(sN) and therefore the above
difference is at least

r(sN)[w(T )− w(τ)(1− γT )− γτw(T )] = r(sN)[w(T )(1− γτ )− w(τ)(1− γT )] = 0

where the last equality is by (7.3). We conclude that choosing the state of global maximum
reward rate is optimal. �

We now use the claim to constructively prove that an optimal index policy exists:

Theorem 7.5 If the number of state S is finite (|S| = N), then there exists an optimal
index policy. Furthermore, the index values may be iteratively computed as follows:

v(sj) =
E[

∑
tl<τ

r(x(tl))γ
tldt|x(0) = sj]

E[
∫ τ
0
γtdt|x(0) = sj]

, j = N,N − 1, . . . , 1 (7.5)

Where the expectations above are over realizations that start with an arm at state x(0) =
sj and continue (arm chosen again and again at decision times tl) until a decision time τ in
which the state of the arm is no longer in the set of already computed ’higher priority’ values
{sN , . . . , sj+1}

Proof: First we prove by induction on the number of states that there is an optimal
index policy (i.e. that there is an ordering of the states such that it is optimal to choose the
state of highest order). When there is a single state this is trivial. Now, assume the existence
of such an ordering for a problem of N − 1 states. We can now consider a modification of
the given problem to a problem of N − 1 states such that the rewards and decision times of
an optimal policy for the original setting are the same as the rewards and decision times of
an optimal index policy for the modified setting:

We eliminate the state of highest reward rate (sN) by modifying the probabilities of
transitions p(y|s), reward rates r(s), and decision times T (s) such that whenever an arm
reaches state sN at a decision time it is automatically selected (therefore the actual decision
times in the modified setting are until no arm is in state sN). By the inductive assumption,
there is an optimal index policy for the modified setting (implying an ordering of the N − 1
states at every decision time, that only depends on the state). By the claim above, any
optimal policy for the original setting of N states selects an arm at state sN when available.
Therefore, the combination of the selection rule of state sN with the optimal index policy
for the other N − 1 states forms an optimal index policy for the original setting.

We now turn to explicitly formulate the index value based on the above construction.
First note that r(sN) ≥ r1(sN−1) where r1(sN−1) is the maximal reward rate of the best
arm sN−1 in the modified setting not including sN . Therefore the list of non-increasing,
iteratively computed values

v(sj) = rN−j(sj), j = N,N − 1, . . . , 1
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may serve as the index values of the states in S, where rN−j(sj) is the maximal reward rate
of the best arm sj in the modified setting not including {sN , . . . , sj+1}. By the construction
of the modified settings we have (7.5). �

7.4 Gittins Index

In this section we will explore the general form of an optimal index policy assuming that
it exists. Two additional existence proofs (not assuming finite state space) are given in
subsequent sections. To simplify notation we assume from now on that the decision times
are fixed at times t = 0, 1, 2.... The results apply and are easy to generalize to the case of
random decision times.

We start by observing that the infinite horizon accumulated rewards of a single state
fixed λ−reward arm is λ

1−γ . We denote such an arm by B(λ). In a setting of two arms,

B and B(λ), an optimal policy that switches from arm B (that started in state s0) to arm
B(λ) at some decision time τ > 0 will never switch back to B (the information regarding
B in future decision times is the same as the information that was available at time τ and
resulted in choosing B(λ)). We conclude that the maximal average reward is the optimal
choice of the stopping time τ :

sup
τ>0

E[
τ−1∑
t=0

γtr(x(t)) + γτ
λ

1− γ
|x(0) = s0] (7.6)

where the average is over all realizations of the state transitions and rewards of arm B,
and the supremum is over all functions τ that associate a stopping time in {1, 2, . . .} to a
realized states history6. We are looking for the fixed reward λ∗ that makes the two arms
equivalent (equally optimal to switch to B(λ∗) initially, or wait for the optimal switch time,
and therefore may serve as the index value of arm B at state s0), that is, satisfying

sup
τ>0

E[
τ−1∑
t=0

γtr(x(t)) + γτ
λ∗

1− γ
|x(0) = s0] =

λ∗

1− γ

or equivalently

sup
τ>0

E[
τ−1∑
t=0

γtr(x(t))− (1− γτ ) λ∗

1− γ
|x(0) = s0] = 0

The left hand side of the above equation, the supremum of a decreasing linear function of
λ is convex and decreasing in λ. Therefore, the above equation has a single root that may

6A stopping time is a mapping from histories to a decision of either to continue or to stop
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also be expressed as follows (since 1−γτ
1−γ =

∑τ−1
t=1 γ

t):

λ∗ = sup{λ| sup
τ>0

E[
τ−1∑
t=0

γt[r(x(t))− λ]|x(0) = s0] ≥ 0} (7.7)

The above provides an economic interpretation of λ∗ as the highest rent (per period) someone
(who has an optimal stopping policy τ) may be willing to pay for receiving the rewards of
B. From (7.7) we get that λ∗ (the index value of arm B at state s0) is of the following form:

v(B, s0) , λ∗ = sup
τ>0

E[
∑τ−1

t=0 γ
tr(x(t))|x(0) = s0]

E[
∑τ−1

t=0 γ
t|x(0) = s0]

(7.8)

Note that it is a legitimate index since it only depends on the state and parameters of B.
Note also that (7.8) coincides with (7.5) since the optimal stopping time τ is inherent in the
construction described in the proof of Theorem 7.5.

Finally, consider the optimal stopping time τ in (7.7), which is characterized by the set of
stopping states Θ(s0). It can be shown that any state s having index value v(B, s) < v(B, s0)
must be a stopping state, and any stopping state s must satisfy v(B, s) ≤ v(B, s0):

{s|v(B, s) < v(B, s0)} ⊆ Θ(s0) ⊆ {s|v(B, s) ≤ v(B, s0)}

This implies that an optimal policy will not stop at a state having higher index value than
the index value of the initial state, and will always switch if reaching a state of lower index
value than that of the initial state. The following example illustrates the power of using the
index.

7.4.1 Example 5 - Coins

Consider the following coins problem: given n biased coins (coin i having probability of
heads pi) we earn a reward γt for a head tossed at time t. It is easy to see that the optimal
tossing order is by decreasing pi. Now, assume that the heads probability of coin i is pij
when tossed for the jth time. If pij is nonincreasing (i.e. pi1 ≥ pi2 ≥ . . .) for every i then
again tossing by decreasing pij is optimal. However, in the general case (where pij is not
necessarily decreasing) we can use the index (7.8) to define for each coin i its index value:

vi = max
τ≥1

∑τ−1
j=0 γ

jpij∑τ−1
j=0 γ

j

Note that state transitions are deterministic and the expectations over realizations (of re-
wards) are reflected in the values pij in the expression above. The optimal policy will identify
the optimal stopping time τ ∗ of the coin with highest index value i∗ = arg maxi vi, will toss
τ ∗ times coin i∗ , and advance its state accordingly. The policy may now recompute the
index value of coin i∗ and repeat.
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7.5 Proof by economic interpretation

In this section and the following we present two proof of the index theorem (no longer
assuming finite number of states):

Theorem 7.6 An Index policy with respect to

v(Bi, s) = sup
τ>0

E[
∑τ−1

t=0 γ
tr(xi(t))|xi(0) = s]

E[
∑τ−1

t=0 γ
t|xi(0) = s]

is optimal.

Proof: We use the economic interpretation following (7.7): assume that to use an arm
Bi that is in state xi(t) at time t, a prevailing charge λi,t must be paid. A too low charge
will result in endless usage of the arm, while a too high charge will result in an abandoned
arm. Let the fair charge be the charge for which we are indifferent between using the arm
(for a sequence of times, until an optimal future stopping time τ) or not. The fair charge
λi(xi(t)) is given by λ∗ of (7.7) and the related optimal usage time (given the state of the
arm is xi(t)) is the τ that attains the supremum, denoted τ(xi(t)).

Now, we set the prevailing charges of arm Bi as follows: initially (t0 = 0) set λi,t0 =
λi(xi(t0)). Thereafter, the prevailing charge is kept constant until time t1 = t0 + τ(xi(t0)).
By optimality of t1, at that time the prevailing charge was (for the first time) higher than the
fair charge, so we reduce the prevailing charge and set λi,t1 = λi(xi(t1)), keeping it constant
until time t2 = t1 +τ(xi(t1)). And so on, creating a nonincreasing series of prevailing charges
λi,t = mint,≤t λi(xi(t

,)). By the construction, for arm Bi, the prevailing charges are never
more than the fair charges: λi,t ≤ λi(xi(t))).

Finally, consider a setting of n arms B1, . . . , Bn with prevailing charges λi,t set as previ-
ously described (where t represents for each arm its process time - the number of times the
arm has been selected). Note the perfect analogy to the setting of section 7.4.1 with nonin-
creasing probabilities pij. Now, since at any time no profit can be made from any selected
arm, the expected total discounted sum of rewards is upper bounded by the discounted sum
of prevailing charges paid by any policy that selects one of the n arms sequentially. However,
those two quantities are equal for the policy that at each time selects the arm of highest
prevailing charge, and therefore such a policy is optimal. We conclude that the prevailing
charge λi,t (which is always equal to the fair charge when selected) is the Gittins index as
defined in (7.7) and (7.8). �

7.6 Proof by interchange arguments

In this section we present yet another proof of Theorem 7.6. Using the notation established
in the previous secion and denoting the numerator and denominator of the index defined in
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theorem 7.6 by Rτ (Bi, s) and Wτ (Bi, s) respectively, we have λi(xi) = supτ>0
Rτ (Bi,xi)
Wτ (Bi,xi)

. We
first prove the following interchange claim:

Claim 7.7 For two arms B1 and B2 at states x1 and x2 respectively at time t, if λ1(x1) >
λ2(x2) with τ = τ(x1) the optimal stopping time of B1 at state x1, and σ an arbitrary stopping
time for B2 at time state x2 then the expected reward is higher when selecting B1 for a period
τ and then selecting B2 for a period σ than the expected reward when the order is reversed.

Proof: λ1(x1) > λ2(x2) ⇒ Rτ (B1,x1)
Wτ (B1,x1)

> Rσ(B2,x2)
Wσ(B2,x2)

. Now, since for any σ > 0 we have

Wσ(Bi, s) = 1−E[γσ |x0=s]
1−γ , the last inequality us equivalent to Rτ (B1,x1)

1−E[γτ |x1] >
Rσ(B2,x2)
1−E[γσ |x2] which

in turn is equivalent to Rτ (B1, x1) +E[γτ |x1]Rσ(B2, x2) > Rτ (B2, x2) +E[γσ|x2]Rτ (B1, x1).
The left side of this last inequality is the expected reward when selecting B1 for a period τ
and then selecting B2 for a period σ, while the right side is the expected reward when the
order is reversed. �
We are now ready to prove the theorem:

Proof:(of theorem 7.6) For a given setting and the index (7.8) define a parameterized
class of policies Πk. A policy π is in Πk if it makes at most k arm selections that are not
the arm of highest index value (at decision time). We will show by induction on k that an
optimal policy belongs to Π0. First, consider π ∈ Π1. We use the interchange claim 7.7 to
show that π is not optimal. Indeed, consider the time t0 in which π deviates and selects arm
B2 (having index λ2,t0) instead of arm B1 of maximal index7 λ1,t0 > λ2,t0 (without loss of
generality we may assume t0 = 0). Since π may not deviate again, arm B1 will get selected as
soon as λ2,σ < λ1,0, and remain selected for the optimal period τ . By the interchange claim
7.7, the reward of π during time σ + τ is less than the reward of a policy π, that reverses
the arms order and selects arm B1 first for a period of length τ followed by arm B2 for a
period of length σ (and is identical to π thereafter). Note that the states of B1 and B2 at
time τ + σ do not depend on which policy was used. We conclude that π is not optimal and
that optimal policies restricted to Π1 should never exercise the (single) option to deviate.
Therefore, optimal policies restricted to Πk should never exercise their last option to deviate,
and (inductively restricting attention to Πk−1,Πk−2, . . .) we conclude that the Gittins index
policy is optimal in Πk. We are not done since there might be a better policy in Π∞, which
is not accounted for in the induction. Assume that the optimal policy Π∗ is in Π∞ and not
Π0. Given any ε > 0, for a sufficiently large k there exists an ε-optimal policy in Πk (since
ε determines a time horizon after which the discounted rewards are of negligible influence)
which, by the above reasoning belongs to Π0. Since Π0 holds an optimal policy for any ε > 0,
it also holds the optimal policy. �

7Note that if multiple arms have maximal index (i.e. in case B1 is not unique) it does not matter which
arm of maximal index is selected first, and therefore without loss of generality we may assume that B1 is
selected.


