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8.1 Introduction

Consider a game of drawing balls from a bucket. The game manager tosses a secret
coin. If the outcome is heads, the manager places 3 red balls and 2 white balls, and
vice versa if the outcome is tails. Each player in his turn draws a ball from the bucket,
secretly and at random, and has to announce (to all other players) his guess of the
outcome of the original toss.

Now, suppose that the �rst few players saw red balls and declared 'heads'. The
�rst player to see a white ball, will attribute it to chance, and, given the short sequence
of red balls before her draw, she will continue to declare 'heads'. The next player
has no indication that any white balls were drawn, and thus even if he too will draw
a white ball he will surely declare 'heads', and so on. We see that even if that vast
majority of players draw white balls, they will all beleive that there is a majority of
red balls, because of a small number of draws at the beginning of the game.

8.1.1 Infomation Cascade

We would like to generalize the discussion of behaviours such as that of the players
in the game we described. Informally, we de�ne the concept of information cascade:

De�nition 8.1.1. Information Cascade (informal)
An information cascade occurs when it is optimal for an individual, having ob-

served the actions of those ahead of him, to follow the behavior of the preceding indi-
vidual without regard to his own information.

Information cascade can also be observed in many �real-life� situations such as
stock market bubbles. A key characteristic of information cascades is that they are
fragile. Many small changes can end a cascade. After a cascade has started, if an
individual has more precise information than their predecessors they may still rely on
their own information. If public information is introduced, the cascade could end or
reverse. If there is even uncertainty as to whether the underlying state has changed,
the cascade could end or reverse.
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8.2 A Simple Binary Model

Similarly to the game in the introduction, consider a sequence of agents:

• Each agent decides to adopt or reject a project, based on his own signals and
the dcisions of previous agents;

• The project has a payo� V ∈ {0, 1} (with equal probability), and a cost to
adopting C = 1/2.

• Each agent observes a signal of Xi ∈ {H,L}

� H is observed with probability p > 1/2 if V = 1, with probability 1− p if
V = 0.

Information cascade in this setting:

• The 1st agent adopts if her signal is H, else rejects

• The 2nd agent adopts if both 1st adopted and his signal is H, �ips coin if 1st

adopted and his signal is L

• 3rd agent: if agent 1 and 2 adopted (rejected), 3rd observes a majority of H's
(L's), and therefore also adopts (rejects) - regardless of her signal. In this case
she is the �rst agent in the cascade. If 1st and 2nd agents disagreed, it starts
over.

• Once one agent follows regardless of his signal, all others will follow � a cascade
continues inde�nitely once it starts.

Two main conclusions can be drawn:

1. The most striking conclusion is an information cascade will eventually occur
with probability one! For a cascade where all agents adopt the project from
a certain point in time all we need is that the number of adopters to exceed
the number of agents who reject by at least two in some history. A similar
conclusion holds when we consider cascade where all agents reject.

2. Information cascades are fragile. If at some point an agent with a more accurate
signal arrives then he may choose to ignore the actions of previous agents as
they are not very informative.

8.3 Application to Finance: IPOs [6]

Consider an entrepreneur who wishes to sell his �rm in an IPO. We normalize his value
for the �rm to be zero and let the �rm's value, V , to n other investors be uniformly
distributed over [0, 1]. Hence, it is commonly known that there is a reason for the
entrepreneur to sell. This can be justi�ed by the fact that he is under-diversi�ed.

http://en.wikipedia.org/wiki/Initial_public_offering
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Suppose that investors hold binary signals which are i.i.d conditional on the asset's
value. In particular:

Pr [si = H|V = v] = v

Pr [si = L|V = v] = 1− v

In our model, the entrenpreneur is allowed to sale only one share to each investor, and
the commerce of other shares does not directly a�ect the value of the share bought
by an investor. Simple calculations reveal the following facts:

Claim 8.1.

Pr [k H's out of n signals] =
1

n+ 1

Claim 8.2.

Pr [at least k H's out of n signals] = 1− k

n+ 1

Claim 8.3.

E [V |k H's out of n signals] =
k + 1

n+ 2

Proof. Claim follows directly from 8.1.
For proofs of 8.1 and 8.3 see Appendix.

8.3.1 Pricing the Issue when there is Perfect Information Shar-

ing

Suppose that agents share the signals among them and there are exactly k `H's.
Agents would buy if and only if the price does not exceed k+1

n+2
. We can solve for the

optimal price by thinking about the optimal k:

argmax
k

Pr [at least kH's] · (price assuming kH's) = argmax
k

(
1− k

n+ 1

)(
k + 1

n+ 2

)
= argmax

k
(n+ 2− (k + 1)) (k + 1)

= n/2

This implies that the optimal price is 1/2 and that the probability an issue will succeed
is 1/2.

8.3.2 Pricing the Issue with Information Cascades

Suppose now an agent observes only the decision of the previous investor but not his
signal. How can the seller ensure that that an IPO is successful with probability one?

Notice that if some agent receives an L and buys (receives an H and sells), then
no additional information is accumulated. Therefore, all future agents will also buy
(sell).
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Suppose that the o�er price is 1/3 and consider the �rst buyer. From Claim 8.3
it follows that this investor would buy even if he has a low signal. By induction, we
see that all other investors would follow. Conversely, if one chooses price of 2/3 or
more then the issue will fail as the �rst agent is certain to refuse to buy.

Claim 8.4. The optimal price is 1/3.

Proof. The proof is based on the claim that there is a signi�cant risk of a negative
cascade if the price is more than 1/3. For details see the appendix.

8.3.3 Remarks

The above is just an example, but several implications follow even in the more general
case. For example, the under-pricing is more signi�cant if there is more uncertainty in
the prior (i.e. adding a mean preserving spread). Under-pricing increases also when
the seller is risk averse.

8.4 Application to Finance: Trading in Financial Mar-

kets [1]

Recall, that in Section 8.2 we saw that in the simple binary model an information
cascade occurs with probability 1. Now, if we introduce a market maker that varies
the price, ĉ, according to the publicly available information:

ĉ = E [V |Ht]

E [V |Ht , S = L] < ĉ < E [V |Ht , S = H]

Notice that in this case players act according to their individual values and informa-
tion cascading does not occur.

Somewhat more formally, consider the following model of a market, originally due
to [5]:

• Noise traders buy or sell or do not trade a probability of 1/3 regardless of the
price.

• The asset takes one of two values V ∈ {0, 1} with equal probabilities.

• Informed traders get private signals which are i.i.d conditional on the value of
the asset.

• The history of transaction up to but not including time t (which is observed by
all agents) is denoted by Ht, where ht denotes the current transaction.

• We let V t
M = E [V |Ht] denote the expected value conditional on the available

history of transactions.

http://en.wikipedia.org/wiki/Market_maker


Lecture 8: Information Cascading 5

• We let V t
S (s) = E [V |Ht , S = s] denote the expected value conditional on the

available history of transactions and an agent's signal being s.

Claim 8.5. In this model, an information cascade occurs with probability 0.

First, we should introduce a formal de�nition of information cascade:

De�nition 8.4.1. Information Cascade (formal)
An information cascade is a situation where the transaction at time t is determined

solely by the history and not the private signal or the value of the asset:

Pr [ht|V,Ht] = Pr [ht|Ht]∀ht, V

Proof. An information cascade implies that the market maker does not learn from
actions and hence the bid equals the ask and both equal the conditional expectation.
Given the noise traders it is never the case that the market maker knows the value
with certainty. Hence, a noisy signal is informative and there are agents who would
buy and some agents who would sell at this price. This implies that an action conveys
information which leads to contradiction.

While an information cascade never occurs we may observe a less striking pattern
which we denote by `herding':

8.4.1 Herding

De�nition 8.4.2. Herding
We say that an agent engages in herd buying at time t if he buys when V 0

S (s) <
V 0
M < V t

M . A herd in selling is de�ned in a similar way

De�nition 8.4.3. Mononocity
A monotonic signal is a signal for which there exists a function V (s) s.t. V t

S (s) ∈
[V t

M , V (s)]

Intuitively, when signals are monotone they could be labeled as either positive or
negative. A positive signal leads to a revise upward regardless of the speci�c history.

Claim 8.6. A herd behavior does not occur if the signal is monotonic.

Proof. Suppose that a trader with a monotonic signal herd-buys at time t. Then his
valuation exceeds the ask which exceeds the market expectation, i.e.:

V t
S (s) > At > V t

M

So the signal is �positive� given the history:

V (s) > V t
M

However, since he is herd-buying, history must also be �positive�:

V 0
M < V t

M < V (s)
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Therefore it must be that the signal is �positive� even without the history:

V 0
S (s) ∈

[
V 0
M , V (s)

]
V 0
S (s) > V 0

M

Which is a contradiction to the assumption of herd-buying.

8.4.2 A setup with herding

Given the above result it seems that for herding to occur we need to have non-
monotonic signals. We consider a di�erent version of the above market model:

V ∼Uni

{
0,

1

2
, 1

}
S ∈

{
0,

1

2
, 1

}
α ∈

(
1

2
, 1

)
Pr

[
S =

1

2
|V
]
=

{
1 V = 1

2

0 otherwise

Pr [S = 1|V ] =

{
α V = 1

1− α V = 0

Pr [S = 0|V ] =

{
α V = 0

1− α V = 1

We �rst need to verify that indeed the signal is non-monotone:

Example 1. Consider a belief where

Pr

V =
0
1
2

1

 =
q
t
r

q + t+ r = 1

Now consider the case where t is close to one, which implies that based on these
beliefs E [V ] ≈ 1

2
. Now suppose in addition that q/r � 1; this implies that π =

Pr
[
V = 1|V 6= 1

2

]
is also very close to one. Consider the signal S = 0: Based on this

signal, one knows with certainty that V 6= 1
2
. Hence, we have that:

E [V |S = 0] = Pr [V = 1|S = 0]

=
Pr [V = 1 ∧ S = 0]

Pr [S = 0]

=
π · α

π · α + (1− π) · (1− α)
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While being smaller than p, this is also close to one, so E [S|V = 0] > E [V ].

We now prove that such a scenario is in fact likely to happen:

Claim 8.7. There is positive probability of herding.

Proof. Suppose that initially there many rounds with no-trades. After each no-trade
the market maker thinks that this maybe due to having no information event as he
was facing agents with signal S = 1/2. Hence, the likelihood of v = 1/2 increases
substantially. An agent who has S = 0 knows that this is not the case but is not sure
whether V = 0 or V = 1. So if after that we see many buy orders this agent could
become more optimistic than the market maker and would buy.
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Appendix A

Proofs

A.1 Proofs of claims 8.1 and 8.3

A.1.1 Intuitive proofs

Claim.

Pr [k H's out of n signals] =
1

n+ 1

Proof. Notice that there is no importance to the order in which the signals arrive.
Consider the following two experiments:

1. The entrepreneur draws a value V ∼Uni [0, 1], and then also each of the n agents
draws vi ∼Uni [0, 1]. If vi < V , then agent i receives a signal H, and otherwise
a signal L.

2. n + 1 points {xj} are drawn i.i.d. and uniformly from [0, 1]. The entrepreneur
chooses a j∗ ∼Uni [n+ 1] and then we count how many xj's are smaller than
xj∗

It is easy to see that these experiments are essentially the same. Also from symmetry
it follows that for any k + 1 ∈ [n+ 1]

Pr [kH's out of n signals] = Pr [|{i : vi < V }| = k]

= Pr [|{j : xj < xj∗}| = k]

= Pr
[
the entr. chooses the k + 1th point

]
=

1

n+ 1

Claim.

E [V |k H's out of n signals] =
k + 1

n+ 2

9
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Proof. Consider what happens when we add an n+ 2nd signal / point to each of the
above two experiments:

k + 1

n+ 2
= Pr [the new point is one of the �rst k + 1]

= E [xj∗| |{j : xj < xj∗}| = k]

= E [V | |{i : vi < V }| = k]

= E [V |kH's out of n signals]

A.1.2 Technical proofs

Claim.

Pr [k H's out of n signals] =
1

n+ 1

Proof.

� 1

0

Pr[k|p] · Pr[p]dp =
� 1

0

(
n

k

)
xk(1− x)n−kdx

=

[(
n

k

)
xk+1

k + 1
· (1− x)n−k

]1
0

+

� 1

0

(
n

k

)
xk+1

k + 1
(n− k)(1− x)n−k−1dx

=

� 1

0

(
n

k + 1

)
xk+1(1− x)n−k−1dx

=

� 1

0

Pr[k + 1|p] · Pr[p]dp,

where the transition from the second to the third expression is due to the identity(
n

k

)
(n− k)
k + 1

=

(
n

k + 1

)
Comparing both ends of the above sequence of equalities we realize that all the
probabilities are equal, and therefore

� 1

0

Pr[k|p] · Pr[p]dp = 1

n+ 1

Claim.

E [V |k H's out of n signals] =
k + 1

n+ 2

Proof.

Pr[(k, n)|p] = pk(1− p)n−k
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Pr[(k, n)] =
� 1

0
pk(1− p)n−kdp = 1

n+1
· 1

(nk)
itemizeHence:

E[p|(k, n)] =
� 1

0

p · Pr[(k, n)|p] · Pr[p]
Pr[(k, n)]

dp

=

� 1

0
p · pk(1− p)n−kdp

1
n+1
· 1

(nk)

=

1
n+2
· 1

(n+1
k+1)

1
n+1
· 1

(nk)

=
k + 1

n+ 2

A.2 Proof of claim 8.4

Claim. The optimal price is 1/3.

Proof. The proof is based on the claim that there is a signi�cant risk of a negative
cascade for any price over 1/3:

• If p > 2/3 then no agent will buy the the �rm.

• If p ∈ (3/5, 2/3], then if at least one of the �rst two agents does not buy,
the expected value of the next agent, even after receiving an H is bounded by
2+1
3+2

= 3/5, so with probability

1− Pr [the �rst two agents buy] = 1− 1

2 + 1
=

2

3

the entrepreneur sells nothing, and thus the expected revenue is less than the
promised 1/3.

• If p ∈ (1/2, 3/5], then p > 3/6 and thus a negative cascade occurs for the
histories: LL,HLL,LHL, whose total probability is:

1

2 + 1
+

1

3 + 1
· 1(

3
1

) + 1

3 + 1
· 1(

3
1

) =
1

2

Therefore the expected revenue is bounded by 1
2
· 3
5
= 3

10
< 1

3
.

• If p ∈ (2/5, 1/2], then a negative cascade occurs for LL with probability 1
3
and

also for LHLLL with probability > 0. The expected revenue is thus strictly
lower than 2

3
· 1
2
= 1

3
.

• Finally, for p ∈ (1/3, 2/5], a negative cascade results from LLL - with proba-
bility 1

4
, and we can bound the expected revenue by 3

4
· 2
5
= 3

10
< 1

3
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